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Abstract—The significance of the impact of weather on the
electric grid has grown as climate change continues to increase
the frequency and intensity of extreme weather events. In recent
years (2021-2022) in particular, extreme winter weather has
affected the grid in locations in the US rarely exposed to extreme
low temperatures, snow and icing conditions. Here we analyze
the correlation between cold weather meteorological variables
and electricity outages during two large winter storm events, Uri
(February 2021) and Landon (February 2022) using Random
Forest machine learning and Pearson’s correlation coefficient.
Our geographical focus across the two storms is the state of
Texas. Extrapolation of the method to winter weather impacts
over other years and additional locations is proposed.

Index Terms—machine learning, electric grid, extreme weather,
winter storms, outages

I. INTRODUCTION

Technologies such as internet, transportation charging and
building heating and cooling are driving changes in customer
expectations of power system reliability [1]. Yet continuing
increases in frequency and intensity of extreme weather events
challenge energy reliability across the United States power
grid. Annual reports such as the State of Reliability reports
issued by the North American Electric Reliability Corporation
(NERC) routinely find that the leading causes of large electric-
ity outages are weather related [2]. Furthermore, nearly half of
all major outage events for the years 2015-2019 were caused
by extreme winter weather associated with low temperatures,
high winds, heavy snow, hail, and blizzards [3]. In more recent
years, Winter Storm Uri (February 2021) caused electricity
power outages for 4.5 million customers at its peak, and left
many customers without power for several days [4]. Winter
Storm Landon [5], in February 2022, manifested as a 2,000-
mile-long expanse of snow and ice from the Southern Rockies
and Plains into the Midwest and northern New England
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causing massive outages across its track. In the current age of
“big data,” many researchers are applying machine learning
(ML) techniques to predict power outages based on winter
weather, land use, grid asset status, vegetation management
and other conditions [6]–[9]. Here, we use a Random Forest
machine learning method and Pearson’s correlation coefficient
to understand the relationship between 1 km gridded daily
weather variables and county-level daily customer outages so
that utilities can employ these data-driven approaches to aid
storm response planning, long-term asset management and
optimal crew mobilization ahead of extreme winter storm
events.

II. DATA AND METHODS

We perform two analyses using components of the Ad-
vanced data SCiENce toolkit for Non-Data Scientists (AS-
CENDS) tool (Section II-C). The first analysis uses the AS-
CENDS implementation of the Python Scikit-learn Random
Forest (RF) Regressor [10], which is a non-parametric model
that fits a user-chosen number of classifying decision trees on
various samples drawn from the dataset, and is evaluated using
the root mean squared error (RMSE). The second analysis
employs ASCENDS to perform a Pearson correlation among
each weather and outage variable with an outage prediction
by solving the equation:

r =
Σ[(X[:, i] −mean(X[:, i])) ∗ (y −mean(y))]

(std(X[:, i]) ∗ std(y))
(1)

with the X matrix including all weather and outage vari-
ables, and y representing the outage predictions. Here, std
indicates the standard deviation of the data distribution.

A. Data

Data analyzed for the study were gridded weather obser-
vations and Texas county-level electric outage reports during
the five days each of two major winter storms, Uri (February
13-17, 2021), and Landon (February 2-6, 2021). The 1km
x 1km gridded weather observations were acquired from
Oak Ridge National Laboratory’s (ORNL) reanalysis dataset,
Daymet (Version 3) [11] for which grid cell parameters



are calculated based on the coordinates of each grid cell’s
centroid. Daymet weather variables included in this study were
maximum and minimum daily temperature, daylight average
incident short wave radiation, cumulative precipitation and
snow water equivalent and average vapor pressure. County
level customer outage counts were obtained from the archives
of the Department of Energy (DOE) Environment for Analysis
of Geo-Located Energy Information (EAGLE-I) situational
awareness platform for near real-time energy status.

B. Data Preparation

For ingestion of the data into the ASCENDS tool for the
correlation analysis, the maximum daily weather data and
the daily averaged outage data were converted to csv and
aggregated to the county level so that variables in the two
data sets could be mapped one-to-one. This aggregation was
facilitatied by the ArcGIS tool using a spatial join.

Next, the data was reorganized for correlation between
meteorological variables for a given day (t) to the outage data
for the next day (t+1). Customer outages were tracked using
both the number of customers outaged per county and the
percentage of customers outaged per county. The total number
of customers per county are those reported by all utilities
serving a given county. In some cases, not all customers were
reported, which contributed to a measure of uncertainty for
total customer count. In those cases, the calculated percentage
of customers outaged (pcout) was sometimes over 100, in
which case the values were replaced with 100. Each row
(county) of the data included the following column attributes:

• GeoID: combination state and county FIPS code (Federal
Information Processing Series–unique numerical identi-
ties for each state and county)

• all custom: total electricity customer count
( countypopulation
no.firms+no.residences ) [12] for the GeoID

• tmin(t) and tmax(t): today’s minimum and maximum
temperature

• tmin(t-1) and tmax(t-1): yesterday’s minimum and max-
imum temperature

• prcp(t): today’s cumulative precipitation
• prcp(t-1): yesterday’s cumulative precipitation
• swe(t): today’s cumulative snow water equivalent
• swe(t-1): yesterday’s cumulative snow water equivalent
• srad(t): today’s daylight average incident short wave

radiation
• srad(t-1): yesterday’s daylight average incident short

wave radiation
• vp(t): today’s average vapor pressure
• vp(t-1): yesterday’s average vapor pressure
• out(t): today’s raw outage count for GeoID
• out(t-1): yesterday’s raw outage count for GeoID
• pcout(t):today’s percentage of customers outaged for

GeoID
• pcout(t-1): yesterday’s percentage of customers outaged

for GeoID
• pcout(t+1): this will be the percent of customers outaged

on the next date

C. Machine Learning with ASCENDS

The Advanced data SCiENce toolkit for Non-Data Scien-
tists (ASCENDS) is a set of command-line and web-based
GUI tools for performing various advanced data analysis and
machine learning techniques [13], [14]. The toolkit focuses
on two different machine learning tasks: classification and
regression. The classification part of the toolkit predicts a
category (Y) from input variables (X). Regression in the
toolkit is used to train a predictive model that approximates a
continuous output variable (y) from input variables (X). The
toolkit supports linear, logistic and other types of regression,
random forests, support vector machines and neural networks.
Additionally, capabilities for feature selection based on various
criteria and automatic hyperparameter tuning are provided.

III. RESULTS AND DISCUSSION

Using the daily weather and outage data for five days
each from the two winter storms, we used the RF regressor
to answer the question, “If we know today and yesterday’s
weather information, can we predict tomorrow’s outages?” For
this analysis, which was run using information focused on
Texas outages for both Uri and Landon, we randomly shuffled
the data, then used 85% of the data for training the RF model
to predict pcout(t+1). We then used 15% of the data to validate
the result.

Figures 1, 2 and 3 show the predicted and actual pcout(t+1)
values. The x-axis in each figure is the weather-predicted
percentage of customers outaged and the y-axis is the actual
percentage of customers outaged. If the model perfectly pre-
dicted pcout(t+1), we would see the red dots are perfectly lined
up at a 45◦ angle. However, none of the results show this type
of predictability.

Figure 1 can be interpreted such that there is a small positive
correlation for Winter Storm Uri of yesterday’s weather to
today’s outages, as it shows a somewhat significant RMSE of
11.091.

Fig. 1. Prediction result from the random forest model trained with the Winter
Storm Uri (Texas counties). The x-axis shows the predicted percentage of
customers outaged and the y-axis shows the actual value. RMSE = 11.091.



Using the same geographical data but for the 2022 Winter
Storm Landon, the RF model yielded a lower RMSE of 7.787
(Figure 2), which can be interpreted such that there is a
greater positive correlation among the weather variables and
the percentage of customers outaged during that storm.

Fig. 2. Prediction result from the random forest model trained with the Winter
Storm Landon (Texas counties). The x-axis shows the predicted percentage
of customers outaged and the y-axis shows the actual value. RMSE = 7.787.

Combining the Texas county data from both winter storms
provided the best correlation among weather variables and out-
ages, and produced the lowest RMSE at 5.769. The scatterplot
for this correlation is shown in Figure 3.

Fig. 3. Prediction result from the random forest model trained with combined
data collected from Winter Storm Uri and Landon (Texas counties). The x-axis
shows the predicted percentage of customers outaged and the y-axis shows
the actual value. RMSE = 5.769.

The initial conclusions from this first analysis show that
that prediction from the combined data from both storms was
better than that of either Uri or Landon alone. Additionally,
the Landon data and model showed better prediction results
than that of Uri. Possible explanations for this result are 1)
because the size of dataset was larger (more counties with
outages reported) in the case of the Landon storm and in the
case of the combined data, more data led to better results, and

2) the way the dataset is shuffled may impact the result, so
repetition of the analysis using a variety of shuffling methods
is needed to make sure results are consistent. It is encouraging
that combined data led to better result, since it opens up the
possibility of using additional historical winter storm data and
making the prediction model better over time.

The second analysis evaluated the strength of the relation-
ship between the relative movements of two variables using
Pearson’s correlation coefficient. Figure 4 shows that in the
case of the Uri Texas county dataset, pcout(t) and pcout(t-
1) have a strong positive correlation. That is, the previous
days’ outage percentages were highly positively correlated to
the percentage of customers out of power on the next day,
pcout(t+1). It can be interpreted from this result, and was
certainly observed during the storms, that outages persisted
in the same regions for several days. Additionally, maximum
daily temperature (tmax) and daily average incident short wave
radiation (srad) were positively correlated with outages, which
is a bit counterintuitive, but interesting to note. There were no
strong negative correlations observed.

Fig. 4. Pearson’s correlation of the percentage of customers outaged tomorrow
(t+1, x-axis) in Winter Storm Uri to each of the weather and outage variables.
The y-axis shows the strength and sign of the correlation.

The same type of correlation performed using the Landon
Texas county data did not show any strong positive or negative
correlations (Figure 5). However, minimum temperature (tmin)
and snow water equivalent (swe) were weakly positively
correlated to the percentage of customers outaged on the next
day, pcout(t+1).

Finally, a Pearson’s correlation using Texas county data
from both storms (Figure 6) showed that while daylight
average incident shortwave radiation and cumulative snow
water equivalent were weakly positively correlated to the
percentage of customers outaged tomorrow, and average vapor
pressure, maximum and minimum temperature and cumulative
precipitation were more highly and negatively correlated with
the percentage of customers outaged tomorrow, the highest
positive correlation occurred in the combined dataset again
with the previous day’s outages.

IV. CONCLUSIONS

In this study, we employed the Random Forest machine
learning method and Pearson’s correlation coefficient to ana-



Fig. 5. Pearson’s correlation of the percentage of customers outaged tomorrow
(t+1, x-axis) in Winter Storm Landon to each of the weather and outage
variables. The y-axis shows the strength and sign of the correlation.

Fig. 6. Pearson’s correlation of the percentage of customers outaged tomorrow
(t+1, x-axis) in both winter storms to each of the weather and outage variables.
The y-axis shows the strength and sign of the correlation.

lyze and understand the correlation between weather variables
and electricity outages during two winter storm events. We
observed that the larger data set (from Winter Storm Landon)
and the combination of data from two different winter storm
events can lead to better outage prediction results, which is
encouraging, because it shows that we can improve the quality
of outage predictions by collecting more data. Thus, we can
enhance the model over time using the data collected from
multiple events. However, from both analyses conducted we
conclude that we have not yet found a clear, consistent, strong
correlation across the two winter storms affecting Texas for the
years 2021 and 2022 among weather variables and percentage
of customers out of power the next day. One explanation may
be the limitation of the Pearson’s correlation coefficient. It only
captures linear correlation between variables, so there may
still be more complex correlation hidden in the data. In the
next study, we will explore more correlation coefficients such
as, among others, the Maximal Information Coefficient [15].
Also, There may have been many external factors other than
the meteorological variables (e.g., infrastructure difference,
readiness for events, etc.) that contributed to the outages
in the Texas counties that are related to the winter storms
that can be explored in future studies. Additionally, similar

analyses of the effects of winter storms on different parts of
the United States, such as the effect of Winter Storm Landon
on both the Midwest and the Northeast may suggest clues
to the proportional influence of weather and infrastructure on
grid robustness and resiliency to extreme weather and overall
reliability of service during winter storm events. The inclusion
of grid asset location and health as part of a future empirical
model workflow could add robustness to model predictability
(as in [6]). What we learned from this study is that the quality
and consistency of the data is the crucial. How to deal with
missing data, data with error (e.g., percentage value over 100),
inconsistent data availability across geographical regions, etc.
must be further explored.
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