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Machine Learning in Materials Science:
From Explainable Predictions to Autonomous Design

Ghanshyam Pilaniaa

aMaterials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

Abstract

The advent of big data and algorithmic developments in the field of machine learning (and artificial intelligence, in general) have
greatly impacted the entire spectrum of physical sciences, including materials science. Materials data, measured or computed,
combined with various techniques of machine learning have been employed to address a myriad of challenging problems, such
as, development of efficient and predictive surrogate models for a range of materials properties, screening and down-selection of
novel candidate materials for targeted applications, new methodologies to improve and further expedite molecular and atomistic
simulations, with likely many more important developments to come in the foreseeable future. While the applications thus far have
provided a glimpse of the true potential data-enabled routes have to offer, it has also become clear that further progress in this
direction hinges on our ability to understand, explain and rationalize findings of a machine learning model in light of the domain-
knowledge. This focused review provides an overview of the main areas where machine learning has been widely and successfully
used in materials science. Subsequently, a brief discussion of several techniques that have been helpful in extracting physically-
meaningful insights, causal relationships and design-centric knowledge from materials data is provided. Finally, we identify some
of the imminent opportunities and challenges that materials community faces in this exciting and rapidly growing field.
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1. Introduction as diverse as, transportation, communications, healthcare, busi-
ness intelligence and strategy, social networking, and industrial
research [2]. This paradigm shift is brought about by a conflu-
ence of sustainable growth in computing power, the aforemen-
tioned data revolution, multiple algorithmic breakthroughs and
design and deployment of hardware customized to boost the
performance of ML algorithms. Moreover, a self-reinforcing
and synergistic growth of computing, data, algorithms and co-
designed software and hardware–the components forming the
ML ecosystem–has further helped in expediting the pace of de-
velopment in each individual area, while benefitting from and
driven by the progress made in the other fields of the ecosystem.

The resounding success of big data and ML methods in tasks,
such as, image and speech recognition [3, 4], language transla-
tion [5, 6] as well as the superhuman performance achieved by
artificial intelligence (AI) based algorithms in games of chess
[7], Go [8, 9], poker [10, 11] and Jeopardy [12] has also been
reflected in their wide spread adoption in physical sciences.
More specifically in materials science and related fields use of
ML-based methods has led to several developments pertaining
to the design and development of new materials and a better
understanding of the existing ones. Novel ML-based routes
for mapping potential energy surfaces and forcefields have al-
lowed for atomistic simulations of molecules and solids reach-
ing beyond the tradeoffs of accuracy, speed, time- and length
scales possible within the traditional molecular dynamics simu-
lations. More recently, the focus has been on using active learn-
ing (or adaptive design) to enable autonomous robot-assisted

We are living in the age of “big data” and information. The 
amount of data generated, shared, processed and stored around 
the planet on a daily basis is unprecedented. The summa-
tion of all this data is collectively called the global datasphere. 
Based on the latest estimates, it is predicted that that the global 
datasphere will grow exponentially to 175 zettabytes by 2025 
(zettabyte is 1021 bytes) [1]. The sheer volume, production 
speed and heterogeneous nature of this data naturally demands 
for new and efficient methods of analysis to unearth hidden pat-
terns, trends and insights in this vast sea of information. This 
ever growing need to analyze and make sense out of the big data 
has been a primary driving force behind the state-of-the-art ma-
chine learning (ML) methods and algorithms.

ML broadly refers to the use of algorithms and computer 
systems that can learn to perform a task given just the rele-
vant data, do not require any explicit programming specific to 
the task, and get better with experience (i.e., the available past 
data). ML models can be supervised, semi-supervised or unsu-
pervised, depending on the type of available training data. In 
supervised learning, the training data consist of sets of input 
and associated output values. In other words, labelled train-
ing samples are required. On the other hand, if the training 
dataset contains unlabeled samples, unsupervised learning can 
be used in ordered to identify trends and patterns in the data. 
Semisupervised learning can be used for large datasets with 
partially missing labels. In the past decade, tools and applica-
tions built on ML have found a widespread use in applications



development of functional materials with prespecified proper-
ties. Given a target chemical space and constraints related to
available resources, development time and a property wish list,
these efforts have focused on harnessing the power of optimal
learning concepts within the context of efficient experimental
design. Finally, going beyond supervised learning, use of nat-
ural language processing techniques to automatically extract
and synthesize materials science knowledge present in the pub-
lished literature in form of information-dense word embeddings
to capture complex materials science concepts remains a very
exciting and potentially transformative new area of research.

A wide range of ML algorithms, vastly varying in terms of
complexity and transparency, have been employed for data-
enabled materials design. On one side of the spectrum lie,
for instance, tree-based classification and regression methods
that are completely transparent when it comes to explaining the
model predictions. The other extreme is occupied by deep neu-
ral networks and ensemble-based methods, which allow for lit-
tle insights and reasoning into the inner workings of the models
leading to the final results. Since a vast majority of studies in
the field of materials informatics have focused on developing
ML-based surrogate models of structure-property-processing
relationships, the primary emphasis has always been on achiev-
ing a predictive accuracy as high as possible. This quest for im-
proved performance naturally creates a bias for employing more
complex, and therefore, less transparent and poorly-explainable
models. However, eventually an integration of the knowledge
mined from and assimilation of the discoveries made with sta-
tistical pattern recognition techniques into materials science de-
mands for a deeper analysis and a better understanding of the
findings in light of the domain-knowledge. To expedite the pace
of progress and potential impact ML methods can bear on ma-
terials development, AI algorithms must be tasked with gen-
eration of understanding that explains the obtained results, as
we now uniquely task human intuition. The need for explain-
able models in hard sciences, including materials science, has
recently led to a surge of activity in the field of explainable AI
(frequently referred to as XAI) [13, 14].

In this contribution, after reviewing various recent applica-
tions of ML in materials science and related fields, we focus
on a selected set of ML tools and techniques that have been
employed in the past both to automatically extract physically
meaningful knowledge from the data and to better rationalize
existence of causal relationships in the identified patterns. Us-
ing selected examples from recent studies, we emphasize that
integration of relevant domain knowledge is a crucial step in
devising an ML strategy and that this becomes even more criti-
cal when dealing with small training datasets. Finally, we iden-
tify and discuss key challenges and opportunities faced by the
potent and quickly growing field of ML-enabled materials de-
sign. Throughout the review, it is assumed that the reader is
familiar with the basic nomenclature and standard methods of
ML applied to the field of materials informatics. A familiar-
ity with the best practices of statistical learning is also assumed
and, therefore, these topics are not covered here but could be
found elsewhere [15, 16, 17].

2. Use of Machine Learning in Materials Science

Use of ML to address design and development challenges in
materials science and other related fields is an actively grow-
ing area, which has seen a rapid growth in the last decade.
The amount of scientific research published in this field has
exhibited a sustained exponential growth since 2014, with the
number of contributions approximating doubling in every one
and half years [15]. Therefore, an exhaustive survey of the en-
tire spectrum of this research is beyond the scope of this re-
view, however, we refer interested readers to a number of ex-
cellent reviews where a significant portion of these recent de-
velopments and applications have been covered and discussed
[15, 22, 16, 23, 24, 25, 26]. Below we present a selected set of
key areas where informatics-based methods have proved par-
ticularly promising and widely applicable. These are also de-
picted graphically in Fig. 1. By choosing specific examples in
each of these areas, we highlight how ML is helping to progress
the field by reducing barriers in materials design via addressing
challenges related to materials modeling, synthesis and charac-
terization.

2.1. Efficient and predictive surrogate models
A vast majority of recent work in the field falls within

this category where ML-based surrogate models provide an
alternative data-enabled route to establish desired processing-
structure-property-performance linkages within the target
chemical space. Relying on easily accessible and carefully de-
vised numerical representations, frequently referred to as fea-
tures or descriptors, ML algorithms are used to develop vali-
dated mappings that connect problem-relevant aspects of ma-
terials’ composition, structure, morphology, processing etc. to
the target property or performance criteria, while largely by-
passing traditional time and resource-intensive experimental
and computational routes (see Fig. 1a). The selection of an ap-
propriate descriptor is one of the most crucial aspect of the en-
tire surrogate model building exercise, which often relies heav-
ily on domain-specific expertise. Further, best practices of sta-
tistical learning, such as, appropriate and unbiased selection of
the training data representative of the underlying true data dis-
tribution, use of cross-validation for the model hyper parameter
selection, testing on unseen data are required to ensure a truly
predictive optimal learning model. Once developed, validated
and rigorously tested to be predictive within a given domain
of applicability, the true value of such models lies in their re-
markable speed compared to the traditional property prediction
or measurement routes. As a result, ML-based surrogate mod-
els are particularly well suited for high throughput screening
efforts where one targets to identify molecules or compounds
with a one or more properties in a pre-specified range. If a
subset of properties exhibits conflicting trends or inverse re-
lationships, looking for “optimal” compounds corresponds to
finding chemistries falling on or near the underlying Pareto
front—providing the best achievable tradeoffs among the con-
flicting responses.

ML algorithms have been employed to identify potential non-
linear multivariate relationships for a wide variety of materials



Figure 1: Key application areas of ML in materials science are highlighted and further discussed in the text. (a) Surrogate model development for efficient materials
property predictions. (b) Iterative framework for adaptive design and active learning. Adapted from Ref. [16]. (c) Generative materials design using variational
autoencoders (VAEs) and generative adversarial networks (GANs). Adapted from Ref. [18]. (d) ML-enabled autonomous materials synthesis via combining design
of experiment algorithms with automated robotic platforms. Adapted from Ref. [19]. (e) Use of ML-based force fields to address a range of atomistic materials
simulation problems. (f) Deep learning for accurate characterization of atomic-scale materials imaging data. Adapted from Ref. [20]. (g) Use of natural language
processing and ML to automatically extract scientific knowledge and insights from scientific texts. Adapted from Ref. [21].

classes spanning over metals and alloys, ceramics and compos-
ites, polymers, two-dimensional materials, organic-inorganic
hybrids and multicomponent heteroanionic compounds [23,
27, 28]. The applications cover varied length scales, e.g.,
electronic-, atomic- and meso-scales [16]. Successful attempts
for materials property predictions using ML include estima-
tion of energetics [29, 30, 31, 32, 33], phase stability and
cation/anion ordering [34, 35, 36, 37, 38, 39, 40], defect en-
ergetics [41, 42, 43, 44], bandgaps [45, 46, 47, 48, 49], melt-
ing and glass transition temperatures [38, 50, 51], mechanical
and elastic properties [52, 53, 54], thermal conductivity [55],
dielectric properties [56, 57], tendency for crystallization [58],
catalytic activity [59, 60] and radiation damage resistance [61].

2.2. Materials design and discovery

Further building on the primary strength of allowing fast yet
accurate predictions of materials properties, ML-based surro-
gate models can be employed in various ways to enable materi-
als design and discovery. In a most straight forward approach, a
developed model can be used to make predictions on the entire
set of combinatorially-enumerated compounds falling within
the domain of applicability of the model. Even more excitingly,
multiple property prediction models can be integrated as a part
of a hierarchical down-selection pipeline to screen materials
based on increasingly complex and stringent criteria employed
at each of the subsequent stages [62, 63, 64]. Another ap-
proach is to “invert” the forward materials-to-properties predic-

tion route via employing an optimization routine such as evo-
lutionary algorithms, simulated annealing, minima-hopping, or
swarm optimization-based routines [63, 65]. Contrary to the
direct brute-force enumeration approach that rely on virtual
screening of candidate materials from a pre-defined set of pos-
sibilities, the optimization-based inversion route focuses on
directly predicting a set of materials that satisfy certain pre-
specified target objectives, leading to a more general approach
to materials discovery. In addition to the enumeration, multi-
step screening and optimization-based inversion routes, more
sophisticated approaches are being explored by the community
to further expedite materials development, as discussed below.

2.2.1. Active learning
The ML-based surrogate models discussed above can allow

for a quick identification of candidates with tailored properties
for further validation via experimental synthesis or more elab-
orate domain-knowledge-based computations. However, such
an approach is inherently passive and does not allow for any
control over the prediction errors resulting from the size and
quality of the training dataset. Therefore, given a ML model,
selection of candidates to perform next experiments or com-
putations on such that the generated data when fed back into
the current model leads to the maximum expected improvement
(measure in terms of either improving the model or identifying
materials with properties falling within or close to the desired
range) is a key challenge to achieve optimal experimental de-



sign. In recent years, active-learning algorithms that exploit
Bayesian optimization frameworks have been developed to ef-
fectively address this challenge [66, 67, 68].

As shown schematically in Fig. 1b, active learning adopts
an iterative procedure where predictions using the current ML
model are used to guide to the data collection effort in a batch
mode to further improve the model [69]. The approach heavily
relies on the use of model predictions and uncertainties together
with a judiciously selected acquisition or utility function that
prioritizes the decision-making process on unseen data. More
specifically, the adaptive design loop employs a ML model to
achieve a target objective with the smallest possible number
of measurements or computations. This is achieved by bal-
ancing the exploitation-exploration trade-off during the model
development. At any given stage, one can perform the next
computation/measurement on the candidate predicted to have
the property closest to the desired value (i.e., model exploita-
tion) or try to further improve the model by selecting a material
where the predictions are worst in quality (i.e., with largest pre-
dictive uncertainties). By choosing the latter, one allows for
exploration of less-sampled portions of the design space, lead-
ing to an improved model with reduced uncertainties as well
as improved likelihood of meeting the objective upon exploita-
tion. A number of recent materials design and discovery efforts
have demonstrated the power and utility active learning meth-
ods in applications as diverse as design of shape memory alloys
with improved thermal hysteresis [70, 71] to identifying Pb-free
piezoelectric material with the largest measured electrostrain
[72] and from optimizing GaN light emitting diode structures
[73] to finding high glass transition temperature polymers [74].

2.2.2. Generative design
In conventional screening and discovery efforts, including

past active-learning based efforts, the exploration space is de-
fined generally by a set of candidates that either already exist
as a part of a known database or can be systematically enumer-
ated. In contrast, deep-learning-based generative models focus
on building a continuous materials vector space, often referred
to as latent space. Once the information embedded in the ma-
terials training dataset is mapped onto the latent space, it can
be used to generate new data points on demand. Furthermore,
by building a parallel mapping between the latent space and a
property of interest, new materials with the property in a target
range can be generated to enable inverse design [18, 75, 76].
In this respect, generative models are a class of deep learning
methods that seek to model the underlying probability distri-
bution of both structure and property mapped over a non-linear
latent space. The materials generated using these models can be
very diverse and considerably distinct, in terms of the function-
ality they exhibit, from the known materials in the training data.
This is because the underlying structure-property relationships
are frequently nonlinear in nature for complex functional ma-
terials. As a result, the generative design approach presents a
higher potential for discovery and novel materials design com-
pared to conventional high throughput virtual screening efforts
that are typically limited by the existing materials databases
[77].

Schematically illustrated in Fig. 1c, the variational autoen-
coders (VAEs) [78, 79, 80, 81] and generative adversarial net-
works (GANs) [82, 83, 84, 85, 86] have recently emerged as
the two most popular methods in deep-learning-based genera-
tive models. A VAE setup consists of two deep neural networks,
namely, the encoder and the decoder. The encoder nonlinearly
projects the target chemical space onto a low dimensional la-
tent space, and the decoder implements the inverse mapping
allowing for generation of materials corresponding to the spe-
cific regions in the latent space. In contrast, a GAN uses a pair
of networks—the generator and the discriminator—to learn the
underlying materials data distributions implicitly. The genera-
tor tries to emulate the real data distribution while the discrim-
inator is tasked to distinguish the generated synthetic (or fake)
data from the real data. The overall training process is built
around the generator trying to maximize the probability of the
discriminator making an error, while the discriminator getting
better at catching the fake data.

While a number of exciting studies utilizing the generative
power of VAEs and GANs to identify molecules with desired
properties have recently been reported [75, 82, 83, 84, 87, 88,
89, 90, 91], applications of these methods to solids have been
rather limited owing to the additional challenges associated
with representing materials with periodic boundary conditions.
Although a number of suitable representations built on compo-
sition and configurational details or graph-based encodings ex-
ist for solids and have been demonstrated to predict several key
properties, as discussed above in Sec. 2.1, most of these repre-
sentations are not invertible. That is given a representation, the
composition and crystal structure details of the material can-
not be uniquely identified. On the other hand, any successful
domain-specific application requires that the features generated
from the latent space should be invertible back to a realistic
crystal structure. To address this issue, 3-dimensional voxel im-
age representations have been put forward with some success
[76, 92, 93]. However, this route faces challenges associated
with images not being translational-, rotational-, and supercell-
invariant as well as relatively poor efficiency due to memory
intensive nature of the representations leading to longer train-
ing times. More recently, a crystal representation inspired by
the “point cloud” [94, 95, 96] method (where objects are con-
sidered as a set of points and vectors with three-dimensional
coordinates) was suggested by Kim et al. [97] to represent the
crystal structure as a set of atomic coordinates and cell parame-
ters. The new representation was used with a GAN to generate
and explore new crystal structures within the Mg-Mn-O ternary
system to find a promising photoanode material for water split-
ting. Moreover, this inversion-free representation was shown to
be more efficient by a factor of ∼400 compared to the previ-
ously reported image-based representations.

2.2.3. Autonomous synthesis
In the previous sections, we have discussed how ML-based

surrogate modeling, active learning and deep learning gener-
ative models are being used to expedite chemical space explo-
rations and enable inverse design. The power of ML when com-
bined with automated robotic platforms has led to even more



exciting opportunities in autonomous synthesis and self-driving
laboratories [19, 98]. Here it is important to note the distinction
between automated versus autonomous systems. While the for-
mer refers to robotic platforms that can handle repetitive tasks
in a high throughput manner, the latter points specifically to
intelligent systems that can adapt appropriately to new infor-
mation, as and when it becomes available, with little human
intervention. In this regard, when compared to automated sys-
tems, autonomous systems are very dynamic in nature and can
adjust on-the-fly to available information in order to achieve
optimal experimental design. As depicted graphically in Fig.
1d, the ability to employ ML algorithms as experiment plan-
ner to avoid marginally informative experiments in lieu of the
most informative next experiments lies at the heart of the high
efficiency boost gained with an autonomous discovery process.
These gains in experimental efficiency can be as high as an or-
der of magnitude over conventional high throughput screening
approaches [99].

Some of the early studies reporting autonomous materials
synthesis targeted unsupervised growth of carbon nanotubes
and production of Bose–Einstein condensates [100, 101]. Since
then a number of other applications, including discovery of
chemical reactions [102, 103], crystallization of giant self-
assembled polyoxometalate clusters [104], assembly of layered
superlattices [105], synthesis of perovskite quantum dots with
tuned bandgaps, quantum yield and composition polydispersity
[106], and optimization of synthesis conditions for the forma-
tion of high quality organic-inorganic hybrid halide perovskites
single crystals [107] have been successfully demonstrated. In
addition, open source portable, modular and versatile software
packages, such as ChemOS [108], are under active develop-
ment to enable remote control of self-driving laboratories, pro-
vide access to distributed computing resources, and integrate
cutting-edge ML methods in a seamless manner. In addition
to the three core components, namely the automation hardware,
compute resources and ML algorithms, integration of additional
auxiliary features such as image and speech recognition, access
to on-demand distributed cloud computing resources, improved
graphical user interface and web interfaces is expected to both
improve their user-friendliness and enrich their capabilities in
imminent future [19].

2.3. Molecular and atomistic simulations
Quantum mechanical and classical force field based atom-

istic simulation methods play a powerful role in modeling
and understanding materials behavior and properties via accu-
rate studies of a diverse range of phenomena including ther-
mal and mass transport, phase transformations, chemical re-
actions, mechanical behavior, materials degradation and fail-
ure [109, 110, 111]. From fundamental laws governing in-
teratomic interactions, molecular dynamics [112] (and related
atomistic methods) can be used to follow in time the classi-
cal equations of motion to enable highly accurate predictions
of materials behavior with full atomistic detail. However, the
quantum mechanical methods and classical simulations vastly
differ in the accuracy (and the concomitant computational cost)
of how well they capture details of the interatomic interactions.

Quantum mechanics-based methods, such as density functional
theory (DFT), are versatile and offer the capability to accu-
rately model a range of chemistries and chemical environments.
However, these methods remain computationally very demand-
ing; limiting both the length and time scales of phenomena
(to nanometers and picoseconds, respectively) [113] Semi-
empirical methods capture the essence of the interatomic in-
teractions in a coarse-grained manner (via parameterized ana-
lytical functional forms), and are thus an inexpensive solution
to the materials simulation problem [114, 115, 116]. Never-
theless, their applicability is severely restricted to the specific
chemistries and chemical environments considered during pa-
rameterization, and accuracy cannot be guaranteed for proper-
ties not explicitly targeted by the fit. Therefore, one of the goals
for ML algorithms in this arena is to help develop potentials (re-
ferred to as ML potentials or ML forcefields) that can achieve
accuracies approaching to quantum mechanical methods at the
cost of semi-empirical methods to accomplish a variety of tasks
(for instance, see Fig. 1e).

The last decade has witnessed a tremendous amount of ac-
tivity and successes in the field of data-driven atomistic simu-
lations and, in particular, in the area of ML forcefields develop-
ment. Unlike the traditional semi-empirical methods utilizing
domain-knowledge-based specific functional forms or rigid pa-
rameterizations adopted in semi-empirical methods, ML meth-
ods use past accumulated data to make interpolative predic-
tions of the energy and forces in the chemical space of in-
terest. A major challenge in this direction has been the de-
velopment of configurational representations for ML that re-
spect required symmetry and invariance constraints (e.g., trans-
lational, rotational, and exchange of like atoms), capture the
details of potential energy surfaces at sub-atomic-level resolu-
tion and are “smoothly-varying” (i.e., continuous and differ-
entiable) with respect to small variations in atomic positions.
Several local-atomic environment fingerprinting schemes with
varying cost accuracy tradeoffs have been proposed, including
those based on symmetry functions [117, 118, 119], Coulomb
matrices [120, 121], bispectra of neighborhood atomic densi-
ties [122], smooth overlap of atomic positions (SOAP) [123,
124, 125], AGNI [126, 127, 128], momentum tensor potential
[129] and others [130, 131]. These representations combined
with well-established ML algorithms such as kernel ridge re-
gression, Gaussian process regression or deep neural networks
have been used widely to explore diverse materials energy
landscapes. Transfer learning approach has been particularly
promising in accessing cheap surrogate models for highly ac-
curate and computationally demanding beyond-DFT-level en-
ergetics [132, 133]. Active learning strategies can also be very
effective here in strategically acquiring training data that is uni-
formly spread out over the target configurational space in or-
der develop robust and effective ML models [133, 134, 135].
In near future, ML-augmented molecular and materials simu-
lations hold promise to significantly narrow the gap between
the simulated experimentally-observed time and length scales,
while providing high-fidelity predictions of the behavior of
matter under varying environmental and processing conditions.

Another direction that has been explored on this fron-



tier deals with using ML to bypass explicit solutions of the
Schrodinger’s equation (or the Kohn-Sham equation with in
the DFT framework) to come up with a much faster linearly-
scaling data-enabled route to address the electronic structure
problem for materials. A number of good ideas, including
learning the kinetic energy functionals as well as learning
density-potential and energy-density maps, have been proposed
[136, 137, 138, 139, 140]. However, one can argue that the field
is still a state of infancy, as most of these studies have dealt
largely with toy problems and simple test cases. One notable
exception in this direction was presented by Chandrashekhar
et al. [141] showing how ML can be utilized to map an ex-
ternal potential (governed solely by the type and positions of
nuclei) directly onto the corresponding electronic charge den-
sity and local density of states. The predicted density of states
and charge density can in turn be utilized to obtain the total
energy and other derived properties of the system. The demon-
stration of the proposed approach on realistic polymeric and
metallic systems further shows tremendous promise of similar
approaches in an attempt to integrate ML within the inner work-
ings of DFT (and more broadly quantum mechanics).

2.4. Materials characterization

In addition to the modeling, simulations and synthesis,
progress of atomically resolved imaging techniques has opened
up new avenues for ML-based methods to aid in achieving
rapid and quantitative characterization of functional matter un-
der both static and dynamic conditions. Although tradition-
ally characterization techniques have mainly been used to il-
lustrate a material system’s qualitative structure or behavior,
improved resolution and multi-probe characterization options
accessible in modern imaging tools offer much more quanti-
tative and information-rich measurements. For instance, to-
day real-space imaging techniques such as scanning transmis-
sion electron microscopy [142, 143], scanning tunneling mi-
croscopy [144, 145] and atomic force microscopy [146] permit
direct imaging of atomic level structure and functional prop-
erties in complex multi-component and multi-phase materials.
However, extraction of structure-property relationships from
these truly large databases remains a formidable challenge be-
yond the scope of conventional data-analysis techniques that are
based largely on manual inspection by a domain-knowledge ex-
pert. Taking advantage of big data sets available from state-of-
the-art characterization techniques, recent ML efforts have fo-
cused on developing theory-guided mappings between the char-
acterized atomic-level structure and measure the response sur-
faces (e.g., see Fig. 1f) [147, 20, 148].

In addition, ML-based efficient on-the-fly analysis of mate-
rials characterization data can help address workflow bottle-
necks in imaging applications [149, 150]. For instance, elec-
tron backscatter diffraction (EBSD) technique is routinely em-
ployed to obtain three-dimensional spatially resolved crystallo-
graphic characterization of polycrystalline samples as large as
10 mm [151, 152] and provides orientation maps at about 200
nm spatial resolution and 0.5 deg crystal orientation resolu-
tion. While top-of-the-line commercially available orientation

imaging microscopes can make these measurements at unprece-
dented speeds (one diffraction pattern measurement in less than
1ms) [153]. However, use of traditional indexing techniques
for orientation reconstruction from highly noisy EBSD patterns
remains a bottleneck, requiring much longer time scales. This
has been a major limitation towards implementing efficient real-
time orientation indexing required, for instance, to study in-
situ microstructure evolution. A number of recent studies have
shown that ML based methods are robust to experimentally
measured image noise and can be used to index orientations
as fast as the highest EBSD scanning rates [150, 154, 155].
Other notable examples of ML-aided characterization include
classification of local chemical environments from X-ray ab-
sorption spectra [156], identification of two-dimensional het-
erostructures in optical microscopy [157], automated tuning of
microscope controls, data acquisition and analysis [158], phase
identification in Raman spectroscopy [159], automated image
segmentation and image reconstruction for magnetic resonance
imaging [160, 161, 162]. In future, merging the ML-extracted
knowledge from materials characterization data with physics-
informed models will enable a new paradigm of materials re-
search where theoretical predictions and experimental observa-
tions go hand-in-hand at the microscopic levels.

2.5. Automated knowledge extraction from text

A significantly large amount of materials scientific knowl-
edge today exists as text (manuscripts, reports, abstracts etc.),
which is continuously growing at an unprecedented rate. How-
ever, due to absence of efficient algorithms that can directly ex-
tract correlations, connections and relationships from text in-
puts, this information rich resource remains largely untapped
and the materials community has mainly relied on expert-
curated and well-structured property databases for materials de-
sign and discovery efforts undertaken in the past. However, in
the last decade a number of breakthroughs in natural language
processing (NLP) have opened up exciting new avenues in ma-
terials science and related fields. Most remarkably, use of ML
algorithms, such as Word2vec [163, 164] and GloVe [165] to
construct high dimensional vector spaces (commonly referred
to as embeddings) for words appearing in a text corpus such
that their relative semantic and syntactic relationships are pre-
served has given rise to a generalized approach that can be used
to mine scientific literature in a highly effective manner. These
word embeddings can capture complex materials science con-
cepts and structure-property relationships direct from text with-
out any need for explicit domain knowledge insertion. These
notions are graphically captured in Fig. 1g.

A practical demonstration using this approach to capture la-
tent knowledge from materials science literature was put for-
ward by Tshitoyan et al. [166], who collected and processed
materials-related research from approximately 3.3 million sci-
entific abstracts published between 1922 and 2018 in more than
1,000 journals. As a major finding, this study showed that in-
formation regarding future discoveries already exists, to a large
extent, in past publications in a latent form and therefore such
NLP models can potentially recommend new functional mate-



rials several years before their normal course of discovery time-
line.

In the same vein as the previous study, using polymers as an
example class of functional materials, Shetty and Ramprasad
also confirmed that materials science knowledge can be auto-
matically inferred from textual information contained in scien-
tific texts [21]. Using a data set of nearly 0.5 million polymer
papers, it was shown that vector representations trained for ev-
ery word appearing in the accumulated text corpus were able to
capture crucial materials knowledge in a completely unsuper-
vised manner. Subsequently, ML-based temporal studies aimed
at tracking popularity of various polymers for different appli-
cations were able to identify new polymers for novel applica-
tions based solely on the domain knowledge contained in mined
database.

Another challenging problem that has been targeted with au-
tomated text mining via combining ML and NLP pertains to
identifying realistic materials synthesis routes. In particular,
Kim et al. [167] demonstrated use of ML methods to success-
fully predict the critical synthesis parameters needed to make
targeted materials–titania nanotubes via hydrothermal methods
in this particular case–where the training dataset was automat-
ically compiled from tens of thousands of scholarly publica-
tions using NLP techniques. More importantly, the study also
showed the capacity for transfer learning for the developed ML
models by predicting synthesis outcomes on materials systems
not included in the original training set.

As evident from the examples discussed in this section, ML-
based methods and algorithms have found a wide range of ap-
plications within the field of materials design and development.
The developed models largely rely on materials descriptors or
features to numerically represent details of the problem, such
as, chemical composition and configurational structure of the
material, processing conditions and relevant environmental fac-
tors. The choice of an appropriate descriptor set is a crucial step
of enormous importance. The choice of an initial set is typi-
cally based either solely on the underlying domain knowledge
of the problem (i.e., mechanistic details, well-established and
physically-intuitive relationships, constitutive laws of physics
and chemistry etc.) or on an unbiased selection using the avail-
able data starting from a very large set of combinatorial possi-
bilities. One can argue that both the route have their own pros
and cons. while the former approach is likely to result in mod-
els that are more amenable to physical interpretation, the latter
harbors an increased potential for discoveries that are typically
beyond the realm of conventional wisdom. Regardless, an ex-
ploratory analysis utilizing several approaches to the problem
at hand during a ML model building exercise is always help-
ful. Eventually, our ability to not only generate transparent ML
models, but also extract physical insights from these surrogates,
while preserving the potential for discovery that is intrinsic to
the data-enabled methods, will dictate the extent of the impact
of materials informatics on the field.

Figure 2: Schematic showing Trade-off between model performance and trans-
parency. The area of potential future improvement due to improved explainable
AI techniques and tools is highlighted in green with the improvement directions
represented with arrows. Adapted from Ref. [14].

3. Physical Insights from Materials Learning

3.1. Performance-transparency tradeoffs

In addition to deliver robust and accurate predictions, ML
models in physical sciences are often required to provide new
scientific understanding and physical insights directly from ob-
servational or simulated data. As a prerequisite to domain
knowledge extraction via ML is explainability–the ability to ra-
tionalize individual predictions by examining inner workings
of a transparent model and further interpreting the outcomes
in combination with expert-knowledge. Therefore, a collec-
tion of interpretations for a transparent model when evaluated
by a domain-knowledge expert leads to explainability. Within
this context, transparency is largely confined to details of the
employed ML model (i.e., details pertaining to the specific
choices of model class, model complexity, learning algorithm
employed, hyper parameters, initial constraints etc.), while in-
terpretability combines both the input data as well as the ML
model to make sense of the output. Going from interpretabil-
ity to explainability requires involvement of human with a sci-
entific understanding of the problem. In the quest to learn
from learning machines or intelligible intelligence widely ac-
ceptable concepts of transparency, interpretability and explain-
ability have recently emerged as the core elements of utmost
importance that are deemed necessary to enable scientific out-
comes from ML endeavors [168].

The aforementioned notions are directly connected to model
complexity. Simple, and therefore transparent ML models are
highly amenable to interpretations and explanations, however,
generally suffer from relatively poor accuracy and reliability as
compared to more complex “black-box” type models. There-
fore, similar to the well-known bias-variance tradeoff that are
provoked to prevent overfitting while building a robust predic-
tive ML model, balancing of a performance (reliability and ac-



Figure 3: An example depicting SISSO classification performance in separating metals from insulator. (a) A near-perfect classification of metal/nonmetal for 299
binary AxBy-type materials. Symbols χ, IE and x represent Pauling electronegativity, ionization energy and atomic composition, respectively. Vatom/Vcell represents
packing factor. Red circles, blue squares, and open blue squares represent metals, non-metals, and the three erroneously characterized non-metals, respectively. (b)
Representation of pressure induced insulator to metal transitions (red arrows) and materials that remain insulators upon compression (blue arrows). Computational
predictions at step of 1 GPa are shown with green bars. (c) Correlation between the band gap of the non-metals and the scaled coordinate from the dividing line.
Adapted from Ref. [169], with permissions.

curacy) versus transparency tradeoff needs to be carefully con-
sidered for explainable ML models.

3.2. Hybrid and local-learning approaches for improved
transparency

Given the common scenarios where model performance
closely accompanies model complexity, model transparency
(and therefore, interpretability and explainability) exhibits a
downwards slope that has largely remained unavoidable in the
past. This situation is graphically represented in Fig. 2, where
deep neural networks are at one extreme offering excellent per-
formance but little transparency [14]. The other extreme of high
transparency with relatively lower performance is occupied by
decision trees and rule-based algorithms that are completely in-
terpretable. However, going beyond traditional single-model
frameworks, more sophisticated hybrid methods have been sug-
gested to simultaneously improve model transparency and per-
formance [170, 171, 172, 173]. For instance, Kailkhura et al.
[170] recently presented an approach that first transforms a re-
gression problem into a multi-class classification problem on
a sub-sampled training data to balance the distribution of the
least represented material classes. Subsequently, smaller and
simpler models for the different classes are trained to gain bet-
ter understanding of different subdomain-specific regimes. This
domain-specific learning enabled a rationale generator compo-
nent to the framework which can provide both model-level and
decision-level explanations. This led to improvements in the
overall transparency and explainability of the model as com-
pared to the conventional approach of training just one regres-
sion model for the entire dataset. Finally, a transfer learning
technique harnessing correlations between multiple properties
was employed to compensate for the model performance reduc-
tion as a result of improved transparency. In a different study,
Sutton et al. [171] presented a sub-group discovery based new

approach to identify domains of applicability of ML models and
showed that the domain-specific learning is not only crucial for
a deeper understanding and improved interpretability, but can
also significantly improve prediction performance for certain
domains. The idea of fitting local domain-specific model to
gain improved understanding of otherwise opaque ML models
lies at the heart of the local interpretable model-agnostic expla-
nations (LIME) algorithm [172] that can explain the predictions
of any classifier in a faithful way, by approximating it locally
with an interpretable model. In future, further developments in
the direction of transparency-preserving hybrid modeling ap-
proaches and focus on interpretability-driven new model devel-
opments are going to further expand these frontiers, highlighted
in green in Fig. 2.

3.3. Causality- and consistency-based validations

An explainable model further opens doors for devising
testable hypothesis or more stringent validation tests for spe-
cific predictions to address their consistency, generalizability
and causality. A compelling example demonstration in this
direction was presented by Ouyang et al. using sure inde-
pendent screening and sparsifying operator (SISSO) method
based on the compressed sensing technique [169]. Note that
this method allows for efficient exploration of vast descrip-
tor spaces—with the number of unique descriptors typically
reaching up to several billions–to identify transparent analytical
descriptor-property relationships and has been widely applied
to address a diverse set of materials design and discovery prob-
lems [34, 169, 174, 175, 176]. Ouyang et al. applied a SISSO-
based approach to learn an accurate, transparent and predictive
metal-insulator classification model for binary AxBy-type com-
pounds [169]. Simple two-dimensional analytical descriptors
found by SISSO led to almost perfect classification (with 99.0%
accuracy) of metal versus nonmetal chemistries for a set of to-



tal 299 compounds (see Fig. 3a). More interestingly, to conclu-
sively show that the discovered descriptors indeed bore a causal
relationship with the metallic or insulating behavior exhibited
by the materials, the model was employed to rediscover the
available pressure-induced insulator to metal transitions with
a number of chemistries that were known to undergo such a
transition laying consistently near the classification boundary,
as shown in Fig. 3b. Furthermore, the model was able to make
additional prediction of yet unknown transition candidates, ripe
for experimental validation. As an additional evidence of an un-
derlying causal relationship was provided by depicting a qual-
itative yet clear trend between the experimental band gap of
the insulators versus the scaled distance from the dividing line
(Fig. 3c). In a similar spirit of finding accurate symbolic ex-
pressions that match data from an unknown function, Udrescu
et al. [177] developed a recursive multidimensional symbolic
regression algorithm, named AI Feynman, and demonstrated
rediscovery of a set of 100 hand-picked equations from the
Feynman Lectures on Physics [178, 179, 180]. These contribu-
tions suggest that compressed sensing and symbolic regression-
based techniques, combined with appropriately identified do-
main knowledge-based constraints can be enormously helpful
in gaining physical insights from materials data.

3.4. Informatics-enhanced design maps

Efficient interpolation ability of ML algorithms in high-
dimensional spaces can be harnesses in development of
informatics-enhanced design maps that are much more infor-
mative and information rich as compared to traditional meth-
ods that have largely employed two-dimensional maps. As an
example, Fig. 4 compares a traditional tolerance factor ver-
sus octahedral factor structure map often invoked to identify
formable perovskite oxides [181]. Indeed, the pair of geomet-
rical descriptors shows a remarkable predictive power and all
the known compounds that has been successfully synthesized
in a perovskite crystal structure tend to cluster in this plot as
depicted in Fig. 4a. A shortcoming of such an approach, how-
ever, could be that the descriptor pair is solely based on size ef-
fects (i.e., coordination environment dependent Shannon’s ionic
radii [182]) and completely ignores aspects of local bonding
interactions, such as, ionicity versus covalency, relative elec-
tronegatively differences between different cations etc. which
might also play an important role in dictating formability in
perovskites. Although one can argue that some of these aspects
are implicitly accounted for in the relative atomic and ionic size
trends, the ability to explicitly incorporate additional relevant
factors that might play a role might significantly improve such
conventional maps in terms of their predictive power. For in-
stance, Fig. 4b shows an analogous plot which is generated
by a random forest ML model that was trained and validated
on a much larger set of descriptors, including octahedral and
tolerance factors as well as electronegativities, ionization po-
tentials, electron affinities, orbital-dependent pseudo potential
radii of the cations. Once the model has been trained and val-
idated, it can be used to make probabilistic estimates of per-
ovskite formability in the entire multi-dimensional input feature

space and these predictions can be projected back on to a two-
dimensional plot for the two classic geometric factors, while in-
tegrating out or marginalizing all the other feature dimensions,
as shown in Fig. 4b. One might argue that the Fig. 4b is more
informative since it implicitly contains trends reflected by the
entire set of descriptors that were used to train the model and
not just the tolerance and octahedral factors, as in the case of
Fig. 4a. Moreover, the informatics-based route allows for gen-
eration of analogous plots for any pair of features drawn from
the original input feature set. Here we note that a closely re-
lated approach is readily available in tree-based ensemble mod-
els known as partial dependence plots [183]. Although we have
focused on a relatively simple example, it is not hard to imagine
much more complex situations where such an approach can be
applied. In complex materials design problems, the ability to
construct such design maps to explore and rationalize intricate
trends and tradeoffs among key design variables can be enor-
mously helpful.

Finally, we note that a great deal of research has lately gone
into the development of explainable deep learning techniques
and the efforts have been reviewed in a number of surveys
[14, 184, 185, 186, 187]. While it is impractical to delve deep
into this large body of work, we note here in passing that, at
a higher level, explainable deep learning methods largely fall
in three broad categories, namely, visualization, model distilla-
tion and intrinsic methods [187]. As the nomenclature suggests,
visualization methods rely scientific visualization to single out
key characteristics of an input that strongly influence the output
to generate an explanation. Model distillation approach resorts
to a separate, “glass-box” ML model that is trained to mimic the
input-output behavior of original “black-box” model but in a
more transparent manner by identifying specific decision rules
that lead to the final output. Intrinsic methods, on the other
hand, have an explanation system integrated within by design
and therefore can balance the transparency-performance trade-
off on-the-fly by jointly optimize both model performance and
some quality of the explanations produced. In future, as ma-
terials datasets grow larger, these techniques will play roles of
increasing importance in materials design problems.

4. Challenges and Opportunities Ahead

As briefly alluded to above, over the past decade the field of
materials informatics has grown exponentially. While the early
phase of this growth was largely focused on developing a deeper
understanding of ML model development itself with a primary
focus on testing efficacy and efficiency of the data-enabled ap-
proaches in materials development. In this phase, studies em-
phasized on addressing basic questions such as: “How different
statistical learning methods work?”; “What are their potential
strengths and weaknesses?”; “How does one select appropriate
method for a given problem?”; “What are some best practices
of statistical learning that one should follow for developing and
validating a predictive model?” etc. These efforts have cul-
minated in democratization of the process of training a model
on a materials data with the ability of several open source ML



Figure 4: A comparison of structure maps between the tolerance and octahedral factors for perovskite formability. (a) Conventional structure map with a scatter
plot. Perovskite formability region is given by a convex hull encompassing the known examples (green circles). (b) Informatics-enhanced structure map with the
same set of variables, explicitly accounting for the probability of formation.

packages and repositories for model development and dissemi-
nation. Now that the field has matured into an established disci-
pline from a specialized area of research, the research focus has
shifted to a number of more general materials-science-specific
issues that the community is currently grappling with.

Although ML problems are frequently referred to as “big
data” problems, datasets used in materials design and discovery
problems are generally relatively small, barring certain cases
dealing with small molecules or imaging data for materials
characterization. A large fraction of materials data available
in open sources materials databases comes from first princi-
ples computations with a major emphasis on the ground state
atomic structures and energetics. Availability of high-quality
data on most functional properties generated via direct experi-
mental measurements is rather limited. On the other hand, an
informatics effort that targets to discover a new functional ma-
terial with a desired set of properties usually requires a dataset
with several compounds in a target compositional and configu-
rational space (i.e., for given chemistries and crystal structures)
with entries on multiple properties, spanned over a range of
processing conditions. Such datasets are extremely difficult to
populate starting from publicly available materials data. In fact,
accumulation and curation of an initial high-quality dataset re-
mains a highly laborious and time-consuming step for most of
the materials design efforts today. To address this data scarcity
problem going forward, development and wide-spread use of
data-mining and NLP-based high throughput data acquisition
techniques and advanced methods to extract data directly from
graphics that permit a much faster and semi-automated extrac-
tion of materials datasets from past literature is a crucial next
step.

In past, materials development has largely been led by chem-
ical intuition guided explorations. Moreover, results on failed
experiments are rarely reported in the peer-reviewed literature.
As a result, in addition to being sparce, the available data distri-
butions can be highly imbalanced and skewed, violating one of

the central assumptions of most standard ML methods requiring
uniformly sampled and balanced training data. Furthermore,
data coming from different sources can have varying levels of
noise. A robust model development in such situations demands
for more advanced analysis going beyond standard predictive-
accuracy-centric “testing on unseen data” approach. Advance
methods for rigorous uncertainly quantification, establishment
of domain of applicability, effectively correcting class imbal-
ance problems and skewed data distributions are just beginning
to find inroads into materials informatics [170, 171, 188].

In addition to being sparce and skewed, materials data can
be highly heterogeneous and can be generated at varying levels
of fidelities. Furthermore, due to the underlying cost-accuracy
tradeoffs in both experimental and computational techniques
available for data acquisition, a larger amount of data is gen-
erally available at a lower fidelity level. Development and use
of advance algorithms that allow for effective integration of in-
formation coming in from varying fidelity sources, while ex-
plicitly accounting for different noise levels in the different data
segments, to make predictions at the highest level of fidelity
(i.e., at the highest predictive accuracy and lowest uncertainty
levels) is highly desirable in materials informatics [189]. Such
algorithms also provide a means to address the data-scarcity
problem as they have been proven effective in learning-from-
small-datasets scenarios [190].

In addition to the aforementioned challenges that largely
concern with the amount and quality of available training
data, effective approaches that enable integration of domain-
knowledge with ML could be transformative. In this direction,
both the ability to put in domain knowledge into a ML model
as well as extract new physical insights from an explainable
ML model should be considered. On one hand ML algorithms
that can directly integrate available mechanistic understanding
and known domain knowledge (in terms of physical laws and
well-established principles, constraints such as boundary con-
ditions, asymptotic limits, smoothness criteria, symmetries, in-



variances, and other problem-specific knowledge obtained from
theory and simulations) to train more efficiently with smaller
datasets are required [191]. On the other hand, breakthroughs in
terms of implementing hybrid and locally-interpretable models
(as discussed in Sec. 3) to explain ML predictions are sought.
Going beyond standard statistical validation techniques, more
stringent domain-specific validation criteria, using either direct
experimentation or rigorously validated first principles com-
putational methods, are required to establish that the identi-
fied correlations indeed represent causal relationships with truly
predictive power.

Finally, to facilitate documentation, dissemination and effec-
tive use of highly multi-scale, multidimensional and heteroge-
neous nature of materials data, it is desirable to develop new file
formats and data structures that are flexible enough to handle
this level of complexity. Encouraging documentation of not just
the data, but also the relevant metadata–providing a much richer
context for the primary data–across the community would be in-
creasingly helpful going forward as text to knowledge mining
methods progress. Infrastructure development for not just shar-
ing the data, but the developed ML models themselves would
be desired to address one of the most important issue of re-
producibility. Some efforts in these directions are currently in
progress [192, 193, 194, 195]. Going forward, cultivating a cul-
ture that encourages publishing results from failed experiments
and adoption of publication file formats that enable by-design
an efficient data extraction via text mining will open new av-
enues for information-rich materials datasets. As ML meth-
ods become increasingly popular and more widely used within
the materials community, addressing these challenges becomes
critical for expediting the pace of progress.

5. Conclusions

ML and data-enabled methods represent the advent of a
new paradigm in materials science. As a result, the way
in which materials design and discovery has traditionally
been pursued in the field is poised to change in profound
ways. Starting from a niche area, within a short period of
time materials informatics has already been established as a
full-blown mature discipline. ML algorithms are already aiding
in efficient materials property predictions, materials design and
discovery, as well as different components of experimental
design, dealing with identification, and the organization and
prioritization of next experiments. Going forward, a number
of crucial challenges pertaining to accessibility and quality of
data as well as regarding integrating domain-knowledge into
ML models (beyond the means of feature selection and feature
engineering) and extracting novel insights out of the trained
models need to be addressed. Upon success, materials science
in coming decades will be defined by our ability to learn from
learning machines.
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