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Abstract—Modern NISQ devices are subject to a variety of
biases and sources of noise that degrade the solution quality
of computations carried out on these devices. A natural question
that arises in the NISQ era, is how fairly do these devices sample
ground state solutions. To this end, we run five fair sampling
problems (each with at least three ground state solutions) that
are based both on quantum annealing and on the Grover Mixer-
QAOA algorithm for gate-based NISQ hardware. In particular,
we use seven IBM Q devices, the Aspen-9 Rigetti device, the IonQ
device, and three D-Wave quantum annealers.

For each of the fair sampling problems, we measure the ground
state probability, the relative fairness of the frequency of each
ground state solution with respect to the other ground state
solutions, and the aggregate error as given by each hardware
provider. Overall, our results show that NISQ devices do not
achieve fair sampling yet. We also observe differences in the
software stack with a particular focus on compilation techniques
that illustrate what work will still need to be done to achieve a
seamless integration of frontend (i.e. quantum circuit description)
and backend compilation.

I. INTRODUCTION

While finding any optimal solution is usually the goal
when solving optimization problems, sampling fairly from
all optimal solutions is an essential component of many
real-life optimization applications, such as satisfiability-based
probabilistic membership filters [2], detecting equally likely
fluid flow outcomes in subsurface modeling problems [10],
[16], and generally in engineering/physics contexts where the
objective function does not explicitly encode all design goals.

Fair sampling from all optimum solutions has been proposed
[7] as a benchmark problem for Noisy Intermediate Scale
Quantum (NISQ) devices, inspired by theoretical work on
fairness in quantum annealing [13]. In this paper, we thor-
oughly examine the state of fair sampling on a wide range
of NISQ platforms by considering both the probability that
the device finds an optimum solution (which we call ground-
state probability) and the fairness metric from [7] based on
a statistical test on how many runs are needed to reject the
hypothesis that device is actually a fair sampler. The NISQ
platforms that we consider are seven backends from IBM Q
ranging in Quantum Volume from 8 to 128, the Aspen-9
Rigetti device, an IonQ device and three different D-Wave
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quantum annealing devices. We accessed IonQ, Rigetti, and
two of the D-Wave devices through the Amazon Braket cloud
service and had direct access to IBM Q and the third D-Wave
device.

We choose five standard small optimization problems (from
[13] and [7]) that are paradigmatic examples for fair sam-
pling formulated as Ising problems, which can be solved
by the Grover Mixer Quantum Alternating Operator Ansatz
(GM-QAOA) [3] for general gate-level quantum devices (i.e.,
IBM Q, Rigetti, and IonQ) and by the standard annealing algo-
rithm for Ising problems on D-Wave quantum annealers. The
GM-QAOA algorithm theoretically guarantees fair sampling,
while the quantum annealing algorithm only samples fairly
at very short annealing times at the cost of lower ground
state probabilities (see theoretical analysis in [13]). We present
this background information in more detail in Section II. Our
results give a good glimpse of how far practice and theory still
diverge, due to hardware and software limits.

If we had error-corrected quantum computing, we could just
code up our five example problems in a standard quantum
circuit language, such as IBM’s QISKIT, Amazon Braket,
or Rigetti’s Quil and compile it into a standard intermediate
representation (such as Microsoft’s QIR or IBM’s QASM)
and then let a backend compiler turn it into machine code
for the individual vendor-specific backends. The reality of
2021, however, is that such compilation can be done, but it
results in lengthy circuits whose execution essentially returns
just noise on current NISQ platforms. Until we have more
advanced optimization passes for quantum compilers, we find
that hand-optimization is a necessity. We describe our resulting
circuits in Section III. While we will go into some detail
regarding the compilation choices for IBM Q and D-Wave
in separate Sections V-B and V-C, we report our comparative
results along the two axes of probability of returning ground
state and fairness in Section V. Our main findings are:

1) IonQ achieves the highest fairness and ground state
probability for Problems (a) and (b): IonQ has the highest
fairness and ground state probability among the gate model
devices for Problems (a) and (b).

2) IBM Q achieves the highest fairness for Problems (d)
and (e) and highest ground state probability for Problems (d):
The aggregate results for IBM Q have the highest fairness
for problems (d) and (e). IBM Q aggregate results also have
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TABLE I: Ising models with degenerate ground states to be studied on NISQ hardware. Problems (a)—(d) are from [13]. The
dark red edges indicate a ferromagnetic .J;; = +2 coupling and the light red edges a ferromagnetic .J;; = +1 coupling; the light
blue edges represent an antiferromagnetic .J;; = —1 coupling and the dark blue edges an antiferromagnetic .J;; = —2 coupling.

All Ising Hamiltonians Ho =
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the highest ground state probability for Problem (d), although
TonQ has the highest ground state probability for Problem (e).

3) As expected, D-Wave finds ground states most reliably
compared to I-round GM-QAOA: Allowing for more QAOA
rounds and thus longer circuits would increase the theoretical
optimum achievable, but in practice would lead to a further de-
crease in ground state probabilities as the noise just dominates
the algorithmic improvement of additional rounds.

4) D-Wave achieves highest fairness for Problem (c):
While the gate model backends behave similarly for Problem
(c), D-Wave achieves the highest fairness metric.

5) Rigetti’s circuits have the highest aggregate error rate:
Rigetti’s relatively poor performance can be attributed to its
high aggregate error rates. Using vendor provided qubit-level
error rates, we calculate the aggregate error of each circuit
from the examples. Rigetti’s error rates are usually higher than
80 %, IonQ’s is around 50 %, and IBM Q error rates span
a wide range, largely corresponding to the different device
generation and achieved Quantum volumes.

B,7| He |B,7y) of a 1-round Grover Mixer QAOA found with a fine grid search
- and the corresponding ground state probabilities.

Details: The detailed scatter plots in Section V provide
more insights. The Pareto front of backends in a fairness vs.
ground-state probability plot is dominated by IBM backends
with a few notable IonQ experiments interspersed. If we
include D-Wave, D-Wave dominates the Pareto front on the
ground state probability but only at a typically low fairness
level. Recall that a data point is on the Pareto front if no other
point exists that is better in both fairness and ground state
probability.

We present more detailed results on the IBM Q compiler
environment in connection with our examples in Section V-B.
The compiler passes and flags that IBM Q QISKIT offers pro-
duce at times unpredictable results. We look at the aggregate
circuit error that we can compute without actually running
the circuit. We find that selecting noise adaptive compilation
option reduces errors often, albeit increasing it in other cases.
A similar effect can be observed when manually selecting the
circuit topology preserving initial qubit layout for the circuits.
Since the changes in aggregate error rates for these circuits
can achieve reductions from 80 % error to less than 30 %, our



Name LNN 5T 5P 6A TH Clique
pq0-pgl-pqg2 pa0-pal-pgd pa0-pq3 pq0-pa3 pq0 pad all-to-all
Hardware [ Lo I \ [
Sub-Topology pg2 pal-pg2 pal-pg2 pal-pg2-pg3
- | I I | I I
pa3 pg4 pa4 pgb g5 P96
Devices All IBMQ, Rigetti | All IBMQ, Rigetti | IBMQ Melbourne, Rigetti | All IBMQ TonQ

TABLE II: Hardware topologies we compile our circuits to. The topologies correspond to graphs of physical qubits pg, . . .

7PQG

available as sub-topologies on IBM, Rigetti, and IonQ devices: LNN (Linear Nearest Neighbor), 5T, 5P, 6A, 7H (labeled by
shape) and Clique (full connectivity). We compile the smaller problems (d)—(e) to LNN and the larger problems (a)—(c) to all
topologies they fit on, using only the available gates of the corresponding device(s). For D-Wave embedding, see Section IV-A.

results suggest that users should always test a large number
of compiler options. We also look at QISKIT’s four different
optimization levels for compilation (0,1,2,3,). These levels
generally reduce aggregate error by a few percentage points
as we increase the optimization level; however, optimization
level 1 shows erratic behavior at times tripling error rates over
optimization level 0, but at other times actually beating even
level 3 by 10%.

Section V-C presents more detailed results on studying the
effect of varying the annealing time parameter on D-Wave
from 1 to 300 microseconds. In three of our examples, we see
the theoretically predicted increase in ground state probability
between 1 and 10 microseconds at a significant level. Overall
we conjecture that even the minimum value of 1 microsecond
for annealing time is already too large to still allow for
fairness, thus real-life D-Wave is good at finding optimum
solutions, but does not sample fairly among them.

Overall, our results characterize the state of fair sampling on
a good subset of all available NISQ devices. While IBM and
IonQ outperform Rigetti and D-Wave in our fairness metric,
we want to be clear that none of the tested NISQ platforms
are very fair in the first place. Much work remains to be done
in quantum hardware design to truly achieve fair sampling.

II. BACKGROUND: SETTING THE STAGE

In this section we describe previous studies of fair sampling
in the context of quantum computing. A note on nomenclature:
since the optimization problems we study can all be phrased
in terms of Ising models, we adopt the more physics-oriented

Uns (Br) = e #PIF)FI

|
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Fig. 1: GM-QAOA: State preparation Ug gives equal superpo-
sition of all feasible states |F') = [F|~%/23" . |z). Us and
U; are used to implement the Mixer Uy () = e *#IFNFI,
For unconstrained problems, we have Ug [1") = H®" [17) =
|—=") and Uy (B) = e~ 17" (=", The multi-control-Z~#/7
gate is fully symmetric, thus we may swap controls and target.

language and refer to ‘optimal solutions’ as ground states.
Problems with multiple optimal solutions are thus said to have
degenerate ground states. We follow the tradition of analyz-
ing and assessing fair sampling in the quantum computing
context as defined for quantum annealing [13] and general
gate-level quantum computing [7]. Taking the paradigmatic
examples suggested by these earlier works, we define five
standard examples of optimization problems, whose graph
representation is shown in the first column of Table I with
the formal objective function expressed as Ising Hamiltonians
in the second column, and the resulting optimal solutions or
ground states (expressed in an T, | basis) in the third column.
Problems (a)-(d) all exhibit theoretically understood biased
sampling with quantum annealing, so they are a somewhat
natural non-trivial challenge for fair sampling algorithms. We
added Problem (e) as an even smaller test case for our studies.
Since all problems are less than 7 qubits, it appears plausible
that they could be solved with reasonably well on current
NISQ hardware.

By way of giving background, basic quantum annealing [11]
is known to not always sample degenerate ground states fairly
from a theoretical [15] and experimental [14] perspective.
Several approaches to improve fairness of quantum annealing
have been made [12], [13], [17], [18]. An additional suggestion
is to add to the transverse field driver Hamiltonian ) X; all
higher-order Pauli-X terms, resulting in > X; + > X;X; +
XXX, + ... = |=") (=" [I5]. The study of limited
higher-order driver Hamiltonians (i.e., without going over
the complete sum), led Konz et al [I13] to introduce the
paradigmatic Problems (a)-(d). As Ising problems consisting
of sums of quadratic ZZ terms, the D-Wave quantum annealer
takes these as native inputs. For gate-level NISQ devices, we
need an appropriate algorithm to solve the problems. The most
natural candidate for this is the Grover Mixer QAOA (GM-
QAOA) algorithm [3], which in theory samples fairly.

GM-QAOA is a variation of the Quantum Alternating
Operator Ansatz [9]. In its essence, for a problem instance
I with feasible solution states F' and cost Hamiltonian H¢o
on n qubits, a p-round QAOA prepares a parameterized state
from which it samples low-energy states with respect to Hc¢:

1B.7) == Un(Bp)Up(p) - Unt(B1)Up(71)Us [T7) . (D)

The circuit consists of an initial state preparation uni-
tary operator Ug that creates a superposition of all feasi-
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Fig. 2: Implementation of State Preparation Ug and the Phase Separator Up for Problem (c) on a 6A-connectivity (pq, . . .
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light gray) for IBM Q: The logical qubit lg, := |1) is fixed, effectively making all its gates and controls redundant. (Phase
separator) The weighted Ising terms wZ;Z; in the cost Hamiltonian H¢ of the phase separator Up = e~"He pairwise
commute and can thus be implemented individually with 2 CNOTs and 1 R,(—2-w-+). IBM Q Melbourne does not contain
a 4-clique in its topology, only a 4-cycle, hence implementing the 4—clique of logical qubits lqs, lgs, lg,, lq5 needs at least
one SWAP. We incorporated it into the phase separator on logical qubits lg,, lg5 (drawn with curved CNOT's), resulting
in a permuted assignment to the physical qubits at the end. (State preparation) Given H [1) = |—) = SV X [1), the state
preparation unitary and its inverse have been rewritten as Us = (Sv/X)®"~! and U} = (\/)7(TKS’T)@”1*1 = (XV/XSst)en-1,
The phase shifts .S and ST commute through the phase separator and cancel, and the action before measurement in the Z-basis
only affects phase not probability; hence they can be removed. (Grover Mixer) Schematics only, for implementation see Fig. 3.

ble solutions F, followed by p applications of alternating
parametrized phase separating and mixing unitaries Up (),
Upr(Br) with real angle parameters ¥ = (71,...,7,)7 and
B = (Bi,---,Bp)T, and a final measurement in the com-
putational basis, see Fig. 1. The phase separating unitaries
Up(y) add multiplicative phase factors to the amplitudes of
feasible computational basis states, with phases proportional
to respective energies. We usually have (up to global phases)
Up(y) = eHe| where He is an Ising Hamiltonian with
quadratic and linear terms as found in the second column
of Table I for our example problems. The Grover mixer
unitary [3] requires an efficient state preparation unitary Ug
of an equal superposition of all feasible basis states |F') =
I/MZIGF |z). Ug can be used to design a mixing unitary
U, resembling Grover’s selective phase-shift operator [1], [],
[19], where Ups(8) = e P Fl = [d— (1—e"P) |F) (F| =
Us(Id — (1 — =) [1) (1)U}

Grover Mixer QAOA samples fairly: all feasible basis states
begin with amplitude 1/ \/m (after state preparation with
Us). The phase separating unitary Up(y) = e 7H¢ then
phases the amplitude of every basis state proportional to its
energy and -, keeping the same phase for basis states of same
energy. The mixing unitary Uy (3) = Id — (1 — e~ %) |F) (F|
then deducts from all amplitudes the same weighted average of
the amplitudes, ((1 — e~#)/+/|F|) (F|Up(7)Us |1). There-
fore, basis states with the same energy are sampled with the
same amplitude. For a complete proof, see [3].

III. DESIGNING CIRCUITS FOR NISQ DEVICES

Our general procedure for generating test circuits was to
begin with a 1-round Grover Mixer QAOA algorithm in order
to keep circuit depth low. Following [13], we fix go :=7 as
all of the models in Table | are symmetric under simultaneous
1 / | swaps on all qubits. This reduces the problems from
Ising Hamiltonians H with only quadratic terms acting on
logical qubits lqq, ..., lg,_, to a new Hamiltonians H(, with
some linear terms acting on fewer qubits lg,, ..., lq,_;. This

also transforms lg, into a classical control bit for the con-
secutive Grover Mixer, which can be removed. Thus we can
embed Ising problems without linear terms on n qubits onto
circuits with only n — 1 qubits, see Fig. 2. The optimum en-
ergy (B8,7| Hc |B,~y) achievable with a 1-round Grover Mixer
QAOA was found with a fine grid search for angles (3,7)
with a grid resolution of 7/60; the values with corresponding
ground state probabilities can be found in Table I.

We then compiled the circuits to match connectivity and
gates available for each tested device individually. The avail-
able hardware topologies are listed in Table II. For IonQ and
Rigetti through Braket, there is no available compilation to the
available 1- and 2-qubit gates. Compared to IBM’s giskit
compiler tools, we found that manual compilation reduced
circuit depth by roughly a factor of two.

Hence we used compilation by hand down to the available
1- and 2-qubit gates for each individual device. To reduce
circuit depth as much as possible, we made use of three
techniques: (i) use the available 1- and 2-qubit gates wherever
possible, (i) when using SWAP gates, classically track the
permuted assignment of logical to physical qubits instead of
restoring the original assignment in the circuit, (iii) use ancilla
qubits whenever they help bring down the circuit depth of the
Grover Mixer implementation. We demonstrate our techniques
in detail for the circuit compilation of Problem (c) on topology
6A for IBM Q using gates X,V X, CNOT, R, (0) in Figures 2
and 3. We provide accompanying interactive Quirk circuits for
these figures here (state preparation & phase separator) and
here (multi-control-Z~* phase shift unitary matrix illustrated
by Quirk’s amplitude display via state channel duality).

IV. METHODOLOGY / EXPERIMENTAL DESIGN
We briefly explain our experimental methodology and the
experimental design. In general we send the vendor and
backend-independent circuits from Section III to the compiler
for each of the vendors, calculate the aggregate error on
each circuit, and then execute a large number of runs on
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Fig. 3: Grover Mixer implementation details for logical qubits lqq,...,lg; with fixed lg, := [1) on 6A-connectivity
(pqg, - - -, pgs, light gray) for IBM Q: (AND gates) To reduce the 4-control-Z —B/7 from Fig. 2 to fewer controls, we first
compute the logical AND(lg,, lg,) into an ancilla qubit an, and swap it to pq.. The task is now to implement a 3-control-Z —# /m
phase shift on central qubit lg; on pg, with controls on its neighbors lgs, an, lg, on pqg, pqs, pq,, before uncomputing the
AND. (3-control phase shift) We use the standard decomposition into single-qubit phase shifts on [g interleaved with CNOT
and TOFFOLI gates, plus a recursively smaller 2-control-Z~?/27 on the control qubits lgs, an, lg,. As lg, is not adjacent to
lgs, an, we first swap it to the central qubit pg,. Note that due to gate cancellations, this SWAP only increases the CNOT
count by 1. (Recursion) We recursively decompose the 2-control-Z~#/27 (decomposition not shown). Similarly to before, we
will need another SWAP (shown) to implement the final base of a l1-control-Z~#/47 (not shown). (TOFFOLI gates) For the
two TOFFOLIs, we can avoid such a further recursion (decompositions not shown): We will implement each TOFFOLI with
2 Hadamard gates on the target conjugating a 2-control-Z. If we interpret the second of these 2-control-Z as a 2-control-Z !
(as Z~!' = Z), the resulting recursive I1-control-Z'/? and l-control-Z~'/? of the two TOFFOLI implementations cancel.
Finally, we can replace all (non-controlled) phase-shift gates by (up to global phase) equivalent R, rotations, native to IBM Q.

the 12 backends in Table III with different circuit topologies
described in Table II, collecting data to calculate our metrics of
ground state probability (GSP) and our fairness metric called
“number of shots to reject the fair sampling hypothesis”. We
describe each of these individual steps briefly, particularly
highlighting differences among the four vendors.

Backend Type QV | Qubits
IBM melbourne Gate model 8 15
IBM casablanca Gate model | 32 7
IBM guadalupe Gate model | 32 16
IBM toronto Gate model | 32 27
IBM sydney Gate model | 32 27
IBM manhattan Gate model | 32 65
IBM montreal Gate model | 128 27
TonQ ionq Gate model 11
Rigetti Aspen-9 Gate model 31
DWave | LANL 2000Q Annealer 2032
DWave 2000Q-6 Annealer 2048
DWave Advantage Annealer 5760

TABLE III: Device properties for the NISQ backends we
studied. Only IBM Q uses the Quantum Volume metric (QV)
to characterize their systems.

A. Backend Compilation

IBM Q: We selected seven IBM Q backends shown in
Table III, which all allowed us to embed all five fair sampling
problems onto the hardware connectivity, that is without
having to resort to extensive swapping. We implemented the
circuits of the five test problems in IBM’s QISKIT (version
0.25.0). QISKIT has a method that allows you to compile the
logical circuit onto the specified hardware using the native

gateset. We run each circuit using three different compiler
arguments: (i) simply leaving everything to default, except
supplying the specific backend; (ii)setting the layout method
as noise-adaptive, setting the optimization level to 3, default
values otherwise; (iii) supplying an argument for initial-layout,
and set optimization level to 3. The initial layout we supply is a
random subgraph of the hardware connectivity graph which is
isomorphic to the original circuit graph structure (e.g. 5T, 7H,
etc). We used the circuit topologies as described in Table II.

Rigetti: 'We accessed the IonQ system through the AWS
Braket cloud service. AWS Braket defines its own Python-
based quantum circuit language. In order to successfully
run on the Aspen-9 device, we found it necessary to hand-
compile some aspects of the backend independent circuits
as AWS Braket did not transform the circuits supplied into
the native gateset used by Rigetti. Rigetti has a compilation
step from the provided circuit into their own Quil language.
For each circuit we submit through AWS Braket, we get
that compiled Quil code as part of the task metadata. The
compilation step involves re-mapping the logical circuit onto
a set of physical qubits. We found that this compilation step
significantly changes the structure of the original circuit. The
circuit topologies that were run on the Aspen-9 device are
given in Table II. For problem (b), both 5T and 5P were
embeddable onto the Aspen-9 hardware, so both topologies
were used. We used the 6A circuit topology because 7H is
not embeddable onto the Aspen-9 connectivity.

IonQ: In order to access the IonQ system, we used AWS
Braket. IonQ accepts a different gate set than Rigetti, so
we had to again hand-compile the circuits. IonQ’s all-to-all
topology made this relatively easy.

DWave: The circuits we run on D-Wave are in the form
of Ising models. Recall that Table I column 3 Ising Hamil-
tonian H- shows the exact Ising models we use for these
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experiments.

When using quantum annealing, if the Ising model connec-
tivity does not embed onto the hardware connectivity, then
we must minor-embed the Ising model onto the hardware
graph. We use a D-Wave’s standard embedding method called
minorminer as well as a hand-tuned embeddings.

When we use minor-embedding, we also need to use a
parameter called chain strength in order to ensure that
physical qubits representing a logical variable (we refer to
these physical qubits as a chain) take the same value, (meaning
they do not disagree on the logical variable state). If a chain of
physical qubits disagrees, then this is called a broken chain.
In order to resolve a broken chain, in our experiments we
use the majority vote method. Additionally, we compute chain
strength using the default method in D-Wave’s Ocean SDK.

For the standard embedding experiments, we use a random
minor-embedding found by D-Wave’s minorminer [4]-[6],
with potentially unequal chain lengths. Using the full Isings
means that the results we get from D-Wave include not only
the ground states shown in the 3rd column of Table I, but
also their complement, thus there are two ways of quantifying
ground state bias: (i) treat the complement of each ground
state as a separate ground-state; (ii). treat the complement of
each ground state as being the same as the original. Call the
first option separate ground-state complements and the second
option combined ground-state complements. We ran standard
embedding experiments only on the LANL D-Wave 2000Q.

For manual embedding experiments, we designed balanced
embeddings across all devices and problems. In order to
achieve this, we first fixed the value of qubit 0 on all problems
to be 1 (note that for the gate model problems, we also fix the
state of qubit 0). In this process, the quadratic terms (qo, ¢; : 1)
associated with qubit 0 became linear terms on the neighboring
qubit (g;: n). Fixing qubit O to be 1 allowed us to then
have chain length 2 embeddings for both 2000Q backends,
and chain length 1 (i.e. native embedding) embeddings for
Advantage-system1.1. Fixing qubit O to be 1 also causes the
ground state behavior to change from above. Specifically,
now there are no complement ground states; only the original
groundstates shown in column 4 of Table [ (except missing
qubit O because we fixed its state). We ran this experiment on
all three D-Wave backends.

We also varied the annealing time parameter in all our
experiments. Specifically, for the LANL 2000Q we varied
annealing time between 1 microsecond and 300 microseconds
in step size of 1 microsecond. The hardware does not allow
for annealing times less than 1 microsecond.

For the backends Advantage-systeml.l and 2000Q-6, we
used AWS Braket to execute the tasks, and therefore getting
large numbers of results was more limited. As such, we tried
an annealing time of 2 microseconds, and an annealing time
of 100 microseconds on both of these backends.
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B. Ground state probability metric

Our first metric is simply ground state probability (abbre-
viated as GSP), which is the fraction of shots which return a
ground state solution for that circuit.

C. Fairness: Number of shots to reject fair sampling metric

We define our main metric, as the Number of shots to reject
fair sampling (for short simply called Fairness). We want to
quantify how biased or fair the distribution of these found
ground states is. Importantly, each of the five test problems
has at least three ground state solutions, meaning that we
can calculate a distribution of how frequently each ground
state solution was found. The exact description of this method
is outlined in [7]. The goal of this method is to provide a
reasonable metric for fairness which translates p-values from
the x? test into a larger (and more human-readable) metric.
This metric specifically reports the number of shots (drawn
from the ground state distribution) one would need in order
to reject the fair sampling hypothesis with 95% statistical
significance. Thus, the smaller the metric is, the less fair the
ground state distribution is, and the larger it is the more fair
the ground state distribution is.

The only adjustable parameter for this method, other than
the input distribution, is the number of inner loops (called
n;). For all gate model results, we use n; = 100,000 when
applying the method, and for all D-Wave quantum annealing

results we use n; = 1,000 in order to reduce computation
time.

D. Aggregate Error metric

In order to quantify how much noise a particular circuit
was subject to during it’s execution, we used the aggregate
error metric introduced in [7]. To be specific, for a sequence
of instructions (gates) g, . . . , g, that make up a circuit C, the
aggregate error is defined as Ec =1 — []!_, (1 — e;) where
e; is the associated error for the gate g;. In this computation,
we include every gate including the readout operation.

In the case of IBM Q, every task includes a full description
of error rates for each native gate operation for each qubit and
edge on the hardware. The calibration data for each backend
is updated consistently (on the order of hours to days). Before
submitting the task to each IBM Q backend, we compiled
the circuit into the native gateset for all IBM Q devices
using the QISKIT transpiler, see more details in Section IV-A.
Therefore, we used these device compiled circuits in order to
compute the aggregate error for each circuit ran on the IBM Q
devices.

In the case of Rigetti, which we accessed through AWS
Braket, we queried the latest calibration data at the same time
we were executing each task. This calibration data seems to be
updated regularly (on the order of hours or day). The Rigetti
calibration information is similar to the IBM Q data, except
that they provided single qubit gate fidelities as an entire class
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(instead of differentiating between different gate’s) and the
data was given as gate fidelities instead of error rates. For
each task submitted, we also get the device compiled Quil
code for that circuit (see Section IV-A). We then used that Quil
circuit (and the queried calibration data) in order to compute
aggregate error.

IonQ provides less detailed information, but does give mean
two qubit gate fidelity, a mean single qubit fidelity, and a mean
readout fidelity, which we used to calculate aggregate error for
the IonQ circuits.

For the D-Wave quantum annealers we test, there is not a
reported error metric. Therefore, we only use the aggregate
error metric for the gate model devices.

V. RESULTS
A. Fair sampling comparison across IBM Q, Rigetti, and IonQ

Because error is the main reason for falling short of
theoretical performance, we first study how the two metrics
GSP and Fairness change as a function of aggregate error for
the different gate model backends. Figure 4 shows how GSP
changes for the five different test problems on each of the nine
gate model backends. Similarly, Figure 5 shows how Fairness
changes across the nine gate model backends. We include
points obtained from a classical Local QISKIT Simulator,
which shows roughly what to expect expect from a zero-error
quantum device. Across all figures in this subsection, we plot

the metric values for each of the 20 individual calls (each
call having 8192 shots) for each backend. Thus each plot in
Figures 4, 5 and 6 shows at least 200 individual points plotted.
For the IBM Q devices, the results plotted in Figures 4, 5 and
6 all used the noise adaptive transpiler options outlined in
Section [V-A.

In theory, increasing aggregate error should correlate with
decreasing values for both the GSP and Fairness. While both
Figures 4 and 5 show this general trend, there are fairly notable
exceptions. The correct interpretation of these plots looks at
the 20 points of each backend as a cloud of points; while
we did not discard outlier points, we should take care to
not interpret results solely based on outliers, but rather on
the position of the cloud. With respect to GSP in Figure 5,
IonQ reaches the best values in Problems (a), (b), and (e),
despite having higher aggregate error than many of the IBM
Q systems. Among the IBM Q system, there is substantially
smaller aggregate error as we go from the older Quantum
Volume (QV) 8 systems to the newer higher QV systems
(light blue to dark blue). However, this reduced error does not
consistently lead to improved GSP values, in fact several of
the QV32 systems outperform the QV128 in most examples.
IBM Q does however perform best for Problems (c¢) and
(d), coming very close to the theoretical optimum (QISKIT
simulator) in Problems (d) and (e). Rigetti’s performance falls
behind, largely due to high aggregate error. With respect to
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Fig. 7:

IBM Q device-specific aggregate errors for Problems (a), (b), (c), (d), (e) (from left to right) depending on transpilation:

(top) We compare varying optimization levels 0, 1, 2, 3 for transpilation with noise adaptive layout for the respective devices.
(bottom) We plot 3 different transpilation methods: Default (), Initial layout (o) and Noise adaptive (+), as well as minimum
(—) and maximum (—) aggregate error over all possible IBM transpiler flag combinations. Default is calling transpile with no
additional flags. Initial layout 3 specifies a randomly chosen layout isomorphic to the original circuit (with level 3 optimization).
Noise adaptive 3 uses a noise adaptive layout (with level 3 optimization).

fairness (Figure 5), we note the large variability in the Fairness
metric that even extends to the simulator data. The high-
error low QV IBM Q Melbourne system performs surprisingly
well, most likely due to its unique topology, beating out its
higher QV siblings, Rigetti and IonQ in Problems (a) and (e)
and matching their performance in the other problems. The
Rigetti system manages a similar performance coming close
to IBM and IonQ in most problems despite high error. The
QV128 IBM system again does not really stand out despite
its generally low error rates. lonQ’s fairness solidly matches
IBM Q’s in four problems, but falls well short in Problem (e).

Figure 6 directly shows a scatter plot of our two main
metrics GSP vs. Fairness for all 12 NISQ backends using a
logarithmic scale. There are several ways in which the D-Wave
experiments were performed (see Section IV-A), resulting
in several different results being plotted for this particular
comparison. Note that for the gate model devices, we used
1 round QAOA. This means that we can not achieve the GSP
on the gate model circuits (see I) that we can on the quantum
annealers. Thus, in Figure 6 the GSP for all D-Wave backends
is larger than the gate model devices.

Ignoring individual outlier points, Figure 6 lets us visualize
the Pareto front in this bi-criteria optimization, where a point
lies on the Pareto front if it does not get outperformed in
both metrics by other points. For both Problems (a) and (b),
TIonQ has the highest Fairness metric, followed by IBM Q
devices, then Rigetti, and lastly DWave. For Problems (a) and
(b) on gate model devices, GSP is highest for IonQ, followed
by IBM Q devices, and then Rigetti. This result is to be
expected because problems (a) and (b) are the densest of the
five Problems tested, and they take full advantage of the all to

all connectivity of IonQ, whereas the circuit implementations
of (a) and (b) on IBM Q and Rigetti devices used an ancilla.
Problem (c) shows that DWave ranks the highest for Fairness,
followed by IonQ and IBM Q being nearly equal, and lastly
Rigetti. For Problem (c) on gate model devices Rigetti has
the highest GSP followed by IBM and IonQ, which again
are nearly equal. Problems (d) Fairness goes from IBM Q
devices, to IonQ, to DWave, and lastly Rigetti. For gate model
devices on Problem (d) GSP ranking goes from IBM Q to IonQ
to Rigetti. Problem (e) Fairness ranking goes from IBM Q
devices, to Rigetti, to DWave, and lastly to IonQ. Problem (e)
on gate model devices results in GSP going from IonQ, to
IBM Q, and lastly Rigetti.

B. Compilation options for IBM Q backends

The particular QISKIT transpilation method used in order
to compile each of the five circuits onto the IBM Q backends
greatly affects the results. In this Section, we present an
analysis of how different transpilation options change the
aggregate error.

Figure 7 (bottom row) shows the aggregate error across all
IBM Q backends for each of the five test problems. In particu-
lar, we plot the aggregate error for the three transpiler options
outlined in Section IV-A. Additionally, we perform a grid
search across the transpiler options layout-method, routing-
method, translation-method, and optimization-level, and we
plot the minimum and maximum aggregate error found in the
grid search.

This figure shows that there is no clear winning transpiler
parameter combination across all backends and circuits, how-
ever the resulting aggregate varies by as much as 60 %. In
practice the figures suggest that taking the better performing
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of the noise adaptive compilation and giving initial layout
compilation should result in near minimum aggregate error
in most cases.

Figure 7 (top row) plots aggregate error as a function of
IBM Q backend for the 4 different possible QISKIT transpiler
optimization levels. Besides the optimization flag, the layout-
method option was set to noise adaptive. The figure shows
that optimization level 3 performs best with the exception of
the Sydney backend. Variance in the performance of different
backends (such as Sydney) is likely due a mismatch between
the latest calibration data for that system and the noise
experienced by the circuit when executed on the backend.

Generally, increasing optimization levels decrease aggregate
error as expected, with the exception of optimization level
1. Optimization level 1 seems to work better on average
in the case of a noise adaptive layout method; the reason
being that optimization level 1 reduces overall circuit depth
(thus decreasing aggregate error), but does not introduce a
large number of CNOT gates as a result of SWAP operations
attempting to adapt to the noise levels of different qubits (as
higher optimization levels do).

C. D-Wave

We investigate how our metrics change as a function of
annealing time for three D-Wave quantum annealing backends.
For the LANL 2000Q backend, we plot the mean metric out of
the 20 device calls (each call with 8192 shots) as a function
of annealing time. For the other two backends (Advantage-
System1.1 and 2000Q-6), we plot all 20 points for the two
annealing times they were run on (2 microseconds and 100
microseconds).

In Figure 8 (top row), we observe a high variance in
the fairness metric across all problems. Problems (a), (b)
consistently show that the LANL 2000Q balanced embedding
has the highest fairness over annealing time. Problems (c), (d),
(e) on the other hand show that the LANL 2000Q minorminer
embedding has the highest fairness over annealing time.

In Figure 8 (bottom row), we observe different annealing
time dependent trends across each of the problems, largely
from the LANL 2000Q balanced embedding data (the LANL
2000Q minorminer embedding results are relatively constant
over annealing time). For Problems (a), (c), and (d), we
observe a sharp increase in GSP in the first few microseconds
of annealing time. Problems (a) and (d) then decrease in GSP
after that initial increase. Problem (c) continues to increase
GSP up until it plateaus at roughly 100 microseconds. Problem
(b) shows no initial increase in GSP, instead it starts out at a
high GSP and decreases over all annealing times. Problem (e)
shows effectively no difference in GSP over time. It is hard to
tell whether these D-Wave results are in agreement with the
theoretical predictions of [13], which call for initial fairness
with low annealing times and then unfairness but higher GSP
as we increase annealing times, because all modern D-Wave
backends have a minimum annealing time of 1 microsecond.

VI. CONCLUSION

In this article, we compare IBM Q’s, Rigetti’s, IonQ’s and
D-Wave NISQ devices with respect to their performance in
finding ground states and fairness across a set of five paradig-
matic problems. While no platform turned out to be dominant,
we noticed performance differences in both metrics. It is
encouraging to see that leading NISQ vendors are relatively
close in performance and we hope that further technological
advances will increase the fairness of sampling as well as bring
advances to various compilation techniques.

As for open problems, we plan to compare D-Wave perfor-
mance against QAOA-based circuits that use the transverse
field mixer (as opposed to the Grover mixer), we would
like to relate our D-Wave results more cleanly to theoretical
predictions. We also plan to continue our studies for novel
NISQ backends.
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