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Abstract

fThis paper proposes a dynamic control algorithm to enable an energy-aware single machine

scheduling under the time-varying electricity pricing policy, in which price rates remain fixed

day-to-day over the season. The key issue is to assign a set of jobs to available time periods

where different electricity prices are assigned, while considering requested due dates of jobs

so as to minimize total penalty costs for earliness and tardiness of jobs and total energy

consumption costs, simultaneously. As the first contribution of this study, we develop a new

mixed integer nonlinear programming (MINLP) model that aims at determining job arrival

times and resulting earliness and tardiness of jobs and energy consumption costs for machine

idle and normal processing. Second, an efficient heuristic approach based on continuous-

time variable control models and algorithm is developed. The proposed heuristic adaptively

changes job arrival times and due dates, which finally determine production sequence over the

time periods of different electricity prices, machine turn-off, and machine idle with minimum

energy consumption costs and just-in-time (JIT) penalty. Energy and JIT performance of

the proposed approach is examined using real energy and machining parameters of a HAAS

machine and compared to those of the metaheuristic approach. For relatively large size

data groups, the proposed approach incurs about 4 ∼ 11% higher energy consumption costs
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on average, which are offset by up to 99% lower JIT costs, resulting in 10 ∼ 94% lower

total costs on average compared to the metaheuristic approach. The proposed time-scaled

heuristic algorithm yields extremely short computational time, which enables production

managers to flexibly select proper production strategies and to implement them for different

production environments.

Keywords: Machine idle time, just-in-time production, energy consumption, single

machine scheduling, machine on-off scheduling, time-varying electricity pricing.

1. Introduction

Concerns over air pollution and the associated dramatic climate change have led to in-

creasing pressure to reduce energy consumption in manufacturing plants and to develop

more advanced energy-aware production strategies. Various research trials have been per-

formed to reduce energy consumption and cost at both the machining and facility levels

taking into account time related production performance by implementing advanced ma-

chining technologies and operation methods. From a production operation point of view,

in particular, energy-consumption reduction during machine processing could be achieved

by several means; for example, production capacity can be adjusted considering production

demand and power price variations to reduce energy consumption (Johansson et al., 2009).

Machine capacity (i.e., machining speed) variation also contributes not only to keeping track

of production time but also to possibly changing energy consumption levels during operation

(Lee & Prabhu, 2015).

As an active energy-saving strategy and operation in production lines, turning machin-

ery on and off to save energy rather than remaining idle for a certain time contributes to

significant reduction in energy consumption, thereby cost. Such energy-aware machine state

controlling with effective production scheduling has been studied and addressed by vari-

ous heuristic and optimization approaches. Since Mouzon et al. (2007) proposed a machine
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scheduling problem combined with a machine power switch (i.e., turn-on and turn-off) strat-

egy for machine idle while taking into account energy consumption cost, similar studies have

been conducted considering different energy-related conditions and production performance.

The initial attempts to materialize the idea of switching machine power based on produc-

tion demands and machine idle time distribution have focused on developing mathematical

models and their solution approaches aiming at minimizing energy consumption costs with

several performance measures such as total tardiness (Mouzon & Yildirim, 2008) and total

completion time Yildirim & Mouzon (2012). Extending these research, Chen et al. (2013)

discussed the trade-off between production performance and energy efficiency in different

operations schedules considering Bernoulli serial lines with dynamic machine turn-on and

turn-off strategies. Markovian analysis on machine state control showed marginal impacts

of the machine power-switch strategy on system performance. Dai et al. (2013) applied the

machine switch strategy to the flexible flow shop scheduling problem with the two objec-

tive functions of minimizing makespan and total energy consumption. They developed a

genetic-simulated annealing algorithm to solve such a multi-objective scheduling problem,

resulting in an effective set of Pareto optimal solutions.

Most of the studies around this time were conducted under the assumption that electricity

prices were fixed over the planning horizon. This has proven to be an unrealistic conditions,

and time-varying electricity prices and tariffs are commonly used today. Since Shrouf et al.

(2014) proposed the single machine scheduling problem combined with a machine power

switch strategy while taking into account time-varying energy prices, several studies have

been recently conducted to provide the most effective production scheduling methods under

the energy and production efficiency perspectives. They established a mathematical model

for a single machine scheduling problem to minimize the total energy consumption costs.

In the problem, the continuous changes in energy price, the energy consumption of each

machine status, and the energy consumption of transitions between status are simultaneously

considered. A genetic algorithm and an analytical solution are developed.

Aghelinejad et al. (2016) modified the basic models in Shrouf et al. (2014) by introducing

a variable that defines job situations integrally rather than using separate variables in the
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basic model, resulting in alleviating the computational complexity. Unlike the basic model in

which job sequences are input values and not changed, they were also optimized by removing

several constraints in the basic model while guaranteeing low computational times.

Extending the models with dynamic electricity variations, Che et al. (2016) considered a

single machine scheduling problem under dynamic electricity tariffs. The objective function

in this study was to minimize the total electricity cost by effectively assigning a set of jobs

to specific time periods in which different electricity prices are applied. The problem was

formulated by a continuous-time mixed-integer linear programming (MILP) model, and a

greedy insertion heuristic algorithm was implemented to guarantee a short computational

time. Assuming the preemption of jobs, each job is inserted in non-increasing order of power

consumption rate into any idle time slots enough to hold it, while considering electricity

costs.

Fang et al. (2016) also studied a single machine scheduling problem aiming at minimizing

electricity costs under time-varying tariffs. They considered two scheduling conditions such

that jobs are processed at a constant speed as well as an exponential function of speed that is

called uniform-speed and speed-scalable machine conditions, respectively. They analytically

showed NP-hard and polynomial properties for the non-preemptive and preemptive machine

conditions and suggested approximate and exact polynomial-time algorithms for each case.

While those previous studies focused on a single machine problem with only an energy-

related objective, Wang et al. (2016) recently solved a bi-objective single machine batch

scheduling problem with the objective function of minimizing the makespan and total energy

consumption costs, which depends on the energy price variations. An exact ε−constraint

method was implemented by solving the problems of constructing job batches and sequences.

Overcoming computational complexity caused by NP-hardness of the problem, two construc-

tive heuristic methods were also proposed to determine batch size and sequence separately

and showed their algorithmic benefits in terms of production, energy and computational

performance.

Gong et al. (2016) also studied a similar problem with the objective function of min-

imizing electricity costs considering three demand response programs in which different
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electricity pricing strategies are given. The problem was formulated by the MILP model

considering the machine power switch strategy, and genetic algorithm was implemented to

solve it. They showed trade-off between the electricity cost and the makespan by analyzing

numerical experiment results within three Pareto frontiers.

Recent research like that described above tells us that no one addresses a scheduling

problem with consideration for just-in-time (JIT) production needs, the machine power

switch strategy, and energy consumption costs under the dynamic electricity pricing condi-

tion, simultaneously. Particularly with the increasing importance of time-based competition

and corresponding JIT needs, production performance based on due-dates becomes more

important, especially in small-volume large-variety production processes. Here, JIT needs

can be materialized simply by minimizing both tardiness and earliness of jobs, which im-

prove, for example, customer satisfaction by improving delivery reliability and minimizes

the work-in-process inventory (Prabhu, 2000). Technically, however, the JIT considerations

in the scheduling problem lead to much higher computational complexity compared to other

conventional measures, such as makespan, completion time, and lateness (Baker & Scudder,

1990).

In this paper, we demonstrate how improvement in JIT can be incorporated with im-

provement in energy consumption costs in a single machine scheduling problem under time-

varying electricity prices and the machine power switch strategy. To do this, first we analyze

the relationship between the approximated energy consumption level and the machine idle

time, which is a part of production schedules and can be effectively managed to lower the

overall energy consumption level. In particular, time-varying electricity price is consid-

ered to estimate overall energy consumption costs for production, specifically based on the

time-of-use (TOU) pricing policy. To overcome huge computational burdens expected by

non-linearity of the objective function consisting of JIT and energy measures, a heuristic

method based on a control theoretic approach is developed and its solution proximity, lim-

itation, and effectiveness are discussed. We develop dynamic models in which dynamics of

part-arrival and machine idle time are represented and controlled for energy-efficient pro-

duction scheduling. Furthermore, these control models serve as a core control logic in the
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dynamic algorithm, called dynamic idle time and arrival time control (DIATC) algorithm,

which aims for real-time production and machine vacation scheduling on a single machine in

the consideration of TOU pricing, thereby simultaneously achieving better JIT production

performance as well as less energy consumption cost. Finally, the performance of DIATC is

compared to the metaheuristic called particle swam optimization (PSO).

The remainder of this paper is organized as follows. In section 2, the single machine

scheduling and machine switch on-off problem with the consideration of energy consump-

tion cost and JIT performance is defined, and its mixed integer nonlinear programming

(MINLP) formulation is provided. In section 3, dynamic models for controlling production-

job arrivals and machine idle time are proposed, and the DIATC algorithm is proposed in

section 4. Lastly, in section 5, performance of the proposed approach is analyzed using sets

of benchmark problems and compared to PSO.

2. Problem description and formulation

Consider a single machine scheduling problem with earliness and tardiness (ET) penalties

and energy consumption cost for machine operations. A set of n independent jobs has to

be scheduled on a single machine that can handle at most one job at a time during T . The

machine is assumed to be continuously available from time zero onwards, and preemptions

are not allowed. The fundamental problem we consider in this paper is formally defined as

constructing production and machine vacation schedules to meet the requested production

due dates as formulated by MINLP. The following notations are used for model parameters

and decision variables.
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Ω set of n independent jobs, Ω = {1, 2, . . . , n}

Ω set of inserted machine vacations among production jobs, ΩI = {1, 2, . . . ,m}

T planning horizon, T = {0, 1, 2, . . . , h}

xjt machine status, xjt = 1 if the machine is processing job j at t, otherwise zero

xIMV
t machine power status, xIMV

t = 1 when the machine is shut down

xIt machine power status, xIt = 1 when the machine is idle

sjt job releasing time, sjt = 1 if the job j starts at time t, otherwise zero

sIMV
jt machine power status, sIMV

jt = 1 if machine turn-off or idle starts at time t,

otherwise zero

ytt′ dummy job status, ytt′ = 1 when a dummy job starting at time t is processed

by the machine at time t′

zt logical relationship among machine turn-off or idle and

other machine status

pj processing time of job j

dj due date of job j

CJ penalty cost for any positive earliness or tardiness job

(b, A) coefficient set for machine power regression

ē energy consumption (kWh) by machine idle

et electricity price at time t

Rj material removal rate for job j

The length of machine turn-off or idle is not given and is determined after an optimal

solution is obtained. Therefore, in the optimization model, we treat machine turn-off or

idle as a set of dummy jobs with fixed processing time that is equal to the minimum time

required to turn on the machine. Moreover, to deal with the dynamic characteristic of

machine turn-off or idle length, it is assumed that a machine can handle several machine

turn-off or idle at a time.

Job j, j ∈ Ω, requires pj and should ideally be completed on its due date dj. Also, we

assume that the ET of job j identically incur CJ . The objective function for ET penalties
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is to find a schedule that minimizes the sum of the mean squared earliness and tardiness,

which is called a JIT cost, such that

CJ

∑
j∈Ω

(∑
t∈T

tsjt + pj − dj

)2

/n. (1)

It should be noted that the given JIT cost is a form of mean squared error (MSE), which is

the second moment of the error and penalizes the variance of total ET and its bias, thereby

making the problem much harder than the penalty function with a simple absolute deviation

form. Nevertheless, it is a much more appropriate performance measure in the production

environment where the need for JIT manufacturing and delivery is crucial.

As an objective function for the energy consumption cost, we consider the energy con-

sumption cost during machine idle and normal processing, which is given by∑
t∈T

ēetx
I
t (2)

and ∑
j∈Ω

∑
t∈T

(bRj + A) etxjt, (3)

respectively.

Finally, the single machine scheduling problem for minimizing the total costs of energy

consumption and JIT penalty formulated as the following MINLP:

Production and machine vacation scheduling (PMVS):

min CJ

∑
j∈Ω

(∑
t∈T

tsjt + pj − dj

)2

/n (4)

+
∑
t∈T

ēetx
I
t +

∑
j∈Ω

∑
t∈T

(bRj + A) etxjt (5)

∑
t∈{1,...,h−pj+1}

sjt = 1 ∀j (6)

∑
j∈Ω

xjt + xIMV
t + xIt = 1 ∀t (7)
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∑
t′∈{t,...,t+pj−1}

xjt′ ≥ pjsjt ∀j, t (8)

∑
t′∈{t,...,t+pIMV −1}

ytt′ = pIMV sIMV
jt ∀t (9)

ytt′ = 0 ∀t, t′ ∈ {1, ..., t− 1} ∪ {t+ pIMV , ..., h} (10)

zt′ =
∑
t∈T

ytt′ ∀t′ (11)

zt +
∑
j∈Ω

xjt + xIt ≥ 1 ∀t (12)

zt

(∑
j∈Ω

xjt + xIt

)
= 0 ∀t (13)

zt ≥ 0 ∀t (14)

xjt, x
IMV
t , xIt , sjt, s

IMV , ytt′ ∈ {0, 1} ∀j, t, t′ (15)

The first term of the objective function (4) indicates the JIT cost for quadratic earliness

and tardiness, and the following three cost components in (5) indicate the energy costs for

machine idle and nominal processing, respectively. Here, pj and cost components CJ , ē, et,

and machine power profile, (bRj + A), are assumed to be known. Constraints (6) and (7)

define the unique job releasing time and machine status, respectively. Consecutive machine

status due to the given processing time is determined by constraints (8), (9) and (10). Since

multiple dummy jobs can be assigned to the machine, zt is not binary but zero or positive

integer. The IMV is determined by constraints (11), (12) and (13). Lastly, the conditions

of the decision variable are represented by the constraints (14) and (15).

Variation of the energy consumption would mostly depend on machining parameters and

operation states (i.e., idle and normal operation) at specific time periods. In particular, there

is a direct relationship between operation states and machine power, which is one of the key

factors for the determination of job sequences. Figure 1 illustrates such a relationship, that

is, a power consumption profile of milling processes for the HAAS VF0 machine. There are

machine power fluctuations depending on machine states, such as machine idle and sub-

processing. Analyzing cutting profiles and resulting machine power, Jeon et al. (2016)
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Figure 1: Power of HAAS VF0 milling machine

estimated the expected machine power of the HAAS VF0 milling machine using linear

regressions, which has a form as follows:

E[Watt|MRR] = 2163.4 + 2.7698MRR (16)

where MRR is in mm3/sec with R2 = 98.1%. In the computation experiments for the

proposed scheduling model, we use such specific power profiles to calculate the objective

function values rather than impractical cases.

In the next section, dynamic control models and algorithm as a heuristic approach to

solve PMVS is explained.

3. Dynamic control method for solving PMVS

Production and machine turn-off schedules are determined by a chronological order of

production job arrivals in a production queue, and therefore the effective determination of

arrival times of production jobs is essential for improving scheduling performance. In this

section, we propose dynamic models for controlling arrival times of production jobs while

taking account of JIT and energy performance. The following notations are used for model

parameters and decision variables.
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a arrival time vector in Rn+m where aj is the jth element

p nominal processing time vector in Rn where pj is the jth element

x processing time variation vector in Rn where xj the jth element

c completion time vector in Rn where cj is the jth element

d due-date vector in Rn where dj the jth element

q queueing time vector in Rn where qj the jth element

ξS machine startup energy

τj machine idle time between job j and its precedent job

τ ∗ time required to machine startup

For active management of the machine idle time, we consider a compulsory inserted ma-

chine vacation entity (i.e., time periods during which machine power is turned off), denoted

by IMV, that replaces the machine idle time to save energy consumption during machine

idle, especially when the energy consumption incurred by machine idle is greater than an

energy threshold that is generally defined as the minimum energy consumption required to

turn on the machine. Thus, if resulting total energy consumption is greater than the energy

consumption required by machine start-up, then IMV can be implemented (i.e., turning

off machine power) to save energy. The total number of IMVs, m, satisfies the following

inequalities:

mτ ∗ξS ≤
∑
j∈Ω

ēτj ≤ (m+ 1) τ ∗ξS. (17)

Here,
∑

j∈Ω ēτj indicates the total energy consumption by machine idle.

3.1. Arrival time control for production job and IMV

Let us define the n× 1 arrival time vector as

a(t) =
[
a1(t) . . . an(t)

]T

, (18)

and n × 1 vectors of the job completion time, processing time, and due date are similarly

defined as c(t), p(t), and d(t), respectively. It should be noted that the job arrival time

can also be called the job “release” time to a machine or the “start” time of a production
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job because a machine operation is assumed to be immediately available and to start at the

time of job arrival with zero queue.

Considering single-machine operations, time duration of machine turned-off can be treated

as a virtual production job with its start time (i.e., the time at which a machine is turned

off), ai(t), time duration, pi(t), and the machine turn-on time, ci(t) i ∈ ΩI. Multiple m IMVs

can be integrated with the vectors of a(t), p(t) and d(t) above, and finally the (n+m)× 1

arrival time vector whose elements now represent arrival times of both production jobs and

IMVs is redefined as

a(t) =
[
a1(t) . . . am(t) am+1(t) . . . am+n(t)

]T

, (19)

and integrated completion time and processing time vectors can be similarly defined.

The dynamic model is designed to manipulate the arrival times of production jobs and

IMVs, aj(t) j ∈ Ω ∪ ΩI, in such a way that the discrepancy between dj(t) and cj(t) is

minimized. Finally, as mentioned earlier, the order of job arrivals in a machine queue

determines their operation sequences based on the first-come-first-served discipline. Hence,

the arrival time dynamics for production and machine vacation schedules are explained by

ȧ(t) = ka

{
d(t)− c(t)

}
(20)

where ka is the (n + m)× (n + m) diagonal matrix with diag(ka) =
[
ka1 ka2 . . . kam+n

]T

0 < kaj < 1.

Considering a positive queueing time, (20) can be rewritten as

ȧ(t) = ka

[
d(t)−

{
a(t) + p(t) + q(t)

}]
(21)

where q(t) represents queueing times of production jobs and IMVs incurred by time conflict

between the arrival time of a current job and the completion time of a previous job. It should

be noted here that the actual queueing time occurs only by time conflicts of production jobs,

and the IMV entities do not incur actual queueing times because for any i ∈ ΩI and j ∈ Ω,

the following inequalities are held:

(i) ai(t) + pi(t) ≤ aj(t) and (ii) aj(t) + pj(t) ≤ ai(t) (22)
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which represent the following situations: (i) starting a new production job after turning on

a machine and (ii) a machine turns off after finishing a production job j.

Prabhu & Duffie (1999) showed nonlinear dynamics between arrival and completion times

of production jobs with q(t) > 0.0 in (21) and also sought to aggregate and ignore such a

nonlinearity using the following integral control law:

aj(t) = kaj

∫ t

0

{
dj(s)− a1(s)−

j∑
h=1

ph(s)
}
ds+ aj(0) (23)

where kaj is the control gain, and aj(0) is an arbitrary initial value. It should be noted that

the arrival time controller (23) can be readily used for unified control of production jobs and

IMVs due to integrated mathematical structures that are already prepared in (21) without

any additional assumptions and computational increment.

The solution of ODE in (21) is differently derived according to the feasibility of due

dates; if all production jobs and IMVs have feasible due dates, then the solution is given by

aj(t) =
(
dj(t)− pj(t)

)
e−k

a
j t + aj(0)e−k

a
j t, j ∈ Ω ∪ ΩI (24)

in which, for all aj(0) = 0.0, the steady state of aj(t) is determined by dj(t)− pj(t), and

the completion time corresponds to its due date, dj(t).

Figure 2(a) illustrates the Gantt chart of two jobs with steady-state arrival times, showing

that a positive idle time exists between c1(t) = 5.0 and a2(t) = 6.0. One possible way to

reduce or remove such an idle time is that the system move backward (respectively, move

forward) a2(t) to a′2(t) (respectively, a1(t) to a′1(t)) simultaneously, as illustrated in Figure

2(b).

Adjusting the arrival times which already reach their steady states can be possibly per-

formed by manipulating the reference values of the system (i.e., d(t)) in the arrival time

control system (21). Interestingly, making all feasible due dates identical leads to the conver-

sion of the system from the feasible system to the infeasible system, resulting in continuous

intersections of a(t) over the discontinuity region within an infinitesimal area where all ar-

rival times are identical (i.e., a1(t) = · · · = an+m(t)). As a result, once a(t) enters the
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(a) Positive idle time (b) Reduced idle time

Figure 2: Effect of due date adjustment

discontinuity region, the system no longer allows any time vacancy among production jobs,

thereby generating zero idle time as illustrated in Figure 2(b).

Artificially manipulated d(t) contributes to reducing the energy consumption especially

incurred by machine idle, but at the same time, it should increase total due date deviation

because the resulting completion times no longer meet the original due dates. To make a

smarter decision on the production and IMV schedule while considering such a trade-off

between two contradictory performance measures, the control mechanism on adjusting the

due date vector needs to be more systematic. In the following section, we propose the idle

time controller that is incorporated with the arrival time controller in order to minimize the

cost of due-date deviation and energy consumption.

3.2. Idle time control

The idle time control aims to adjust d(t), especially when there is a positive number

of IMVs, which is incorporated with the arrival time control, considering the energy con-

sumption level of a machine and JIT performance of production jobs. As explained in the

previous section, one of the simpler ways to reduce all time vacancy among production jobs

is to adjust all due dates of production jobs to where all due dates are identical. The ad-

justment of d(t), however, causes the corresponding change of c(t) which is supposed to be

equal to d(t) in the production schedule with all feasible due dates, thereby increasing due

date deviation, that is ET. Thus, it is required to investigate a possible way to minimize

the impact of due-date changes on the increment of ET. One possible way is to keep the

magnitude of the vector, d(t) − c(t), as small as possible. Hence, we design the idle time
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controller for the adjustment of d(t) of production jobs as follows:

ḋ(t) = kd

(
d̄− d(t)

)
(25)

where kd is a n × n diagonal matrix with diag(kd) =
[
kd1 kd2 . . . kdn

]T

0 < kdj < 1, and

d̄ is the arbitrary n × 1 vector located on the discontinuity region. Here, d̄ − d(t) always

intersects the discontinuity region at right angles.

Now let us suppose that initial d(t) moves toward d̄ whose elements are all identical. If

we consider a two production-job case, the movement of d(t) can be described by the gray

lines in Figure 3(a) toward three different positions (i.e., d̄, d̄
′
, and d̄

′′
, respectively), which

are all located in the discontinuity region, and resulting changes of completion time vectors

are represented as black, blue, and red lines, respectively. When d(t) reaches each position,

the completion time vectors are converged to css, c
′
ss, and c

′′
ss, respectively. It should be

emphasized that the vector css − d̄, c
′
ss − d̄

′
, and c

′′
ss − d̄

′′
form three different hyperplanes

which are perpendicular to the discontinuity region as shown in Figure 3(b). It should also

be noted that conflict of the arrival time in the vicinity of the discontinuity region results in

the discontinuous behavior of c(t), which is shown as two separate and parallel movements

of the completion time vectors.

Property 1. Let δ be the Euclidean norm such that δ = ‖d(t)−d‖ where d(t) is the solution

of ḋ(t) = kd

(
d̄− d(t)

)
. Then, δ is the smallest norm compared to any ‖d•(t) − d‖ where

d•(t) is the solution of ḋ•(t) = kT
d

(
d̄• − d•(t)

)
, d̄ 6= d̄•.

Proof. Let δ• be ‖d•(t)− d‖. Solving the ODE in (25) gives

d(t) =
(
1− e−kdt

)
d̄ + d(0)e−kdt =

(
1− e−kdt

)
d̄ + de−kdt

and therefore δ and δ• are given by

δ = ‖d(t)− d‖ = ‖
(
1− e−kdt

) (
d̄− d

)
‖,

δ• = ‖d•(t)− d‖ = ‖
(
1− e−kdt

) (
d̄• − d

)
‖,

respectively.
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(a) Completion time vector movement (b) Hyperplanes

Figure 3: Analysis of vector space: two-job case

The vector magnitude above only depends on ‖d̄− d‖ and ‖d̄• − d‖. First,

d̄− d =

(
d1 + · · ·+ dn

n
, . . . ,

d1 + · · ·+ dn
n

)
− (d1, . . . , dn)

=

(
−d1 + d2 + · · ·+ dn

n
, . . . ,

d1 + · · ·+ dn−1 + dn
n

)
,

Let α be αI where α 6= 0 is a scalar and I is n× 1 matrix whose element is a unity. Then,

d̄• = d̄ + α, and therefore

d̄• − d =

(
d1 + · · ·+ dn + nα

n
, . . . ,

d1 + · · ·+ dn + nα

n

)
− (d1, . . . , dn)

=

(
−d1 + d2 + · · ·+ dn + nα

n
, . . . ,

d1 + · · ·+ dn−1 + dn + nα

n

)
.

Replacing (−d1 + d2 + · · ·+ dn), . . . , (d1 + d2 + · · · − dn) with x1, . . . , xn gives

δ = ‖d̄− d‖ =
1

n

√
x2

1 + · · ·+ x2
n,

δ• = ‖d̄• − d‖ =
1

n

√
(x1 + nα)2 + · · ·+ (xn + nα)2.

Then, the residual of δ• compared to δ is

nα(x1 + · · ·+ xn) + n2α2 = n(n− 1)α(d1 + · · ·+ dn) + n2α2
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(a) Two-job case (b) Three-job case

Figure 4: Analysis of vector space

which is always positive.

Hence, δ is always greater than δ•, and we conclude that δ is the smallest norm.

To maintain the smallest discrepancy between the controlled d(t) and c(t), d(t) needs

to move on the plane containing d̄−d(t), which is perpendicular to the discontinuity region

by Property 1. Figure 4 illustrates two examples of two- and three-job cases in which

movements of arrival time and completion time vectors and d̄ − d(t) are represented by

blue, black, and red lines, respectively. Prior to the adjustment of d(t), as t→ t′ where t′ is

a certain amount of time enough to make the system stable, the arrival time controller (21)

continuously adjusts a(t) and c(t), which are finally converged to ass and css, respectively,

while taking into account the original d(t). After reaching the steady state, once d(t) starts

to move on d̄−d(t), a(t) is also adjusted again and finally reaches a∗ss where a(t) continues

to oscillate in the vicinity of the steady-state point, resulting in continuous changes of

production job sequences. It should be emphasized that once a(t) enters the discontinuity

region, c(t) becomes the discontinuous function of a(t), thereby distinctly separated traces

of the completion time vector movement are observed as shown in Figure 4.

Incorporating the arrival time control (21) with the idle time control (25), we test two

simple examples used in the previous analysis and observe how the idle time and ET vary.
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(a) Two-job case

(b) Three-job case

Figure 5: Energy consumption and ET variations

To show dynamics of two different measures clearly, the electricity price is assumed to

be identical during the planning horizon. Figure 5 illustrates variations of the idle time

(blue line) and ET (red line) for each case; in these examples, the idle time controller is

implemented at time t = 500, and therefore, d(t) starts moving after t = 500 at which

c(t) is equal to the original d(t), resulting in zero ET. As t → 1000, d(t) moves toward

d̄, and ET increases correspondingly. Oscillation of ET after around t = 690 is caused by

c(t) which becomes the discontinuous function of a(t). In the case of idle time, it starts

decreasing after t = 500 and finally hits zero once d(t) = d̄. Overall, the idle time and

ET vary concavely and convexly, respectively, and therefore the objective of the proposed

dynamic control algorithm is to find the system state that minimizes the total cost which is

approximately expected to vary convexly.
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4. Dynamic idle time and arrival time control algorithm

The relationship between the machine idle time and ET variations is readily used to

determine the production and machine turn-off schedules in such a way that the total cost

of ET penalty and energy consumption cost is minimized by adjusting arrival times of

production jobs and properly locating machine vacations (i.e., IMVs) among jobs.

For multiple IMVs obtained by the condition (17), grouping production jobs between

IMVs and incorporating them into the solution procedures are essential for determining

good production schedules and improving energy performance. Such a grouping problem

can be also formulated by MINLP, but it is not suitable for large size problem due to high

computational complexity. Instead of MINLP, therefore, we simply determine job groups

by dividing the given production jobs into certain number of groups, which is m − 1, and

insert IMVs into empty time slots between adjacent job groups.

Finally, we develop a discrete-event timing control algorithm for PMVS in which pro-

duction jobs and IMV schedules are simultaneously determined with the objective function

of minimizing total JIT and energy consumption costs. We call this algorithm Dynamic Idle

and Arrival Time Control algorithm (DIATC), and its overall steps are summarized in the

Algorithm table. Technically, arrival and idle time controllers in (21) and (25), respectively,

can be rewritten in the discrete time domain so that they can be executed under the dig-

italized computing environment. Such discrete controllers are expressed in lines 5 and 10

where ∆ is the discrete time step for integration.

DIATC has two main functions: (i) job and IMV arrival control (line 5) and (ii) idle time

control for each IMV (line 10). The specific DIATC algorithm can be outlined as follows.

First, the arrival times of production jobs and IMVs are initialized (line 1), and the total

production cost is also initialized to an arbitrary large number (line 2). The production and

IMV completion times are updated based on processing time and queueing time (line 4), and

finally, the arrival times of jobs and IMVs are adjusted by the arrival time controllers (line

5). After applying these procedures for all production jobs and IMVs, they are sorted based

on a FCFS discipline with respect to arrival times (line 6), and the resulting total production
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Algorithm: The overall DIATC framework

Input: Set of production orders (jobs) with nominal processing times

and requested due dates; set of job groups.

Output: Production schedule of jobs, machine turn-off schedule, and total production cost.

1: aj(0) ← arbitrary positive number, ∀j ∈ Ω ∪ ΩI

2: J∗ ← arbitrary large number for initial production cost

3: repeat

4: cj(T) ← aj(T) + pj(T) + qj(T)

5: aj(T) ← kaj ∆ (dj(T)− cj(T)) + aj−1(T− 1) ∀j ∈ Ω ∪ ΩI

6: Sort jobs based on FCFS rule with respect to aj(T)

7: Calculate total cost, J(T)

8: if J(T) < J∗ then

9: J∗ ← J(T)

10: dj(T) ← kdj ∆
(
d̄i − dj(T)

)
+ dj−1(T− 1) ∀j ∈ ΩI

11: T ← T+1

12: until T reaches to NUM OF ITERATIONS

cost (JIT cost + energy consumption cost) is calculated (line 7). If the updated production

and IMV schedule yields better production performance compared to the previously saved

total cost, then the best sequence for each job and IMV and corresponding objective function

values are updated (line 9). As the last step, the due date of IMVs is updated by the idle

time controller (line 10). All these procedures are repeated for the given number of iterations

(NUM OF ITERATIONS).

It should be noted that it is difficult to decide the exact number of feedback trials

(i.e., NUM OF ITERATIONS) that leads to more improved routing sequences, especially

when the departure time vector remains in the discontinuity region. However, this class

of algorithms is known to exponentially converge in the controlled variable (i.e., departure

times) and moreover is globally stable for small values of the gain (Prabhu & Duffie, 1999).

It depends on the problem size, but our experience indicates 100 to 1,000 iterations with

0.01 to 0.2 gains are adequate for most problems encountered.

5. Computational analysis

Validating performance of the proposed DIATC algorithm and comparing the results

with those of PMVS, we consider datasets in which due date intervals of jobs are randomly
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distributed in 1.0 ∼ 10.0 minutes. The processing time is also randomly set to 50 ∼

100% of the due-date interval considering current and previous production jobs, so that

all production jobs have feasible due dates. As parameters for discrete timing control,

NUM OF ITERATIONS = 3, 000, and the idle time control is designed to start at T = 1500.

It should be emphasized that, by assigning an extremely small (respectively, large) value

to CJ , the control logic can be forced to take into account more energy (respectively, JIT)

performance. Considering the experimental data, therefore, we set CJ = 0.01 to investigate

energy-JIT balanced performance, called “balanced production strategy” and denoted by SB,

and CJ = 0.001 for energy-focused schedules, called “energy-focused production strategy”

and denoted by SE. Lastly, for experiments reflecting real production environments, we refer

to the power profile of the HAAS VF0 machine described in section 2. The material used

by this experiment is a low carbon steel block, and its volume is assumed to be set to 9, 000

mm3. DIATC is coded and tested by the Microsoft C++ compiler on the same machine.

All experiments were conducted on a server with 2.93 GHz speed and 48Gb RAM.

5.1. Impact of production strategy and idle time control

We first show how DIATC reflects the trade-off that is expected by time-varying electric-

ity prices, the need for JIT, and production strategies, on job schedules. Three experimental

scenarios are considered; (i) DIATC without idle time control considering SB, (ii) DIATC

with idle time control considering SB, and (iii) DIATC with idle time control considering

SE. As a simple example, 10 production jobs with d = (20, 26, 34, 39, 44, 47, 53, 58, 67, 73)

and p = (2, 5, 8, 5, 4, 2, 5, 4, 7, 5) are used to see how DIATC works properly for each sce-

nario. For time-varying electricity prices, four different price rates are considered: off-peak,

semi-peak, peak, and high-peak prices (dollar per kWh) are assumed to be used and are set

to 0.025, 0.04, 0.07, and 0.1, respectively. Control gains for the arrival and idle controllers

are identically set to 0.1.

Figure 6 illustrates electricity price fluctuation (solid line) and resulting job schedules

of 10 jobs (gantt chart). First, it is shown that absence of the idle time control with SB

(scenario 1, Figure 6(a)) leads to the job schedule with zero due-date deviation (DD) and idle
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(a) Scenario 1: schedule by SB without idle time

control

(b) Scenario 2: schedule by SB with idle time

control

(c) Scenario 3: schedule by SE with idle time con-

trol

Figure 6: Scheduling results by different strategies
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Table 1: Test results: 10-job case

Scenario Cj IT kWh DD EC TC

1. No idle time control 0.01 8 14.517 0.00 0.117 0.117

2. SB with idle time control 0.01 0 16.065 4.00 0.103 0.142

3. SE with idle time control 0.001 0 15.301 31.00 0.098 0.101

Table 2: Electricity price distribution

off-peak semi-peak peak high-peak peak semi-peak off-peak

Portion over planning horizon (%) 14 14 14 14 14 14 16

Electricity price ($ per kWh) 0.025 0.04 0.07 0.10 0.07 0.04 0.025

time (IT), but about 14% increased energy cost (EC) could be obtained compared to those

of scenario 2 as shown in Table 1. The combination of arrival-time and idle time control

(scenario 2, Figure 6(b)) contributes to satisfying both the JIT and energy performance by

adding positive machine turn-off time segments, resulting in zero idle time and the increment

of total due-date deviation from 0.0 to 4.0, compared to scenario 1. Lastly, SE (scenario

3, Figure 6(c)) yields the job schedule with much higher due-date deviation (31.0), but the

energy cost is reduced by about 16% and 9%, compared to the scenario 1 and 2, respectively.

We also conduct experiments for relatively large size datasets based on the given scenar-

ios. A total of 10 replications are made for each dataset with n = 30, 50, 80, 100, 120, 150,

and average values of energy consumption for normal processing (PkWh) and machine idle

(IkWh), due-date deviation, total idle time, and total costs are investigated. For each in-

stance with different planning horizon, electricity prices are sequentially assigned to each

time period based on four different price rates and their portions over planning horizon as

shown in Table 2. Finally, all experimental results are summarized in Table 3.

Given the significant impacts of different production strategies on performance measures,

it is shown that a small penalty for the violation of production due-date makes DIATC focus

more on developing job schedules with lower energy consumption as experienced in the

previous small instance experiment. Averages of 0.5% and 21% lower energy consumption

(kWh) for normal processing and machine idle are observed, respectively, by sacrificing JIT

performance; average 4.1% higher due-date deviation could be obtained by SE compared to
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Table 3: Impact of production strategy and idle time control

Without idle time control With idle time Control

n CJ JP JI DD IT TC JP JI DD IT TC

30 0.01 0.41 0.01 27.02 19.90 0.68 0.42 0.02 0.00 23.60 0.44

30 0.001 0.40 0.01 32.36 11.30 0.44 0.42 0.02 0.00 23.60 0.44

50 0.01 0.65 0.00 84.30 10.00 1.50 0.68 0.04 0.00 40.20 0.72

50 0.001 0.65 0.00 87.38 6.60 0.74 0.68 0.04 0.00 40.20 0.72

80 0.01 1.09 0.00 233.73 5.40 3.43 1.12 0.07 0.00 67.10 1.19

80 0.001 1.09 0.00 235.33 5.40 1.33 1.12 0.07 0.00 67.10 1.19

100 0.01 1.40 0.01 331.89 13.50 4.72 1.43 0.09 0.00 82.80 1.52

100 0.001 1.39 0.01 333.67 11.90 1.73 1.43 0.09 0.00 82.80 1.52

120 0.01 1.62 0.00 476.37 1.60 6.38 1.66 0.11 0.00 99.40 1.77

120 0.001 1.62 0.00 476.50 1.80 2.10 1.66 0.11 0.00 99.40 1.77

150 0.01 2.05 0.00 771.79 1.80 9.77 2.10 0.13 0.00 123.10 2.23

150 0.001 2.05 0.00 771.79 1.80 2.82 2.10 0.13 0.00 123.10 2.23

SB. SE yields about 22% lower machine idle times, resulting in about 157% lower total cost

for the given experimental datasets. It should be noted that all those performance metrics

by DIATC without idle time control show no difference regardless of the value of CJ due to

zero due-date deviation.

As an impact of idle time control in DIATC, average energy consumption cost by normal

processing (JP ) with idle time control is about 3% lower than those without idle time control

in these particular datasets. It should be noted that such energy consumption levels can

vary depending on different distributions of job due-dates and electricity prices, and JP

difference observed in these experiments cannot always be formed and represent complete

standard tendency. In the same vein, idle time control should be understood for its impact

on job schedules and energy consumption. It is shown that idle time control contributes

to decreasing machine idle time and resulting energy consumption; about 81% idle times

on average and about 63 ∼ 100% energy consumption costs incurred by machine idle and

normal processing could be saved by idle time control. It should be noted that due-date

deviation for all instances by DIATC without idle time control becomes zero because the

JIT penalty dominates the energy consumption costs in these particular datasets. In sum,

DIATC without idle time control yields about 36% better performance in average than
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DIATC with idle-control in these particular datasets, due to the relatively huge difference

in total due-date deviation and resulting JIT penalty. In the next section, we investigate

the solution quality of DIATC, compared to the metaheuristic approach.

5.2. Comparison with metaheuristic

In this section, we consider scheduling problems with 10 ∼ 300 production jobs, and the

results of PMVS and DIATC are compared. PMVS is obviously a NP-hard problem, and

even small-size instances are hard to be solved within a reasonable computational time. To

solve large size instances of PMVS, therefore, we apply a metaheuristic approach, PSO.

PSO is a population-based metaheuristic approach motivated by observations of social

behaviors of composed organisms. PSO is characterized by the exploring agents, called

particles, which adjust their positions according to own experience and communications

with others (Eberhart & Kennedy, 1995). Particles update their positions with velocities

that include three major components; (i) inertia that is particle’s nature to maintain its past

velocity, (ii) a component that makes a particle move towards own best position based on

own experience, and (iii) a component that makes a particle move towards the best position

achieved by any of the exploring particles based on communications with others. Each

component has its own weight, and the quantity of velocity is achieved by the weighted sum

of three components with some randomness (Tasgetiren et al., 2004). In this experiment,

we generate 10,000 particles and set the weight of inertia as 2 and the weights of second and

third components as 1.4, which are typically used in PSO to guarantee good performance.

Designing the PSO algorithm, one of the most important issue is the solution represen-

tation. In order to solve PMVS, we design the solution representation that is composed of 3

different parts. The first part aims at finding the particle’s corresponding job permutation.

For this purpose, the smallest position value rule is applied (Tasgetiren et al., 2004). In the

second part, the idle time is assigned into either side of each job, so that the solution of the

second part becomes n+ 1 dimensions, given n as the number of jobs (Lu et al., 2008). The

last part of the solution representation is used to the get machine shut down index in the

idle time set, which satisfies inequalities (17).
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Table 4: Experimental results: total cost and CPU time (average value)

SB SE

PSO DIATC PSO DIATC

n TC CPU TC CPU RTC TC CPU TC CPU RTC

10 0.15 134.40 0.19 0.03 -33.61 0.13 182.92 0.16 0.04 -20.25

30 0.45 2772.64 0.58 0.12 -28.08 0.43 2383.47 0.45 0.10 -4.34

50 0.92 9864.67 0.96 0.08 -3.70 0.80 9442.94 0.76 0.09 4.78

80 2.10 10157.98 1.87 0.14 10.88 1.60 10192.71 1.27 0.14 20.44

100 3.86 10622.97 2.31 0.17 40.08 1.91 10651.38 1.66 0.17 12.98

150 17.73 10780.45 5.41 0.28 69.47 4.39 10741.72 2.84 0.25 35.37

180 26.57 10752.62 8.50 0.30 68.01 6.58 10529.53 3.57 0.31 45.76

200 47.90 10748.27 4.74 0.33 90.11 8.42 10800.00 3.43 0.33 59.28

250 101.25 10737.60 8.26 0.39 91.84 11.21 10772.18 4.56 0.42 59.31

300 186.76 10791.33 12.13 0.47 93.50 20.59 10791.24 5.64 0.51 72.61

For performance comparison, we particularly focus on the energy consumption costs

incurred by machine idle and normal processing, the JIT cost, and the total cost of PSO

and DIATC. A common time limit of 10,800.00 seconds (3 hours) is imposed on the solution

time for all instances. Instances are generated based on the data generation rules used for

the experiments in section 5.1, and a total of 5 replications are made for each size group

(i.e., n = 10 ∼ 300).

As a relative performance indicator between DIATC and PSO, we calculate the relative

percent deviation of total cost such that

RTC(%) =
TCPSO − TCDIATC

TCPSO

× 100. (26)

Similarly, relative percent deviations of the energy consumption cost and the JIT cost are

denoted as RE and RJ , respectively.

The computational results of SB and SE are summarized in Tables 4. Overall, DIATC

shows its superiority for the large size datasets. Specifically, for SB, approximately 10 ∼ 94%

better performance can be achieved by DIATC for n ≥ 80 instances. For the same datasets,

13 ∼ 73% lower total costs can be obtained by DIATC when SE is implemented. For

relatively small size instances (i.e., n ≤ 50), however, PSO shows better performance than

DIATC; PSOs by SB and SE yield, on average, 4 ∼ 33% and −5 ∼ 20% better performance
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compared to DIATC, respectively.

Performance on energy and JIT costs are also compared, and results are summarized

in Table 5, in which the relative difference between SB and SE is denoted by RBE for the

given measures (values in parentheses indicate energy costs incurred by machine idle). It

is shown that SE by PSO and DIATC yields about up to 13.3% and 6.3% lower energy

consumption costs than those by SB, respectively. The JIT costs by SB are about up to

92% and 100% higher than SE for both PSO and DIATC, respectively. It should be noted

that such unexpected results are caused by the relatively small penalty (i.e., CJ = 0.001)

given for SE compared to SB, even though real MSEs of SB are much smaller than those of

SE. As a result, for large size data groups (i.e., n ≥ 80), about up to 11% higher energy

consumption cost is incurred by DIATC for both SB and SE. However, DIATC yields, on

average, about 30 ∼ 99% lower JIT costs for both strategies, which offsets such energy cost

gaps, finally resulting in up to 94% and 73% lower total costs for SB and SE, respectively.

One obvious observation in PSO and DIATC is that the computational time (CPU)

of PSO dramatically increases, and even 80−job instances take about 3 hours to give solu-

tions; most of instances with n ≥ 200 cannot be solved within the 3−hour time limit. On the

contrary, DIATC gives all solutions within about 0.5 seconds, which is an extremely short

computational time compared with those of PSO. It should be emphasized that DIATC is

performed based on a time-scaled approach that eliminates the need for directly synchroniz-

ing events and thereby eliminates the complexity associated with discrete event distributed

simulation approaches. The control laws in arrival time and idle time control assure sta-

bility and convergence, while allowing the production system to be effectively controlled

with minimal global information, and minimize system complexity. In particular, most of

the computational complexity of DIATC is related to sorting arrival times of production

jobs and machine vacations, which is known as O(n2). Such low computational complexity

guarantees system scalability, yielding an advantage for solving larger size problems.

The decision-making processes of DIATC and PMVS are based on complicated mech-

anisms that are mainly affected not only by due-date and idle time distributions of jobs

but also by electricity price rate distributions, possibly resulting in irregular trends on the
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Table 5: Relative performance on energy and JIT costs: average values

Energy cost JIT cost

n PSO DIATC PSO DIATC RE (%) RJ (%)

10 SB 0.15 (0.00) 0.16 (0.01) 0.00 0.04 -6.67 -

SE 0.13 (0.00) 0.15 (0.01) 0.01 0.00 -15.38 100.00

RBE (%) 13.33 6.25 - 100.00

30 SB 0.43 (0.01) 0.44 (0.04) 0.03 0.13 -2.33 -333.33

SE 0.40 (0.00) 0.44 (0.03) 0.03 0.02 -10.00 33.33

RBE (%) 6.98 0.00 0.00 84.62

50 SB 0.72 (0.02) 0.74 (0.05) 0.20 0.21 -2.78 -5.00

SE 0.69 (0.01) 0.74 (0.05) 0.11 0.02 -7.25 81.82

RBE (%) 4.17 0.00 45.00 90.48

80 SB 1.15 (0.03) 1.22 (0.11) 0.95 0.66 -6.09 30.53

SE 1.12 (0.04) 1.20 (0.10) 0.48 0.07 -7.14 85.42

RBE (%) 2.61 1.64 49.47 89.39

100 SB 1.52 (0.04) 1.59 (0.15) 2.34 0.72 -4.61 69.23

SE 1.47 (0.05) 1.59 (0.15) 0.44 0.07 -8.16 84.09

RBE (%) 3.29 0.00 81.20 90.28

150 SB 2.34 (0.12) 2.55 (0.32) 15.38 2.86 -8.97 81.40

SE 2.29 (0.10) 2.55 (0.32) 2.10 0.29 -11.35 86.19

RBE (%) 2.14 0.00 86.35 89.86

180 SB 2.76 (0.11) 3.02 (0.27) 23.82 5.48 -9.42 76.99

SE 2.72 (0.11) 3.02 (0.27) 3.86 0.55 -11.03 85.75

RBE (%) 1.45 0.00 83.80 89.96

200 SB 2.96 (0.13) 3.29 (0.37) 44.94 1.45 -11.15 96.77

SE 2.96 (0.14) 3.28 (0.37) 5.46 0.15 -10.81 97.25

RBE (%) 0.00 0.30 87.85 89.66

250 SB 3.80 (0.18) 4.15 (0.54) 97.45 4.11 -9.21 95.78

SE 3.79 (0.18) 4.15 (0.53) 7.42 0.41 -9.50 94.47

RBE (%) 0.26 0.00 92.39 90.02

300 SB 4.42 (0.19) 4.92 (0.56) 182.34 7.21 -11.31 96.05

SE 4.42 (0.19) 4.92 (0.56) 16.17 0.72 -11.31 95.55

RBE (%) 0.00 0.00 91.13 90.01
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energy consumption and JIT cost variations. It is worthwhile to note that DIATC can

possibly yield unstable results for JIT and energy perspectives, depending on different pro-

duction settings on electricity prices, due-date distribution, and JIT penalty. Nevertheless,

the significance of the DIATC approach under such dynamic causal relationships is that the

trade-off among these metrics can be efficiently tested in advance thanks to its extremely

short computational time, and proper strategies can be flexibly selected and implemented

for different production settings.

6. Conclusion

In this paper, we investigated a single machine scheduling problem with time-varying

electricity pricing to minimize the total production costs of JIT penalty and energy con-

sumption. A new MINLP model that determines job arrival times and machine turn-off

times was developed, and a continuous-time variable control models and algorithm were

proposed to solve the investigated problem. Specifically, arrival time and idle time con-

trollers were modeled to manage job arrivals and machine idle so as to improve both JIT

and energy performance, simultaneously. HASS VF0 machine profiles were used for the

numerical experiments with randomly generated instances. Computational results showed

that idle time control contributes to about 81% decreased machine idle times and about

63 ∼ 100% decreased energy consumption costs compared with the algorithm without idle

time control. Energy-focused and balanced production strategies are also tested by the

proposed algorithm, and their trade-offs were investigated in terms of JIT and energy per-

formance. For relatively large size data groups, the proposed approach incurs about 4 ∼ 11%

higher energy consumption costs on average, which are offset by about 30 ∼ 99% lower JIT

costs, resulting in 10 ∼ 94% lower total costs on average compared to the metaheuristic

approach.

Computational complexity of solving the given MINLP is extremely high, due to compli-

cated decision-making procedures under the integrated consideration of time-varying elec-

tricity pricing, requested due-date, and energy consumption cost. The discrete time control
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mechanism of the proposed approach led the production system to be effectively managed

with minimal global information, finally resulting in minimizing system complexity.

However, algorithmic improvement of DIATC in both JIT and energy performance is

still crucial, especially when the problem size increases. One of the technical limitations

existing in the proposed approach is that the final energy consumption cost for normal

machine processing is determined by the result of arrival time control, resulting in relatively

loose decision-making processes rather than an active approach. One possible solution will be

embedding a derivative controller that more clearly affects job arrival times while considering

the time-varying electricity cost. Furthermore, advanced idle time control for more effectively

deciding the number of machine vacation objects and their positions will be required to

bridge performance gaps.

For the machine power switch strategy, as mentioned in section 1, machine speed control

(i.e., capacity control) can be an alternative approaches that replaces the machine turn-

off strategy, especially when machine specifications cannot support flexible power switch

during operations. However, such a capacity change from this nominal value may result

in deterioration of product quality as well as of the machinery itself, thereby increasing

machine maintenance costs. Therefore, integrated decision-making processes considering

these performance conflicts will be able to more accurately incorporate real-world conditions

in the machine power switch strategy. Lastly, extensions of the proposed control models

and algorithm for job-shop or flow-shop production systems with multiple machines require

additional research.
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