

1 **Changes in nitrate binding with lanthanides in BLPhen complexes**

2 Th. Dhileep N. Reddy,¹ Alexander S. Ivanov,² Darren M. Driscoll,² Santa Jansone-Popova,² and
3 De-en Jiang^{3,*}

4 ¹Department of Chemistry, University of California, Riverside, CA 92521, USA

5 ²Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge,
6 TN 37831-6119 USA

7 ³Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville,
8 Tennessee 37235, United States

9 *To whom correspondence should be addressed. E-mail: de-en.jiang@vanderbilt.edu

10
11 **Abstract:** Preorganized ligands such as bis-lactam-1,10-phenanthroline (BLPhen) offer unique
12 selectivity trend in solvent extraction of rare-earth ions from their aqueous nitrate solutions, but
13 due to their lipophilicity it is experimentally challenging to obtain crystal structures of the
14 corresponding complexes to shed light on the structure of the first coordination shell and the role
15 of the nitrate ions in the organic phase. Herein we report first principles molecular dynamics
16 (FPMD) simulations of the complexation of trivalent lanthanide ions (La, Nd, and Eu) with the
17 BLPhen ligand in the presence of nitrate ions in the dichloroethane (DCE) solvent. We find that
18 two nitrate anions are present in the first solvation shell and the third nitrate anion is far from the
19 first solvation shell in all three $[\text{Ln}(\text{BLPhen})_2]^{3+}$ complexes examined. Moving along the
20 lanthanide series from La to Nd to Eu, the binding pocket formed by the two BLPhen ligands
21 shrinks in size; as a result, the two nitrates change from one-monodentate/one-bidentate binding
22 mode for La and Nd to all monodentate for Eu; meanwhile, the total coordination number drops
23 from 11 for La and Nd to 10 for Eu. More interestingly, the bidentate binding in $[\text{La}(\text{BLPhen})_2]^{3+}$
24 and $[\text{Nd}(\text{BLPhen})_2]^{3+}$ complexes is highly dynamic, frequently switching to monodentate and back.
25 The FPMD insights into the differing modes and dynamics of nitrates in the first coordination shell
26 will be useful for further atomistic understanding of the complex structure, formation, and stability
27 in the organic phase.

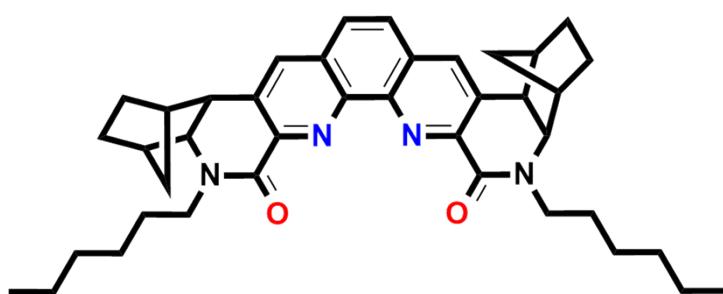
28 **1. Introduction**

29 Understanding the local structure of lanthanide (Ln) complexes is essential to explain changes in
30 their distribution ratios across the series during solvent extraction for rare-earth element (REE)
31 separations [1,2]. The structural and thermodynamical properties depend on the nature of the
32 solvent, ligand-metal complexation and counterions. Although many ligand-Ln complex structures
33 have been resolved, such structures have not been available for complexes of some most recently
34 developed ligands. A clear description of the first solvation shell, ligand-metal association, and
35 anion approach to the complex would be desirable and molecular simulations can provide atomistic
36 insights into such description [3–7].

37 The coordination of lanthanide cations to the ligands and anions is an active area of
38 research [8–13] and REE separations are usually conducted in the presence of nitric acid. The
39 modes of nitrate anion binding to the lanthanide cations have been extensively examined in the
40 aqueous phase [14–18], but less so in the organic phase. When Ln(III) ions in the presence of nitric
41 acid are extracted in the organic phase by charge-neutral ligands, some nitrate ions will accompany
42 Ln(III) ions into the organic phase. Dichloroethane (DCE) is a commonly used organic solvent
43 that performs well in extracting the lanthanides [19]. Therefore, it would be interesting to
44 investigate the binding of nitrate anions to the lanthanide-ligand complex in the DCE as a typical
45 organic solvent.

46 Rigid-structured ligands have recently attracted researchers in the field of REE separations
47 [20–22]. 2,9-bis-lactam-1,10-phenanthroline (BLPhen) ligand has a rigid structure and showed
48 one of the best selectivity towards light lanthanides [19,23], while majority of the known ligands
49 show more selectivity towards heavy lanthanides [24]. For example, Healy et al. found that a
50 typical BLPhen ligand in DCE can achieve separation factors of 32 for La/Nd, 398 for La/Eu, and
51 17326 for La/Lu in 0.9 M HNO₃ [19]. However, the atomistic description of the first solvation
52 shell of lanthanide cations is unclear, particularly, the nitrate anion binding to the lanthanides in
53 the organic phase. Both quantum chemical (QC) calculations with the implicit solvent model and
54 classical molecular dynamics (CMD) simulations with explicit solvents have been used to examine
55 REE complexes [4,23,25,26]. Implicit solvent models miss the essential interactions between
56 complex and solvent, while CMD results highly depend on the quality of the force field and it is
57 still challenging for the commonly used force fields to accurately describe the Ln-BLPhen
58 complexes [26]. As such, first principles molecular dynamics (FPMD) simulations can be used to

59 fill the gap between QC calculations with implicit solvent models and CMD simulations with
60 explicit solvents.

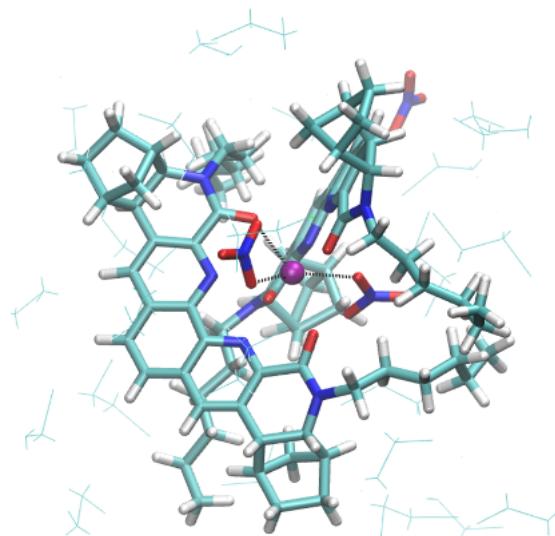

61 The present work investigates the effect of Ln(III) size on the nitrate coordination mode as
62 part of the Ln-BLPhen complexes in the DCE organic solvent. Because the BLPhen ligands'
63 preference for light lanthanides, here we focus on three typical light Ln(III) ions, namely, La(III),
64 Nd(III), and Eu(III), given the computational cost of FPMD simulations. Our plan is to obtain a
65 trend regarding the monodentate and bidentate binding of nitrate anions to Ln(III) and their
66 dynamics in the DCE solvent by comparing La(III), Nd(III), and Eu(III), and then we can extend
67 the FPMD simulations to heavier Ln(III)s and the whole series in the future. Below we first explain
68 our computational approach.

69

70 **2. Computational method**

71 Vienna *ab initio* simulation package (VASP) was used to conduct FPMD simulations using spin-
72 polarized density functional theory (DFT) [27,28]. Ion-electron interaction was represented by
73 Projector augmented wave (PAW) method and standard PAW potentials were used for all the
74 elements [29,30]. 400 eV kinetic energy cutoff was used for the plane-wave basis set. Generalized
75 gradient approximation (GGA) of Perdew, Burke and Ernzerhof (PBE) functional was used to
76 describe electron exchange-correlation [31]. Previous studies showed that PBE functional could
77 well describe structure of the metal complexes in solvents [32–38]. Moreover, the PBE functional
78 has been shown to give reliable geometries for phenanthroline derived ligands [39]; being a pure
79 functional it is much less computationally expensive than the hybrid functionals. That is why we
80 chose the PBE functional here, but we do note that other methods such as hybrid functionals and
81 higher quantum chemistry methods have been used as well for phenanthroline-based ligands for
82 metal-ion separations [35,38,40].

83



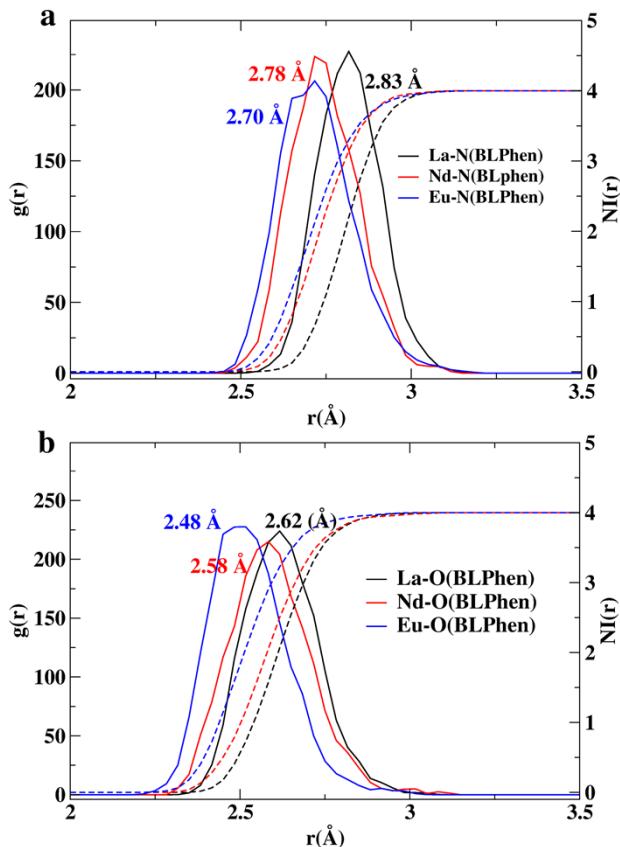
84

85 **Figure 1.** Molecular structure of the 2,9-bis-lactam-1,10-phenanthroline (BLPhen) derivative ligand.

86

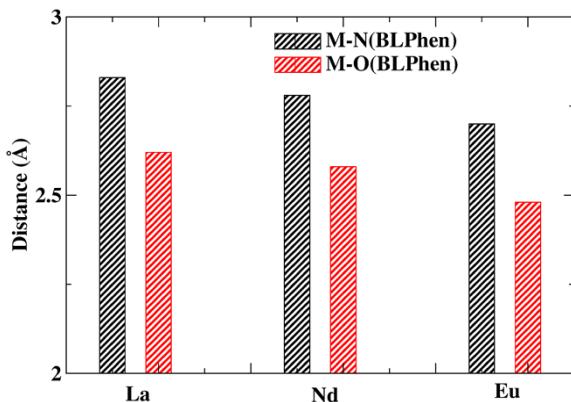
87 The BLPhen ligand in Figure 1 can form both 1:1 and 2:1 ligand-to-metal complexes in
88 the organic phase and recent X-ray absorption fine structure spectroscopy experiments suggest that
89 the 2:1 complex is the dominant form [41]. So the 2:1 BLPhen:Ln(III) complexes in the DCE
90 solvent were simulated for Ln(III) being La³⁺, Nd³⁺, and Eu³⁺. 25 DCE molecules were filled in a
91 cubic box that contained one Ln(BLPhen)₂(NO₃)₃ complex. The chemical structure of the BLPhen
92 ligand employed is shown in Figure 1. Following a previous work [6], the simulation box was first
93 equilibrated with CMD with the complex structure restrained to their DFT-optimized gas-phase
94 geometry and then the equilibrated structure was used as the initial structure for FPMD simulations
95 at 298 K in an NVT ensemble. During FPMD simulations, the temperature was controlled by a
96 Nose-Hoover thermostat; 1 fs time step was used and 15 ps simulations were carried out. We
97 started the FPMD simulations with Nd(BLPhen)₂(NO₃)₃ first and then repeated the simulations by
98 replacing Nd with La and then Eu. VMD software package was used to visualize the trajectories
99 and perform some analysis [42]. RDFs and running number integrals were calculated using
100 TRAVIS software [43,44].

101


102 **Figure 2.** Snapshots BLPhen-La(III) complex in 2:1 stoichiometry in dichloroethane (DCE). DCE
103 molecules are not shown for clarity. Color code: O, red; N, blue; Nd, pink; C, cyan; H, white.

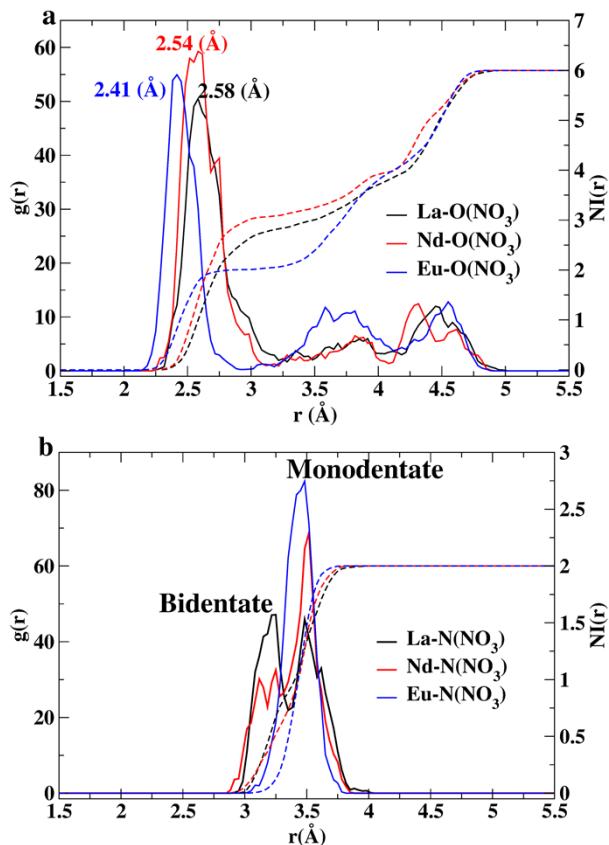
104

105 **3. Results and discussion**


106 **3.1 BLPhen-Ln interaction in the $\text{Ln}(\text{BLPhen})_2(\text{NO}_3)_3$ complexes**

107 Figure 2 shows a representative structure of the BLPhen:Ln 2:1 complex in the DCE solvent.
 108 Overall, the 2:1 coordination geometry is stable for all the three complexes, with two nitrates in
 109 the first coordination shell and the third one far away from the metal center. Radial distribution
 110 functions (RDFs) and number integrals between $\text{Ln}(\text{III})$ and the N atom in BLPhen were computed
 111 and shown in Figure 3a. The average Ln-N distances are 2.83, 2.78 and 2.70 Å for La^{3+} , Nd^{3+} and
 112 Eu^{3+} ions, respectively. The decreasing distances are consistent with the decreasing radii from La
 113 to Eu. The Ln-O(BLPhen) distances follow the same trend (Figure 3b), and are about 0.21 Å
 114 shorter than their Ln-N counterparts (Figure 4). Lanthanides are hard electron acceptors and show
 115 a higher affinity for hard donors such as O atom than the soft donors such as N [45]. Overall, the
 116 two BLPhen ligands form eight coordination bonds with the metal center.

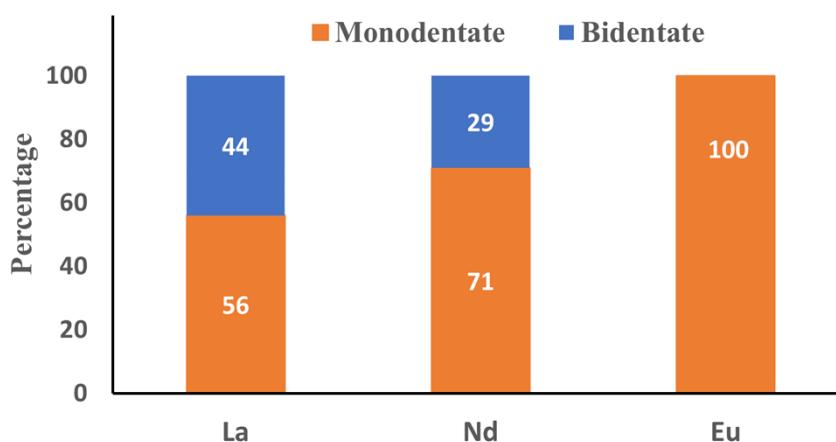
117


118 **Figure 3.** Atom-atom radial distribution functions (RDFs), $g(r)$, between $\text{Ln}(\text{III})$ and the N/O atoms of the
 119 BLPhen ligand for the $\text{Ln}(\text{BLPhen})_2(\text{NO}_3)_3$ complexes in the DCE solvent: (a) Ln-N(BLPhen) ; (b) Ln-
 120 O(BLPhen) . Solid lines represent RDFs (left Y-axis) and dashed lines represent their number integration
 121 (right Y-axis), i.e., coordination number (C.N.).

122

123 **Figure 4.** Average Ln-N and Ln-O distances between Ln and the BLPhen ligand for the
 124 Ln(BLPhen)₂(NO₃)₃ complexes in the DCE solvent, with Ln = La, Nd, and Eu.

125

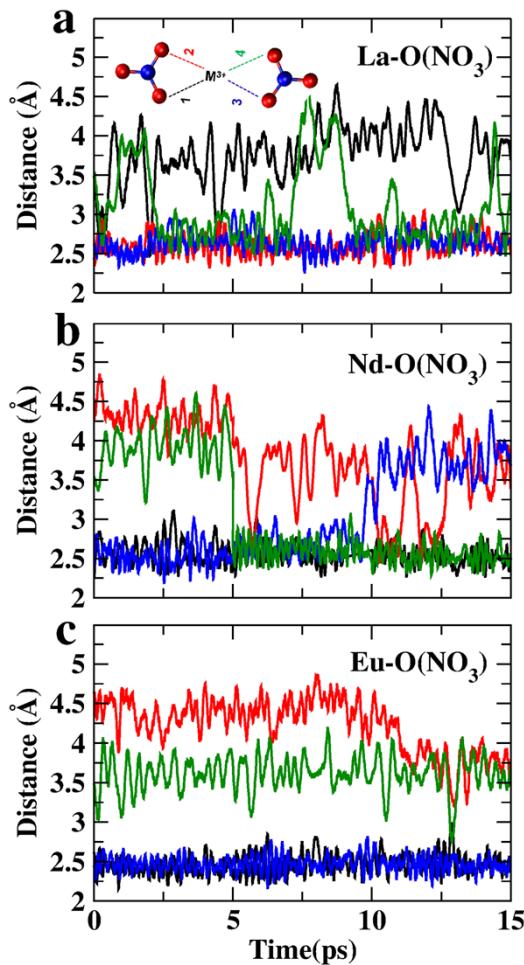

126

127 **Figure 5.** Atom-atom radial distribution functions, $g(r)$, between Ln(III) and nitrate O/N atoms, for the
 128 Ln(BLPhen)₂(NO₃)₃ complexes in the DCE solvent: (a) Ln-O(NO₃); (b) Ln-N(NO₃). Solid lines correspond
 129 to $g(r)$ (left axis); dashed lines (right axis) correspond to their number integration (NI), ie., coordination
 130 number (C.N.).

131

132 **3.2. Ln(III)-nitrate interaction**

133 Nitrate anions are also part of the complex as indicated in Figure 2. Interactions between the metal
 134 center and the two nitrates in the first-coordination shell are shown in RDFs of Ln-O (Figure 5a)
 135 and Ln-N (Figure 5b). One can see from Figure 5a that the Ln-O distances between Ln(III) and
 136 nitrate decrease from La to Eu, displaying the same trend as the distances between Ln(III) and
 137 BLPhen. More interestingly, the coordination number (C.N.) of O atoms from the two nitrates
 138 around Ln(III) at a distance cutoff of 3.0 Å clearly indicates the all-monodentate binding mode of
 139 nitrates in the Eu(III) complex (C.N.=2, meaning one atom from each nitrate) and the mixed
 140 monodentate-bidentate mode in the La(III) and Nd(III) complexes (C.N.=3, meaning one
 141 monodentate and one bidentate). This insight is further confirmed by the Ln-N RDF (Figure 5b):
 142 the all-monodentate binding mode of the two nitrates in the Eu(III) complex shows up as a single
 143 peak at 3.5 Å, while the mixed monodentate-bidentate mode of the two nitrates in the La(III) and
 144 Nd(III) complexes manifests as two different peaks at 3.2 and 3.5 Å. The 3.2-Å peak corresponds
 145 to the bidentate mode where the N center of the nitrate is closer to the metal center than that of the
 146 monodentate binding mode. One can see also the difference between the La(III) and Nd(III)
 147 complexes regarding the relative distributions of the monodentate and bidentate modes: the La(III)
 148 complex has more bidentate while the Nd(III) complex more monodentate. We quantified the
 149 distributions by the trajectory analysis: as shown in Figure 6, the bidentate mode accounts for 44%
 150 for the La(III) complex, 29% for Nd(III), and zero for Eu(III).

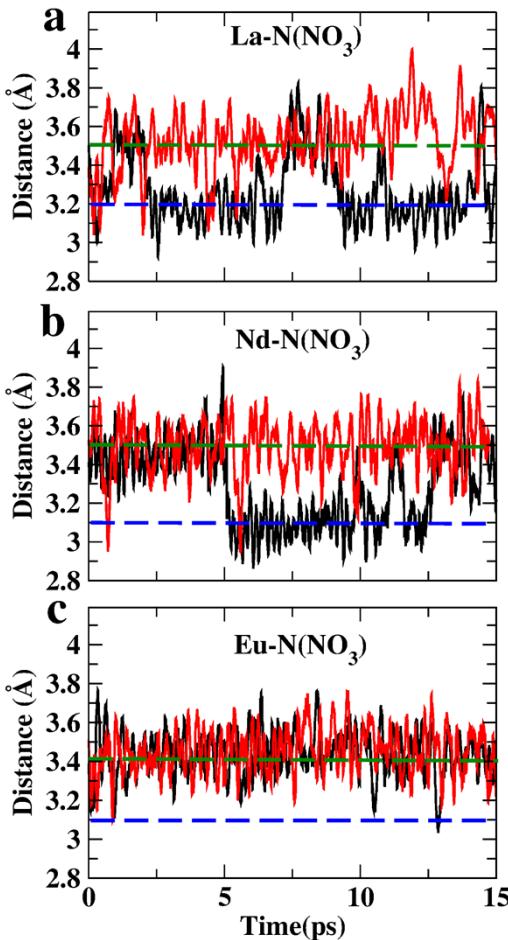


151

152 **Figure 6.** Percentage of monodentate and bidentate modes of the two nitrate anions in first coordination
 153 shell of the $\text{Ln}(\text{BLPhen})_2(\text{NO}_3)_3$ complexes in the DCE solvent.

154

155 The analysis of Ln(III)-nitrate binding from Figures 5 and 6 suggests that the
 156 $[\text{La(BLPhen)}_2]^{3+}$ and $[\text{Nd(BLPhen)}_2]^{3+}$ complexes in the DCE solvent allow the bidentate nitrate
 157 anions but not $[\text{Eu(BLPhen)}_2]^{3+}$. In other words, the C.N. of the first coordination shell around the
 158 metal center is 11 for the $[\text{La(BLPhen)}_2]^{3+}$ and $[\text{Nd(BLPhen)}_2]^{3+}$ complexes but decreases to 10
 159 for $[\text{Eu(BLPhen)}_2]^{3+}$ complex. One explanation is that the binding pocket around the metal center,
 160 formed by the two BLPhen ligands, becomes smaller from La to Eu due to the decreasing ion radii,
 161 forcing the two nitrates to become monodentate and further away from the metal center. This
 162 implies that the two nitrate anions will become more dynamic and labile from La to Eu. To examine
 163 this implication, we analyze the nitrate dynamics next.

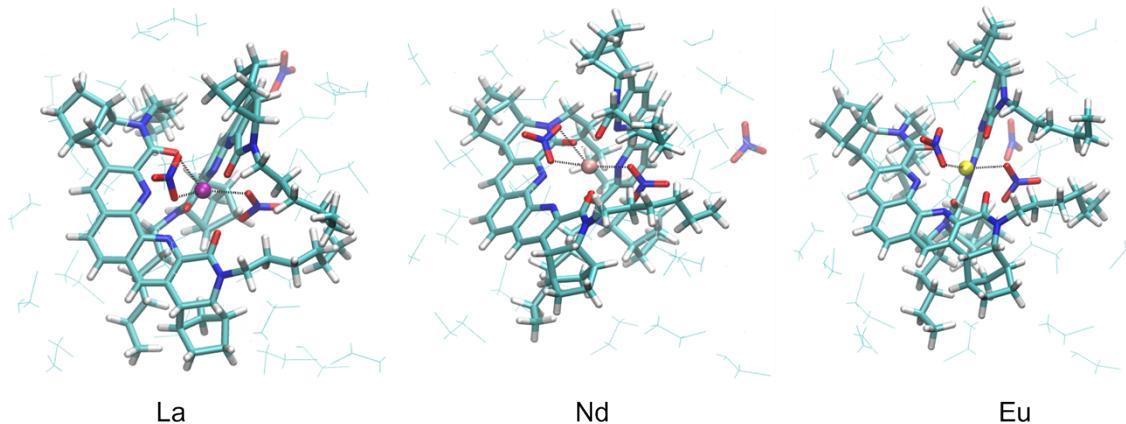


164

165 **Figure 7.** Time evolution of the Ln-O distances between Ln and the two nitrates in the first solvation
 166 shell of the $\text{Ln}(\text{BLPhen})_2(\text{NO}_3)_3$ complexes in the DCE solvent.

168 **3.3 Dynamics of the nitrate anions in the first coordination shell**

169 We have tracked the Ln(III)-O(NO₃) distances throughout the 15 ps trajectory. As presented in
170 Figure 7, four different oxygen atoms and their O-Ln distances are shown in four different colors.
171 For the La(III) complex (Figure 7a), one oxygen atom stays around 4 Å most of the time (black
172 line), meaning that this nitrate is mostly monodentate; another oxygen atom (green line) stays at
173 2.5 Å mostly and occasionally comes around the 4 Å. This oxygen atom represents the bidentate
174 mode of the nitrate anion, which sometimes changes to monodentate. For the Nd(III) complex
175 (Figure 7b), two oxygen atoms stay at 4 Å most of the time and occasionally one goes to the
176 distance of ~2.5 Å, indicating that the two nitrate anions are monodentate at most of the time, but
177 one of them changes to bidentate often. One also notices that the monodentate coordination bond
178 can switch between two different O atoms of the same nitrate, for instance, from O3 (blue) to O4
179 (green) in the Nd(III) complex (Figure 7b). For the Eu(III) complex (Figure 7c), one can see that
180 there are almost always two O atoms from two different nitrates at ~2.5 Å, indicating that the two
181 nitrates are all monodentate in binding with Eu(III) predominantly; of note, transiently, one nitrate
182 can become bidentate (for instance, at 13 ps mark in Figure 7c).



183

184 **Figure 8.** Time evolution of the Ln-N distances between Ln and the two nitrates in the first solvation
 185 shell of the $\text{Ln}(\text{BLPhen})_2(\text{NO}_3)_3$ complexes in the DCE solvent.

186

187 The differing of modes of nitrate binding from La to Eu can be more clearly seen from the
 188 Ln-N distances with time: as shown in Figure 8, the shorter average Ln-N distance (3.1 – 3.2 Å,
 189 blue dashed line) is for the bidentate mode, and the longer average Ln-N distance (3.4 – 3.5 Å,
 190 green dashed line) for monodentate. The decreasing sampling of the bidentate mode from La to
 191 Nd to Eu is apparent. Of note, occasionally the two nitrates become both bidentate in the La(III)-
 192 BLPhen and Nd(III)-BLPhen complexes, while one becomes bidentate in the Eu(III)-BLPhen
 193 complex, indicating the dynamic nature of the nitrate binding to the metal centers. Snapshots of
 194 the most probable configurations for the three complexes are compared to Figure 9; one can see
 195 that the two nitrates are at the opposite sides of the binding pocket in all three complexes.

196

197 **Figure 9.** Snapshots of the most probable configurations of the $\text{Ln}(\text{BLPhen})_2(\text{NO}_3)_3$ complexes in the
198 DCE solvent. Color code: La, Violet; Nd, pink; Eu, Yellow; O, red; N, blue; C, cyan; H, white.

199

200 **3.4. Implications to rare-earth separations**

201 While the presented results are entirely based on FPMD simulations, they confirm a recent
202 experimental spectroscopic and scattering observation of the outer-sphere nitrate binding mode in
203 the $\text{Nd}(\text{BLPhen})_2(\text{NO}_3)_3$ complex formed in the industrially relevant liquid–liquid extraction
204 system [41]. There it was shown that noncoordinating nitrate anions play an important role in
205 defining the degree of supramolecular aggregation and assembly of lanthanide complexes in the
206 organic phase. Recent extended X-ray absorption fine structure (EXAFS) measurements have been
207 able to confirm the 2:1 BLPhen:Nd coordination structure with four additional O atoms of nitrate
208 anions located in the first coordination sphere [41], which agrees with the previous studies on
209 DAPhen ligand [45]. However, X-ray absorption spectroscopy and scattering studies alone do not
210 have the sensitivity to accurately describe the nitrate binding modes in the inner coordination
211 sphere of the $\text{Ln}(\text{BLPhen})_2(\text{NO}_3)_3$ complexes. Therefore, the present findings could contribute to
212 atomistic insights into the complex formation, dynamics, and stability. In a broader context, the
213 observed bond contraction along the Ln series accompanied by the decrease in coordination
214 numbers could be correlated with the higher selectivity of the BLPhen ligand toward light
215 lanthanides. Additionally, switching the nitrate binding mode from bidentate to monodentate
216 would possibly result in the diminished strength of direct $\text{Ln}-\text{NO}_3$ interactions, hindering the
217 transfer of nitrate ions from the aqueous to organic phase for charge neutralization. This in turn

218 might negatively affect the extraction strength of BLPhen for the heavier lanthanides, partially
219 contributing to the observed selectivity trend.

220

221 **4. Conclusions**

222 We performed first principles molecular dynamics (FPMD) simulations of the
223 $\text{Ln}(\text{BLPhen})_2(\text{NO}_3)_3$ complexes in the DCE solvent for Ln being La, Nd, and Eu. Two nitrate
224 anions are found in the first solvation shell: one nitrate is in monodentate binding mode, while the
225 other is mainly in the bidentate model for La and Nd but changes to monodentate for Eu. The total
226 coordination number changes from 11 for La and Nd to 10 for Eu, as the binding pocket decreases
227 in size. The nitrate binding in $[\text{La}(\text{BLPhen})_2]^{3+}$ and $[\text{Nd}(\text{BLPhen})_2]^{3+}$ complexes is highly dynamic,
228 frequently switching between bidentate and monodentate. Our work revealed the modes and
229 dynamics of nitrate binding in the first coordination shell of $[\text{Ln}(\text{BLPhen})_2]^{3+}$ complexes in the
230 DCE solvent. The insights will help further understanding of the complex structure, formation,
231 and stability in the organic phase.

232

233 **Declaration of competing interest**

234 The authors declare that they have no known competing financial interests or personal
235 relationships that could have appeared to influence the work reported in this paper.

236

237 **Acknowledgements**

238 This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic
239 Energy Sciences, Separation Science program and Materials Chemistry program.

240

241 **References**

- 242 [1] T. Cheisson, E.J. Schelter, Rare earth elements: Mendeleev's bane, modern marvels, *Science*. 363
243 (2019) 489–493.
- 244 [2] F. Xie, T.A. Zhang, D. Dreisinger, F. Doyle, A critical review on solvent extraction of rare earths from
245 aqueous solutions, *Miner. Eng.* 56 (2014) 10–28.
- 246 [3] A.S. Ivanov, C.J. Leggett, B.F. Parker, Z. Zhang, J. Arnold, S. Dai, C.W. Abney, V.S. Bryantsev, L. Rao,
247 Origin of the unusually strong and selective binding of vanadium by polyamidoximes in seawater,
248 *Nat. Commun.* 8 (2017) 1560.
- 249 [4] A.S. Ivanov, V.S. Bryantsev, A Computational Approach to Predicting Ligand Selectivity for the Size-
250 Based Separation of Trivalent Lanthanides, *Eur. J. Inorg. Chem.* 2016 (2016) 3474–3479.

251 [5] X.-P. Lei, Q.-Y. Wu, C.-Z. Wang, J.-H. Lan, Z.-F. Chai, C.-M. Nie, W.-Q. Shi, Theoretical Insights into
252 the Substitution Effect of Phenanthroline Derivatives on Am(III)/Eu(III) Separation, *Inorg. Chem.* 62
253 (2023) 2705–2714.

254 [6] Th.D.N. Reddy, A.S. Ivanov, D.M. Driscoll, S. Jansone-Popova, D. Jiang, Atomistic Insights into
255 Structure and Dynamics of Neodymium(III) Complexation with a Bis-lactam Phenanthroline Ligand
256 in the Organic Phase, *ACS Omega.* 7 (2022) 21317–21324.

257 [7] N.P. Bessen, I.A. Popov, C.R. Heathman, T.S. Grimes, P.R. Zalupski, L.M. Moreau, K.F. Smith, C.H.
258 Booth, R.J. Abergel, E.R. Batista, P. Yang, J.C. Shafer, Complexation of Lanthanides and Heavy
259 Actinides with Aqueous Sulfur-Donating Ligands, *Inorg. Chem.* 60 (2021) 6125–6134.

260 [8] N.C. Martinez-Gomez, H.N. Vu, E. Skovran, Lanthanide Chemistry: From Coordination in Chemical
261 Complexes Shaping Our Technology to Coordination in Enzymes Shaping Bacterial Metabolism,
262 *Inorg. Chem.* 55 (2016) 10083–10089.

263 [9] W.-L. Chan, C. Xie, W.-S. Lo, J.-C.G. Bünzli, W.-K. Wong, K.-L. Wong, Lanthanide–tetrapyrrole
264 complexes: synthesis, redox chemistry, photophysical properties, and photonic applications,
265 *Chem. Soc. Rev.* 50 (2021) 12189–12257.

266 [10] J.A. Bogart, B.E. Cole, M.A. Boreen, C.A. Lippincott, B.C. Manor, P.J. Carroll, E.J. Schelter,
267 Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing
268 size-sensitive molecular apertures, *Proc. Natl. Acad. Sci.* 113 (2016) 14887–14892.

269 [11] A. Masuya-Suzuki, K. Hosobori, R. Sawamura, Y. Abe, R. Karashimada, N. Iki, Selective
270 crystallization of dysprosium complex from neodymium/dysprosium mixture enabled by
271 cooperation of coordination and crystallization, *Chem. Commun.* 58 (2022) 2283–2286.

272 [12] Z. Bai, B. Scheibe, J.M. Sperling, T.E. Albrecht-Schönzart, Syntheses and Characterization of
273 Tetrazolate-Based Lanthanide Compounds and Selective Crystallization Separation of Neodymium
274 and Dysprosium, *Inorg. Chem.* 61 (2022) 19193–19202.

275 [13] T.P. Gompa, S.M. Greer, N.T. Rice, N. Jiang, J. Telser, A. Ozarowski, B.W. Stein, H.S. La Pierre, High-
276 Frequency and -Field Electron Paramagnetic Resonance Spectroscopic Analysis of Metal–Ligand
277 Covalency in a 4f7 Valence Series (Eu²⁺, Gd³⁺, and Tb⁴⁺), *Inorg. Chem.* 60 (2021) 9064–9073.

278 [14] M. Duvail, A. Ruas, L. Venault, P. Moisy, P. Guilbaud, Molecular Dynamics Studies of Concentrated
279 Binary Aqueous Solutions of Lanthanide Salts: Structures and Exchange Dynamics, *Inorg. Chem.* 49
280 (2010) 519–530.

281 [15] L. Rao, G. Tian, Complexation of Lanthanides with Nitrate at Variable Temperatures:
282 Thermodynamics and Coordination Modes, *Inorg. Chem.* 48 (2009) 964–970.

283 [16] T. Yaita, H. Narita, Sh. Suzuki, Sh. Tachimori, H. Motohashi, H. Shiwaku, Structural study of
284 lanthanides(III) in aqueous nitrate and chloride solutions by EXAFS, *J. Radioanal. Nucl. Chem.* 239
285 (1999) 371–375.

286 [17] C. Bonal, J.-P. Morel, N. Morel-Desrosiers, Interactions between lanthanide cations and nitrate
287 anions in water. Part 1.—Effect of the ionic strength on the Gibbs energy, enthalpy and entropy of
288 complexation of the neodymium cation, *J. Chem. Soc. Faraday Trans.* 92 (1996) 4957–4963.

289 [18] M. Dobler, P. Guilbaud, A. Dedieu, G. Wipff, Interaction of trivalent lanthanide cations with nitrate
290 anions: a quantum chemical investigation of monodentate/bidentate binding modes, *New J. Chem.* 25 (2001) 1458–1465.

291 [19] M.R. Healy, A.S. Ivanov, Y. Karslyan, V.S. Bryantsev, B.A. Moyer, S. Jansone-Popova, Efficient
292 Separation of Light Lanthanides(III) by Using Bis-Lactam Phenanthroline Ligands, *Chem. – Eur. J.* 25
293 (2019) 6326–6331.

294 [20] F.W. Lewis, L.M. Harwood, M.J. Hudson, M.G.B. Drew, J.F. Desreux, G. Vidick, N. Bouslimani, G.
295 Modolo, A. Wilden, M. Sypula, T.-H. Vu, J.-P. Simonin, Highly Efficient Separation of Actinides from
296 Lanthanides by a Phenanthroline-Derived Bis-triazine Ligand, *J. Am. Chem. Soc.* 133 (2011) 13093–
297 13102.

299 [21] M. Iqbal, P.K. Mohapatra, S.A. Ansari, J. Huskens, W. Verboom, Preorganization of diglycolamides
300 on the calix[4]arene platform and its effect on the extraction of Am(III)/Eu(III), *Tetrahedron*. 68
301 (2012) 7840–7847.

302 [22] H.V. Lavrov, N.A. Ustyryuk, P.I. Matveev, I.P. Gloriozov, S.S. Zhokhov, M.Y. Alyapshev, L.I.
303 Tkachenko, I.G. Voronaev, V.A. Babain, S.N. Kalmykov, Y.A. Ustyryuk, A novel highly selective
304 ligand for separation of actinides and lanthanides in the nuclear fuel cycle. Experimental
305 verification of the theoretical prediction, *Dalton Trans.* 46 (2017) 10926–10934.

306 [23] S. Jansone-Popova, A.S. Ivanov, V.S. Bryantsev, F.V. Sloop, R. Custelcean, I. Popovs, M.M. Dekarske,
307 B.A. Moyer, Bis-lactam-1,10-phenanthroline (BLPhen), a New Type of Preorganized Mixed N,O-
308 Donor Ligand That Separates Am(III) over Eu(III) with Exceptionally High Efficiency, *Inorg. Chem.* 56
309 (2017) 5911–5917.

310 [24] T. Sato, Liquid-liquid extraction of rare-earth elements from aqueous acid solutions by acid
311 organophosphorus compounds, *Hydrometallurgy*. 22 (1989) 121–140.

312 [25] D. Manna, T.K. Ghanty, Complexation behavior of trivalent actinides and lanthanides with 1,10-
313 phenanthroline-2,9-dicarboxylic acid based ligands: insight from density functional theory, *Phys.
314 Chem. Chem. Phys.* 14 (2012) 11060–11069.

315 [26] M.B. Singh, Y. Fu, I. Popovs, S. Jansone-Popova, S. Dai, D. Jiang, Molecular Dynamics Simulations of
316 Complexation of Am(III) with a Preorganized Dicationic Ligand in an Ionic Liquid, *J. Phys. Chem. B.*
317 125 (2021) 8532–8538.

318 [27] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and
319 semiconductors using a plane-wave basis set, *Comput. Mater. Sci.* 6 (1996) 15–50.

320 [28] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, *Phys. Rev. B*. 47 (1993) 558–
321 561.

322 [29] P.E. Blöchl, Projector augmented-wave method, *Phys. Rev. B*. 50 (1994) 17953–17979.

323 [30] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method,
324 *Phys. Rev. B*. 59 (1999) 1758–1775.

325 [31] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev.
326 Lett.* 77 (1996) 3865–3868.

327 [32] C. Priest, Z. Tian, D. Jiang, First-principles molecular dynamics simulation of the Ca₂UO₂(CO₃)₃
328 complex in water, *Dalton Trans.* 45 (2016) 9812–9819.

329 [33] C. Priest, B. Li, D. Jiang, Uranyl–Glutardiamidoxime Binding from First-Principles Molecular
330 Dynamics, Classical Molecular Dynamics, and Free-Energy Simulations, *Inorg. Chem.* 56 (2017)
331 9497–9504.

332 [34] C. Priest, B. Li, D. Jiang, Understanding the Binding of a Bifunctional Amidoximate–Carboxylate
333 Ligand with Uranyl in Seawater, *J. Phys. Chem. B*. 122 (2018) 12060–12066.

334 [35] S.-M. Zhang, Q.-Y. Wu, L.-Y. Yuan, C.-Z. Wang, J.-H. Lan, Z.-F. Chai, Z.-R. Liu, W.-Q. Shi, Theoretical
335 insights into the substitution effect of phenanthroline derivative ligands on the extraction of Mo
336 (VI), *Sep. Purif. Technol.* 280 (2022) 119817.

337 [36] M.P. Kelley, J. Su, M. Urban, M. Luckey, E.R. Batista, P. Yang, J.C. Shafer, On the Origin of Covalent
338 Bonding in Heavy Actinides, *J. Am. Chem. Soc.* 139 (2017) 9901–9908.

339 [37] M.J. Polinski, E.B. Garner, R. Maurice, N. Planas, J.T. Stritzinger, T.G. Parker, J.N. Cross, T.D. Green,
340 E.V. Alekseev, S.M. Van Cleve, W. Depmeier, L. Gagliardi, M. Shatruk, K.L. Knappenberger, G. Liu, S.
341 Skanthakumar, L. Soderholm, D.A. Dixon, T.E. Albrecht-Schmitt, Unusual structure, bonding and
342 properties in a californium borate, *Nat. Chem.* 6 (2014) 387–392.

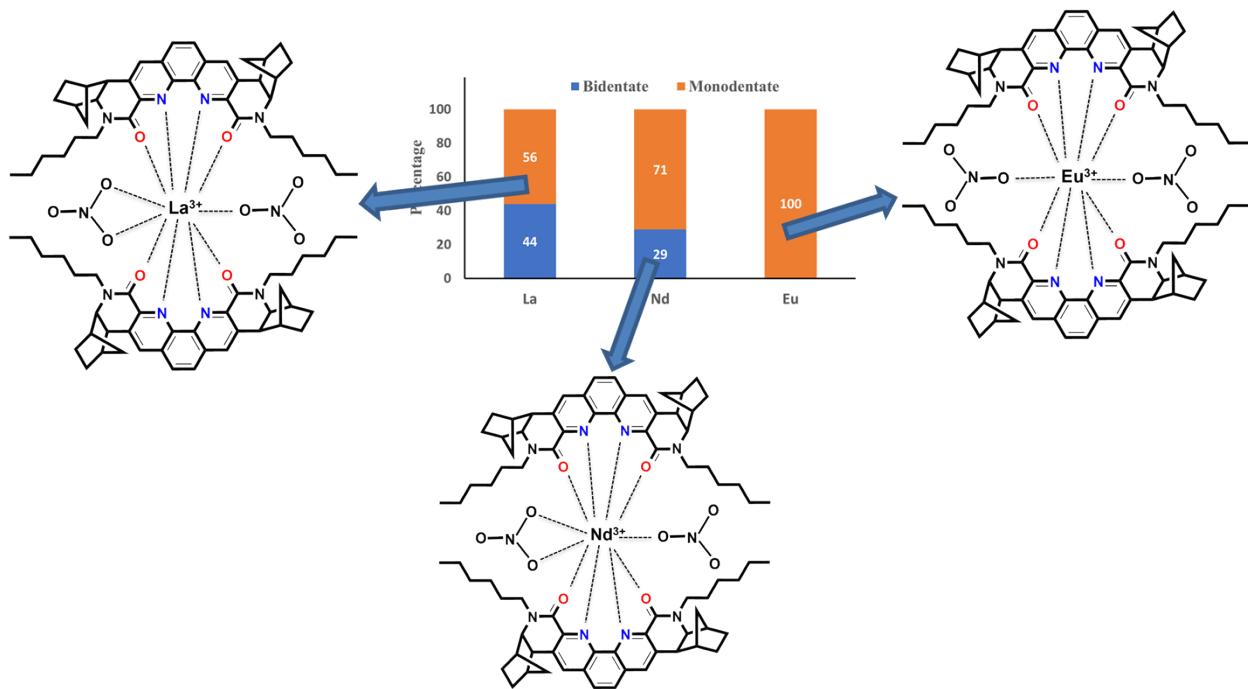
343 [38] J.-H. Lan, W.-Q. Shi, L.-Y. Yuan, J. Li, Y.-L. Zhao, Z.-F. Chai, Recent advances in computational
344 modeling and simulations on the An(III)/Ln(III) separation process, *Coord. Chem. Rev.* 256 (2012)
345 1406–1417.

346 [39] Y. Liu, C.-Z. Wang, Q.-Y. Wu, J.-H. Lan, Z.-F. Chai, Q. Liu, W.-Q. Shi, Theoretical Insights into
347 Transplutonium Element Separation with Electronically Modulated Phenanthroline-Derived Bis-
348 Triazine Ligands, *Inorg. Chem.* 60 (2021) 10267–10279.

349 [40] Y. Zou, J.-H. Lan, L.-Y. Yuan, C.-Z. Wang, Q.-Y. Wu, Z.-F. Chai, P. Ren, W.-Q. Shi, Theoretical Insights
350 into Phenanthroline-Based Ligands toward the Separation of Am(III)/Eu(III), *Inorg. Chem.* 61 (2022)
351 15423–15431.

352 [41] D.M. Driscoll, H. Liu, B. Reinhart, I. Popovs, V. Bocharova, S. Jansone-Popova, D. Jiang, A.S. Ivanov,
353 Noncoordinating Secondary Sphere Ion Modulates Supramolecular Clustering of Lanthanides, *J.
354 Phys. Chem. Lett.* 13 (2022) 12076–12081.

355 [42] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, *J. Mol. Graph.* 14 (1996) 33–
356 38.


357 [43] M. Brehm, B. Kirchner, TRAVIS - A Free Analyzer and Visualizer for Monte Carlo and Molecular
358 Dynamics Trajectories, *J. Chem. Inf. Model.* 51 (2011) 2007–2023.

359 [44] M. Brehm, M. Thomas, S. Gehrke, B. Kirchner, TRAVIS—A free analyzer for trajectories from
360 molecular simulation, *J. Chem. Phys.* 152 (2020) 164105.

361 [45] X.-F. Yang, P. Ren, Q. Yang, J.-S. Geng, J.-Y. Zhang, L.-Y. Yuan, H.-B. Tang, Z.-F. Chai, W.-Q. Shi,
362 Strong Periodic Tendency of Trivalent Lanthanides Coordinated with a Phenanthroline-Based
363 Ligand: Cascade Countercurrent Extraction, Spectroscopy, and Crystallography, *Inorg. Chem.* 60
364 (2021) 9745–9756.

365

366

