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ABSTRACT
In 2013, Pak and Panova proved the strict unimodality property of

𝑞-binomial coefficients

[
ℓ+𝑚
𝑚

]
𝑞
(as polynomials in 𝑞) based on the

combinatorics of Young tableaux and the semigroup property of

Kronecker coefficients. They showed it to be true for all ℓ,𝑚 ≥ 8 and

a few other cases. We propose a different approach to this problem

based on computer algebra, where we establish a closed form for the

coefficients of these polynomials and then use cylindrical algebraic

decomposition to identify exactly the range of coefficients where

strict unimodality holds. This strategy allows us to tackle general-

izations of the problem, e.g., to show unimodality with larger gaps

or unimodality of related sequences. In particular, we present proofs

of two additional cases of a conjecture by Stanley and Zanello.

CCS CONCEPTS
• Computing methodologies→ Symbolic and algebraic ma-
nipulation; •Mathematics of computing → Combinatorics.

KEYWORDS
Gaussian polynomial, 𝑞-binomial coefficient, cylindrical algebraic

decomposition, unimodality

ACM Reference Format:
Christoph Koutschan, Ali K. Uncu, and Elaine Wong. 2023. A Unified Ap-

proach to Unimodality of Gaussian Polynomials. In ISSAC’23: International
Symposium on Symbolic and Algebraic Computation, July 24-27, 2023, Tromsø,
Norway. ACM, New York, NY, USA, 9 pages. https://doi.org/DOIGoesHere

1 INTRODUCTION
In recent years, we have witnessed the increased development

of computer algebra tools that can handle questions which are

combinatorial in nature, enabling the resolution of open problems
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and the establishment of new conjectures (see for example [2, 11, 15,

23, 35]). In this paper, we showcase how some of these tools, notably

cylindrical algebraic decomposition [10], can be put into action.

We present a method that can be applied to answer unimodality

questions related to 𝑞-binomial coefficients. Such questions have

been around for decades, and we detail some of the rich history

before presenting our approach.

Definition 1. A finite sequence of real numbers 𝑎1, . . . , 𝑎𝑛 is
called 𝑑-strictly increasing (resp. decreasing) if 𝑎𝑘+1 − 𝑎𝑘 ≥ 𝑑 (resp.
𝑎𝑘 −𝑎𝑘+1 ≥ 𝑑) holds for all 1 ≤ 𝑘 < 𝑛. A sequence is called unimodal

if for some𝑚 ∈ N we have non-decreasing (i.e., 0-strictly increasing)
behavior up to𝑚 and subsequently non-increasing behavior:

𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑚 ≥ 𝑎𝑚+1 ≥ · · · ≥ 𝑎𝑛 . (1)

The sequence is called strictly unimodal if all inequalities in (1)

are strict. More generally, we call a sequence 𝑑-strictly unimodal
if for some 𝑚 ∈ {1, . . . , 𝑛} the subsequence 𝑎1, . . . , 𝑎𝑚 is 𝑑-strictly
increasing and 𝑎𝑚, . . . , 𝑎𝑛 is 𝑑-strictly decreasing.

Definition 2. For ℓ,𝑚 ∈ Z≥0 the q-binomial coefficient, also
called Gaussian polynomial, is a polynomial in 𝑞 defined by[

ℓ +𝑚
𝑚

]
𝑞

:=

(
𝑞ℓ+1;𝑞

)
𝑚

(𝑞;𝑞)𝑚
=

𝑚∏
𝑖=1

1 − 𝑞ℓ+𝑖

1 − 𝑞𝑖
=

ℓ𝑚∑︁
𝑘=0

𝑝𝑘 (ℓ,𝑚) · 𝑞𝑘 ,

and 0 for other combinations of ℓ and𝑚. Here, (𝑎;𝑞)𝑚 denotes the
𝑞-Pochhammer symbol (see [1]).

The (𝑑-strict) unimodality of 𝑞-binomial coefficients refers to the

fact that the sequence of coefficients of the corresponding Gaussian

polynomial is a (𝑑-strictly) unimodal sequence. It should however

be noted that when𝑚 and ℓ are both odd integers, we have two

equal elements at the peak, which does not quite fit Definition 1

for strict unimodality.

An integer partition 𝜋 = (𝜋1, 𝜋2, . . . ) of 𝑘 is a finite list of non-

increasing positive integers that add up to 𝑘 , denoted by 𝜋 ⊢ 𝑘 [1].

The elements 𝜋𝑖 of a partition are called parts and the number of all

parts in 𝜋 is denoted by #(𝜋). Classically, one denotes the number

of partitions of an integer 𝑘 by 𝑝 (𝑘). By convention, the empty

sequence is the only partition of 0, hence 𝑝 (0) = 1. The coefficients

𝑝𝑘 (ℓ,𝑚) can be interpreted as the number of partitions of 𝑘 with

at most𝑚 parts, each of size at most ℓ (equivalently, the number of

partitions of 𝑘 whose Young diagram fits inside an ℓ ×𝑚 box).

The Gaussian polynomials are palindromic, i.e.,

𝑝 ⌊ℓ𝑚/2⌋−𝑘 (ℓ,𝑚) = 𝑝 ⌈ℓ𝑚/2⌉+𝑘 (ℓ,𝑚) (2)

is satisfied for every 𝑘 = 0, . . . , ⌊ℓ𝑚/2⌋. This is immediately clear

if we view partitions as Young diagrams in an ℓ ×𝑚 box: for each

partition there exists the complementary partition that is obtained
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by interpreting the complement of the Young diagram in the box

as the Young diagram of a new partition (rotated by 180 degrees).

However, the observation that

𝑝𝑘 (ℓ,𝑚) ≤ 𝑝𝑘+1 (ℓ,𝑚) (3)

for all 𝑘 = 0, . . . , ⌊ℓ𝑚/2⌋ − 1 is known to be a hard question. First

conjectured by Cayley [8], the properties (2) and (3) together imply

that the coefficients of the Gaussian polynomials are in fact uni-

modal. Cayley’s conjecture was first proven by Sylvester [34] using

invariant theory of binary forms, where he shows that the differ-

ence 𝑝𝑘+1 (ℓ,𝑚) − 𝑝𝑘 (ℓ,𝑚) represents the number of degree-ℓ and

weight-𝑚 semi-invariants, implying its nonnegativity. Since then,

several different proofs of unimodality were found, based on in-

variant theory [16], Lie algebras [31], linear algebra [29], algebraic

geometry [32], and Pólya theory [36]. In 1988, O’Hara [25] gave the

first constructive proof of the unimodality of Gaussian polynomials.

For more context, the interested reader is referred to the expository

article by Zeilberger [38], where the combinatorial meaning, the

elements, and the importance of O’Hara’s groundbreaking proof

are detailed. Zeilberger [39] also formulated O’Hara’s argument in

algebraic terms and devised the following formula, widely referred

to as (KOH) formula in the literature:[
ℓ +𝑚
𝑚

]
𝑞

=
∑︁
𝜋⊢𝑚

𝑞2
∑

𝑖≥1 (𝜋𝑖2 )
#(𝜋 )∏
𝑗=1

[
𝑗 (ℓ + 2) − 𝑌𝑗−1 − 𝑌𝑗+1

𝜋 𝑗 − 𝜋 𝑗+1

]
𝑞

, (KOH)

where 𝑌𝑗 :=
∑𝑗

𝑖=1
𝜋𝑖 with the end values 𝑌0 = 0 and 𝑌

#(𝜋 )+1 = 𝑚

since 𝜋
#(𝜋 )+1 = 0 by convention. The (KOH) formula is constructed

in such a way that each summand on the right-hand side is a poly-

nomial with a unimodal coefficient sequence such that the sum

of the lowest and highest exponent of 𝑞 with nonzero coefficients

is equal to ℓ𝑚. Therefore, this (finite) sum adds up a sequence of

unimodal polynomials with the same midpoint at ℓ𝑚/2. This is
enough to prove the unimodality of Gaussian polynomials, as was

illustrated by Bressoud in 1992 [5].

We demonstrate the (KOH) formula with ℓ = 8 and 𝑚 = 5 in

Figure 1, where we plot the coefficients of the partial sums from

the right-hand side of (KOH). For each of these polynomials, the

term 𝑎𝑘𝑞
𝑘
is plotted at (𝑘, 𝑎𝑘 ). In this example, the bottom-most

layer corresponds to the summand in (KOH) corresponding to the

partition 𝜋 = (5) ⊢ 5, the next layer above that is the total of the

(KOH) summands corresponding to the partitions (5) and (4, 1) ⊢ 5,

and so on. The top-most layer is the sum of all the summands

on the right-hand side of (KOH), and is therefore the graphical

representation of the coefficients of

[
13

5

]
𝑞
.

Recently, the question about strict unimodality of the coefficients

of Gaussian polynomials attracted quite some interest. This is a

natural extension of Cayley’s conjecture, where one looks for (3)

with strict inequalities. However, this requires us to start from 𝑘 = 1

in (3) since 𝑝0 (ℓ,𝑚) = 𝑝1 (ℓ,𝑚) = 1 for all ℓ,𝑚 ∈ N. Moreover, one

has to take into account that there is an exception with two equal

maximal coefficients when ℓ and𝑚 are both odd.

Pak and Panova [26] (correction of [27], which does not identify

all of the exceptional cases) prove that the sequence 𝑝𝑘 (ℓ,𝑚) is
strictly unimodal for ℓ =𝑚 = 2 or ℓ,𝑚 ≥ 5 with the following finite

list of exceptional (ℓ,𝑚) pairs: (5, 6), (5, 10), (5, 14), (6, 6), (6, 7),

𝑘

𝑎𝑘

10 20 30 40

10

20

30

40

50

60

70

Figure 1: Graphical representation of the (KOH) summation
with ℓ = 8 and𝑚 = 5.

(6, 9), (6, 11), (6, 13), (7, 10). Without loss of generality, only those

pairs with ℓ ≤ 𝑚 are displayed, the rest follows by symmetry.

Although the problem is highly combinatorial, their proof uses

technical algebraic tools to show that 𝑝𝑘+1 (ℓ,𝑚) − 𝑝𝑘 (ℓ,𝑚) > 0

for all 1 ≤ 𝑘 ≤ ⌊ℓ𝑚/2⌋ − 1. Then, in the same spirit as (KOH),

they proceed by putting together strictly unimodal sequences that

are aligned at their midpoints as the induction step. The induction

argument works smoothly for the cases ℓ,𝑚 ≥ 8, but for ℓ ≤ 7 some

case distinctions are necessary due to the mentioned exceptions.

At the end of their paper [26], they raise some important points.

They suggest that (KOH) can be a way to prove the strict unimodal-

ity of 𝑞-binomial coefficients. This was achieved by Zanello [37] in

2015. Zanello identifies explicit summands in (KOH) that are strictly

unimodal, which is sufficient because the right-hand side of (KOH)

is a sum of unimodal polynomials with nonnegative coefficients.

There are alternative proofs of strict unimodality in the literature.

For example, Pak and Panova prove strict unimodality for ℓ,𝑚 ≥ 8

using bounds on Kronecker coefficients [28].

They also muse about when 𝑑-strict unimodality might hold.

Similar to the 1-strict case, we need to modify the definition of

𝑑-strict unimodality slightly. For a fixed 𝑑 , let 𝐿(𝑑) be the smallest

natural number that satisfies 𝑝 (𝐿(𝑑) + 1) − 𝑝 (𝐿(𝑑)) ≥ 𝑑 . We call a

Gaussian polynomial 𝑑-strictly unimodal if

𝑝𝑘+1 (ℓ,𝑚) − 𝑝𝑘 (ℓ,𝑚) ≥ 𝑑 (4)

holds for all 𝑘 = 𝐿(𝑑), . . . , ⌊ℓ𝑚/2⌋ − 1. The belief is that except for

a list of identifiable exceptional cases (ℓ,𝑚), the Gaussian polyno-

mials are 𝑑-strictly unimodal. In other words, for every 𝑑 ≥ 2 there

is some 𝑛𝑑 ∈ N, such that all Gaussian polynomials are 𝑑-strictly

unimodal for ℓ,𝑚 ≥ 𝑛𝑑 .

It is clear that as 𝑑 gets larger, 𝐿(𝑑) should also get larger [18].

We display the values of 𝐿(𝑑) for small consecutive 𝑑 , where the

missing 𝐿(𝑑) for 𝑑 < 22 are obtained by 𝐿(𝑑) = 𝐿(𝑑 − 1) (e.g.,
𝐿(7) = 𝐿(6) = 𝐿(5) = 7 or 𝐿(15) = · · · = 𝐿(21) = 11):

𝑑 0 1 2 3 5 8 9 13 15 22

𝐿(𝑑) 0 1 3 5 7 8 9 10 11 12

The algebraic techniques used in [26] do not easily apply to 𝑑-

strict questions. Furthermore, the lower bounds in [28] do not tell us

exactly when the property of 𝑑-strict monotonicity actually begins.

However, [28, Theorem 1.2] guarantees that Gaussian polynomials
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become 𝑑-strict eventually. Zanello [37, Proposition 4] also showed

that the peaks of Gaussian polynomials will satisfy (4) for 𝑘 =

(𝑑 − 1) (𝑑 − 2), . . . , ⌊ℓ𝑚/2⌋ − 1. It is worth noting that around the

same time, Dhand [13] gave a combinatorial proof of the strict

unimodality of Gaussian polynomials.

The second-named author met Panova at the Algebraic and

Enumerative Combinatorics thematic event, held in 2017 at the

Erwin Schrödinger Institute [17]. Following a talk on an elementary

analysis of the maximum absolute coefficients of 𝑞-Pochhammer

symbols [3, 4], she asked whether it would be possible to prove

strict unimodality of Gaussian polynomials for𝑚 ≤ 7, using some

similar analysis. In the present paper, we approach the problem

by developing a unified approach that is directly applicable to all

𝑑-strict considerations for the coefficients of Gaussian polynomials

and their generalizations. We propose to study the coefficients

𝑝𝑘 (ℓ,𝑚) from the viewpoint of Taylor expansions. This allows

us to obtain closed-form formulas for 𝑝𝑘 (ℓ,𝑚) for fixed choices

of 𝑚 and for symbolic ℓ , containing complex numbers. We then

establish the validity of the condition 𝑝𝑘+1 (ℓ,𝑚) − 𝑝𝑘 (ℓ,𝑚) ≥ 𝑑 in

the range 𝑘 = 𝐿(𝑑), . . . , ⌊ℓ𝑚/2⌋ − 1 for the given 𝑑 of interest. This

can be done by cylindrical algebraic decomposition (CAD) [10],

after the complex numbers have been eliminated by performing

case distinctions. It is known that the worst-case complexity of

CAD is doubly exponential [6, 12]. However, in many applications,

including this one, we experience fast returns. A broad exposition

on the versatility and applicability of CAD is given in [19].

Using this approach, we give a new proof of strict unimodality for

small𝑚 and confirm the exceptional cases of Pak and Panova [26].

We describe our approach in Section 2 and provide an illustrative

sampling of computational results in Section 3.1 for small cases

of 𝑑 and𝑚. Section 3.2 includes notes on what would be needed

for a full induction proof, in order to extend them to arbitrary

ℓ,𝑚. These results show that the proposed approach can answer

specific questions about 𝑑-strict unimodality, thanks to our closed-

form representation of the coefficients. It turns out that it is also

applicable to unimodality questions for combinations of 𝑞-binomial

coefficients, and we showcase such examples in Section 4.

2 THE SYMBOLIC APPROACH
In this section, we describe our approach in a general setting, of

which the 𝑞-binomial coefficient is a special case. Let 𝐷 ∈ Z[𝑞] be
a univariate polynomial, all of whose zeros are roots of unity, i.e.,

𝐷 (𝑞) = ∏𝑟
𝑖=1

(
1 − 𝑞𝑒𝑖

)
with 𝑒1, . . . , 𝑒𝑟 ∈ N (not necessarily distinct),

and let𝑁 ∈ Q[𝑞,𝑋, 𝑞−1, 𝑋 −1] be a multivariate Laurent polynomial

with 𝑋 = 𝑋1, . . . , 𝑋𝑛 . For ℓ1, . . . , ℓ𝑛 ∈ Z, we define 𝑐𝑘 (ℓ1, . . . , ℓ𝑛) to
be the coefficient of 𝑞𝑘 in the series expansion of the following

rational function:

𝑐𝑘 := 𝑐𝑘 (ℓ1, . . . , ℓ𝑛) :=
〈
𝑞𝑘

〉𝑁 (
𝑞, 𝑞ℓ1 , . . . , 𝑞ℓ𝑛

)
𝐷 (𝑞)

(and use the short-hand notation 𝑐𝑘 whenever there is no ambiguity).

For example, for any concrete integer𝑚 ∈ N one can define

𝑁
(
𝑞, 𝑞ℓ

)
=
(
1 − 𝑞ℓ+1

) (
1 − 𝑞ℓ+2

)
· · ·

(
1 − 𝑞ℓ+𝑚

)
𝐷 (𝑞) = (1 − 𝑞) (1 − 𝑞2) · · · (1 − 𝑞𝑚)

and obtain for 𝑐𝑘 the partition numbers introduced in Section 1:

𝑐𝑘 =
〈
𝑞𝑘

〉𝑁 (
𝑞, 𝑞ℓ

)
𝐷 (𝑞) =

〈
𝑞𝑘

〉 [ℓ +𝑚
𝑚

]
𝑞

= 𝑝𝑘 (ℓ,𝑚).

For a prescribed set Ω ⊆ Z𝑛 (typically |Ω | = ∞) defined by

polynomial inequalities, and for given 𝑑 ∈ Z, the goal is to prove

that for all (ℓ1, . . . , ℓ𝑛) ∈ Ω the sequence (𝑐𝑘 ) is𝑑-strictly increasing
in a certain range 𝑎 ≤ 𝑘 ≤ 𝑏, where the bounds 𝑎 and 𝑏 may depend

on ℓ1, . . . , ℓ𝑛 . Our strategy is the following:

(1) Derive a closed form for 𝑐𝑘 as an exponential polynomial

in 𝑘 and ℓ1, . . . , ℓ𝑛 , with bases being the roots of 𝐷 (𝑞).
(2) Build the difference 𝑐𝑘+1 − 𝑐𝑘 and perform an appropriate

case distinction such that all complex roots of unity are

eliminated, and thus each instance is reduced to a polynomial

in 𝑘 and ℓ1, . . . , ℓ𝑛 .

(3) Apply CAD to each case to show that 𝑐𝑘+1 − 𝑐𝑘 ≥ 𝑑 for all 𝑘

in the corresponding range of interest.

2.1 Expanding the denominator
In order to derive a closed form for the coefficients 𝑐𝑘 , we first study

the coefficients 𝑑𝑘 in the Taylor expansion of the rational function

1

𝐷 (𝑞) =

∞∑︁
𝑘=0

𝑑𝑘𝑞
𝑘 .

By partial fraction decomposition, the 𝑘-th coefficient in the Taylor

expansion of a univariate rational function can be expressed as an

exponential polynomial in 𝑘 , where the bases of the exponentials

are the reciprocals of the denominator roots. Since by assumption,

all roots of 𝐷 (𝑞) are roots of unity, it does not matter whether we

consider the roots themselves or their reciprocals. Denoting the

distinct roots of 𝐷 (𝑞) by 𝜔1, . . . , 𝜔𝑠 , we have

𝑑𝑘 =

𝑠∑︁
𝑖=1

𝑝𝑖 (𝑘) · 𝜔𝑘
𝑖 , (5)

for all 𝑘 ≥ 0, where each 𝑝𝑖 is a polynomial in Q(𝜔1, . . . , 𝜔𝑠 ) [𝑘] of
degree less than the multiplicity of the root 𝜔𝑖 . The smallest field

that contains Q and all of these roots is the cyclotomic field Q(𝜔)
where𝜔 is chosen to be the primitive root of unity exp(2𝜋𝑖/𝐿) with
𝐿 ∈ N being the smallest integer such that 𝜔𝐿

1
= · · · = 𝜔𝐿

𝑠 = 1.

The closed form for𝑑𝑘 can be derived by writing the polynomials

𝑝𝑖 with undetermined coefficients, and by equating 𝑑𝑘 with the

ansatz (5) for 𝑘 = 0, . . . , deg(𝐷) − 1. The required first values for

𝑑𝑘 can easily be obtained from the Taylor expansion of 1/𝐷 (𝑞).
The unknown coefficients in the ansatz can now be determined by

solving a linear system of equations over Q(𝜔).

Remark 3. Alternatively, one can set up the linear system by
instantiating the ansatz (5) with 𝑘 = − deg(𝐷) + 1, . . . , 0 and forcing
𝑑𝑘 = 0 for 𝑘 < 0. To see that this is equivalent to the previous linear
system and therefore yields the same solution, extend the range of
the sum in 𝐷 (𝑞) · ∑𝑘≥0 𝑑𝑘𝑞

𝑘 = 1 to start at 𝑘 = 1 − deg(𝐷). As a
consequence, the closed form for 𝑑𝑘 produces correct values not only
for 𝑘 ≥ 0, but also for 𝑘0 ≤ 𝑘 < 0 with 𝑘0 = 1 − deg(𝐷). Note
however, that in general it produces nonzero values for 𝑘 < 𝑘0.

Example 4. We consider the 𝑞-binomial coefficient
[
ℓ+3
3

]
𝑞
, hence

𝐷 (𝑞) = (1 − 𝑞) (1 − 𝑞2) (1 − 𝑞3) .
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All roots of 𝐷 (𝑞) can be expressed as powers of 𝜔 = exp(2𝜋𝑖/𝐿)
with 𝐿 = 6: they are 𝜔0 = 1 (with multiplicity 3), 𝜔3 = −1, 𝜔2 =(
−1 + 𝑖

√
3

)
/2, and 𝜔4 =

(
−1 − 𝑖

√
3

)
/2 (each with multiplicity 1).

According to (5), we make an ansatz by introducing undetermined
coefficients 𝑢1, . . . , 𝑢6, and by equating it to the Taylor expansion:

1

𝐷 (𝑞) =

∞∑︁
𝑘=0

(
𝑢1 + 𝑢2𝑘 + 𝑢3𝑘2 + 𝑢4𝜔3𝑘 + 𝑢5𝜔2𝑘 + 𝑢6𝜔4𝑘 )𝑞𝑘

= 1 + 𝑞 + 2𝑞2 + 3𝑞3 + 4𝑞4 + 5𝑞5 + 7𝑞6 + . . . ,

and coefficient comparison with respect to 𝑞0, . . . , 𝑞5 yields a 6 × 6

linear system over C whose solution gives the following closed form:

𝑑𝑘 =
47

72

+ 𝑘

2

+ 𝑘2

12

+ 𝜔3𝑘

8

+ 𝜔2𝑘

9

+ 𝜔4𝑘

9

.

Remark 5. We found it expedient to keep𝜔 as a symbol and exploit
the well-known fact that the cyclotomic field we are working in is
isomorphic to the fieldQ(𝜔)/(Φ𝐿 (𝜔)) whereΦ𝐿 is the 𝐿-th cyclotomic
polynomial. Each element of this field can be represented canonically
as a polynomial in 𝜔 of degree less than 𝜙 (𝐿), where 𝜙 is Euler’s
totient function. That is, we perform the reductions modulo Φ𝐿 (𝜔)
ourselves, as well as extended polynomial gcd’s for taking inverses.
This produces a significant speed-up compared to usingMathematica’s
built-in data type AlgebraicNumber, and is of course much more
efficient than computing with explicit complex numbers, independent
of which format they are written in (radicals, trigonometric functions,
complex exponential function, etc.).

2.2 Including the numerator
We write the numerator 𝑁

(
𝑞, 𝑞ℓ1 , . . . , 𝑞ℓ𝑛

)
in expanded form,

𝑁
(
𝑞, 𝑞ℓ1 , . . . , 𝑞ℓ𝑛

)
𝐷 (𝑞) =

𝑟∑︁
𝑖=1

𝛾𝑖𝑞
𝑎𝑖,1ℓ1+···+𝑎𝑖,𝑛ℓ𝑛+𝑏𝑖 · 1

𝐷 (𝑞) ,

with 𝑎𝑖, 𝑗 , 𝑏𝑖 ∈ Z. For a closed-form representation of 𝑐𝑘 , each

summand of the form 𝑞𝑎𝑖,1ℓ1+···+𝑎𝑖,𝑛ℓ𝑛+𝑏𝑖 /𝐷 (𝑞) contributes a term
𝑑𝑘−𝑎𝑖,1ℓ1−···−𝑎𝑖,𝑛ℓ𝑛−𝑏𝑖 , so that 𝑐𝑘 can be written as a Q-linear com-

bination of shifts of 𝑑𝑘 :

𝑐𝑘 =

𝑟∑︁
𝑖=1

𝛾𝑖𝑑𝑘−𝑎𝑖,1ℓ1−···−𝑎𝑖,𝑛ℓ𝑛−𝑏𝑖 .

However, there is a caveat here: although 𝑑𝑘 = 0 for all 𝑘 < 0 by

definition, this is not the case for the closed form of 𝑑𝑘 that was

derived in Section 2.1. To compensate for this, the domain

Ω′ =
{
(ℓ1, . . . , ℓ𝑛, 𝑘)

�� (ℓ1, . . . , ℓ𝑛) ∈ Ω, 𝑎 ≤ 𝑘 ≤ 𝑏
}

is divided into finitely many regions such that in each region the

expressions 𝑘−𝑎𝑖,1ℓ1−· · ·−𝑎𝑖,𝑛ℓ𝑛 −𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑟 , are sign-invariant

(< 0 or ≥ 0). Consequently, in each of these regions, 𝑐𝑘 (ℓ1, . . . , ℓ𝑛) is
defined only by those terms for which the exponent is nonnegative:

𝑐𝑘 (ℓ1, . . . , ℓ𝑛) =
𝑟∑︁
𝑖=1

𝑘−𝑎𝑖,1ℓ1−···−𝑎𝑖,𝑛ℓ𝑛−𝑏𝑖 ≥0

𝛾𝑖𝑑𝑘−𝑎𝑖,1ℓ1−···−𝑎𝑖,𝑛ℓ𝑛−𝑏𝑖 .

As a result, we obtain a closed-form expression for 𝑐𝑘 , which is

given as a piecewise expression, the number of cases corresponding

to the number of regions of Ω′
.

Remark 6. In practice, we can take advantage of the fact that the
closed form for 𝑑𝑘 from Section 2.1 is valid for all 𝑘 ≥ 𝑘0, and not
only for 𝑘 ≥ 0. On the one hand, this gives us some freedom as to
where to put the boundaries between two neighboring regions, which
can lead to the complete elimination of some regions, resulting in a
piecewise expression with fewer case distinctions. On the other hand,
the definitions may partly overlap, in the sense that two expressions
of neighboring pieces produce the same values in a certain range,
whose size depends on 𝑘0. This will be exploited when considering the
difference 𝑐𝑘+1−𝑐𝑘 , by not having to introduce extra case distinctions.

Example 7 (continuation of Example 4). First we note that the
closed form for 𝑑𝑘 derived in Example 4 evaluates to 0 precisely for
−5 ≤ 𝑘 ≤ −1, hence 𝑘0 = −5. The expanded form of the numerator is

𝑁
(
𝑞, 𝑞ℓ

)
= 1 − 𝑞ℓ+1 − 𝑞ℓ+2 − 𝑞ℓ+3 + 𝑞2ℓ+3 + 𝑞2ℓ+4 + 𝑞2ℓ+5 − 𝑞3ℓ+6 .

By the symmetry of the Gaussian polynomial, we focus on 𝑘 ≤ 3

2
ℓ

only, i.e., the first half of the coefficients 𝑐𝑘 = 𝑝𝑘 (ℓ, 3), and ignore all
𝑞-powers of the form 𝑞2ℓ+𝑎 and 𝑞3ℓ+𝑎 to obtain

𝑝𝑘 (ℓ, 3) = 𝑑𝑘 − 𝑑𝑘−ℓ−1 − 𝑑𝑘−ℓ−2 − 𝑑𝑘−ℓ−3
(
0 ≤ 𝑘 ≤ 3

2
ℓ
)
.

Using the closed form for 𝑑𝑘 from Example 4, we get the following
piecewise expression:

𝑝𝑘 (ℓ, 3) =


47

72
+ 1

2
𝑘 + 1

12
𝑘2 + 1

8
𝜔3𝑘 + 1

9
𝜔2𝑘 + 1

9
𝜔4𝑘, 0 ≤ 𝑘 < ℓ,

19

36
+ 1

2
ℓ − 1

6
𝑘2 + 1

2
𝑘ℓ − 1

4
ℓ2

+ 1

8
𝜔3𝑘 + 1

8
𝜔3𝑘+3ℓ + 1

9
𝜔2𝑘 + 1

9
𝜔4𝑘, ℓ ≤ 𝑘 < 2ℓ .

Note that 𝑘0 = −5 allows us to reduce the four cases that result from
the conditions 0 ≤ 𝑘 < ℓ + 1, ℓ + 1 ≤ 𝑘 < ℓ + 2, ℓ + 2 ≤ 𝑘 < ℓ + 3,
and ℓ + 3 ≤ 𝑘 ≤ 3

2
ℓ , to only two case distinctions. Moreover, one finds

that the first expression is also valid for 𝑘 = ℓ (because 𝑞ℓ+1 is the
smallest 𝑞-power of the form 𝑞ℓ+𝑎), while the second line actually
produces correct values for ℓ − 2 ≤ 𝑘 ≤ 2ℓ + 2 (because 𝑞ℓ+3 is the
largest 𝑞-power of the form 𝑞ℓ+𝑎 and 𝑘0 + 3 = −2, and because 𝑞2ℓ+3
is the smallest 𝑞-power of the form 𝑞2ℓ+𝑎).

2.3 Proving 𝑑-strict monotonicity
Recall that our final goal is to prove that the coefficient sequence(
𝑐𝑘 (ℓ1, . . . , ℓ𝑛)

)
𝑎≤𝑘≤𝑏 is 𝑑-strictly increasing for given fixed 𝑑 , and

for symbolic ℓ1, . . . , ℓ𝑛 subject to certain conditions on the ℓ𝑖 . This

amounts to showing that 𝑐𝑘 + 𝑑 ≤ 𝑐𝑘+1 for all 𝑎 ≤ 𝑘 ≤ 𝑏 − 1. With

the results of the two previous subsections, we now have a closed-

form expression of the difference Δ := 𝑐𝑘+1 − 𝑐𝑘 at our disposal,

and we wish to show that Δ ≥ 𝑑 . The closed form for Δ is again a

piecewise expression, for different ranges of 𝑘 , and ℓ1, . . . , ℓ𝑛 .

Since this closed form not only involves complex numbers, but

also powers of 𝜔𝑘 , 𝜔ℓ1 , . . . , 𝜔ℓ𝑛
, we cannot directly apply known

tools for inequality proving. However, recalling that 𝜔𝐿 = 1, these

powers can easily be eliminated by substituting 𝑘 → 𝐿𝑘′ + 𝜅 and

ℓ𝑖 → 𝐿ℓ′
𝑖
+ 𝜆𝑖 , where 𝑘

′, ℓ′
1
, . . . , ℓ′𝑛 are new variables taking inte-

gral values, and 𝜅, 𝜆1, . . . , 𝜆𝑛 ∈ {0, . . . , 𝐿 − 1} are concrete integers.
The possible choices for 𝜅 and for the 𝜆𝑖 amount to 𝐿𝑛+1 case dis-
tinctions, thereby converting the exponential polynomial into a

quasi-polynomial. Each of these 𝐿𝑛+1 cases then reduces to several

polynomial expressions in Q[𝑘′, ℓ′
1
, . . . , ℓ′𝑛], which correspond to

the different cases of the piecewise expression. By construction, the

coefficients of these polynomials do not involve 𝜔 any more. We
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then apply CAD to each of these (𝑛 + 1)-variate polynomials, in

order to show that it is ≥ 𝑑 under the assumption on the conditions

on 𝑘, ℓ1, . . . , ℓ𝑛 in the current piece.

Example 8 (continuation of Example 7). For computing the
difference Δ := 𝑝𝑘+1 (ℓ, 3) − 𝑝𝑘 (ℓ, 3) using the piecewise closed form
from Example 7, one can benefit from the fact that the first line is
also valid for 𝑘 = ℓ , since one does not need to introduce another case
distinction for 𝑘 = ℓ − 1:

Δ =


7

12
+ 𝑘

6
− 1

4
𝜔3𝑘 + 1

9
(𝜔 − 2)𝜔2𝑘 − 1

9
(𝜔 + 1)𝜔4𝑘, 0 ≤ 𝑘 < ℓ,

− 1

6
− 1

3
𝑘 + 1

2
𝑙 − 1

4
𝜔3𝑘 − 1

4
𝜔3𝑘+3𝑙

+ 1

9
(𝜔 − 2)𝜔2𝑘 − 1

9
(𝜔 + 1)𝜔4𝑘 , ℓ ≤ 𝑘 < 2ℓ .

Next, the case distinction for 𝑘 and ℓ modulo 6 yields 36 cases. For the
sake of demonstration, we focus on one of them, say 𝜅 = 4 and 𝜆 = 2.
After the substitution 𝑘 → 6𝑘′ + 4 and ℓ → 6ℓ′ + 2, the expression Δ
simplifies as follows:

Δ4,2 =

𝑘
′ + 1, 0 ≤ 6𝑘′ + 4 ≤ 6ℓ′ + 1,

3ℓ′ − 2𝑘′ − 1, 6ℓ′ + 2 ≤ 6𝑘′ + 4 ≤ 12ℓ′ + 3.

Assume we want to prove strict unimodality, i.e., that 𝑝𝑘 (ℓ, 3) is
strictly increasing for 0 ≤ 𝑘 ≤ 3

2
ℓ . Since 𝑘′ + 1 is obviously positive,

we focus on the second line. Applying CAD to the input formula

𝑘′ ≥ 0 ∧ ℓ′ ≥ 0 ∧ 6ℓ′ ≤ 6𝑘′ + 2 ≤ 9ℓ′ =⇒ 3ℓ′ − 2𝑘′ − 1 ≥ 1

yields the output

ℓ′ < 2

9
∨
(
2

9
≤ ℓ′ ≤ 1

3
∧
(
𝑘′ < 0 ∨ 𝑘′ > 1

6
(9ℓ′ − 2)

) )
∨
(
1

3
< ℓ′ < 4

3
∧
(
𝑘′ < 1

3
(3ℓ′ − 1) ∨ 𝑘′ > 1

6
(9ℓ′ − 2)

) )
∨
(
ℓ′ ≥ 4

3
∧
(
𝑘′ ≤ 1

2
(3ℓ′ − 2) ∨ 𝑘′ > 1

6
(9ℓ′ − 2)

) )
.

Since ℓ′ is assumed to take on integer values, the first and third clauses
deal with the special cases ℓ′ = 0 and ℓ′ = 1, respectively, while the
second clause does not yield any solutions in the integers (recall that
CAD works over the reals). Hence, the most interesting one is the last
line, which says the formula is false if 3

2
ℓ′ − 1 < 𝑘′ ≤ 3

2
ℓ′ − 1

3
.

There is no such 𝑘′ if ℓ′ is even, but there are solutions for odd ℓ′.
Hence let ℓ′ = 2 𝑗 + 1. Determining all integer solutions for 𝑘′ (there
is just one) and backsubstituting yields the infinite family (𝑘, ℓ) =
(18 𝑗 + 10, 12 𝑗 + 8), 𝑗 ∈ Z≥0, of pairs where 𝑝𝑘 (ℓ, 3) is not strictly
increasing. For example, for ℓ = 8, we see this violation at 𝑘 = 10,
since 𝑞10 and 𝑞11 have the same coefficient:[

11

3

]
𝑞

= 1 + 𝑞 + 2𝑞2 + 3𝑞3 + 4𝑞4 + 5𝑞5 + 7𝑞6 + 8𝑞7 + 10𝑞8

+ 11𝑞9 + 12𝑞10 + 12𝑞11 + 13𝑞12 + 12𝑞13 + 12𝑞14 + . . .

As the 𝑚 in

[
ℓ+𝑚
𝑚

]
𝑞
increases, the polynomial inequalities to

be proven turn out to have higher degrees and are therefore less

trivial. The same analysis could be done using quasi-polynomials

and implementing the case distinctions from the start (see Castillo

et al.[7]), but we found it more convenient to deal with expressions

involving complex numbers.

Remark 9. Note that the CAD algorithm works intrinsically over
the reals, but we are interested in integer solutions. Nevertheless, it
turned out to be most efficient to first compute the cylindrical decom-
position and then identify the exceptional values over the integers.

Table 1: Ranges and exceptions for 𝑑-strict unimodality of
𝑞-binomial coefficients (see Theorem 10).

𝑑 𝑚 𝐿(𝑚,𝑑) 𝑈 (𝑚,𝑑) Exceptions (ℓ)

1

3 1 3 None

4 1 2 4

5 1 0 1, . . . , 4, 6, 10, 14

6 1 0 1, . . . , 7, 9, 11, 13

7 1 0 1, . . . , 4, 6, 10

2

3 7 6 None

4 5 2 5, . . . , 8, 10

5 3 0 1, . . . , 10, 14

6 3 0 1, . . . , 9, 11, 13, 15, 17

7 3 0 1, . . . , 5, 6, 10

3

3 13 9 None

4 7 2 5, . . . , 14, 16

5 5 0 1, . . . , 12, 14, 18, 22, 26

6 5 0 1, . . . , 11, 13, 15, 17, 19

7 5 0 1, . . . , 4, 6, 10

4

3 19 12 None

4 9 2 6, . . . , 20, 22

5 7 0 1, . . . , 15, 18, 22, 26, 30

6 7 0 1, . . . , 11, 13, 15, 17, 19, 21

7 7 0 1, . . . , 8, 10

5

3 25 15 None

4 11 2 7, . . . , 26, 28

5 7 0 1, . . . , 18, 22, 26, 30, 34

6 7 0 1, . . . , 13, 15, 17, 19, 21, 23

7 7 0 1, . . . , 10, 14

3 STRICT UNIMODALITY RESULTS FOR
GAUSSIAN POLYNOMIALS

We present the results from our approach for small values of 𝑑, ℓ,𝑚,

and this will serve as base cases for an induction argument pre-

sented in the section afterwards.

3.1 Computational results for small𝑚
We apply the approach described in Section 2 to establish 𝑑-strict

monotonicity of 𝑞-binomial coefficients for small values of 𝑑 and𝑚.

Theorem 10. Let 𝑑, ℓ,𝑚 ∈ N such that 1 ≤ 𝑑 ≤ 5 and 3 ≤ 𝑚 ≤ 7,
and let 𝑝𝑘 (ℓ,𝑚) be as in Definition 2. Then there exist positive integers
𝐿(𝑚,𝑑) and𝑈 (𝑚,𝑑) such that (4) holds for all

𝐿(𝑚,𝑑) ≤ 𝑘 ≤ ⌊ℓ𝑚/2⌋ − 1 −𝑈 (𝑚,𝑑)

and almost all ℓ ≥ 1, with a finite number of exceptions that are
summarized in Table 1.

Proof. For each𝑚 in the specified range, we derive a closed form

for 𝑝𝑘 (ℓ,𝑚) in terms of 𝜔 = exp(2𝜋𝑖/𝐿) with 𝐿 = lcm(1, . . . ,𝑚), as
described in Sections 2.1 and 2.2. This closed form is a piecewise

expression, defined differently for 0 ≤ 𝑘 < ℓ , ℓ ≤ 𝑘 < 2ℓ , etc.

We compute a similar expression for the forward difference, elim-

inate all occurrences of 𝜔 by case distinctions 𝑘, ℓ (mod 𝐿), and
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Table 2: Computations for proving Theorem 10, where 𝑡0 is
the time for eliminating 𝜔 , and 𝑡𝑑 is the time for the CAD
computations, for 𝑑 = 1, 2, 5 (timings are given in seconds and
were measured on Intel Core i7-8550U CPU@ 1.80GHz).

𝑚 𝐿 cases 𝑡0 𝑡1 𝑡2 𝑡5

3 6 72 0.01 0.47 0.31 0.31

4 12 288 0.12 7.58 32.09 166.05

5 60 10800 3.05 44.22 46.06 44.37

6 60 10800 4.43 75.16 73.27 76.28

7 420 705600 1950.08 7694.77 7232.02 7656.09

apply CAD to the obtained bivariate polynomials, according to Sec-

tion 2.3. Some measurements are given in Table 2, but the detailed

computations can be found in the accompanying notebook [22]. □

For the case 𝑑 = 1, our results for 𝑚 = 5, 6, 7 align with the

previously known exceptions [26]. Our method allows us to say

even more: we can identify for every listed exceptional pair (ℓ,𝑚)
the precise locations 𝑘 where those exceptions occur. We choose

not to list all of these locations here, but they can be found in [22].

For the cases 𝑚 = 3, 4, we can also say more. While previous

results [13, 26] only indicated a negative answer to the question of

strict unimodality, we can identify the largest intervals 𝐿(𝑚,𝑑) ≤
𝑘 ≤ ⌊ℓ𝑚/2⌋ − 1 − 𝑈 (𝑚,𝑑) for which the 𝑑-strict monotonicity

occurs with only a finite number of exceptions. If we choose to

expand those intervals, i.e., by choosing smaller values of 𝐿(𝑚,𝑑) or
𝑈 (𝑚,𝑑), we would be able to identify infinite families of exceptions

to the 𝑑-strict monotonicity.

In principle, our approach can be applied to any𝑚 ≥ 8 and 𝑑 ≥ 6,

with the tradeoff being increased computational time (cf. Table 2).

However, our choice to stop at𝑚 = 7 was not arbitrary given that

the strict unimodality of 𝑞-binomial coefficients has already been

known for all ℓ,𝑚 ≥ 8. On the other hand, our choice to stop at

𝑑 = 5 did not come with a specific reason.

3.2 Induction argument for large𝑚
For any given 𝑑 ≥ 2, we can experimentally identify a lower bound

𝑛𝑑 ≥ 𝐿(𝑑) such that for all ℓ,𝑚 ≥ 𝑛𝑑 we have that

[
ℓ+𝑚
𝑚

]
𝑞
is 𝑑-

strictly unimodal. We can also identify and prove where the 𝑑-strict

unimodality holds for all pairs (ℓ,𝑚) with𝑚 ≤ 𝑛𝑑 using the method

outlined in Section 2.

Next, we recall two parity-dependent results of Reiner and Stan-

ton. First, [30, Theorem 1] states that the difference[
ℓ +𝑚
𝑚

]
𝑞

−
[
ℓ +𝑚
𝑚 − 1

]
𝑞

(6)

is a unimodal polynomial with nonnegative coefficients if ℓ +𝑚 ≡ 1

mod 2 and 𝑚 ≤ ℓ + 1. Second, [30, Theorem 5] asserts that the

difference [
ℓ +𝑚
𝑚

]
𝑞

− 𝑞ℓ
[
ℓ + (𝑚 − 2)

𝑚 − 2

]
𝑞

(7)

is a unimodal polynomial with nonnegative coefficients if ℓ is even.

The difference (7) is in the spirit of (KOH); that is an expression

with unimodal sequences aligned at their peaks.

These properties are observably true without the parity con-

ditions. In other words, if we were allowed to drop these parity

restrictions on ℓ +𝑚 and ℓ in (6) and (7), respectively, we can easily

give an induction proof of 𝑑-strict unimodality by first proving

that 𝑑-strict unimodality holds for all ℓ such that ℓ ≥ 𝑚 = 𝑛𝑑 and

ℓ ≥ 𝑚 = 𝑛𝑑 + 1. Then (7) can be used to show 𝑑-strict unimodality

close to the peak, while (6) is used for the early terms. Nevertheless,

we can still prove the following theorem.

Theorem 11. Let 𝑑 ≥ 2 and let 𝑛𝑑 be an even positive integer
greater than 𝐿(𝑑). The Gaussian polynomials

[
ℓ+𝑚
𝑚

]
𝑞
are 𝑑-strictly

unimodal for ℓ,𝑚 > 𝑛𝑑 with ℓ +𝑚 ≡ 1 (mod 2), provided that the
𝑑-strict unimodality is proven for ℓ ≥ 𝑚 = 𝑛𝑑 and ℓ ≥ 𝑚 = 𝑛𝑑 − 1.

Proof. First, we prove the claim for𝑚 = 𝑛𝑑 + 1 and ℓ = 𝑛𝑑 +
2𝑖 with 𝑖 ∈ N. The 𝑑-strict unimodality of

[ℓ+(𝑚−2)
𝑚−2

]
𝑞
from the

assumption and the unimodality of (7) imply that

[
ℓ+𝑚
𝑚

]
𝑞
satisfies (4)

for𝑘 = 𝐿(𝑑)+ℓ, . . . , ⌊ℓ𝑚/2⌋−1. Similarly, the𝑑-strict unimodality of[
ℓ+𝑚
𝑚−1

]
𝑞
from the assumption and the unimodality of (6) imply that[

ℓ+𝑚
𝑚

]
𝑞
satisfies (4) for 𝑘 = 𝐿(𝑑), . . . , ⌊(ℓ+1) (𝑚−1)/2⌋−1. Then it is

a simple matter of checking that ⌊(ℓ+1) (𝑚−1)/2⌋ ≥ 𝐿(𝑑)+ℓ , which
can be seen to hold with the assumption 𝑛𝑑 > 𝐿(𝑑) for all 𝑛𝑑 ≥ 3.

Note that any 𝑑-strictly unimodal sequence is also (𝑑 − 1)-strictly
unimodal, and we interpret 𝑛𝑑 as the smallest point where 𝑑-strict

unimodality starts, which implies 𝑛𝑑 ≥ 𝑛𝑑−1. Pak and Panova [26]

proved that 𝑛1 = 8. Hence, 𝑛𝑑 ≥ 3 is expected and satisfied.

Next, we move on to𝑚 = 𝑛𝑑 + 2. From the symmetries of the

arguments of Gaussian polynomials, the first instance (ℓ,𝑚) = (𝑛𝑑+
1, 𝑛𝑑 + 2) is already proven to be 𝑑-strictly unimodal. This is useful

and in general it allows us to restrict ourselves to cases where ℓ > 𝑚.

This is desirable since we would like to employ (6). For𝑚 = 𝑛𝑑 + 2,

let ℓ = 𝑛𝑑 + 2𝑖 + 1 for 𝑖 ∈ N. We use induction over 𝑖 . Here if we use

(7) on

[
ℓ+𝑚
ℓ

]
𝑞
(i.e., with ℓ and𝑚 switched places) we see that the

Gaussian polynomial satisfies (4) for 𝑘 = 𝐿(𝑑) +𝑚, . . . , ⌊ℓ𝑚/2⌋ − 1.

Similarly, now (6) (used in the normal fashion as before) shows that

it satisfies (4) for 𝑘 = 𝐿(𝑑), . . . , ⌊(ℓ + 1) (𝑚 − 1)/2⌋ − 1. Note that

while using (6) we use the 𝑑-strict unimodality cases that we prove

on the𝑚 = 𝑛𝑑 +1 line. Once again showing that ⌊(ℓ+1) (𝑚−1)/2⌋ ≥
𝐿(𝑑) +𝑚 proves the 𝑑-strict unimodality.

Now, by repeating these steps at each fixed𝑚 > 𝑛𝑑 , we prove that[
ℓ+𝑚
𝑚

]
𝑞
is 𝑑-strictly unimodal for all ℓ > 𝑛𝑑 s.t. ℓ . 𝑚 (mod 2). □

4 STANLEY AND ZANELLO’S CONJECTURE
Some other problemswe can tackle with this method are the Reiner–

Stanton conjectures [30], Stanley and Zanello’s generalization of

those conjectures [33], and similar results (e.g., see Chen and Jia [9]).

Reiner and Stanton predicted that certain differences[
ℓ +𝑚
𝑚

]
𝑞

− 𝑞ℓ−(𝑚−2) (2𝑟−1)
[
ℓ +𝑚 + 4(𝑟 − 1)

𝑚 − 2

]
𝑞

(8)

are unimodal with nonnegative coefficients assuming that ℓ +𝑚 is

even and 𝑟,𝑚 are nonnegative integers with

ℓ − (𝑚 − 2) (2𝑟 − 1) ≥ 0.

They established some preliminary evidence for this using Lie al-

gebras. This more-than-20-year-old conjecture is still open. Then
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ℓ

𝑚

𝑛𝑑 𝑛𝑑 + 2 𝑛𝑑 + 4 𝑛𝑑 + 6 𝑛𝑑 + 8

𝑛𝑑

𝑛𝑑 + 2

𝑛𝑑 + 4

𝑛𝑑 + 6

𝑛𝑑 − 1

Figure 2: Induction scheme in the proof of Theorem 11. Each
vertical (resp. horizontal) arrow is a direct (resp. mirrored)
application of (7) for ℓ (resp.𝑚) even. Eachnorthwest pointing
arrow is an application of (6). Both together imply the𝑑-strict
unimodality for the target pair (indicated by a solid blue dot).
The pairs corresponding to red dots follow by symmetry. The
solid black dots in the greyed out region represent the base
cases for the induction.

in 2020, Stanley and Zanello [33] extended Reiner and Stanton’s

claim by conjecturing that[
ℓ +𝑚
𝑚

]
𝑞

− 𝑞
𝑚 (ℓ−𝑏)

2
+𝑏

[
𝑏 +𝑚 − 2

𝑚 − 2

]
𝑞

(9)

has nonnegative and unimodal coefficients for large enough ℓ and

for 𝑏 ≤ ℓ𝑚/(𝑚 − 2) such that 𝑚𝑏 ≡ ℓ𝑚 (mod 2), with the only

exception 𝑏 = (ℓ𝑚 − 2)/(𝑚 − 2) whenever it is an integer. They use

(KOH) to show the𝑚 = 5 case, and characterize the𝑚 ≤ 5 cases.

By letting 𝑏 = 𝑙 + 4𝑟 − 2 in (9), we obtain (8) without the restriction

of ℓ +𝑚 being even.

Now using our approach as described in Section 2, we construct

a closed form for (9). This allows us to do a similar analysis as with

a single 𝑞-binomial coefficient, but with increased computational

difficulty due to the additional parameter. As a result, we can con-

firm the unimodality of (9) for the cases 𝑚 = 6 and 𝑚 = 7 (see

Theorems 12 and 13 below).

Theorem 12. The coefficient sequence of the polynomial

6ℓ∑︁
𝑘=0

𝑐𝑘𝑞
𝑘
:=

[
ℓ + 6

6

]
𝑞

− 𝑞3ℓ−2𝑏
[
𝑏 + 4

4

]
𝑞

(10)

is unimodal for all integers ℓ > 25 and 0 ≤ 𝑏 ≤ 3

2
ℓ , except when

𝑏 = 1

2
(3ℓ − 1) for odd ℓ .

Proof. The difference of 𝑞-binomials (10) can be written as a

rational function 𝑁
(
𝑞, 𝑞ℓ , 𝑞𝑏

)
/𝐷 (𝑞) where 𝐷 (𝑞) = (𝑞;𝑞)6 and 𝑁

has the following support (as a Laurent polynomial in 𝑞ℓ and 𝑞𝑏 ):

1, 𝑞ℓ, 𝑞2ℓ, 𝑞3ℓ𝑞−2𝑏, 𝑞3ℓ𝑞−𝑏, 𝑞3ℓ, 𝑞3ℓ𝑞𝑏, 𝑞3ℓ𝑞2𝑏, 𝑞4ℓ, 𝑞5ℓ, 𝑞6ℓ.

For the purpose of deriving a closed form for 𝑐𝑘 for 0 ≤ 𝑘 ≤ 3ℓ ,

one can omit all terms from 𝑞3ℓ on. We apply the framework of

Section 2 with 𝑛 = 2, Ω =
{
(ℓ, 𝑏)

�� ℓ ≥ 0, 0 ≤ 𝑏 ≤ 3

2
ℓ
}
, and

Ω′ =
{
(ℓ, 𝑏, 𝑘)

�� ℓ ≥ 0, 0 ≤ 𝑏 ≤ 3

2
ℓ, 0 ≤ 𝑘 ≤ 3ℓ

}
⊆ Z3 .

Using the fact 𝑘0 = −20, the set Ω′
is divided into only eight regions

(see Figure 3 for a two-dimensional slice for arbitrary but fixed ℓ).

More concretely, the regions are defined by the following inequali-

ties, which ensure, after close inspection of the 𝑞-powers occurring

in 𝑁 , that also the difference 𝑐𝑘+1 − 𝑐𝑘 is correctly evaluated:

1. 0 ≤ 𝑘 ≤ ℓ − 1 ∧ 0 ≤ 2𝑏 ≤ 3ℓ − 𝑘 − 2,

2. 0 ≤ 𝑘 ≤ ℓ − 1 ∧ 3ℓ − 𝑘 − 1 ≤ 2𝑏 ≤ 3ℓ,

3. ℓ ≤ 𝑘 ≤ 2ℓ − 1 ∧ 0 ≤ 2𝑏 ≤ 3ℓ − 𝑘 − 2,

4. ℓ ≤ 𝑘 ≤ 2ℓ − 1 ∧ 3ℓ − 𝑘 − 1 ≤ 2𝑏 ≤ 6ℓ − 2𝑘 − 1 ∧ 2𝑏 ≤ 3ℓ,

5. ℓ ≤ 𝑘 ≤ 2ℓ − 1 ∧ 6ℓ − 2𝑘 ≤ 2𝑏 ≤ 3ℓ,

6. 2ℓ ≤ 𝑘 ≤ 3ℓ − 1 ∧ 0 ≤ 2𝑏 ≤ 3ℓ − 𝑘 − 2,

7. 2ℓ ≤ 𝑘 ≤ 3ℓ − 1 ∧ 3ℓ − 𝑘 − 1 ≤ 2𝑏 ≤ 6ℓ − 2𝑘 − 1,

8. 2ℓ ≤ 𝑘 ≤ 3ℓ − 1 ∧ 6ℓ − 2𝑘 ≤ 2𝑏 ≤ 3ℓ .

The eight exponential polynomials in ℓ, 𝑏, 𝑘, 𝜔, 𝜔ℓ , 𝜔𝑏 , 𝜔𝑘
that de-

fine 𝑐𝑘 (resp. 𝑐𝑘+1 − 𝑐𝑘 ) in each of the eight regions are too large

to be displayed here (their number of monomials ranges from 41

to 113), but can be found in the accompanying notebook [22]. We

notice that all powers of 𝜔𝑏
are divisible by 10, thus the substitu-

tions ℓ = 𝐿ℓ1 + 𝜆, 𝑏 = 6𝑏1 + 𝛽 , 𝑘 = 𝐿𝑘1 + 𝜅 (for 𝐿 = 60) eliminate

all occurrences of 𝜔 , forcing us to check 6𝐿2 = 21600 cases. To

ease these general computations, we slightly restrict the range of 𝑘

by excluding the cases 𝑘1 = 0 and 𝑘 = 3ℓ − 1, with the effect that

all CAD proofs go through smoothly. Solving these three-variable

CAD problems took about 3.5 h. The excluded special cases are

then treated separately (note that they are lower-dimensional and

therefore run faster). For 𝑘1 = 𝜅 = 0 it is found that unimodality

is violated for 𝑏 = 1

2
(3ℓ − 1) at 𝑘 = 0 for all odd ℓ . For 𝑘1 = 0 and

0 < 𝜅 < 𝐿 the following exceptional triples (ℓ, 𝑏, 𝑘) are identified:

(2, 3, 2), (3, 4, 4), (3, 1, 6), (3, 2, 6), (3, 3, 6), (3, 4, 6),
(5, 7, 6), (5, 6, 10), (5, 7, 10), (5, 6, 12), (5, 7, 12), (5, 4, 12),
(5, 5, 12), (7, 7, 18), (7, 8, 18), (7, 9, 18), (7, 10, 18), (9, 13, 24).

Finally a set of exceptions of the form (ℓ, 𝑏, 3ℓ − 1) is found for the

following values of ℓ and 𝑏:

ℓ 𝑏 ℓ 𝑏

1 0 15 6, 8, . . . , 22

3 0, 2, 3, 4 17 6, 8, . . . , 25

5 0, 2, . . . , 7 19 12, 14, . . . , 28

7 0, 2, . . . , 10 21 18, 20, . . . , 31

9 0, 2, . . . , 13 23 24, 26, . . . , 34

11 0, 2, . . . , 16 25 36

13 0, 2, . . . , 19 27 −
Since there are no more exceptions where unimodality is violated

than listed above, the proof is complete, which resolves Stanley and

Zanello’s conjecture for𝑚 = 6. □

The proof of Theorem 12 follows the framework of Section 2

pretty well and, barring some of the difficulties identifying excep-

tional cases, we are able to arrive at our conclusion in a reasonable

amount of time. Alternatively, we can take advantage of the (KOH)
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Figure 3: Subdivision of Ω′ in the proof of Theorem 12 (two-
dimensional slice for fixed ℓ).

formula to manually divide the problem into cases for faster (paral-

lel) processing. In this next part, we present this strategy to prove

the case𝑚 = 7.

Theorem 13. The coefficient sequence of the polynomial
7ℓ∑︁
𝑘=0

𝑐𝑘𝑞
𝑘
:=

[
ℓ + 7

7

]
𝑞

− 𝑞 (7ℓ−5𝑏 )/2
[
𝑏 + 5

5

]
𝑞

(11)

is unimodal for all integers ℓ > 10 and 𝑏 = ℓ + 2

⌊
1

5
ℓ
⌋
− 𝑏1 with

𝑏1 ∈ {0, 2, 4, 6}, except when 𝑏 = 1

5
(7ℓ − 2) for ℓ ≡ 1 (mod 5).

Proof. Note that 𝑏 = ℓ + 2

⌊
1

5
ℓ
⌋
gives the largest integer that

has the same parity as ℓ and is at most
7

5
ℓ . To express it without the

floor function, we make a case distinction for ℓ mod 5 by setting

ℓ = 5ℓ1+𝜆1 with 0 ≤ 𝜆1 ≤ 4. Together with𝑏1 ∈ {0, 2, 4, 6}, there are
20 cases to check in total. In all these cases, we have 𝐷 (𝑞) = (𝑞;𝑞)7
and therefore we have 𝐿 = lcm(1, . . . , 7) = 420 and 𝑘0 = −27. In
contrast to a single 𝑞-binomial coefficient (see Section 3), it is more

delicate here to determine the ranges for the piecewise definition

of 𝑐𝑘 .

We illustrate in detail the computations for the case 𝑏1 = 𝜆1 = 4,

the other 19 cases being analogous. The numerator 𝑁
(
𝑞, 𝑞ℓ1

)
has

the following form:

1 − 𝑞14 + 𝑞20 + 𝑞21 − 𝑞27 −
(
𝑞5 + · · · + 𝑞11

)
· 𝑞5ℓ1

+
(
𝑞15 + · · · + 𝑞32

)
· 𝑞7ℓ1 +

(
𝑞11 + · · · + 𝑞21

)
· 𝑞10ℓ1

−
(
𝑞17 + · · · + 𝑞36

)
· 𝑞14ℓ1 −

(
𝑞18 + · · · + 𝑞30

)
· 𝑞15ℓ1

+
(
𝑞26 + · · · + 𝑞38

)
· 𝑞20ℓ1 +

(
𝑞20 + · · · + 𝑞39

)
· 𝑞21ℓ1

−
(
𝑞35 + · · · + 𝑞45

)
· 𝑞25ℓ1 −

(
𝑞24 + · · · + 𝑞41

)
· 𝑞28ℓ1

+
(
𝑞45 + · · · + 𝑞51

)
· 𝑞30ℓ1 +

(
𝑞29 − · · · − 𝑞56

)
· 𝑞35ℓ1 .

Since we focus our attention on the first half of the sequence 𝑐𝑘 ,

all terms from 𝑞20ℓ1 on are irrelevant. We cannot just divide the

range for 𝑘 at multiples of ℓ1 (as we did in Section 3), because some

𝑞-exponents exceed −𝑘0 = 27, such as 𝑞32 in front of 𝑞7ℓ1 . However,

note that the difference between the maximal and the minimal

𝑞-exponent in each prefactor does not exceed −𝑘0. Therefore the
problem can be cured by defining split points 𝑗ℓ1 + 𝜎 𝑗 with 𝑗 ∈
{0, 5, 7, 10, 14, 15} such that 𝜎 𝑗 ≥ 𝑑 𝑗 + 𝑘0, where 𝑑 𝑗 denotes the

𝑞-degree of the coefficient of 𝑞 𝑗ℓ1 . Moreover, to ensure that the split

points form an increasing sequence for any nonnegative ℓ1, we

impose 𝜎0 ≤ 𝜎5 ≤ · · · ≤ 𝜎15. Here, the following split points can

be chosen:

0, 5ℓ1, 7ℓ1 + 5, 10ℓ1 + 5, 14ℓ1 + 9, 15ℓ1 + 9.

Luckily in all 20 cases a suitable choice for the 𝜎 𝑗 exists, so that

we can always split the range of 𝑘 into at most seven intervals

(if 𝜎0 > 0 then we introduce one more case for 0 ≤ 𝑘 < 𝜎0). A

priori one would expect that in order to eliminate 𝜔 = exp(2𝜋𝑖/𝐿),
the mod-84-behavior of ℓ1 has to be studied (since 84 = 𝐿/5). By
inspection, we realize that all powers of 𝜔ℓ1

in the closed form

of 𝑐𝑘 are divisible by 35, and therefore it suffices to consider the

mod-12-behavior of ℓ1, as well as the mod-𝐿-behavior of 𝑘 . For the

CAD computations, we exclude the case (𝑏1, 𝜆1, 𝑘) = (0, 1, 0), since
it corresponds to the exceptional case 𝑏 = 1

5
(7ℓ − 2), mentioned

in the theorem. The computations take about 10 minutes for each

of the 20 choices for (𝑏1, 𝜆1), and in each of them it is confirmed

that 𝑐𝑘+1 ≥ 𝑐𝑘 for all 0 ≤ 𝑘 ≤ 7

2
ℓ − 1, except for the following

pairs (ℓ, 𝑘):
𝑏1 exceptional pairs (ℓ, 𝑘)
0 (6, 12), (6, 16), (6, 18), (6, 20), (8, 26)
2 (2, 6), (4, 12), (10, 34)
4 (6, 20)
6 (10, 34)

The program code for this proof is contained in the electronic

material [22]. □

Corollary 14. Expression (11) is actually unimodal for all 0 ≤
𝑏 ≤ 7

5
ℓ and ℓ > 10, except for 𝑏 = 1

5
(7ℓ − 2).

Proof. The statement follows from Theorem 2.3 in [33], which

uses the (KOH) formula to descend from the four topmost values

of 𝑏 (for which unimodality was proven in Theorem 13), in order to

establish unimodality for all 𝑏. This resolves Stanley and Zanello’s

conjecture for𝑚 = 7. □

5 OUTLOOK
In a more general framework, one can also study the unimodality

of the specialized Schur function [24] 𝑠𝜆 (1, 𝑞, . . . , 𝑞𝑚) for any fixed

partition 𝜆 = (𝜆1, 𝜆2, . . . ) as a polynomial in 𝑞. These polynomials

are directly related to the generalized 𝑞-binomial coefficients as

𝑠𝜆 (1, 𝑞, . . . , 𝑞𝑚) = 𝑞𝑛 (𝜆)
[
𝑚

𝜆′

]
𝑞

=
∏
𝑥∈𝜆

1 − 𝑞𝑚+𝑐 (𝑥 )

1 − 𝑞ℎ (𝑥 )
,

where 𝜆′ is the conjugate partition of 𝜆, 𝑛(𝜆) = ∑
#(𝜆)
𝑖=1

(𝑖 − 1)𝜆𝑖 , and
where 𝑐 (𝑥) (resp. ℎ(𝑥)) denote the content (resp. the hook-length)
of the box 𝑥 in the Young diagram of 𝜆 [24, p.11]. The generalized

Gaussian polynomial becomes the ordinary 𝑞-binomial coefficient

when 𝜆 is a partition with a single part. It is conjectured [26] that for

partitions with large enough Durfee squares (see [1]) the general-

ized Gaussian polynomials will also be strictly unimodal. Zanello’s

proof [37] of strict unimodality for Gaussian polynomials can be

adapted to the generalized Gaussian polynomials, using Kirillov’s

generalization [21] of (KOH) and again imposing the need to prove

a few initial cases as an induction base, which could be done by the

approach proposed in this paper. Lastly, other conjectures proposed

by Dousse and Kim [14, 20] may also be amenable to our method.
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