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1 SUMMARY
Reservoir computing has a emerged as a powerful tool in data-
driven time series analysis. The possibility of utilizing hardware 
reservoirs as specialized co-processors has generated interest in 
the properties of electronic reservoirs, especially those based on 
memristors as the nonlinearity of these devices should translate 
to an improved nonlinear computational capacity of the reservoir. 
However, designing these reservoirs requires a detailed understand-
ing of how memristive networks process information which has 
thusfar been lacking. In this work, we derive an equation for gen-
eral memristor-inductor-resistor-capacitor (MEM-LRC) reservoirs 
that includes all network and dynamical constraints explicitly. Uti-
lizing this we undertake a study of the computational capacity of 
these reservoirs. We demonstrate that hardware reservoirs may be 
constructed with extensive memory capacity and that the presence 
of memristors enacts a tradeoff between memory capacity and non-
linear computational capacity. Using these principles we design 
reservoirs to tackle problems in signal processing, paving the way 
for applying hardware reservoirs to high-dimensional spatiotem-
poral systems.

2 BACKGROUND
Reservoir computing is a machine learning technique for construct-
ing a mapping between two ordered sequences [7, 11]. An input 
sequence is used to drive a dynamical system, or reservoir, and
∗Both authors contributed equally to this research.

the output sequence is approximated by a linear regression on the
reservoir state. The reservoir dynamics are such that its current
state can contain information concerning both the previous history
of the driving input and nonlinear transformations thereof. The
linearity of the output, combined with the nonlinearity of the reser-
voir allows us to interpret reservoir computing as approximating a
nonlinear filter between the two sequences. Indeed, reservoir com-
puters can be considered filter approximators in much the same
way that feedforward neural networks may be considered function
approximators [11]. The low computational cost of the linear re-
gression and lack of reliance on backpropagation allows for very
large and recurrent reservoirs to be utilized. This paradigm has
proven effective in a wide variety of signal processing tasks includ-
ing pattern generation and classification [1], time series forecasting
[7], adaptive filtering and is currently the state of the art method
in the prediction of chaotic systems [9].

The linear readout of reservoir computers implies that their com-
putational power is intrinsic to the particular dynamical system
employed, and designing these reservoirs requires an understand-
ing of how the physical system in question stores and processes
information. A framework for characterizing the computational
capacity of a reservoir was developed in [3] by identifying the
trajectories of the reservoir as living in a Hilbert space of fading
memory functions (functions acting on some finite history of the
driving sequence). The dimension of the space spanned by the sys-
tem trajectories formed an invariant measure of the computational
capacity of the system, naturally encompassing previous measures
of memory capacity [8, 14] and revealing a fundamental trade-off
between memory/linear functions and nonlinear functions of the
input. The capacity for a reservoir X to reconstruct an approxima-
tion ẑ of a function z[u] on an interval T may then be interpreted
as the projection of z[u] onto the trajectory space,

CX [z] = 1 −
minW MSET [z, ẑ]

⟨z2⟩T
. (1)

whereW are the readout weights of the network and ⟨·⟩T is the
time average. This is bounded on 0 ≤ CX [z] ≤ 1 and encompasses
previous measures of memory,m(τ ) = CX [z[u](t) = u(t − τ )] [3]
while also generalizing to nonlinear functions of the input, e.g.
z[u](t) = u(t − τ )2.

The performance of a reservoir relies on tuning the memory and
nonlinear fitting capacity of the reservoir to the requirements of the
specific problem. The ability to achieve this for arbitrary problems
places emphasis on the scaling properties of the computational
capacity with the reservoir size. In particular, useful reservoirs
should display extensive or near extensive computational capacity
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(i.e., computational capacity scaling approximately linearly with 
the reservoir size) [14].

The successes of reservoir computing have galvanized interest 
in hardware implementations [13] which could be used as special-
ized co-processors and in which very large reservoir sizes could 
be achieved. The construction of useful hardware reservoirs thus 
requires an understanding of how their computational capacity 
scales with system size. Memristor-based reservoirs have gener-
ated substantial interest, both for their resemblance to a synapse in 
silica and as they are perhaps the simplest example of a non-linear 
electrical element. However, studies of memristor-based reservoirs 
have relied on primarily anecdotal evidence of their efficacy, giving 
evidence from simulations that memristors could form effective 
reservoirs [4, 10, 12]. None, to our knowledge, have studied mem-
ristive reservoirs analytically or have given a systematic account of 
the linear and non-linear fitting capacity of these devices and how 
these capabilities scale with system size.

In this work we study the performance of memristor-LRC (Mem-
LRC) networks as reservoirs, consisting of memristor, inductor, 
capacitor and resistor motifs assembled in a driven electrical net-
work. The inclusion of linear elements allows us to assess the role of 
memristors in introducing nonlinear computational capacity to the 
reservoir in a systematic way and to achieve a tune-able trade-off 
between memory and nonlinearity, similar to the mixture reser-
voirs proposed in [6]. Achieving large computational capacities 
with MEM-LRC reservoirs requires a careful choice of components, 
local connectivity and global network structure.

3 THE COMPUTATIONAL PROBLEM
We are interested in the approximation of a nonlinear filter of the 
form,

z[u](t) =

∫ ∞

0
dτ1 K1(τ1)u(t − τ1)+∫ ∞

0
dτ1

∫ ∞

0
dτ2 K2(τ1,τ2)u(t − τ1)u(t − τ2) + · · · (2)

bymeans of a reservoir driven by an input signalu(t). This is a linear
combination of functions on the input of the form zτ1 (t) = u(t −τ1),
zτ1,τ2 (t) = u(t − τ1)u(t − τ2), . . . By the linearity of the reservoir
fitting procedure, the ability to reconstruct these functions within a
delay of τi < T implies the ability to reconstruct an arbitrary filter
of the form 2 where the kernelsKi have support on τi < T . Thus, by
examining a reservoir’s ability to reconstruct the functions above
we capture a measure of it’s universal computational capacity. In
what follows, we will restrict ourselves to examining how reservoir
design affects it’s ability to construct the functions z1 and z2 which
we will refer to as the linear capacity, CX [z1](τ1) and quadratic
capacity, CX [z2](τ1,τ2) and study as functions of the delay τ1/2.

For input signal u(t) we construct a zero-mean unit variance
noise process with an autocorrelation time of 1 by generating uncor-
related gaussian noise on a fast timescale (δt = 10−3) and smoothing
with a double exponential window e−|t | . Capacities were calculated
over approximately 1000 autocorrelation times of the input signal.

Figure 1: The motifs used to construct a reservoir from an
underlying graph. Each edge in the graph is replaced with a
one-port circuit as above to produce a memristive reservoir
(A) or a MEM-LRC reservoir (B). In linear/LRC networks the
memristor in B is replaced with a resistor.

4 CIRCUIT STRUCTURE
For the reservoir, we begin with a graph G of N edges, in which
each edge will be replaced by a motif consisting of a 1-port circuit
of memristors, resistors, capacitors, inductors and voltage/current
generators. We focus on two motifs shown in Fig. 1, a purely mem-
ristive network (A) and a MEM-LRC network (B). In a linear LRC
network, the memristor in (B) is replaced with a resistor.

Following [2], we begin by deriving a set of equations governing
the behavior of the circuit which incorporate all dynamical and
network constraints explicitly. For motif A we assume a linear
memristive model,

R(w) = Rof f (1 − χw), χ =
Rof f − Ron

Rof f
(3)

Ûw = −αw +
Rof f

β
I , 0 ≤ w ≤ 1. (4)

where α is a decay rate, and β is a combined voltage/time-scale.
This leads to the network equation,

Û®w = −α ®w +
1
β
(I − χΩAW )−1ΩA ®vu(t). (5)

HereW = diaд( ®w) is a diagonal matrix, ΩA is a projector onto the
space of voltage configurations and ®v is a random vector of input
weights.

For motif B we organize the inductance, capacitance and resis-
tances into diagonal matrices, L,C , and R(w)/RC respectively (R(w)

is the memristor resistance while RC is the resistance in series with
the capacitor branch). In matrix form, the equations governing the
charge across the capacitor ®a = ®q and the current into it ®b = Û®q,(

Û®a
Û®b

)
=

(
0 I

−(LC)−1 −L−1(ΩB/R−1R(w) + Rc )

) (
®a
®b

)
+

(
0

−L−1ΩB/R−1 ®vu(t)

)
. (6)

ThematrixΩB/R−1 = BT (BR−1(w)BT )−1BR−1(w) is a non-orthogonal
projector which implements Kirchoff’s current law, B®i = 0 (for de-
tails see [2]). For the memristive degrees of freedom the same model



Figure 2: The computational capacity of MEM-LRC reser-
voirs as a function of χ =

Rof f −Ron
Rof f

. In the top panel left axis,
we see that the memory capacity of the network is decreas-
ing function χ while on the right axis we see that the non-
linear capacity of the network is an increasing function, in
agreement with the memory-nonlinearity tradeoff. We use
the networks ability to construct P2(u) = 1

2 (3u
2−1) as a proxy.

The lower panels show the reconstruction for no nonlinear-
ity (χ = 0, left) and large nonlinearity (χ = 0.99, right).

as above in terms of the network variables above is,

Û®w = −α ®w−
Rof f

β
R−1(w)ΩB/R−1(w )R(w)®b + (7)

Rof f

β
R−1(w)(I − ΩB/R−1(w ))®vu(t) (8)

The analysis of these equations allows us to prove that these
reservoirs satisfy the fading memory and state separation proper-
ties [7] necessary for functioning as a reservoir and derive bounds
on various element parameters. In simulations, the underlying net-
work graph was chosen as a planar triangular lattice and unless
otherwise noted, simulations were carried out in a 5x5 vertex lattice
corresponding to 56 edges/motifs.

5 MEMRISTIVE RESERVOIR
Beginning with the purely memristive reservoir (Fig. 1 panel A,
Eqn. 5) we observe that the nonlinearity of the circuit is controlled
by χ and thus expect that the quadratic capacity of the network
will be an increasing function of χ . (This is demonstrated in the
context of Mem-LRC reservoirs in Fig. 2 where reconstruction of a
quadratic function of the input was examined as a function of χ .)
In simulations we choose χ = 0.99 as a physically plausible value,
β = 1 and α exponentially distributed with a scale of 8Hz.

In Fig. 4 panel A, the linear and quadratic capacities of the reser-
voir are displayed. The large χ translates into a large quadratic
capacity but only for short times τ1/2. The linear capacity of the
network is quite poor, falling over the order of an autocorrelation
length.

Figure 3: The memory function and 0.1−memory capacity
scaling of LRC reservoirs. On the left we have displayed a
typicalmemory functionm(τ ) of an 8×8 LRC lattice network
which gives the capacity to reconstruct the input a time τ
in the past. The memory capacity is measured as the first
time this function falls below the threshold 0.9. In the in-
set to the right, as the network size is increased, we see that
the memory capacity increases nearly linearly allowing us
to achieve very long memories in hardware reservoirs. The
memory lengths displayed here correspond to hundreds of
autocorrelation times of the input sequence.

6 LRC RESERVOIRS
In order to achieve a large linear capacity, we employ a linear
network (i.e. replacing the memristor in motif B with a resistor,
leaving an LRC network). Using Eqn. ?? we use a scaling argument
on the reservoir eigenvalues to achieve a distribution similar to that
shown in [5, 14] in which the eigenvalues have constant negative
real part, and are approximately equally spaced along the imaginary
axis between±N∆ω where ∆ω is a frequency resolution. To achieve
this, all resistors and inductors are set to constant values r and l
and capacitors are set such that,

cn =
1

l
√
(n∆ω)2 + γ 2

, n = 1 . . .N (9)

where γ = r
2l . The resulting network displays a high linear com-

putational capacity for many autocorrelation lengths of the input.
More importantly, the scaling of the memory capacity with system
size is very nearly extensive, scaling as ≈ N /lnN (here we define
the ϵ−memory capacity τϵ = mint m(t) < 1−ϵ in order to examine
it’s scaling with system size) as seen in Fig. 3. An examination of
several similar networks reveals that this is not a common feature
and appears to hold only for this particular network motif and pla-
nar network structure. Properly designed networks are capable of
recalling hundreds of autocorrelation times of the input sequence
in simulation, even at relatively modest reservoir sizes. However,
the linearity of these reservoirs lead to very low quadratic compu-
tational capacities. In the lower left panel of Fig. 2 we observe that
quadratic reconstructions are limited to linear approximations of
the desired output.

7 HYBRID RESERVOIRS
We can thus improve the memristive reservoir by running an auxil-
iary LRC reservoir in parallel, achieving both the linear capacity



of the LRC network and the quadratic capacity of the memristor 
network. However, we can further leverage the memory of the LRC 
reservoir to increase the nonlinear network capacity as well.

First, we examine the result of using a memristive reservoir to 
drive an auxiliary LRC reservoir. Voltages across memristors were 
used to drive the LRC reservoir through a sparse connection matrix. 
While the LRC reservoir no longer provides linear computational 
capacity, we expect that by introducing memory of the nonlinear 
capacity calculated in the memristive reservoir, we can increase the 
quadratic capacity of the reservoir for longer delays. In Fig. 4 panel 
B we see precisely this behavior. While linear capacity remains low, 
the quadratic capacity has been greatly extended, particularly for 
diagonal (τ1 = τ2) reconstructions.

Lastly, we examine the behavior of Mem-LRC reservoirs com-
posed of a planar triangular lattice with each edge replaced with a 
motif of the form shown in Fig. 1 B. The resulting networks appear 
to have the best features of LRC and memristor networks, showing 
large linear and quadratic capacities simultaneously. Additionally 
the quadratic capacity displays higher off-diagonal values than 
those shown by the layered memristor LRC network.

8 CONCLUSION
The problem of designing electronic reservoirs requires a detailed 
understanding of how these systems process and retain information 
about their inputs. By designing linear reservoirs with extensive 
linear computational capacity we are able to introduce nonlinearity 
through memristors in a controlled way and display large improve-
ments in the computational capacity of the resulting reservoir. This 
results in more flexible systems for computational tasks which is a 
key requirement for useful hardware reservoirs.
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