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Abstract

High temperature design methods rely on constitutive models for inelastic deformation and fail-
ure typically calibrated against the mean of experimental data without considering the associated
scatter. Variability may arise from the experimental data acquisition process, from heat-to-heat
material property variations, or both and need to be accurately captured to predict parameter
bounds leading to efficient component design. Applying the Bayesian Markov Chain Monte
Carlo (MCMC) method to produce statistical models capturing the underlying uncertainty in
the experimental data is an area of ongoing research interest. This work varies aspects of the
Bayesian MCMC method and explores their effect on the posterior parameter distributions for a
uniaxial elasto–viscoplastic damage model using synthetically generated reference data. From
our analysis with the uniaxial inelastic model we determine that an informed prior distribution
including different types of test conditions results in more accurate posterior parameter distri-
butions. The parameter posterior distributions, however, do not improve when increasing the
number of similar experimental data. Additionally, changing the amount of scatter in the data
affects the quality of the posterior distributions, especially for the less sensitive model param-
eters. We also test some of these inferences against real experimental tensile and creep data
of Grade 91 steel at 600 ◦C and observe consistent results. Moreover, we perform a sensitivity
study of the model parameters against the likelihood function prior to the Bayesian analysis. The
results of the sensitivity analysis help to determine the reliability of the posterior distributions
and reduce the dimensionality of the problem by fixing the insensitive parameters. The compre-
hensive study described in this work demonstrates how to efficiently apply the Bayesian MCMC
methodology to capture parameter uncertainties in high temperature inelastic material models.
Quantifying these uncertainties in inelastic models will improve high temperature engineering
design practices and lead to safer, more effective component designs.

Keywords: Statistical modeling, inelastic parameters, high temperature, sensitivity analysis,
Markov Chain Monte Carlo

1. Introduction

A better understanding of uncertainty of structural degradation in high temperature compo-
nents could lead to safer, more efficient component designs. Despite successes in other indus-
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tries, probabilistic design through risk-informed or reliability-based design and inspection has
not been widely applied to high temperature structural components. With the exception of a few
general applications (c.f. [1–3]) most existing probabilistic analyses for high temperature com-
ponents focus on creep crack growth [4, 5]. Several factors limit the application of probabilistic
design to high temperature components — limited material test data, a poor understanding of
uncertainty in component loading conditions, and difficulty in analyzing individual components
separate from plant systems. However, inelasticity poses perhaps the most substantial obstacle.

Many practical design methods for low temperature applications avoid requiring a full proba-
bilistic structural analysis by assuming a linear elastic response while accounting for uncertainty
in the loads and in the material strength (c.f. [6]). This approach is unsuitable at high temper-
atures where material inelasticity, via creep, occurs even below the yield point in the classical
elastic regime. This paper describes a first attempt at quantifying uncertainty in inelastic models
of high temperature deformation. A practical method accounting for this uncertainty is a key
ingredient in applying probabilistic design concepts to high temperature structures.

The classical approach for identifying the parameters of a high temperature inelastic con-
stitutive models is by minimizing the error between the model prediction and the equivalent
experimental data, known as the inverse analysis [7]. Most of the existing literature focuses on
estimating these model parameters deterministically [8–19]. Studies range from simple isotropic
one-dimensional models to anisotropic microstructure-informed crystal plasticity models, cou-
pled to several types of optimization algorithms. A critical shortcoming of this deterministic
approach is it neglects the scatter associated with the experimental data due to measurement or
material variability, which can only be captured through statistical modeling [20]. Probabilis-
tic parameter estimation for viscoplastic material models is an active research area and limited
studies exist in the literature. Harth et al. [21] performed statistical Monte Carlo simulations to
generate artificial data that mimicked the observed experimental scatter in order to obtain a distri-
bution of the model parameters, along with mean, standard deviation, and coefficient of variation
values. Bayesian analysis is a suitable approach to incorporate uncertainties in the material re-
sponse for estimating parameter distributions that successfully captures the observed scatter in
the experiments [22].

The key output of Bayesian analysis are the probability distributions of the properties of in-
terest, called the posterior distributions. This approach incorporates existing knowledge about
the system of interest through the prior distributions of the parameters which then update depend-
ing on the likelihood function to improve the corresponding posterior distributions following the
Bayes’ rule. Sampling strategies are a crucial component of Bayesian inference with most studies
selecting the Markov Chain Monte Carlo (MCMC) sampling approach. Rappel et al. [23] used
Bayesian analysis with the Markov Chain Monte Carlo (MCMC) sampling algorithm to identify
the Young’s modulus for a linear elastoplastic material model taking into account experimental
scatter and noise. Fitzenz et al. [24] used the hierarchical Bayesian approach to identify the
distribution of parameters for non linear creep models. Madireddy et al. [25] applied Bayesian
analysis for hyperelastic material models describing soft tissues to better represent the scatter in
the experimental data.

The Bayesian approach required depends strongly on the system being investigated. For ex-
ample, Madireddy et al. [25] reported a limited influence of the prior distribution on the posterior
for hyperelastic material models, while Rappel et al. [26] observed a significant effect of the prior
for viscoelastic material models. Gang et al. [27, 28] and Asaadi and Heyns [29] used Bayesian
MCMC to obtain posterior parameter distributions for three dimensional viscoplastic model pa-
rameters and mimicked the three dimensional finite element response, required for calculating
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the likelihood, with surrogate models. Yeratapally et al. [30] performed uncertainty quantifica-
tion for microstructure-based viscoplastic parameters by performing full-field crystal plasticity
simulations. Janouchová and Kučerová [31] calibrated the isotropic and kinematic hardening
parameters of a one-dimensional material model for copper alloys using repeated uniaxial cyclic
test data.

Even though the aforementioned studies use Bayesian approach, they do not assess the stabil-
ity of the resulting posterior distributions against different aspects of the method, such as choice
of prior distributions, amount of data, amount of scatter in the experimental data, as well as
the accuracy of the final posterior distributions. In this work, we examine these aspects of the
Bayesian MCMC approach for a one dimensional elasto–viscoplastic material model parameters
using both synthetically generated experimental data and real experimental data for monotonic
tension and creep experiments. With synthetic reference data we can accurately quantify the
reliability and accuracy of the posterior distributions, given the a priori knowledge of the true
solution [32]. Determining the capabilities and shortcomings of the Bayesian approach is crucial
in effectively using the method for engineering design.

The paper is structured as follows: Section 2 describes the one dimensional elasto–
viscoplastic damage model used in this work, provides a brief review of the Bayesian approach,
and describes the generation of the artificial experimental data. Section 3 highlights the impor-
tant results of the study for both synthetic and real experimental data and Section 4 discusses
the critical inferences from the analysis. Finally, Section 5 summarizes the key findings of this
work.

2. Simulation details

2.1. Elasto–viscoplastic damage model:
The one-dimensional material model used in this study is based on small strain deformation

theory where the total strain rate is the sum of the elastic and viscoplastic strain rate components:

ε̇ = ε̇e + ε̇vp (1)

with the elastic strain rate following Hooke’s law

ε̇e = Eσ̇ (2)

where E is the Young’s modulus. The inelastic strain rate follows the Perzyna flow rule [33] with
damage,

˙εvp =

〈 σ
1−ω − σ0 − R

η

〉n

, (3)

where ω is the damage variable, and n, η and σ0 are the viscoplastic parameters. The hardening
internal variable R follows a standard isotropic Voce hardening law, [34],

R = Q
[
1 − exp

(
−b

∣∣∣εvp(t)
∣∣∣)] (4)

where b and Q are the hardening parameters. The damage rate is the classical model by Leckie
and Hayhurst [35],

ω̇ =

(
σ

A

)ζ
(1 − ω)−φ (5)
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where A, φ and ζ represents the adjustable damage parameters. The elasto–viscoplastic damage
model described above is suitable only for monotonic loading, which is the focus of the present
work. The concepts discussed here could be applied to cyclic plasticity models with kinematic
hardening terms, albeit at greater computational cost. Given that design approaches often assume
a monotonic, steady-state response (for example primary load design in the ASME Boiler &
Pressure Vessel Code), the monotonic models discussed here are relevant to engineering practice
and form a useful starting point for more complicated descriptions of inelasticity.

We solve these coupled equations for one-dimensional tensile and creep boundary conditions
to obtain the simulated material response. Additionally, to reduce computation time for the creep
tests that involve large time scale simulations, we use the following semi-explicit method to
calculate creep strain at different times for constant stress conditions:

1. Calculate the current damage ω(t) from the analytical damage equation, the integral of
Eq. (5) under constant stress condition,

ω(t) = 1 −

1 − t(
σ
A

)−ζ
(1 + φ)−1


1

1+φ

(6)

2. Assume an explicit dependence of hardening Ṙ on strain rate, i.e., the current hardening of
the material R(t) depends on the known creep (viscoplastic) strain from the previous time
step, εvp(t − dt),

R(t) = Q
[
1 − exp

(
−b

∣∣∣εvp(t − dt)
∣∣∣)] (7)

3. Finally solve for the current creep strain, εvp(t), by numerically integrating Eq. (3) using
the damage and hardening values obtained from Eq. (6) and Eq. (7) respectively,

εvp(t) = εvp(t − dt) + dt
〈 σ

1−ω(t) − σ0 − R(t)

η

〉n

(8)

This explicit integration is accurate for long-term creep tests where the model internal variables
change slowly with time. We compared the results from this semi-explicit scheme to a fully-
implicit time integration and the differences between the two approaches were negligible for
the creep conditions considered here. For the tensile tests, we solve the full implicit system of
equations, as these simulations are relatively inexpensive due to the low total tensile deformation
(a total strain of 3 %).

For a reasonable assumption of the prior distributions for performing the Bayesian Markov
Chain Monte Carlo (MCMC) analysis we first calibrate the elasto–viscoplastic damage model.
The model has 5 inelastic deformation parameters (n, η, σ0,Q, b), and 3 damage parameters
(A, ζ, φ). In this work the Bayesian MCMC analysis with synthetic experimental data assumes
the inelastic parameters to lie within bounds specified in Table 1 and fixes the damage param-
eters to values as listed in Table 1. The bounds of the inelastic parameters are based on their
calibrated values for Grade 91 steel at 550 ◦C, and reasonably bound the actual material behavior
[36]. Fixing the damage parameters is reasonable as their mean and distribution can be obtained
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Table 1: Bounds for the inelastic parameters of the model.

parameter Bounds

n [9, 13]
η [700, 950]
σ0 [2, 10]
Q [80, 130]
b [40, 70]

A 517.0
ζ 12.5
φ 2.5

from Larson–Miller fits to rupture data, and the focus in this work is primarily on material defor-
mation. 1

Uncertainties in measured experimental data can be broadly classified into either aleatory or
epistemic uncertainties [37–39]. Aleatory uncertainties are the inherent uncertainties associated
with the physical system or environment, while epistemic uncertainties arise from imperfect
knowledge of the system or the inaccuracy of the model, and presumably reduces with sufficient
data. This study analyzes the epistemic uncertainties in the material response using Bayesian
Markov Chain Monte-Carlo (MCMC) analysis.

In Bayesian analysis the probability of the model parameters, α, given the data, D, the pos-
terior distribution, π(α|D), updates according to the Bayes’ theorem:

π(α|D) =
π(D|α)π0(α)
π(D)

(9)

where π0(α), represents the initial prior distribution constructed from prior knowledge about the
system [40]. The likelihood, π(D|α), on the other hand represents the likelihood of observing
the data, D, given the parameter realizations, α. Most studies treat the denominator, π(D), which
represents the probability of the data, as a normalization factor, thus allowing the following
simplified relationship between the posterior, prior, and the likelihood distributions:

π(α|D) ∝ π(D|α)π0(α) (10)

The analysis assumes π(D|α) similar to [30], and its logarithm, L, represents the likelihood
function determining the acceptance or rejection of the sampled parameters,

π(D|α) =
1

(2πξ2)
n
2

exp
n∑

i=1

(
−(yi − gi(α))2

2ξ2

)
, or, (11)

L = log (π(D|α)) ≡
n∑

i=1

(
−(yi − gi(α))2

2ξ2

)
(12)

1Using the Larson–Miller parameter for Grade 91 steel and log-linear fit with the experimental rupture data the time
to failure can be obtained as a function of stress at a given temperature. A similar relation can also be obtained by
integrating the damage rate equation, i. e., by replacing ω = 1 in Eq. (6). Comparing the two expressions gives the
damage parameters satisfying the Larson–Miller relation.
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where ξ is the hyper parameter representing the scatter in the available data. i represents the
different test conditions for the tensile and creep experiments. yi represents (synthetic or real)
experimental tensile and creep results at the different test conditions, and gi(α) represents the
corresponding simulated results with the sampled parameter values α. The total likelihood is
the weighted sum of individual likelihood values from tensile and creep data such that they con-
tribute equally to the total likelihood. Thus, with unit standard deviation the likelihood function
represents the square error between the experimental and the simulated results. We also scale the
parameters between 0.0 and 1.0 for better sampling during the Bayesian MCMC analysis. This
study implements the Bayesian analysis using the open-source python package PyMC3, [41],
with the Metropolis–Hastings algorithm, [42], for the Monte-Carlo sampling [43], and runs five
Markov chains in parallel to ensure convergence, with 500 draws and 300 discarded (‘burn-in’)
points for each Markov chain.

2.2. Sensitivity analysis

This study assumes that the posterior distribution from the Bayesian analysis for each of the
parameters depends strongly on their sensitivity to the likelihood function. To test this, we per-
form sensitivity analysis for each of the five inelastic parameters against the combined likelihood
function (weighted sum of individual likelihood from tensile and creep boundary conditions)
within the bounds specified in Table 1 with two different sensitivity analysis methods– Sobol’s
method [44] with the sampling scheme by Saltelli [45], and the Fourier Amplitude Sensitivity
Test (FAST) method by Schaibly and Shuler [7], both available in the open source Sensitivity
Analysis Library (SALiB) [46] package in Python. Similar to the Bayesian analysis, the param-
eters are scaled linearly between 0 and 1 for the sensitivity analysis.

2.3. Synthetic experiments

The synthetic data are tensile and creep simulations with the viscoplastic model for param-
eters drawn from normal distributions for each of the five inelastic parameters. The assumed
uncoupled normal distributions have mean 0.5 and standard deviation 0.1 for all the parameters,
scaled so that parameter values are in [0,1]. Figure 1 plots the variability for the tensile and the
creep boundary conditions after sampling 20 parameter values from the distribution for a fixed
strain rate and creep stress. Figure 2 shows synthetic experimental data for the tensile and creep
tests with 30 different test conditions used in this work. The different test conditions (different
colored curves in Fig. 2) include strain rates spanning linearly between 1 × 10−5 and 1 × 10−3 s−1

for tensile tests, and stresses between 100 and 200 MPa for creep tests. The choice of these values
reflect reasonable experimental conditions for high temperature materials.

3. Results

3.1. Sensitivity analysis

Table 2 lists the sensitivity values of the inelastic parameters within the bounds as listed in
Table 1, applying two different sensitivity analysis methods. The objective function for the sensi-
tivity analysis is the combined likelihood function from tensile and creep synthetic experiments
at 10 different test conditions ( 10 different curves from each (a) and (b) in Fig. 2) with a unit
standard deviation, ξ, in the likelihood function. The likelihood function with unit standard de-
viation resembles sum of square errors often used as the objective function for minimization in
deterministic calibration. The results from both sensitivity analysis methods are similar, with n
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Figure 1: Variability in the tensile (a) and creep (b) response at a fixed strain rate and creep stress respectively, with 20
draws of parameter values with the target distribution of a truncated normal.
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Figure 2: Synthetic experimental data for 30 different tensile, (a), and creep, (b), tests. Different colors correspond to
different test conditions, i. e., strain rates for tensile tests and stresses for creep tests.
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Table 2: Sensitivity values of the inelastic parameters.

parameter Sobol FAST

n 0.797247 0.771342
η 0.792725 0.815553
σ0 0.007422 0.006315
Q 0.066374 0.049494
b 0.059265 0.054965

and η being the most sensitive parameters followed by the hardening parameters Q and b, and
σ0 being the least sensitive parameter. The sensitivity values are qualitative as their relative
difference does not necessarily represent their quantified influence on the likelihood function.

Subsequently, using synthetic experimental data we compare the effects of the different as-
pects of the Bayesian MCMC framework such as the prior distribution, quantity of reference
data, including different type of experiments, and reference data scatter on the accuracy of the
posterior distribution. We then test some of these aspects with real experimental data. Figures 3
to 6, 8 and 9 compare the posterior distributions (blue histograms and the red curves) of the
five inelastic parameters to their respective priors (black dashed curves) and target distributions
(green dashed curves) for synthetic reference data. Comparing the posterior means and standard
deviations (shown within brackets in top corner in each plot) to their true values, and the re-
spective Kolmogorov-Smirnov (KS) values quantifies the differences between the target and the
posterior distributions. The KS values determine the similarity between the posterior distribu-
tions and their corresponding target, with lower values representing more similar distributions.

Effect of prior distribution. For the Bayesian MCMC analysis the prior distribution generally
requires some information about the problem. Most studies on Bayesian analysis prefer a uni-
form prior distribution as it requires limited information about the model parameters. However,
here a uniform (uninformed) prior distribution may lead to prematurely converged result from the
Bayesian MCMC analysis. To investigate this, we compare the posterior distributions when se-
lecting a uniform prior distribution to that of a truncated normal prior distribution for each of the
five inelastic parameters within the assumed bounds. The truncated normal prior distributions
assume mean and standard deviation of 0.3 and 0.2 for all the five inelastic parameters (black
dashed lines in Fig. 3), while their target distributions (used to generate the reference data) are
also truncated normal distributions with mean and standard deviation of 0.5 and 0.1, respectively
( green dashed lines in Fig. 3). The synthetic experimental reference for the Bayesian analysis
consists of 10 different datasets for the tensile and creep conditions (representing 10 different
strain rates and creep stresses) while the standard deviation, ξ, in the likelihood function is fixed
to unity for both tensile and creep cases. Figure 3 compares the two posterior distributions ob-
tained from a uniform prior distribution and a truncated normal prior distribution for each of the
five inelastic parameters. KS values with a truncated normal prior are lower than that for the
uniform prior distribution, while the prior distribution remains almost unchanged for the least
sensitive parameter σ0. The distribution type is recovered for the most sensitive parameters (n
and η) for both cases, however, with the uniform prior distribution the resulting posterior means
are far away from the target.
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Figure 3: Posterior distributions from a truncated normal prior with mean 0.3 and standard deviation of 0.2, (a), and a
uniform prior, (b), for the five inelastic parameters, fitted to a β-distribution, red curves. The figure shows the normalized
histogram for each of the parameters (in blue) such that the integral of their probability density adds up to one. The
black and the green dashed curves represent the assumed prior and the resulting posterior distributions of the parameters,
respectively. The values in the corner shows the mean (left) and standard deviation (right) of the values obtained from the
Bayesian MCMC analysis (for example in top figure in (a), i. e. for parameter n, [0.47, 0.1] correspond to a mean of 0.47
and standard deviation of 0.1). The corresponding target mean and standard deviation are 0.5 and 0.1, respectively, for all
parameters. As a comparison between the posterior (histogram data) and the target (green dashed curve), the goodness
of the fit described by the Kolmogorov-Smirnov (KS) value also appears in the top corner for each of the parameter. All
subsequent plots with synthetic reference data follow this layout.
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Figure 4: Posterior distributions from truncated normal priors with mean 0.3, (a), and 0.7, (b), and standard deviations of
0.2 (for both), for the inelastic five parameters.

Effect of prior means. From the previous analysis we find that an informed prior (truncated
normal distribution) better recovers the true solution when compared to an uninformed prior.
Using the same synthetic reference data (10 tensile and 10 creep curves) and likelihood function
(ξ = 1) we compare the stability of the posterior distributions for two different truncated normal
distribution priors, i.e., having different means of 0.3 and 0.7, but with same standard deviation
of 0.2. For both posterior distributions in Fig. 4, the means for the two most sensitive parameter,
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n and η, are very close to the true solution. For the hardening parameters, Q and b, the posterior
distribution resembles the expected distribution (i.e., a truncated normal distribution), however,
the analysis fails to accurately recover the true mean values of b and Q when starting with prior
means of 0.3 and 0.7 respectively. The posterior distribution for the least sensitive parameter σ0
is the least accurate and hardly changes from the prior.

Effect of increasing the available data. To investigate whether adding more tensile and creep
reference data affects the Bayesian MCMC process we compare the posterior distributions ob-
tained with 5 and 30 datasets for each tensile and creep experiments (sampled from Fig. 2) for
the likelihood (ξ = 1). Both cases start with the same prior distribution (truncated normal with
mean 0.3 and standard deviation 0.2) for the five inelastic parameters, and Fig. 5 shows the pos-
terior distributions. The amount of data has limited influence on the posterior distributions of
the parameters with synthetically generated experimental data. This implies that a small amount
of data correctly capturing the underlying parameter distributions is sufficient to predict the ac-
curate posterior distributions. Moreover, increasing the amount of data does not influence the
sensitivity of the parameters to the likelihood.

Effect of dimensional reduction. We also check whether a dimensional reduction of the param-
eter space by fixing the least sensitive parameter, σ0, increases the efficiency of the Bayesian
MCMC algorithm to better estimate the posterior distributions of the hardening parameters Q
and b. Figure 6 shows the posterior distributions for the four inelastic parameters starting from
a truncated normal prior distribution having a mean of 0.3 and a standard deviation of 0.2 for
all parameters (dashed black curves in Fig. 6). The reference data consists of 10 tensile and 10
creep tests and a unit standard deviation in the likelihood function. Fixing σ0 hardly affects the
posterior distributions of hardening parameters, suggesting lack of correlation between σ0 and
the other parameters.

Effect of including different type of tests. The previous Bayesian MCMC analysis with the ten-
sion and creep tests as reference accurately recovers only the most sensitive inelastic parameters
n and η. In order to improve the the posterior distributions of the lesser sensitive hardening pa-
rameters (Q and b) we repeat the Bayesian MCMC analysis with five additional strain rate jump
tension tests shown in Fig. 7. Figure 8 compares the posterior distributions of the five inelastic
parameters from the Bayesian MCMC including the jump tests with 10 tensile and creep tests
((b) and (d)) to the posteriors only considering the tension and creep tests ((a) and (c)). The
results also compare the posteriors from two different truncated prior normal distributions with
mean 0.3 and standard deviation of 0.2 ((a) and (b)), and with mean of 0.7 and standard deviation
of 0.2 ((c) and (d)). The posterior distributions (red solid curves) of the lesser sensitive harden-
ing parameters (Q and b) for both prior distributions are closer to their corresponding expected
distributions (green dashed lines), while the posterior of the least sensitive parameter, σ0, hardly
changes.

Effect of scatter in the experimental data. For all of the above analysis the standard deviation, ξ,
in the likelihood function,

L =

n∑
i=1

(
−(yi − gi(α))2

2ξ2

)
, (13)
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Figure 5: Posterior distributions with truncated normal prior distribution with mean 0.3 and standard deviation of 0.2 for
all five parameters obtained with 5, (a), and 30, (b), datasets for each of the tensile and creep conditions. For the synthetic
datasets increasing the amount of reference data seems to hardly influence the posterior distributions.
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Figure 6: Posterior distributions from truncated normal priors with mean 0.3 and standard deviation of 0.2 for the four
most sensitive parameters (black dashed curves). Fitted β-distributions are shown in red curves with the normalized
histogram of the posterior values in blue. Dimensional reduction does not improve the posterior distribution of the
hardening parameter b.
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Figure 7: Synthetically generated five different strain rate jump tension tests. The five tests include 3, 5, 10, 12, and 15
strain rate jumps, and the strain rates for these jumps are corresponding linearly discretized values between strain rates
of 1 × 10−5 and 1 × 10−3 s−1. For example strain rate jump test with three jumps have rates 1 × 105, 5.05 × 10−4, and
1 × 10−3 s−1, respectively (blue curve in the plot).
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Figure 8: Posterior distributions of the five inelastic parameters obtained from tension and creep tests ((a) and (c)) and
when including strain rate jump tension tests with tension and creep tests ((b) and (d)), with different truncated normal
prior distributions ((a) and (b): mean 0.3 standard deviation: 0.2; (c) and (d): mean 0.7, standard deviation 0.2). The ξ in
the likelihood function is fixed to unity for all the cases. Including strain rate jump tests brings the posterior distributions
(red solid curves) of the sensitive parameters closer to their expected distributions (green dashed curves).
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Figure 9: Posterior distributions with truncated normal priors with mean 0.3 and standard deviation of 0.2 for all the five
parameters, obtained with different values of ξ in the likelihood function. Column (a) figures have ξ = 5.0 and 1 × 10−5

for tensile and creep tests, respectively, while for column (b) figures ξ = 100.0 and 1 × 10−3 for tensile and creep tests.

is fixed to unity to exclude the effect of experimental scatter on the performance of the Bayesian
MCMC analysis. However, real experimental data will have some scatter associated with it,
leading to a non unit value of ξ. We investigate the effect of data scatter by running the Bayesian
MCMC analysis for two different values of ξ, tensile 5.0, creep 1 × 10−5; and tensile 100.0, creep
1 × 10−3. Figure 9 shows the resulting posterior distributions starting from truncated normal pri-
ors, mean 0.3 and standard deviation 0.2, using 10 tension and creep synthetic experiments.
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Figure 10: Calibrated mean plasticity model for Grade 91 at 600 ◦C for tensile (a) and creep (b) experimental conditions.
The dashed lines represent experimental mean data, while the solid lines are the simulated results. Different colors
represent different experimental conditions, i. e., strain rates for tensile and stresses for creep tests.

The change in the standard deviation does not significantly affect the mean of the posterior dis-
tribution for the sensitive parameters n and η. However, changing ξ does improve the standard
deviation of the distributions, improving the KS comparison between the posteriors and the target
distributions.

The above analysis highlights the stability of the posterior distributions from the Bayesian
MCMC analysis where the synthetically generated reference data reflects accurately the under-
lying parameter distributions, which may not hold when using real experimental reference data.

3.2. Real experimental data

This section tests the conclusions derived from the synthetic data on a real data set of ten-
sion and creep test results for modified 9Cr-1Mo (Grade 91) steel. Grade 91 steel is a ferritic–
martensitic alloy steel with good high temperature strength, making it an excellent candidate
material for high temperature structural components [47]. The reference data for the likelihood
function, yi, in the Bayesian MCMC analysis consists of five tensile and ten creep tests for
Grade 91 steel at 600 ◦C, [48–54]. The analysis considers an averaged experimental response
for loading conditions duplicated by more than one experiment. The study on synthetic data
demonstrates that an informed prior is required to generate an accurate posterior. To obtain the
preliminary set of parameter values needed for deciding the bounds for the normal prior distribu-
tions in the Bayesian analysis we calibrate the inelastic model by minimizing the error between
the experimental and simulated tensile and creep responses. Similar to the synthetic analysis, this
analysis also fixes the damage parameters to those obtained from a linear Larson–Miller fit for
Grade 91 steel. The dashed lines in Fig. 10 represents the experimental references used for both
model calibration and Bayesian MCMC analysis. We use genetic algorithm (GA) optimization,
provided in the SciPy optimize module in Python, to minimize the mean square error between
the experimental and simulated tensile and creep results. The GA optimization starts with an
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initial population of 15, the recombination parameter value of 0.7, and a uniform random num-
ber between 0.5 and 1.0 for the mutation parameter which are the default values in the python
optimization library. Due to the high computation cost of objective function evaluation, the GA
terminates when the objective function value falls below 0.02 or when the population evolutions
reach 100. The optimizer minimizes the sum of the mean square error for all the tests, weighted
so that the creep and tension tests contribute equally to the initial error for the initial parameter
set. The optimized initial model, second column in Table 3, reasonably captures the experimen-
tal behavior for most cases (see solid lines in Fig. 10). Table 3 also lists the parameter bounds

Table 3: Calibrated inelastic parameter values to real experimental data for Grade 91 at 600 ◦C.

parameter value bounds

n 8.274 [7, 10]
η 747.4 [600, 900]
σ0 3.550 [2, 5]
Q 112.0 [80, 130]
b 44.0 [20, 70]

A 650.0
ζ 10.0
φ 2.04

used for the Bayesian MCMC analysis with the real data, which center the calibrated values.
Table 4 repeats the sensitivity analysis described above for the real experimental data and a stan-

Table 4: Sensitivity values of different inelastic parameters with real experimental data.

parameter Sobol FAST

n 0.7116 0.6955
η 0.1341 0.1437
σ0 0.0032 0.0044
Q 0.1330 0.1396
b 0.0485 0.0513

dard deviation, ξ, of 1.0. n and η are still the most sensitive parameters and σ0 remains the least
sensitive. The relative difference in sensitivity values of n and η with real data (≈ 0.7 and 0.14) is
significantly different from those with synthetic data (≈ 0.8 for both). Thus the underlying data
influences the parameter sensitivities and, in turn, the posterior distributions from the Bayesian
analysis. Based on the previous results on synthetic data, the analysis for the experimental data
assumes a truncated normal distribution.

Effect of prior means. Figure 11 compares the posterior parameter distributions with two differ-
ent prior distribution means of 0.3 and 0.7, and with a unit ξ. The most sensitive parameter n
has consistent distributions for both cases, while the results for the remaining parameters depend
strongly on their prior means.
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Figure 11: Posterior distributions from truncated normal priors with mean 0.3, (a), and 0.7, (b), and standard deviations
of 0.2 for all the five parameters obtained with real experimental data for the Bayesian analysis. The fitted β-distributions
and normalized histograms are in red and blue, respectively. The values in the top corner are the posterior mean and
standard deviation.
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Figure 12: Posterior distributions with truncated normal priors with mean 0.3 and standard deviation of 0.2 for all the
five parameters, obtained with different values of ξ in the likelihood function obtained with real experimental data for the
Bayesian analysis. Column (a) figures have ξ = 1 for both tensile and creep tests, while for column (b) figures ξ = 200
and 1 × 10−3 for tensile and creep tests respectively.

Effect of data scatter. As with the synthetic data, we also investigate the effect of data scatter on
the posterior distributions from the Bayesian analysis with real data by varying the ξ values in the
likelihood function. Figure 12 compares the posterior distributions with unit standard deviation
values for both tensile and creep likelihood functions, to that of ξ = 200.0 and ξ = 1 × 10−3 for
tensile and creep cases, respectively. Similar to the result for the synthetic data, changing the
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standard deviation values does not change the posterior means.2

4. Discussion

4.1. Sensitivity analysis

The rate sensitivity n and viscosity η are the most sensitive parameters followed by the hard-
ening parameters Q and b, while the initial yield strength σ0 is the least sensitive of all. Since
the parameter sensitivity depends on the parameter bounds and the underlying data, we need to
perform this analysis prior to running the Bayesian MCMC analysis. Quantifying the parame-
ter sensitivity values can reduce the computation cost of the Bayesian MCMC by lowering the
dimensionality of the problem (i.e., fixing the least sensitive parameters). The sensitivity infor-
mation also helps to determine the reliability of the posterior distributions since less sensitive
parameters are less accurately predicted.

4.2. Synthetic experimental data

This work uses synthetically generated data to test the effect of different attributes of the
Bayesian analysis, decoupling spurious effects present in real experimental data. Figure 3 shows
that a uniform prior distribution is unable to recover the true posterior distributions, except for
the most sensitive parameters n and η. Even for the most sensitive parameters the posterior
means (0.35 for n, and 0.62 for η) are different from the target values (0.5 for both n and η). The
posterior mean values with the truncated normal prior (0.47 for n, and 0.52 for η) show that with
an informed prior (i.e., specifying the distribution type of the data) the method can accurately
recover the true solution. This is also evident from the lower Kolmogorov-Smirnov (KS) values
between the posterior and target distributions with the truncated normal prior (≈ 0.1) as compared
to a uniform prior distribution (more that 0.4).

Fig. 4 also demonstrates this trend where even starting with two different prior means (0.3
versus 0.7), but with the same distribution type (truncated normal), the Bayesian process recovers
the true posterior distributions of the most sensitive parameters (n and η). For the less sensitive
hardening parameters, when starting with a prior mean of 0.3 ( Fig. 4 (a)) the resulting posterior
mean of Q (0.51) is close to the target solution (0.5), while the posterior mean of hardening
parameter b (0.35) is not recovered. When starting with a prior mean of 0.7 ( Fig. 4 (b)) the true
posterior mean for parameter b is recovered from the Bayesian analysis, but not for parameter
Q. For the parameters where the true posterior means are recovered, the distribution resembles
the target distribution (KS value of 0.1 for Q in Fig. 4 (a), and 0.16 for b in Fig. 4 (b)). This
comparison highlights the significant effect of prior means on the posterior distributions of the
hardening parameters Q and b, even though they have similar sensitivities to the likelihood.

Moreover, for the case with a prior mean of 0.3, even when increasing the amount of reference
data by six times (5 versus 30 datasets Fig. 5 (a) and (b) respectively), the method still does
not recover the true distribution for the hardening parameter b. This suggests increasing the
amount of similar data does not increase the accuracy of the posterior distribution of the less
sensitive hardening parameters. Tensile and creep test conditions are not sufficient to provide

2The posterior distributions obtained for all the Bayesian MCMC runs performed in this work (both with real and
synthetic data) had their potential scale reduction factor values close to unity (≤ 1.07) for all parameters, indicating
convergence of the five Markov chains.
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complete information on the viscoplastic model parameters to the Bayesian analysis to uniquely
and accurately estimate the true posterior distributions.

Reducing the dimensionality of the problem by fixing the least sensitive parameter (σ0) does
not improve the distributions of the other parameters, as demonstrated by the similar KS values
for Q and b between Fig. 6 and Fig. 4 (a). In fact, the posterior distributions of the other four
inelastic parameters hardly change when fixing σ0, indicating no correlation between σ0 with
the other parameters.

Figure 8 shows that including strain rate jump tests in the reference for the Bayesian MCMC
analysis improves the posterior distribution of the lesser sensitive hardening parameters (Q and
b). Moreover, the improvement is consistent even when starting with different prior distributions
with prior means of 0.3 ((a) and (b) in Fig. 8) and 0.7 ((c) and (c) in Fig. 8) for all the parame-
ters. This emphasizes the importance of adding different types of experimental tests rather than
additional similar experiments to enhance the performance of the Bayesian analysis.

Finally, there does not seem to be a significant difference between the posterior means with
different values of standard deviation, ξ, in the likelihood function ((a): low standard deviation;
(b): high standard deviation in Fig. 9). The posterior distribution of the parameters n and Q im-
prove slightly when increasing the standard deviation, evident from lower KS values by ≈ 10 %.
This highlights the stability of the Bayesian approach when the underlying data successfully
captures the true parameter distribution.

4.3. Real experimental data

This study also assesses the conclusions drawn from the comprehensive Bayesian MCMC
analysis with synthetically generated data against real experimental data for Grade 91. The high
sensitivity of the stress exponent, n, and the general trend in parameter sensitivities is consistent
between the real experimental data, Grade 91 at 600 ◦C, and the synthetically generated data
(see Tables 2 and 4). However, the relative difference in the sensitivities of n and η is much
more significant in case of the real data, highlighting the influence of the underlying data on the
reliability of the posterior distributions from the Bayesian analysis.

The posterior distribution for the most sensitive parameter, n, is stable to different prior means
of 0.3 and 0.7 ((a) and (b) in Fig. 11), a result consistent between the real and synthetic data. For
the other (less sensitive) parameters (η,Q, and b) the results are considerably dependent on the
prior distributions. However, analyzing the posterior distributions from the different priors helps
to identify their true solutions. For example, in case of η the shift between prior to posterior is 0.3
to 0.48 ((a) in Fig. 11) and from 0.7 to 0.59 ((b) in Fig. 11), indicating that the true solution may
be somewhere close to 0.5. Similar inferences can be also drawn for the hardening parameters,
Q and b. The posterior distribution of the least sensitive parameter, σ0, hardly changes from its
prior, a result also consistent between analysis with real and synthetic reference data. Hence, in
order to obtain a better estimation of the true solutions of less sensitive parameters, we propose
to perform multiple Bayesian runs with different prior means but having the same distribution
type.

Finally, for both real experimental data and artificially generated data, varying the standard
deviation value in the likelihood function, ξ, does not seem to significantly affect the posterior
distribution means (Fig. 12).
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5. Conclusion

This work investigates the effect of varying different aspects of the Bayesian MCMC method-
ology on the resulting parameter distributions for a uniaxial elasto–viscoplastic damage model
using both synthetically generated and actual experimental data. The key results from the analy-
sis with synthetic data are:

• The stress exponent n and the viscosity parameter η are the most sensitive parameters for
the model, followed by the hardening parameters Q and b. σ0 is the least sensitive of all.

• For the most sensitive parameters a uniform prior distribution recovers the target distribu-
tion type (normal) but not the correct mean.

• A normal prior distribution accurately recovers the true target distributions of the most
sensitive parameters n and η, even when starting with different prior means. Thus, an
informed prior distribution improves the performance of the Bayesian MCMC analysis.

• The posterior distributions do not change significantly when increasing the reference data
from 5 tensile and creep test conditions to 30 tensile and creep test conditions. However,
including additional strain rate jump tensile tests improves the posterior distributions of
the less sensitive hardening parameters Q and b.

• Reducing the parameter dimensionality by fixing the least sensitive parameter σ0 hardly
affects the posterior distributions of the remaining parameters suggesting σ0 is uncorre-
lated to the other parameters.

• Finally, the standard deviation parameter representing the effect of scatter in the experi-
mental data, ξ in the likelihood function, has limited influence on the posterior means.

Even though the general sensitivity order of the inelastic parameters are consistent between the
synthetic and the real data there appears to be a significant qualitative difference for the inelastic
parameter, η. Thus, the underlying data has significant influence on the parameter sensitivi-
ties. The posterior distribution of n remains stable with different normal prior distributions with
real tensile and creep data, while the other posteriors seem to be considerably influenced by the
prior. Hence, to obtain a reliable statistical model a suitable method would be to perform mul-
tiple Bayesian MCMC analyses with different prior means. Analyzing the posteriors from these
different priors can provide an estimate of the true solution.

This work considered a simple uniaxial, monotonic material model. Future work must repeat
this analysis with an inelastic model including kinematic hardening terms to account for cyclic
plasticity to produce a comprehensive statistical model of high temperature deformation and
failure. Improved methods for quantifying property distributions describing material uncertainty
at high temperatures will lead to safer, less costly component designs and ultimately reduce the
cost and increase the available of new, efficient energy generation techniques.
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