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ABSTRACT

In 2013, Pak and Panova proved the strict unimodality property of
t+m
m

combinatorics of Young tableaux and the semigroup property of
Kronecker coefficients. They showed it to be true for all £, m > 8 and
a few other cases. We propose a different approach to this problem
based on computer algebra, where we establish a closed form for the
coefficients of these polynomials and then use cylindrical algebraic
decomposition to identify exactly the range of coefficients where
strict unimodality holds. This strategy allows us to tackle general-
izations of the problem, e.g., to show unimodality with larger gaps
or unimodality of related sequences. In particular, we present proofs
of two additional cases of a conjecture by Stanley and Zanello.

g-binomial coefficients [ ]q (as polynomials in q) based on the
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1 INTRODUCTION

In recent years, we have witnessed the increased development
of computer algebra tools that can handle questions which are
combinatorial in nature, enabling the resolution of open problems
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and the establishment of new conjectures (see for example [2, 11, 15,
23, 35]). In this paper, we showcase how some of these tools, notably
cylindrical algebraic decomposition [10], can be put into action.
We present a method that can be applied to answer unimodality
questions related to g-binomial coefficients. Such questions have
been around for decades, and we detail some of the rich history
before presenting our approach.

DEFINITION 1. A finite sequence of real numbers ai,...,an is
called d-strictly increasing (resp. decreasing) if ap,1 — ar > d (resp.
ax — a4 = d) holds forall1 < k < n. A sequence is called unimodal
if for some m € N we have non-decreasing (i.e., 0-strictly increasing)
behavior up to m and subsequently non-increasing behavior:

a1 <ay <L am > ame1 =00 2 ap. (1)

The sequence is called strictly unimodal if all inequalities in (1)
are strict. More generally, we call a sequence d-strictly unimodal
if for some m € {1,...,n} the subsequence ay, ..., anm is d-strictly
increasing and ap, . . ., an is d-strictly decreasing.

DEFINITION 2. For {,m € Zx¢ the q-binomial coefficient, also
called Gaussian polynomial, is a polynomial in q defined by

t+m

£+1. m +i tm
q ;q 1-
_( )m:| | q. - Pk([,m)'qka
=0

m g (@GDm L 1-¢ £

and 0 for other combinations of ¢ and m. Here, (a; q)m denotes the
q-Pochhammer symbol (see [1]).

The (d-strict) unimodality of q-binomial coefficients refers to the
fact that the sequence of coefficients of the corresponding Gaussian
polynomial is a (d-strictly) unimodal sequence. It should however
be noted that when m and ¢ are both odd integers, we have two
equal elements at the peak, which does not quite fit Definition 1
for strict unimodality.

An integer partition m = (51, 72, ... ) of k is a finite list of non-
increasing positive integers that add up to k, denoted by = + k [1].
The elements 7; of a partition are called parts and the number of all
parts in 7 is denoted by #(r). Classically, one denotes the number
of partitions of an integer k by p(k). By convention, the empty
sequence is the only partition of 0, hence p(0) = 1. The coefficients
pi (£, m) can be interpreted as the number of partitions of k with
at most m parts, each of size at most ¢ (equivalently, the number of
partitions of k whose Young diagram fits inside an ¢ X m box).

The Gaussian polynomials are palindromic, i.e.,

Plemy2) -k (6m) = Plemya)+k (£m) )

is satisfied for every k = 0, ..., |#m/2]. This is immediately clear
if we view partitions as Young diagrams in an £ X m box: for each
partition there exists the complementary partition that is obtained
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by interpreting the complement of the Young diagram in the box
as the Young diagram of a new partition (rotated by 180 degrees).
However, the observation that

pi(t;m) < preyr (£,m) ®)

forallk =0,...,[¢m/2] — 1is known to be a hard question. First
conjectured by Cayley [8], the properties (2) and (3) together imply
that the coefficients of the Gaussian polynomials are in fact uni-
modal. Cayley’s conjecture was first proven by Sylvester [34] using
invariant theory of binary forms, where he shows that the differ-
ence pyy1 (£, m) — pr (£, m) represents the number of degree-¢ and
weight-m semi-invariants, implying its nonnegativity. Since then,
several different proofs of unimodality were found, based on in-
variant theory [16], Lie algebras [31], linear algebra [29], algebraic
geometry [32], and Pélya theory [36]. In 1988, O’Hara [25] gave the
first constructive proof of the unimodality of Gaussian polynomials.
For more context, the interested reader is referred to the expository
article by Zeilberger [38], where the combinatorial meaning, the
elements, and the importance of O’Hara’s groundbreaking proof
are detailed. Zeilberger [39] also formulated O’Hara’s argument in
algebraic terms and devised the following formula, widely referred
to as (KOH) formula in the literature:

#) . ) )
t+m _ ZqZZ"Zl ) l—[ JE+2) =YY . (KOH)
m q 7m+m j=1 Tj = T+ q
where Y; = Zle 7 with the end values Yy = 0 and Yy ;)41 = m

since 74 ()41 = 0 by convention. The (KOH) formula is constructed
in such a way that each summand on the right-hand side is a poly-
nomial with a unimodal coefficient sequence such that the sum
of the lowest and highest exponent of g with nonzero coefficients
is equal to £m. Therefore, this (finite) sum adds up a sequence of
unimodal polynomials with the same midpoint at £m/2. This is
enough to prove the unimodality of Gaussian polynomials, as was
illustrated by Bressoud in 1992 [5].

We demonstrate the (KOH) formula with £ = 8 and m = 5 in
Figure 1, where we plot the coefficients of the partial sums from
the right-hand side of (KOH). For each of these polynomials, the
term ai g is plotted at (k, a;). In this example, the bottom-most
layer corresponds to the summand in (KOH) corresponding to the
partition 7 = (5) F 5, the next layer above that is the total of the
(KOH) summands corresponding to the partitions (5) and (4, 1) + 5,
and so on. The top-most layer is the sum of all the summands
on the right-hand side of (KOH), and is therefore the graphical
representation of the coefficients of [153]q‘

Recently, the question about strict unimodality of the coefficients
of Gaussian polynomials attracted quite some interest. This is a
natural extension of Cayley’s conjecture, where one looks for (3)
with strict inequalities. However, this requires us to start from k = 1
in (3) since po (£, m) = p1(£,m) = 1 for all £, m € N. Moreover, one
has to take into account that there is an exception with two equal
maximal coefficients when ¢ and m are both odd.

Pak and Panova [26] (correction of [27], which does not identify
all of the exceptional cases) prove that the sequence py (£, m) is
strictly unimodal for £ = m = 2 or £, m > 5 with the following finite
list of exceptional (£, m) pairs: (5,6), (5,10), (5,14), (6,6), (6,7),
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Figure 1: Graphical representation of the (KOH) summation
with £ =8and m =5.

(6,9), (6,11), (6,13), (7, 10). Without loss of generality, only those
pairs with £ < m are displayed, the rest follows by symmetry.

Although the problem is highly combinatorial, their proof uses
technical algebraic tools to show that py,((£,m) — px(¢,m) > 0
forall 1 < k < [fm/2] — 1. Then, in the same spirit as (KOH),
they proceed by putting together strictly unimodal sequences that
are aligned at their midpoints as the induction step. The induction
argument works smoothly for the cases £, m > 8, but for £ < 7 some
case distinctions are necessary due to the mentioned exceptions.

At the end of their paper [26], they raise some important points.
They suggest that (KOH) can be a way to prove the strict unimodal-
ity of g-binomial coefficients. This was achieved by Zanello [37] in
2015. Zanello identifies explicit summands in (KOH) that are strictly
unimodal, which is sufficient because the right-hand side of (KOH)
is a sum of unimodal polynomials with nonnegative coefficients.
There are alternative proofs of strict unimodality in the literature.
For example, Pak and Panova prove strict unimodality for £,m > 8
using bounds on Kronecker coefficients [28].

They also muse about when d-strict unimodality might hold.
Similar to the 1-strict case, we need to modify the definition of
d-strict unimodality slightly. For a fixed d, let L(d) be the smallest
natural number that satisfies p(L(d) + 1) — p(L(d)) > d. We call a
Gaussian polynomial d-strictly unimodal if

Prs1(,m) — pr(6,m) > d (4)
holds for all k = L(d), ..., | fm/2] — 1. The belief is that except for

a list of identifiable exceptional cases (¢, m), the Gaussian polyno-
mials are d-strictly unimodal. In other words, for every d > 2 there
is some ng € N, such that all Gaussian polynomials are d-strictly
unimodal for £,m > ng.

It is clear that as d gets larger, L(d) should also get larger [18].
We display the values of L(d) for small consecutive d, where the
missing L(d) for d < 22 are obtained by L(d) = L(d - 1) (e.g.,
L(7) =L(6) =L(5) =7 or L(15) = --- = L(21) = 11):

d‘0123589131522
L(d)‘0135789101112

The algebraic techniques used in [26] do not easily apply to d-
strict questions. Furthermore, the lower bounds in [28] do not tell us
exactly when the property of d-strict monotonicity actually begins.
However, [28, Theorem 1.2] guarantees that Gaussian polynomials
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become d-strict eventually. Zanello [37, Proposition 4] also showed
that the peaks of Gaussian polynomials will satisfy (4) for k =
(d-1)(d-2),...,|tm/2] — 1. It is worth noting that around the
same time, Dhand [13] gave a combinatorial proof of the strict
unimodality of Gaussian polynomials.

The second-named author met Panova at the Algebraic and
Enumerative Combinatorics thematic event, held in 2017 at the
Erwin Schrodinger Institute [17]. Following a talk on an elementary
analysis of the maximum absolute coefficients of g-Pochhammer
symbols [3, 4], she asked whether it would be possible to prove
strict unimodality of Gaussian polynomials for m < 7, using some
similar analysis. In the present paper, we approach the problem
by developing a unified approach that is directly applicable to all
d-strict considerations for the coefficients of Gaussian polynomials
and their generalizations. We propose to study the coefficients
pr (£, m) from the viewpoint of Taylor expansions. This allows
us to obtain closed-form formulas for py (¢, m) for fixed choices
of m and for symbolic ¢, containing complex numbers. We then
establish the validity of the condition pg, (£, m) — pr(¢£,m) > d in
the range k = L(d), ..., [¢m/2] — 1 for the given d of interest. This
can be done by cylindrical algebraic decomposition (CAD) [10],
after the complex numbers have been eliminated by performing
case distinctions. It is known that the worst-case complexity of
CAD is doubly exponential [6, 12]. However, in many applications,
including this one, we experience fast returns. A broad exposition
on the versatility and applicability of CAD is given in [19].

Using this approach, we give a new proof of strict unimodality for
small m and confirm the exceptional cases of Pak and Panova [26].
We describe our approach in Section 2 and provide an illustrative
sampling of computational results in Section 3.1 for small cases
of d and m. Section 3.2 includes notes on what would be needed
for a full induction proof, in order to extend them to arbitrary
¢, m. These results show that the proposed approach can answer
specific questions about d-strict unimodality, thanks to our closed-
form representation of the coefficients. It turns out that it is also
applicable to unimodality questions for combinations of g-binomial
coefficients, and we showcase such examples in Section 4.

2 THE SYMBOLIC APPROACH

In this section, we describe our approach in a general setting, of
which the g-binomial coefficient is a special case. Let D € Z[q] be
a univariate polynomial, all of whose zeros are roots of unity, i.e.,
D(q) = 1, (1—q°) withey, ..., e, € N (not necessarily distinct),
andlet N € Q[q, X, ¢~ ', X~ !] be a multivariate Laurent polynomial
with X = X3,...,Xy. For #1, ..., 6, € Z, we define ci (1, ..., ) to
be the coeflicient of qk in the series expansion of the following
rational function:

N(g.q",....q")

D(q)

(and use the short-hand notation ¢ whenever there is no ambiguity).
For example, for any concrete integer m € N one can define

N(g.q") = (1-¢"")(1-¢"%) - (1-¢"™)
D(g)=(1-q)(1-¢*)---(1-q™

and obtain for c; the partition numbers introduced in Section 1:

o =cp(fr, ..oy tn) = <qk>
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t+m

= <qk>N(q> q‘) =( k>

= pi(L,m).
q
For a prescribed set Q C Z" (typically |Q| = oo) defined by
polynomial inequalities, and for given d € Z, the goal is to prove
that forall (£1,...,%,) € Q the sequence (cy) is d-strictly increasing
in a certain range a < k < b, where the bounds a and b may depend
onfy,..., . Our strategy is the following:

m

(1) Derive a closed form for ¢ as an exponential polynomial
in k and #1,. . ., f, with bases being the roots of D(q).

(2) Build the difference cg,; — cx and perform an appropriate
case distinction such that all complex roots of unity are
eliminated, and thus each instance is reduced to a polynomial
inkandf#,..., .

(3) Apply CAD to each case to show that ¢ ; — cg > d for all k
in the corresponding range of interest.

2.1 Expanding the denominator

In order to derive a closed form for the coefficients ¢y, we first study
the coefficients dj. in the Taylor expansion of the rational function

1 S
— = drq-.
D(g) kzo K

By partial fraction decomposition, the k-th coefficient in the Taylor
expansion of a univariate rational function can be expressed as an
exponential polynomial in k, where the bases of the exponentials
are the reciprocals of the denominator roots. Since by assumption,
all roots of D(q) are roots of unity, it does not matter whether we
consider the roots themselves or their reciprocals. Denoting the
distinct roots of D(q) by w1, ..., ws, we have

di = pilk) - oF, &)
i=1

for all k > 0, where each p; is a polynomial in Q(wy, ..., ws) [k] of
degree less than the multiplicity of the root ;. The smallest field
that contains Q and all of these roots is the cyclotomic field Q(w)
where w is chosen to be the primitive root of unity exp(2i/L) with
L € N being the smallest integer such that “’]f = =l =1

The closed form for dj can be derived by writing the polynomials
pi with undetermined coefficients, and by equating d;. with the
ansatz (5) for k = 0,...,deg(D) — 1. The required first values for
di can easily be obtained from the Taylor expansion of 1/D(gq).
The unknown coefficients in the ansatz can now be determined by
solving a linear system of equations over Q(w).

REMARK 3. Alternatively, one can set up the linear system by
instantiating the ansatz (5) with k = —deg(D) +1,...,0 and forcing
dr =0 for k < 0. To see that this is equivalent to the previous linear
system and therefore yields the same solution, extend the range of
the sum in D(q) - 2x>0 quk =1tostart atk =1 —deg(D). Asa
consequence, the closed form for dy. produces correct values not only
fork > 0, but also for kg < k < 0 with kg = 1 — deg(D). Note
however, that in general it produces nonzero values for k < ky.

ExAMPLE 4. We consider the g-binomial coefficient [[J3r3]q, hence

D(g)=(1-q)(1-¢*)(1-¢°).
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All roots of D(q) can be expressed as powers of w = exp(2m/L)
with L = 6: they are (uo = 1 (with multiplicity 3), 0 = -1, w? =
(=1 +iV3)/2, and w* = (=1 - iV3)/2 (each with multiplicity 1).
According to (5), we make an ansatz by introducing undetermined
coefficients uy, . . ., ug, and by equating it to the Taylor expansion:

(o8]
= Z(ul + ugk + usk® + u4w3k + u5w2k + u6w4k)qk

k=0
=1+q+2¢° +3¢° +4¢* +5¢° +7¢° + ..,

1
D(q)

and coefficient comparison with respect to ¢°, ..., q° yields a 6 X 6
linear system over C whose solution gives the following closed form:

47 k k2 o3k Lk 4k

dp=—+-+—+—+—+—.
72 2 12 8 9 9
REMARK 5. We found it expedient to keep w as a symbol and exploit

the well-known fact that the cyclotomic field we are working in is
isomorphic to the field Q(w) /(@ (w)) where®y is the L-th cyclotomic
polynomial. Each element of this field can be represented canonically
as a polynomial in w of degree less than ¢(L), where ¢ is Euler’s
totient function. That is, we perform the reductions modulo O (w)
ourselves, as well as extended polynomial gcd’s for taking inverses.
This produces a significant speed-up compared to using Mathematica’s
built-in data type AlgebraicNumber, and is of course much more
efficient than computing with explicit complex numbers, independent
of which format they are written in (radicals, trigonometric functions,
complex exponential function, etc.).

2.2 Including the numerator

We write the numerator N (q, qll, e q[") in expanded form,

; n
M - 2 yiqa,-,lfl+---+a,-,,,l,,+b,- . L
- 1 5
D(q) D(q)

with ajj,b; € Z. For a closed-form representation of ¢, each
summand of the form .10+ +@intn*bi D () contributes a term
di—a;,t,——a; ,t,~b;» 5O that ci can be written as a Q-linear com-

bination of shifts of d:

,
Ck = Z yidk*ai,lfl*"'*ai,n[nfbi :
i=1
However, there is a caveat here: although di. = 0 for all k < 0 by
definition, this is not the case for the closed form of dj. that was
derived in Section 2.1. To compensate for this, the domain

Q ={(t,....b00. ) | (t1.....8n) € Qa < k <b}

is divided into finitely many regions such that in each region the

expressions k—a;j 161 —- - - —ajnfyp —bi, 1 < i < r, are sign-invariant

(< 0 or > 0). Consequently, in each of these regions, cg (1, . . ., fn) is

defined only by those terms for which the exponent is nonnegative:
r

(b, ) = >

i=1
k-aj1 b —=ajptn-b;>0

Yidk—a,g]t’l —=aiply—b;*

As a result, we obtain a closed-form expression for ¢, which is
given as a piecewise expression, the number of cases corresponding
to the number of regions of Q.
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REMARK 6. In practice, we can take advantage of the fact that the
closed form for dy. from Section 2.1 is valid for all k > ko, and not
only for k > 0. On the one hand, this gives us some freedom as to
where to put the boundaries between two neighboring regions, which
can lead to the complete elimination of some regions, resulting in a
piecewise expression with fewer case distinctions. On the other hand,
the definitions may partly overlap, in the sense that two expressions
of neighboring pieces produce the same values in a certain range,
whose size depends on ko. This will be exploited when considering the
difference cy1 — ¢k, by not having to introduce extra case distinctions.

EXAMPLE 7 (CONTINUATION OF EXAMPLE 4). First we note that the
closed form for dy. derived in Example 4 evaluates to 0 precisely for
—5 < k < -1, hence ko = —5. The expanded form of the numerator is

N(q. ) = 1= gfF! — gi+2 = f*3 4 qRO¥3 4 PP+ 4 2¥5 _ (3046

By the symmetry of the Gaussian polynomial, we focus on k < %l’
only, i.e., the first half of the coefficients cy. = pr.(¢,3), and ignore all
g-powers of the form ¢**% and ¢***¢ to obtain

Pe(63) =dp —dg_py —dg_pp—dk_p—3 (0<k<30).
Using the closed form for dy. from Example 4, we get the following
piecewise expression:

2+ lk+ LK%+ 8w'jk+9wk+ jo'k 0<k<e,
Pe(63) =90 1y L2y lgp 1
+s“)3k+ w3k+3f+ w2k+9wk ¢ <k <2t

Note that ko = =5 allows us to reduce the four cases that result from
the conditions0 < k < £+1,0+1 <k <f+2,{+2 <k <{+3,
andt+3 <k <3¢ to only two case distinctions. Moreover, one finds
that the first expression is also valid for k = ¢ (because q*™! is the
smallest q-power of the form q**?), while the second line actually
produces correct values for £ — 2 < k < 2€ + 2 (because ¢ is the
largest q-power of the form q**% and ko + 3 = —2, and because ¢**+3
is the smallest q-power of the form ¢*t+¢).

2.3 Proving d-strict monotonicity

Recall that our final goal is to prove that the coefficient sequence
(cx(t1, ..., ["))asksb is d-strictly increasing for given fixed d, and
for symbolic #1, . . ., £, subject to certain conditions on the ¢;. This
amounts to showing that ¢ +d < cj, foralla < k < b — 1. With
the results of the two previous subsections, we now have a closed-
form expression of the difference A := cr,q — ¢ at our disposal,
and we wish to show that A > d. The closed form for A is again a
piecewise expression, for different ranges of k, and 41, . . ., £5.
Since this closed form not only involves complex numbers, but
also powers of wk, o,
tools for inequality proving. However, recalling that ol = 1, these
powers can easily be eliminated by substituting k — Lk” + k and
t — Lfi’ + Aj, where k/, t’l’, ..., 0, are new variables taking inte-
gral values, and k, Ay, ..., A, € {0,...,L — 1} are concrete integers.
The possible choices for k and for the A; amount to L**!
tinctions, thereby converting the exponential polynomial into a
quasi-polynomial. Each of these L1 cases then reduces to several
polynomial expressions in Q[k’, £],.. ., £;], which correspond to
the different cases of the piecewise expression. By construction, the
coeflicients of these polynomials do not involve w any more. We

w™, we cannot directly apply known

case dis-
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then apply CAD to each of these (n + 1)-variate polynomials, in
order to show that it is > d under the assumption on the conditions
onk,#f,..., 4, in the current piece.

EXAMPLE 8 (CONTINUATION OF EXAMPLE 7). For computing the
difference A := pp,1(¢,3) — pr(¢,3) using the piecewise closed form
from Example 7, one can benefit from the fact that the first line is
also valid for k = ¢, since one does not need to introduce another case
distinction fork = £ — 1:

7 k 1 1 1
1—+3—Zw3k+§(w—2)w2k—§(w+l)w4k, 0<k<t,
A=q_1_1p 417 1.3k _ 1 3k+3l
s —sk+3l-j0 70

+%(w—2)w2k—%(w+l)w4k, t<k<2¢

Next, the case distinction for k and £ modulo 6 yields 36 cases. For the
sake of demonstration, we focus on one of them, say k = 4 and A = 2.
After the substitution k — 6k’ +4 and £ — 6£" + 2, the expression A
simplifies as follows:

K +1,
Ay =
3¢/ -2k —1, 60’ +2 <6k’ +4 <120 +3.

0 <6k +4 <60 +1,

Assume we want to prove strict unimodality, i.e., that py(£,3) is
strictly increasing for 0 < k < %l. Since k’ + 1 is obviously positive,
we focus on the second line. Applying CAD to the input formula

K>0A >0A60 <6k’ +2<9 = 3¢/ -2k -1>1

yields the output

C<iv(E<tr<ia(K<ovk >Lior-2))
V(3 <l <inK <1l -1n)VvE >i09r-2))
V(I 2sAK <330 -2)vE > L9t -2))).

Sincet’ is assumed to take on integer values, the first and third clauses
deal with the special cases ' = 0 and t’ = 1, respectively, while the
second clause does not yield any solutions in the integers (recall that
CAD works over the reals). Hence, the most interesting one is the last
line, which says the formula is false if 3¢’ -1 < k' < 3¢/ - 1.
There is no such k’ if ¢’ is even, but there are solutions for odd ¢’.
Hence let t’ = 2j + 1. Determining all integer solutions for k’ (there
is just one) and backsubstituting yields the infinite family (k,f) =
(18j + 10,12j + 8), j € Zxo, of pairs where py(£,3) is not strictly
increasing. For example, for £ = 8, we see this violation at k = 10,

since ¢'° and g'! have the same coefficient:
11
3 = 1+q+2q2+3q3+4q4+5q5 +7(]6+8q7+10q8
q

+11¢° +12¢'% + 12¢M + 13¢'% + 12¢"3 + 12¢™ + ...

As the m in [[;lm]q increases, the polynomial inequalities to
be proven turn out to have higher degrees and are therefore less
trivial. The same analysis could be done using quasi-polynomials
and implementing the case distinctions from the start (see Castillo
et al.[7]), but we found it more convenient to deal with expressions
involving complex numbers.

REMARK 9. Note that the CAD algorithm works intrinsically over
the reals, but we are interested in integer solutions. Nevertheless, it
turned out to be most efficient to first compute the cylindrical decom-
position and then identify the exceptional values over the integers.
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Table 1: Ranges and exceptions for d-strict unimodality of
g-binomial coefficients (see Theorem 10).

d | m| L(m,d) | U(m,d) | Exceptions (f)
3 1 3 None
4 1 2 4

1|5 1 0 1,...,4,6,10,14
6 1 0 1,...,7,9,11,13
7 1 0 1,...,4,6,10
3 7 6 None
4 5 2 5...,810

215 3 0 1,...,10,14
6 3 0 1,...,9,11,13,15,17
7 3 0 1,...,56,10
3 13 9 None
4 7 2 5,...,14,16

315 5 0 1,...,12,14,18,22,26
6 5 0 1,...,11,13,15,17,19
7 5 0 1,...,4,6,10
3 19 12 None
4 9 2 6,...,20,22

4|5 7 0 1,...,15,18, 22,26, 30
6 7 0 1,...,11,13,15,17,19, 21
7 7 0 1,...,810
3 25 15 None
4 11 2 7,...,26,28

515 7 0 1,...,18,22,26,30,34
6 7 0 1,...,13,15,17,19,21, 23
7 7 0 1,...,10,14

3 STRICT UNIMODALITY RESULTS FOR
GAUSSIAN POLYNOMIALS

We present the results from our approach for small values of d, £, m,
and this will serve as base cases for an induction argument pre-
sented in the section afterwards.

3.1 Computational results for small m

We apply the approach described in Section 2 to establish d-strict
monotonicity of g-binomial coefficients for small values of d and m.

THEOREM 10. Letd,f,m € N suchthat1 <d <5and3<m <7,
and let py. (£, m) be as in Definition 2. Then there exist positive integers
L(m,d) and U(m,d) such that (4) holds for all

L(m,d) <k < [tm/2] —1-U(m,d)

and almost all ¢ > 1, with a finite number of exceptions that are
summarized in Table 1.

Proor. For each m in the specified range, we derive a closed form
for pr (£, m) in terms of w = exp(27i/L) with L = lem(1,...,m), as
described in Sections 2.1 and 2.2. This closed form is a piecewise
expression, defined differently for 0 < k < ¢, £ < k < 2¢, etc.
We compute a similar expression for the forward difference, elim-
inate all occurrences of w by case distinctions k, ¢ (mod L), and
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Table 2: Computations for proving Theorem 10, where t, is
the time for eliminating o, and t; is the time for the CAD
computations, for d = 1, 2,5 (timings are given in seconds and
were measured on Intel Core i7-8550U CPU @ 1.80GHz).

m L cases to t1 to ts
3 6 72 0.01 0.47 0.31 0.31
4 12 288 0.12 7.58 32.09 166.05
5 60 10800 3.05 44.22 46.06 44.37
6 60 10800 4.43 75.16 73.27 76.28
7 | 420 705600 1950.08 7694.77 7232.02 7656.09

apply CAD to the obtained bivariate polynomials, according to Sec-
tion 2.3. Some measurements are given in Table 2, but the detailed
computations can be found in the accompanying notebook [22]. O

For the case d = 1, our results for m = 5,6,7 align with the
previously known exceptions [26]. Our method allows us to say
even more: we can identify for every listed exceptional pair (¢, m)
the precise locations k where those exceptions occur. We choose
not to list all of these locations here, but they can be found in [22].

For the cases m = 3,4, we can also say more. While previous
results [13, 26] only indicated a negative answer to the question of
strict unimodality, we can identify the largest intervals L(m, d) <
k < |tm/2] — 1 - U(m,d) for which the d-strict monotonicity
occurs with only a finite number of exceptions. If we choose to
expand those intervals, i.e., by choosing smaller values of L(m, d) or
U(m,d), we would be able to identify infinite families of exceptions
to the d-strict monotonicity.

In principle, our approach can be applied to any m > 8 and d > 6,
with the tradeoff being increased computational time (cf. Table 2).
However, our choice to stop at m = 7 was not arbitrary given that
the strict unimodality of g-binomial coefficients has already been
known for all £,m > 8. On the other hand, our choice to stop at
d =5 did not come with a specific reason.

3.2 Induction argument for large m

For any given d > 2, we can experimentally identify a lower bound
ng = L(d) such that for all £,m > n; we have that [ftnm]q is d-
strictly unimodal. We can also identify and prove where the d-strict
unimodality holds for all pairs (¢, m) with m < n; using the method
outlined in Section 2.

Next, we recall two parity-dependent results of Reiner and Stan-
ton. First, [30, Theorem 1] states that the difference

{+m {+m

(©)

m m-—1

q

is a unimodal polynomial with nonnegative coefficients if £+ m = 1
mod 2 and m < £ + 1. Second, [30, Theorem 5] asserts that the
difference

q

t+m P

™

m-—2

{4+ (m-2)
, |

q
is a unimodal polynomial with nonnegative coefficients if ¢ is even.
The difference (7) is in the spirit of (KOH); that is an expression
with unimodal sequences aligned at their peaks.
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These properties are observably true without the parity con-
ditions. In other words, if we were allowed to drop these parity
restrictions on £ + m and ¢ in (6) and (7), respectively, we can easily
give an induction proof of d-strict unimodality by first proving
that d-strict unimodality holds for all ¢ such that £ > m = nj and
¢ > m=ng+ 1. Then (7) can be used to show d-strict unimodality
close to the peak, while (6) is used for the early terms. Nevertheless,
we can still prove the following theorem.

THEOREM 11. Letd > 2 and let ny be an even positive integer
greater than L(d). The Gaussian polynomials [[J;nm]q are d-strictly
unimodal for £,m > ng with £ + m = 1 (mod 2), provided that the

d-strict unimodality is proven for £ > m =ng and ¢ > m =ng — 1.

Proor. First, we prove the claim form = ng+1and ¢ = ng +

2i with i € N. The d-strict unimodality of [Hr(nni_zZ)]q from the

assumption and the unimodality of (7) imply that [[:'nm]q satisfies (4)
fork = L(d)+¢, ..., [¢m/2]—1.Similarly, the d-strict unimodality of

[f;'_"i]q from the assumption and the unimodality of (6) imply that

[fjnm]q satisfies (4) for k = L(d), ..., | (£+1)(m—1)/2] —1. Then it is
a simple matter of checking that | (£+1)(m—1)/2] > L(d)+¢, which
can be seen to hold with the assumption ny > L(d) for all ny > 3.
Note that any d-strictly unimodal sequence is also (d — 1)-strictly
unimodal, and we interpret ny as the smallest point where d-strict
unimodality starts, which implies ng > ng_. Pak and Panova [26]
proved that ny = 8. Hence, ng > 3 is expected and satisfied.

Next, we move on to m = ng + 2. From the symmetries of the
arguments of Gaussian polynomials, the first instance (£, m) = (ng+
1,ng4 + 2) is already proven to be d-strictly unimodal. This is useful
and in general it allows us to restrict ourselves to cases where £ > m.
This is desirable since we would like to employ (6). For m = ng + 2,
let £ = ng+2i+1 for i € N. We use induction over i. Here if we use
(7) on [€+£m]q (i.e., with ¢ and m switched places) we see that the
Gaussian polynomial satisfies (4) for k = L(d) + m,..., |[tm/2] — 1.
Similarly, now (6) (used in the normal fashion as before) shows that
it satisfies (4) for k = L(d),..., | (£ +1)(m — 1)/2] — 1. Note that
while using (6) we use the d-strict unimodality cases that we prove
on the m = ng+1 line. Once again showing that | (£+1)(m—1)/2] >
L(d) + m proves the d-strict unimodality.

Now, by repeating these steps at each fixed m > n;, we prove that

[[tnm]q is d-strictly unimodal for all £ > ng s.t. £ # m (mod 2). O

4 STANLEY AND ZANELLO’S CONJECTURE

Some other problems we can tackle with this method are the Reiner—
Stanton conjectures [30], Stanley and Zanello’s generalization of
those conjectures [33], and similar results (e.g., see Chen and Jia [9]).
Reiner and Stanton predicted that certain differences

£’+m+4(r—l)}
m-—2 g

t+mf g~ (m=2)(2r=1)

®)

mlg

are unimodal with nonnegative coefficients assuming that £ + m is
even and r, m are nonnegative integers with
t—(m-2)(2r-1) > 0.

They established some preliminary evidence for this using Lie al-
gebras. This more-than-20-year-old conjecture is still open. Then
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Figure 2: Induction scheme in the proof of Theorem 11. Each
vertical (resp. horizontal) arrow is a direct (resp. mirrored)
application of (7) for ¢ (resp. m) even. Each northwest pointing
arrow is an application of (6). Both together imply the d-strict
unimodality for the target pair (indicated by a solid blue dot).
The pairs corresponding to red dots follow by symmetry. The
solid black dots in the greyed out region represent the base
cases for the induction.

in 2020, Stanley and Zanello [33] extended Reiner and Stanton’s
claim by conjecturing that

t+m m(b) 4,

©)

b+m—2]
q

m m-—2

q

has nonnegative and unimodal coefficients for large enough ¢ and
for b < tm/(m — 2) such that mb = ¢fm (mod 2), with the only
exception b = (¢m — 2)/(m — 2) whenever it is an integer. They use
(KOH) to show the m = 5 case, and characterize the m < 5 cases.
By letting b = [ + 4r — 2 in (9), we obtain (8) without the restriction
of £ + m being even.

Now using our approach as described in Section 2, we construct
a closed form for (9). This allows us to do a similar analysis as with
a single g-binomial coefficient, but with increased computational
difficulty due to the additional parameter. As a result, we can con-
firm the unimodality of (9) for the cases m = 6 and m = 7 (see
Theorems 12 and 13 below).

THEOREM 12. The coefficient sequence of the polynomial

6f

Z quk =

k=0

b+4

4 (10)

f+6] _ 3p-2b
6 g

q

is unimodal for all integers £ > 25 and 0 < b < %f, except when
b=1(3¢-1) forodd ¢.

Proor. The difference of g-binomials (10) can be written as a
rational function N(q, q’, qb)/D(q) where D(q) = (q;q)s and N
has the following support (as a Laurent polynomial in ¢¢ and qb):

1, qt’, qZ{ qSt’q—Zb’ qSt’q—b’ qSt’, q3fqb’ q3t’q2b’ q4t” q5t’, C]“.

For the purpose of deriving a closed form for ¢ for 0 < k < 3¢,
one can omit all terms from ¢3¢ on. We apply the framework of
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Section2withn=2,Q={(£’,b) |£’20, 0<bh< %f} and
Q' ={bk|t>00<b<3e 0<k<3e} 7

Using the fact kg = —20, the set Q’ is divided into only eight regions
(see Figure 3 for a two-dimensional slice for arbitrary but fixed ¢).
More concretely, the regions are defined by the following inequali-
ties, which ensure, after close inspection of the g-powers occurring
in N, that also the difference ¢, — c is correctly evaluated:
0<k<f-1A0<2b<30-k-2,
0<k<t{-1A30-k-1<2b<3t,
t<k<20-1A0<2b<3t-k-2,
(<k<20-1A3—-k-1<2b<6{—-2k—-1A2b<3,
t<k<20-1AN6f—2k <2b<3t,
20<k<3¢-1AN0<2b<30-k-2,
20<k<3¢-1A3¢-k-1<2b<6l/-2k-1,

20 <k <3t—1A6f—-2k <2b <3¢

® N W

The eight exponential polynomials in ¢, b, k, w, ot wb, ¥ that de-
fine ¢y (resp. cx41 — ck) in each of the eight regions are too large
to be displayed here (their number of monomials ranges from 41
to 113), but can be found in the accompanying notebook [22]. We
notice that all powers of o? are divisible by 10, thus the substitu-
tions £ = Lf; + A, b = 6b1 + f, k = Lk + k (for L = 60) eliminate
all occurrences of w, forcing us to check 6L% = 21600 cases. To
ease these general computations, we slightly restrict the range of k
by excluding the cases k1 = 0 and k = 3¢ — 1, with the effect that
all CAD proofs go through smoothly. Solving these three-variable
CAD problems took about 3.5h. The excluded special cases are
then treated separately (note that they are lower-dimensional and
therefore run faster). For k; = k = 0 it is found that unimodality
is violated for b = %(3[ — 1) at k = 0 for all odd ¢. For k; = 0 and
0 < k < L the following exceptional triples (¢, b, k) are identified:

(2,3,2), (3,4,4), (3,1,6), (3,2,6), (3,3,6), (3,4,6),
(5,7,6), (5,6,10), (5,7,10), (5,6,12), (5,7,12), (5,4, 12),
(5,5,12), (7,7,18), (7,8,18), (7,9,18), (7,10,18), (9,13, 24).

Finally a set of exceptions of the form (¢, b,3¢ — 1) is found for the
following values of £ and b:

t|Db t|b

1]0 15 | 6,8,...,22
310,23,4 17 1 6,8,...,25
5102...,7 19 | 12,14,...,28
7102,...,10 21 | 18,20,...,31
910,2...,13 23 | 24,26,...,34
11]0,2,...,16 25 | 36
1310,2,...,19 27 | —

Since there are no more exceptions where unimodality is violated
than listed above, the proof is complete, which resolves Stanley and
Zanello’s conjecture for m = 6. O

The proof of Theorem 12 follows the framework of Section 2
pretty well and, barring some of the difficulties identifying excep-
tional cases, we are able to arrive at our conclusion in a reasonable
amount of time. Alternatively, we can take advantage of the (KOH)
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Figure 3: Subdivision of Q' in the proof of Theorem 12 (two-
dimensional slice for fixed ¢).

formula to manually divide the problem into cases for faster (paral-
lel) processing. In this next part, we present this strategy to prove
the case m = 7.

THEOREM 13. The coefficient sequence of the polynomial
7¢

D ckd =

k=0

b+5
5

t+7

__(7t-5b)/2
7 q

(11)

q q

is unimodal for all integers £ > 10 and b =  + 2|_%t’J — by with
by € {0,2,4,6}, except when b = %(7£’ —2) fort =1 (mod5).

Proor. Note that b = ¢ + 2 L%{’J gives the largest integer that
has the same parity as £ and is at most %[. To express it without the
floor function, we make a case distinction for £ mod 5 by setting
¢ =56+A1 with0 < A1 < 4. Together with b; € {0, 2,4, 6}, there are
20 cases to check in total. In all these cases, we have D(q) = (q; q)7
and therefore we have L = lem(1,...,7) = 420 and kg = —27. In
contrast to a single g-binomial coefficient (see Section 3), it is more
delicate here to determine the ranges for the piecewise definition
of ¢i.

We illustrate in detail the computations for the case by = A1 =4,
the other 19 cases being analogous. The numerator N (g, ¢**) has
the following form:

1_q14+q20+q21 _q27 _ (q5+ +q11) q5f1

+(q15+~- Jrq32).q7fl +(q11+~- Jrqz1).qlot’l
_ (q17+ +q36) .q14(’1 _ (q18+” +q30) .q15l’1
+(q26+ “+q38) .qzot’l +(q20+~- +q39) .qzu’l
_ (q35+-~ +q45) Lg%t - (q24+-~ +q41) g8
+(q45+~- +q51) .q30€1 +(q29_m_q56) -q35[1.

Since we focus our attention on the first half of the sequence c.,
all terms from ¢?°t on are irrelevant. We cannot just divide the
range for k at multiples of #; (as we did in Section 3), because some
g-exponents exceed —ko = 27, such as ¢°2 in front of ¢’%. However,
note that the difference between the maximal and the minimal
g-exponent in each prefactor does not exceed —kg. Therefore the
problem can be cured by defining split points jf; + o; with j €
{0,5,7,10,14,15} such that o; > d; + ko, where d; denotes the
g-degree of the coefficient of g/%. Moreover, to ensure that the split
points form an increasing sequence for any nonnegative #;, we
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impose 0y < 05 < -+ < 015. Here, the following split points can
be chosen:

0, 51, 761 +5, 1061 +5, 1461 +9, 1561 +9.

Luckily in all 20 cases a suitable choice for the oj exists, so that
we can always split the range of k into at most seven intervals
(if o9 > 0 then we introduce one more case for 0 < k < 0p). A
priori one would expect that in order to eliminate w = exp(2i/L),
the mod-84-behavior of #; has to be studied (since 84 = L/5). By
inspection, we realize that all powers of w% in the closed form
of ¢ are divisible by 35, and therefore it suffices to consider the
mod-12-behavior of #;, as well as the mod-L-behavior of k. For the
CAD computations, we exclude the case (b1, A1, k) = (0, 1,0), since
it corresponds to the exceptional case b = %(73 — 2), mentioned
in the theorem. The computations take about 10 minutes for each
of the 20 choices for (b1, A1), and in each of them it is confirmed
that cgq > ¢ forall 0 < k < %t’ — 1, except for the following
pairs (£, k):

by ‘ exceptional pairs (¢, k)

0 | (6,12),(6,16), (6,18), (6, 20), (8, 26)
2 | (2,6),(4,12), (10,34)

4 | (6,20)

6 | (10,34)

The program code for this proof is contained in the electronic
material [22]. m]

COROLLARY 14. Expression (11) is actually unimodal for all 0 <
b < %f and ¢ > 10, except for b = %(7[ —-2).

Proor. The statement follows from Theorem 2.3 in [33], which
uses the (KOH) formula to descend from the four topmost values
of b (for which unimodality was proven in Theorem 13), in order to
establish unimodality for all b. This resolves Stanley and Zanello’s
conjecture for m = 7. O

5 OUTLOOK

In a more general framework, one can also study the unimodality
of the specialized Schur function [24] s;(1,q,...,q™) for any fixed
partition A = (A4, A2, ...) as a polynomial in g. These polynomials
are directly related to the generalized g-binomial coefficients as

m 1-gq
s3(Lg....q™) =q"(”[ ] =[1———

m+c(x)

where A is the conjugate partition of A, n(1) = Zf:(/}) (i—1)A; and
where c(x) (resp. h(x)) denote the content (resp. the hook-length)
of the box x in the Young diagram of A [24, p.11]. The generalized
Gaussian polynomial becomes the ordinary g-binomial coefficient
when A is a partition with a single part. It is conjectured [26] that for
partitions with large enough Durfee squares (see [1]) the general-
ized Gaussian polynomials will also be strictly unimodal. Zanello’s
proof [37] of strict unimodality for Gaussian polynomials can be
adapted to the generalized Gaussian polynomials, using Kirillov’s
generalization [21] of (KOH) and again imposing the need to prove
a few initial cases as an induction base, which could be done by the
approach proposed in this paper. Lastly, other conjectures proposed
by Dousse and Kim [14, 20] may also be amenable to our method.
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