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Abstract—Modern NISQ devices are subject to a variety of
biases and sources of noise that degrade the solution quality
of computations carried out on these devices. A natural question
that arises in the NISQ era, is how fairly do these devices sample
ground state solutions. To this end, we run five fair sampling
problems (each with at least three ground state solutions) that
are based both on quantum annealing and on the Grover Mixer-
QAOA algorithm for gate-based NISQ hardware. In particular,
we use seven IBM Q devices, the Aspen-9 Rigetti device, the IonQ
device, and three D-Wave quantum annealers.

For each of the fair sampling problems, we measure the ground
state probability, the relative fairness of the frequency of each
ground state solution with respect to the other ground state
solutions, and the aggregate error as given by each hardware
provider. Overall, our results show that NISQ devices do not
achieve fair sampling yet. We also observe differences in the
software stack with a particular focus on compilation techniques
that illustrate what work will still need to be done to achieve a
seamless integration of frontend (i.e. quantum circuit description)
and backend compilation.

I. INTRODUCTION

While finding any optimal solution is usually the goal

when solving optimization problems, sampling fairly from

all optimal solutions is an essential component of many

real-life optimization applications, such as satisfiability-based

probabilistic membership filters [2], detecting equally likely

fluid flow outcomes in subsurface modeling problems [10],

[16], and generally in engineering/physics contexts where the

objective function does not explicitly encode all design goals.

Fair sampling from all optimum solutions has been proposed

[7] as a benchmark problem for Noisy Intermediate Scale

Quantum (NISQ) devices, inspired by theoretical work on

fairness in quantum annealing [13]. In this paper, we thor-

oughly examine the state of fair sampling on a wide range

of NISQ platforms by considering both the probability that

the device finds an optimum solution (which we call ground-

state probability) and the fairness metric from [7] based on

a statistical test on how many runs are needed to reject the

hypothesis that device is actually a fair sampler. The NISQ

platforms that we consider are seven backends from IBM Q

ranging in Quantum Volume from 8 to 128, the Aspen-9

Rigetti device, an IonQ device and three different D-Wave
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quantum annealing devices. We accessed IonQ, Rigetti, and

two of the D-Wave devices through the Amazon Braket cloud

service and had direct access to IBM Q and the third D-Wave

device.

We choose five standard small optimization problems (from

[13] and [7]) that are paradigmatic examples for fair sam-

pling formulated as Ising problems, which can be solved

by the Grover Mixer Quantum Alternating Operator Ansatz

(GM-QAOA) [3] for general gate-level quantum devices (i.e.,

IBM Q, Rigetti, and IonQ) and by the standard annealing algo-

rithm for Ising problems on D-Wave quantum annealers. The

GM-QAOA algorithm theoretically guarantees fair sampling,

while the quantum annealing algorithm only samples fairly

at very short annealing times at the cost of lower ground

state probabilities (see theoretical analysis in [13]). We present

this background information in more detail in Section II. Our

results give a good glimpse of how far practice and theory still

diverge, due to hardware and software limits.

If we had error-corrected quantum computing, we could just

code up our five example problems in a standard quantum

circuit language, such as IBM’s QISKIT, Amazon Braket,

or Rigetti’s Quil and compile it into a standard intermediate

representation (such as Microsoft’s QIR or IBM’s QASM)

and then let a backend compiler turn it into machine code

for the individual vendor-specific backends. The reality of

2021, however, is that such compilation can be done, but it

results in lengthy circuits whose execution essentially returns

just noise on current NISQ platforms. Until we have more

advanced optimization passes for quantum compilers, we find

that hand-optimization is a necessity. We describe our resulting

circuits in Section III. While we will go into some detail

regarding the compilation choices for IBM Q and D-Wave

in separate Sections V-B and V-C, we report our comparative

results along the two axes of probability of returning ground

state and fairness in Section V. Our main findings are:

1) IonQ achieves the highest fairness and ground state
probability for Problems (a) and (b): IonQ has the highest

fairness and ground state probability among the gate model

devices for Problems (a) and (b).

2) IBM Q achieves the highest fairness for Problems (d)
and (e) and highest ground state probability for Problems (d):
The aggregate results for IBM Q have the highest fairness

for problems (d) and (e). IBM Q aggregate results also have



Problem Ising Hamiltonian HC Ground States 1-round GM-QAOA Optimum
with Diagram to be minimized

∣∣(lq0 := ↑) . . . lqn−1

〉
(β, γ)÷ π 〈βββ,γγγ|HC |βββ,γγγ〉 GSP

(a)

0

1

2

3

4 − [Z0(Z1 + Z2 − Z3)

+ Z1(Z2 − Z4)

+ Z2(Z3 + Z4) + Z3Z4]

|↑↑↑↑↑〉 ,
|↑↑↑↓↓〉 ,
|↑↑↓↓↓〉

(
1
2 ,

11
12

)
-2.682 out of -4 0.498

(b)

0

1

2 3

4

− [Z0(2Z1 + Z2 + 2Z3 + Z4)

+ Z1(−2Z2 − Z3 + Z4

+ Z2(Z3 + 2Z4)− 2Z3Z4]

|↑↑↑↑↑〉 , |↑↑↑↓↑〉 ,
|↑↑↓↑↓〉 , |↑↑↓↓↑〉 ,
|↑↓↑↑↑〉 , |↑↓↑↑↓〉

(
11
15 ,

17
60

)
-4.228 out of -5 0.846

(c)

0 1

2 3

4

5 − [Z0Z2 + Z1Z3

+ Z2(−Z3 + Z4 − Z5)

+ Z3(Z4 − Z5) + Z4Z5]

|↑↑↑↑↑↓〉 ,
|↑↓↑↓↑↑〉 ,
|↑↓↑↓↓↓〉

(
23
60 ,− 1

15

)
-1.563 out of -4 0.215

(d)

0

1

2 3

− [Z0Z1

+ Z1(−Z2 − Z3)− Z2Z3]

|↑↑↑↓〉 ,
|↑↑↓↑〉 ,
|↑↑↓↓〉

(
5
12 ,− 1

10

)
-1.319 out of -2 0.702

(e)

0 1

2

−[Z0(−Z1 − Z2)− Z1Z2]

|↑↑↓〉 ,
|↑↓↑〉 ,
|↑↓↓〉

(
23
60 ,− 3

5

)
-0.999 out of -1 1.000

TABLE I: Ising models with degenerate ground states to be studied on NISQ hardware. Problems (a)–(d) are from [13]. The

dark red edges indicate a ferromagnetic Jij = +2 coupling and the light red edges a ferromagnetic Jij = +1 coupling; the light

blue edges represent an antiferromagnetic Jij = −1 coupling and the dark blue edges an antiferromagnetic Jij = −2 coupling.

All Ising Hamiltonians HC = −∑
JijZiZj have only quadratic terms and no linear terms. Note that a symmetry-breaking

fixed setting of the logical qubit lq0 := ↑ results in a Hamiltonian H ′
C on logical qubits lq1, . . . , lqn−1 (without lq0) with some

linear terms. Only Ground States with lq0 = ↑ are listed as all models are symmetric under simultaneous ↑ / ↓-flips. The
right column shows the Optimum Energy 〈βββ,γγγ|HC |βββ,γγγ〉 of a 1-round Grover Mixer QAOA found with a fine grid search

for angles (β, γ) with a grid resolution of 1
60 · π and the corresponding ground state probabilities.

the highest ground state probability for Problem (d), although

IonQ has the highest ground state probability for Problem (e).

3) As expected, D-Wave finds ground states most reliably
compared to 1-round GM-QAOA: Allowing for more QAOA

rounds and thus longer circuits would increase the theoretical

optimum achievable, but in practice would lead to a further de-

crease in ground state probabilities as the noise just dominates

the algorithmic improvement of additional rounds.

4) D-Wave achieves highest fairness for Problem (c):
While the gate model backends behave similarly for Problem

(c), D-Wave achieves the highest fairness metric.

5) Rigetti’s circuits have the highest aggregate error rate:
Rigetti’s relatively poor performance can be attributed to its

high aggregate error rates. Using vendor provided qubit-level

error rates, we calculate the aggregate error of each circuit

from the examples. Rigetti’s error rates are usually higher than

80 %, IonQ’s is around 50 %, and IBM Q error rates span

a wide range, largely corresponding to the different device

generation and achieved Quantum volumes.

Details: The detailed scatter plots in Section V provide

more insights. The Pareto front of backends in a fairness vs.

ground-state probability plot is dominated by IBM backends

with a few notable IonQ experiments interspersed. If we

include D-Wave, D-Wave dominates the Pareto front on the

ground state probability but only at a typically low fairness

level. Recall that a data point is on the Pareto front if no other

point exists that is better in both fairness and ground state

probability.

We present more detailed results on the IBM Q compiler

environment in connection with our examples in Section V-B.

The compiler passes and flags that IBM Q QISKIT offers pro-

duce at times unpredictable results. We look at the aggregate

circuit error that we can compute without actually running

the circuit. We find that selecting noise adaptive compilation

option reduces errors often, albeit increasing it in other cases.

A similar effect can be observed when manually selecting the

circuit topology preserving initial qubit layout for the circuits.

Since the changes in aggregate error rates for these circuits

can achieve reductions from 80 % error to less than 30 %, our



Name LNN 5T 5P 6A 7H Clique

Hardware

Sub-Topology

pq0-pq1-pq2 pq0-pq1-pq4
|

pq2
|

pq3

pq0-pq3
| |
pq1-pq2
|
pq4

pq0-pq3
| |
pq1-pq2
| |
pq4 pq5

pq0 pq4
| |
pq1-pq2-pq3
| |
pq5 pq6

all-to-all

Devices All IBMQ, Rigetti All IBMQ, Rigetti IBMQ Melbourne, Rigetti All IBMQ IonQ

TABLE II: Hardware topologies we compile our circuits to. The topologies correspond to graphs of physical qubits pq0, . . . , pq6
available as sub-topologies on IBM, Rigetti, and IonQ devices: LNN (Linear Nearest Neighbor), 5T, 5P, 6A, 7H (labeled by

shape) and Clique (full connectivity). We compile the smaller problems (d)–(e) to LNN and the larger problems (a)–(c) to all

topologies they fit on, using only the available gates of the corresponding device(s). For D-Wave embedding, see Section IV-A.

results suggest that users should always test a large number

of compiler options. We also look at QISKIT’s four different

optimization levels for compilation (0,1,2,3,). These levels

generally reduce aggregate error by a few percentage points

as we increase the optimization level; however, optimization

level 1 shows erratic behavior at times tripling error rates over

optimization level 0, but at other times actually beating even

level 3 by 10%.

Section V-C presents more detailed results on studying the

effect of varying the annealing time parameter on D-Wave

from 1 to 300 microseconds. In three of our examples, we see

the theoretically predicted increase in ground state probability

between 1 and 10 microseconds at a significant level. Overall

we conjecture that even the minimum value of 1 microsecond

for annealing time is already too large to still allow for

fairness, thus real-life D-Wave is good at finding optimum

solutions, but does not sample fairly among them.

Overall, our results characterize the state of fair sampling on

a good subset of all available NISQ devices. While IBM and

IonQ outperform Rigetti and D-Wave in our fairness metric,

we want to be clear that none of the tested NISQ platforms

are very fair in the first place. Much work remains to be done

in quantum hardware design to truly achieve fair sampling.

II. BACKGROUND: SETTING THE STAGE

In this section we describe previous studies of fair sampling

in the context of quantum computing. A note on nomenclature:

since the optimization problems we study can all be phrased

in terms of Ising models, we adopt the more physics-oriented

UM (βk) = e−iβk|F 〉〈F |

|↑〉 H

UP (γk)

=

e−iγkHC

U†S US
. . .

〈ββ β
,γγ γ

|H
C
|ββ β
,γγ γ

〉

|↑〉 H

|↑〉 H

|↑〉 H Z−
βk

π

US

1√
|F |

∑
x∈F

|x〉 ︸ ︷︷ ︸
p rounds with angles γ1,β1,...,γp,βp

Fig. 1: GM-QAOA: State preparation US gives equal superpo-

sition of all feasible states |F 〉 = |F |−1/2
∑

x∈F |x〉. US and

U†S are used to implement the Mixer UM (β) = e−iβ|F 〉〈F |.
For unconstrained problems, we have US |↑n〉 = H⊗n |↑n〉 =
|→n〉 and UM (β) = e−iβ|→n〉〈→n|. The multi-control-Z−β/π

gate is fully symmetric, thus we may swap controls and target.

language and refer to ‘optimal solutions’ as ground states.

Problems with multiple optimal solutions are thus said to have

degenerate ground states. We follow the tradition of analyz-

ing and assessing fair sampling in the quantum computing

context as defined for quantum annealing [13] and general

gate-level quantum computing [7]. Taking the paradigmatic

examples suggested by these earlier works, we define five

standard examples of optimization problems, whose graph

representation is shown in the first column of Table I with

the formal objective function expressed as Ising Hamiltonians

in the second column, and the resulting optimal solutions or

ground states (expressed in an ↑, ↓ basis) in the third column.

Problems (a)-(d) all exhibit theoretically understood biased

sampling with quantum annealing, so they are a somewhat

natural non-trivial challenge for fair sampling algorithms. We

added Problem (e) as an even smaller test case for our studies.

Since all problems are less than 7 qubits, it appears plausible

that they could be solved with reasonably well on current

NISQ hardware.

By way of giving background, basic quantum annealing [11]

is known to not always sample degenerate ground states fairly

from a theoretical [15] and experimental [14] perspective.

Several approaches to improve fairness of quantum annealing

have been made [12], [13], [17], [18]. An additional suggestion

is to add to the transverse field driver Hamiltonian
∑

Xi all

higher-order Pauli-X terms, resulting in
∑

Xi +
∑

XiXj +∑
XiXjXk + . . . = |→n〉 〈→n| [15]. The study of limited

higher-order driver Hamiltonians (i.e., without going over

the complete sum), led Könz et al [13] to introduce the

paradigmatic Problems (a)-(d). As Ising problems consisting

of sums of quadratic ZZ terms, the D-Wave quantum annealer

takes these as native inputs. For gate-level NISQ devices, we

need an appropriate algorithm to solve the problems. The most

natural candidate for this is the Grover Mixer QAOA (GM-

QAOA) algorithm [3], which in theory samples fairly.

GM-QAOA is a variation of the Quantum Alternating

Operator Ansatz [9]. In its essence, for a problem instance

I with feasible solution states F and cost Hamiltonian HC

on n qubits, a p-round QAOA prepares a parameterized state

from which it samples low-energy states with respect to HC :

|βββ,γγγ〉 := UM (βp)UP (γp) · · ·UM (β1)UP (γ1)US |↑n〉 . (1)

The circuit consists of an initial state preparation uni-

tary operator US that creates a superposition of all feasi-



〈↑|

lq5

lq3

lq4

lq2

lq1

an 〈↑|

N/A : lq0 |↑〉

〈ββ β
,γγ γ

|H
C
|ββ β
,γγ γ

〉pq0 : lq2 |↑〉 √
X S S†

√
X

√
X S†

pq1 : lq3 |↑〉 √
X S Rz(2γ) Rz(2γ) S†

√
X Z−

β
π

√
X S†

pq2 : lq4 |↑〉 √
X S Rz(−2γ) S†

√
X

√
X S†

pq3 : lq5 |↑〉 √
X S Rz(−2γ) Rz(2γ) Rz(−2γ) Rz(−2γ) S†

√
X

√
X S†

pq4 : lq1 |↑〉 √
X S Rz(−2γ) S†

√
X

√
X S†

pq5 : an |↑〉

Fig. 2: Implementation of State Preparation US and the Phase Separator UP for Problem (c) on a 6A-connectivity (pq0, . . . , pq5,
light gray) for IBM Q: The logical qubit lq0 := |↑〉 is fixed, effectively making all its gates and controls redundant. (Phase
separator) The weighted Ising terms wZiZj in the cost Hamiltonian HC of the phase separator UP = e−iγHC pairwise

commute and can thus be implemented individually with 2 CNOT s and 1 Rz(−2 ·w · γ). IBM Q Melbourne does not contain

a 4-clique in its topology, only a 4-cycle, hence implementing the 4−clique of logical qubits lq2, lq3, lq4, lq5 needs at least

one SWAP . We incorporated it into the phase separator on logical qubits lq2, lq5 (drawn with curved CNOT s), resulting

in a permuted assignment to the physical qubits at the end. (State preparation) Given H |↑〉 = |→〉 = S
√
X |↑〉, the state

preparation unitary and its inverse have been rewritten as US = (S
√
X)⊗n−1 and U†S = (

√
X
†
S†)⊗n−1 = (X

√
XS†)⊗n−1.

The phase shifts S and S† commute through the phase separator and cancel, and the action before measurement in the Z-basis

only affects phase not probability; hence they can be removed. (Grover Mixer) Schematics only, for implementation see Fig. 3.

ble solutions F , followed by p applications of alternating

parametrized phase separating and mixing unitaries UP (γk),
UM (βk) with real angle parameters γγγ = (γ1, . . . , γp)

T and

βββ = (β1, . . . , βp)
T , and a final measurement in the com-

putational basis, see Fig. 1. The phase separating unitaries

UP (γ) add multiplicative phase factors to the amplitudes of

feasible computational basis states, with phases proportional

to respective energies. We usually have (up to global phases)

UP (γ) ∼= e−iγHC , where HC is an Ising Hamiltonian with

quadratic and linear terms as found in the second column

of Table I for our example problems. The Grover mixer

unitary [3] requires an efficient state preparation unitary US

of an equal superposition of all feasible basis states |F 〉 =
1/
√|F |∑x∈F |x〉. US can be used to design a mixing unitary

UM resembling Grover’s selective phase-shift operator [1], [8],

[19], where UM (β) = e−iβ|F 〉〈F | = Id−(1−e−iβ) |F 〉 〈F | =
US(Id − (1− e−iβ) |↑〉 〈↑|)U†S .

Grover Mixer QAOA samples fairly: all feasible basis states

begin with amplitude 1/
√|F | (after state preparation with

US). The phase separating unitary UP (γ) = e−iγHC then

phases the amplitude of every basis state proportional to its

energy and γ, keeping the same phase for basis states of same

energy. The mixing unitary UM (β) = Id − (1− e−iβ) |F 〉 〈F |
then deducts from all amplitudes the same weighted average of

the amplitudes, ((1 − e−iβ)/
√|F |) 〈F |UP (γ)US |↑〉. There-

fore, basis states with the same energy are sampled with the

same amplitude. For a complete proof, see [3].

III. DESIGNING CIRCUITS FOR NISQ DEVICES

Our general procedure for generating test circuits was to

begin with a 1-round Grover Mixer QAOA algorithm in order

to keep circuit depth low. Following [13], we fix q0 := ↑ as

all of the models in Table I are symmetric under simultaneous

↑ / ↓ swaps on all qubits. This reduces the problems from

Ising Hamiltonians HC with only quadratic terms acting on

logical qubits lq0, . . . , lqn−1 to a new Hamiltonians H ′
C with

some linear terms acting on fewer qubits lq1, . . . , lqn−1. This

also transforms lq0 into a classical control bit for the con-

secutive Grover Mixer, which can be removed. Thus we can

embed Ising problems without linear terms on n qubits onto

circuits with only n− 1 qubits, see Fig. 2. The optimum en-

ergy 〈βββ,γγγ|HC |βββ,γγγ〉 achievable with a 1-round Grover Mixer

QAOA was found with a fine grid search for angles (β, γ)
with a grid resolution of π/60; the values with corresponding

ground state probabilities can be found in Table I.

We then compiled the circuits to match connectivity and

gates available for each tested device individually. The avail-

able hardware topologies are listed in Table II. For IonQ and

Rigetti through Braket, there is no available compilation to the

available 1- and 2-qubit gates. Compared to IBM’s qiskit
compiler tools, we found that manual compilation reduced

circuit depth by roughly a factor of two.

Hence we used compilation by hand down to the available

1- and 2-qubit gates for each individual device. To reduce

circuit depth as much as possible, we made use of three

techniques: (i) use the available 1- and 2-qubit gates wherever

possible, (ii) when using SWAP gates, classically track the

permuted assignment of logical to physical qubits instead of

restoring the original assignment in the circuit, (iii) use ancilla

qubits whenever they help bring down the circuit depth of the

Grover Mixer implementation. We demonstrate our techniques

in detail for the circuit compilation of Problem (c) on topology

6A for IBM Q using gates X,
√
X,CNOT , Rz(θ) in Figures 2

and 3. We provide accompanying interactive Quirk circuits for

these figures here (state preparation & phase separator) and

here (multi-control-Z−t phase shift unitary matrix illustrated

by Quirk’s amplitude display via state channel duality).

IV. METHODOLOGY / EXPERIMENTAL DESIGN

We briefly explain our experimental methodology and the

experimental design. In general we send the vendor and

backend-independent circuits from Section III to the compiler

for each of the vendors, calculate the aggregate error on

each circuit, and then execute a large number of runs on



lq0 〈↑|

lq1

lq5

an 〈↑|

lq2

lq3

|↑〉 lq4

N/A : lq0

pq0 : lq5
√
X

√
X

pq1 : lq3
√
X Z−

β
4π Z

β
4π Z−

β
4π Z
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β
2π

√
X

pq2 : lq4
√
X T † T T † H H T T † T T † H

pq3 : lq2
√
X

√
X

pq4 : lq1
√
X

√
X

pq5 : an H T
√
X

AND + SWAP

SWAP

SWAP

AND†

Fig. 3: Grover Mixer implementation details for logical qubits lq1, . . . , lq5 with fixed lq0 := |↑〉 on 6A-connectivity

(pq0, . . . , pq5, light gray) for IBM Q: (AND gates) To reduce the 4-control-Z−β/π from Fig. 2 to fewer controls, we first

compute the logical AND(lq2, lq4) into an ancilla qubit an , and swap it to pq2. The task is now to implement a 3-control-Z−β/π

phase shift on central qubit lq3 on pq1 with controls on its neighbors lq5, an, lq1 on pq0, pq2, pq4, before uncomputing the

AND . (3-control phase shift) We use the standard decomposition into single-qubit phase shifts on lq3 interleaved with CNOT
and TOFFOLI gates, plus a recursively smaller 2-control-Z−β/2π on the control qubits lq5, an, lq1. As lq1 is not adjacent to

lq5, an , we first swap it to the central qubit pq1. Note that due to gate cancellations, this SWAP only increases the CNOT
count by 1. (Recursion) We recursively decompose the 2-control-Z−β/2π (decomposition not shown). Similarly to before, we

will need another SWAP (shown) to implement the final base of a 1-control-Z−β/4π (not shown). (TOFFOLI gates) For the

two TOFFOLI s, we can avoid such a further recursion (decompositions not shown): We will implement each TOFFOLI with

2 Hadamard gates on the target conjugating a 2-control-Z. If we interpret the second of these 2-control-Z as a 2-control-Z−1

(as Z−1 = Z), the resulting recursive 1-control-Z1/2 and 1-control-Z−1/2 of the two TOFFOLI implementations cancel.

Finally, we can replace all (non-controlled) phase-shift gates by (up to global phase) equivalent Rz rotations, native to IBM Q.

the 12 backends in Table III with different circuit topologies

described in Table II, collecting data to calculate our metrics of

ground state probability (GSP) and our fairness metric called

“number of shots to reject the fair sampling hypothesis”. We

describe each of these individual steps briefly, particularly

highlighting differences among the four vendors.

Backend Type QV Qubits

IBM melbourne Gate model 8 15

IBM casablanca Gate model 32 7

IBM guadalupe Gate model 32 16

IBM toronto Gate model 32 27

IBM sydney Gate model 32 27

IBM manhattan Gate model 32 65

IBM montreal Gate model 128 27

IonQ ionq Gate model 11

Rigetti Aspen-9 Gate model 31

DWave LANL 2000Q Annealer 2032

DWave 2000Q-6 Annealer 2048

DWave Advantage Annealer 5760

TABLE III: Device properties for the NISQ backends we

studied. Only IBM Q uses the Quantum Volume metric (QV)

to characterize their systems.

A. Backend Compilation

IBM Q: We selected seven IBM Q backends shown in

Table III, which all allowed us to embed all five fair sampling

problems onto the hardware connectivity, that is without

having to resort to extensive swapping. We implemented the

circuits of the five test problems in IBM’s QISKIT (version

0.25.0). QISKIT has a method that allows you to compile the

logical circuit onto the specified hardware using the native

gateset. We run each circuit using three different compiler

arguments: (i) simply leaving everything to default, except

supplying the specific backend; (ii)setting the layout method
as noise-adaptive, setting the optimization level to 3, default

values otherwise; (iii) supplying an argument for initial-layout,
and set optimization level to 3. The initial layout we supply is a

random subgraph of the hardware connectivity graph which is

isomorphic to the original circuit graph structure (e.g. 5T, 7H,

etc). We used the circuit topologies as described in Table II.
Rigetti: We accessed the IonQ system through the AWS

Braket cloud service. AWS Braket defines its own Python-

based quantum circuit language. In order to successfully

run on the Aspen-9 device, we found it necessary to hand-

compile some aspects of the backend independent circuits

as AWS Braket did not transform the circuits supplied into

the native gateset used by Rigetti. Rigetti has a compilation

step from the provided circuit into their own Quil language.

For each circuit we submit through AWS Braket, we get

that compiled Quil code as part of the task metadata. The

compilation step involves re-mapping the logical circuit onto

a set of physical qubits. We found that this compilation step

significantly changes the structure of the original circuit. The

circuit topologies that were run on the Aspen-9 device are

given in Table II. For problem (b), both 5T and 5P were

embeddable onto the Aspen-9 hardware, so both topologies

were used. We used the 6A circuit topology because 7H is

not embeddable onto the Aspen-9 connectivity.
IonQ: In order to access the IonQ system, we used AWS

Braket. IonQ accepts a different gate set than Rigetti, so

we had to again hand-compile the circuits. IonQ’s all-to-all

topology made this relatively easy.
DWave: The circuits we run on D-Wave are in the form

of Ising models. Recall that Table I column 3 Ising Hamil-
tonian HC shows the exact Ising models we use for these



Fig. 4: Aggregate error vs GSP for Problems (a) (top left), (b) (top center), (c) (top right), (d) (bottom center), (e) (bottom

right).

experiments.

When using quantum annealing, if the Ising model connec-

tivity does not embed onto the hardware connectivity, then

we must minor-embed the Ising model onto the hardware

graph. We use a D-Wave’s standard embedding method called

minorminer as well as a hand-tuned embeddings.

When we use minor-embedding, we also need to use a

parameter called chain strength in order to ensure that

physical qubits representing a logical variable (we refer to

these physical qubits as a chain) take the same value, (meaning

they do not disagree on the logical variable state). If a chain of

physical qubits disagrees, then this is called a broken chain.
In order to resolve a broken chain, in our experiments we

use the majority vote method. Additionally, we compute chain

strength using the default method in D-Wave’s Ocean SDK.

For the standard embedding experiments, we use a random

minor-embedding found by D-Wave’s minorminer [4]–[6],

with potentially unequal chain lengths. Using the full Isings

means that the results we get from D-Wave include not only

the ground states shown in the 3rd column of Table I, but

also their complement, thus there are two ways of quantifying

ground state bias: (i) treat the complement of each ground

state as a separate ground-state; (ii). treat the complement of

each ground state as being the same as the original. Call the

first option separate ground-state complements and the second

option combined ground-state complements. We ran standard

embedding experiments only on the LANL D-Wave 2000Q.

For manual embedding experiments, we designed balanced
embeddings across all devices and problems. In order to

achieve this, we first fixed the value of qubit 0 on all problems

to be 1 (note that for the gate model problems, we also fix the

state of qubit 0). In this process, the quadratic terms (q0, qi : n)
associated with qubit 0 became linear terms on the neighboring

qubit (qi: n). Fixing qubit 0 to be 1 allowed us to then

have chain length 2 embeddings for both 2000Q backends,

and chain length 1 (i.e. native embedding) embeddings for

Advantage-system1.1. Fixing qubit 0 to be 1 also causes the

ground state behavior to change from above. Specifically,

now there are no complement ground states; only the original

groundstates shown in column 4 of Table I (except missing

qubit 0 because we fixed its state). We ran this experiment on

all three D-Wave backends.

We also varied the annealing time parameter in all our

experiments. Specifically, for the LANL 2000Q we varied

annealing time between 1 microsecond and 300 microseconds

in step size of 1 microsecond. The hardware does not allow

for annealing times less than 1 microsecond.

For the backends Advantage-system1.1 and 2000Q-6, we

used AWS Braket to execute the tasks, and therefore getting

large numbers of results was more limited. As such, we tried

an annealing time of 2 microseconds, and an annealing time

of 100 microseconds on both of these backends.



Fig. 5: Aggregate error vs Fairness for Problems (a) (top left), (b) (top center), (c) (top right), (d) (bottom center), (e) (bottom

right).

B. Ground state probability metric

Our first metric is simply ground state probability (abbre-

viated as GSP), which is the fraction of shots which return a

ground state solution for that circuit.

C. Fairness: Number of shots to reject fair sampling metric

We define our main metric, as the Number of shots to reject
fair sampling (for short simply called Fairness). We want to

quantify how biased or fair the distribution of these found

ground states is. Importantly, each of the five test problems

has at least three ground state solutions, meaning that we

can calculate a distribution of how frequently each ground

state solution was found. The exact description of this method

is outlined in [7]. The goal of this method is to provide a

reasonable metric for fairness which translates p-values from

the χ2 test into a larger (and more human-readable) metric.

This metric specifically reports the number of shots (drawn

from the ground state distribution) one would need in order

to reject the fair sampling hypothesis with 95% statistical

significance. Thus, the smaller the metric is, the less fair the

ground state distribution is, and the larger it is the more fair

the ground state distribution is.

The only adjustable parameter for this method, other than

the input distribution, is the number of inner loops (called

ni). For all gate model results, we use ni = 100, 000 when

applying the method, and for all D-Wave quantum annealing

results we use ni = 1, 000 in order to reduce computation

time.

D. Aggregate Error metric

In order to quantify how much noise a particular circuit

was subject to during it’s execution, we used the aggregate
error metric introduced in [7]. To be specific, for a sequence

of instructions (gates) gi, . . . , gn that make up a circuit C, the

aggregate error is defined as EC = 1−∏n
i=1(1− ei) where

ei is the associated error for the gate gi. In this computation,

we include every gate including the readout operation.

In the case of IBM Q, every task includes a full description

of error rates for each native gate operation for each qubit and

edge on the hardware. The calibration data for each backend

is updated consistently (on the order of hours to days). Before

submitting the task to each IBM Q backend, we compiled

the circuit into the native gateset for all IBM Q devices

using the QISKIT transpiler, see more details in Section IV-A.

Therefore, we used these device compiled circuits in order to

compute the aggregate error for each circuit ran on the IBM Q

devices.

In the case of Rigetti, which we accessed through AWS

Braket, we queried the latest calibration data at the same time

we were executing each task. This calibration data seems to be

updated regularly (on the order of hours or day). The Rigetti

calibration information is similar to the IBM Q data, except

that they provided single qubit gate fidelities as an entire class



Fig. 6: Log Ground state probability vs log Fairness for problems (a) (top left), (b) (top center), (c) (top right), (d) (bottom

center), (e) (bottom right) across all 12 NISQ backends. Black markers denote centroids of the point clouds for each of the

four classes of NISQ device (IBM Q is �, Rigetti is �, IonQ is �, and D-Wave is �)

(instead of differentiating between different gate’s) and the

data was given as gate fidelities instead of error rates. For

each task submitted, we also get the device compiled Quil

code for that circuit (see Section IV-A). We then used that Quil

circuit (and the queried calibration data) in order to compute

aggregate error.

IonQ provides less detailed information, but does give mean

two qubit gate fidelity, a mean single qubit fidelity, and a mean

readout fidelity, which we used to calculate aggregate error for

the IonQ circuits.

For the D-Wave quantum annealers we test, there is not a

reported error metric. Therefore, we only use the aggregate

error metric for the gate model devices.

V. RESULTS

A. Fair sampling comparison across IBM Q, Rigetti, and IonQ

Because error is the main reason for falling short of

theoretical performance, we first study how the two metrics

GSP and Fairness change as a function of aggregate error for

the different gate model backends. Figure 4 shows how GSP

changes for the five different test problems on each of the nine

gate model backends. Similarly, Figure 5 shows how Fairness

changes across the nine gate model backends. We include

points obtained from a classical Local QISKIT Simulator,

which shows roughly what to expect expect from a zero-error

quantum device. Across all figures in this subsection, we plot

the metric values for each of the 20 individual calls (each

call having 8192 shots) for each backend. Thus each plot in

Figures 4, 5 and 6 shows at least 200 individual points plotted.

For the IBM Q devices, the results plotted in Figures 4, 5 and

6 all used the noise adaptive transpiler options outlined in

Section IV-A.
In theory, increasing aggregate error should correlate with

decreasing values for both the GSP and Fairness. While both

Figures 4 and 5 show this general trend, there are fairly notable

exceptions. The correct interpretation of these plots looks at

the 20 points of each backend as a cloud of points; while

we did not discard outlier points, we should take care to

not interpret results solely based on outliers, but rather on

the position of the cloud. With respect to GSP in Figure 5,

IonQ reaches the best values in Problems (a), (b), and (e),

despite having higher aggregate error than many of the IBM

Q systems. Among the IBM Q system, there is substantially

smaller aggregate error as we go from the older Quantum

Volume (QV) 8 systems to the newer higher QV systems

(light blue to dark blue). However, this reduced error does not

consistently lead to improved GSP values, in fact several of

the QV32 systems outperform the QV128 in most examples.

IBM Q does however perform best for Problems (c) and

(d), coming very close to the theoretical optimum (QISKIT

simulator) in Problems (d) and (e). Rigetti’s performance falls

behind, largely due to high aggregate error. With respect to



Fig. 7: IBM Q device-specific aggregate errors for Problems (a), (b), (c), (d), (e) (from left to right) depending on transpilation:

(top) We compare varying optimization levels 0, 1, 2, 3 for transpilation with noise adaptive layout for the respective devices.

(bottom) We plot 3 different transpilation methods: Default (×), Initial layout (◦) and Noise adaptive (+), as well as minimum

(−) and maximum (−) aggregate error over all possible IBM transpiler flag combinations. Default is calling transpile with no

additional flags. Initial layout 3 specifies a randomly chosen layout isomorphic to the original circuit (with level 3 optimization).

Noise adaptive 3 uses a noise adaptive layout (with level 3 optimization).

fairness (Figure 5), we note the large variability in the Fairness

metric that even extends to the simulator data. The high-

error low QV IBM Q Melbourne system performs surprisingly

well, most likely due to its unique topology, beating out its

higher QV siblings, Rigetti and IonQ in Problems (a) and (e)

and matching their performance in the other problems. The

Rigetti system manages a similar performance coming close

to IBM and IonQ in most problems despite high error. The

QV128 IBM system again does not really stand out despite

its generally low error rates. IonQ’s fairness solidly matches

IBM Q’s in four problems, but falls well short in Problem (e).

Figure 6 directly shows a scatter plot of our two main

metrics GSP vs. Fairness for all 12 NISQ backends using a

logarithmic scale. There are several ways in which the D-Wave

experiments were performed (see Section IV-A), resulting

in several different results being plotted for this particular

comparison. Note that for the gate model devices, we used

1 round QAOA. This means that we can not achieve the GSP

on the gate model circuits (see I) that we can on the quantum

annealers. Thus, in Figure 6 the GSP for all D-Wave backends

is larger than the gate model devices.

Ignoring individual outlier points, Figure 6 lets us visualize

the Pareto front in this bi-criteria optimization, where a point

lies on the Pareto front if it does not get outperformed in

both metrics by other points. For both Problems (a) and (b),

IonQ has the highest Fairness metric, followed by IBM Q

devices, then Rigetti, and lastly DWave. For Problems (a) and

(b) on gate model devices, GSP is highest for IonQ, followed

by IBM Q devices, and then Rigetti. This result is to be

expected because problems (a) and (b) are the densest of the

five Problems tested, and they take full advantage of the all to

all connectivity of IonQ, whereas the circuit implementations

of (a) and (b) on IBM Q and Rigetti devices used an ancilla.

Problem (c) shows that DWave ranks the highest for Fairness,

followed by IonQ and IBM Q being nearly equal, and lastly

Rigetti. For Problem (c) on gate model devices Rigetti has

the highest GSP followed by IBM and IonQ, which again

are nearly equal. Problems (d) Fairness goes from IBM Q

devices, to IonQ, to DWave, and lastly Rigetti. For gate model

devices on Problem (d) GSP ranking goes from IBM Q to IonQ

to Rigetti. Problem (e) Fairness ranking goes from IBM Q

devices, to Rigetti, to DWave, and lastly to IonQ. Problem (e)

on gate model devices results in GSP going from IonQ, to

IBM Q, and lastly Rigetti.

B. Compilation options for IBM Q backends

The particular QISKIT transpilation method used in order

to compile each of the five circuits onto the IBM Q backends

greatly affects the results. In this Section, we present an

analysis of how different transpilation options change the

aggregate error.
Figure 7 (bottom row) shows the aggregate error across all

IBM Q backends for each of the five test problems. In particu-

lar, we plot the aggregate error for the three transpiler options

outlined in Section IV-A. Additionally, we perform a grid

search across the transpiler options layout-method, routing-
method, translation-method, and optimization-level, and we

plot the minimum and maximum aggregate error found in the

grid search.

This figure shows that there is no clear winning transpiler

parameter combination across all backends and circuits, how-

ever the resulting aggregate varies by as much as 60 %. In

practice the figures suggest that taking the better performing



Fig. 8: Annealing-time dependent results on three D-Wave devices for Problems (a), (b), (c), (d), (e) (from left to right) for

(top) log Fairness and (bottom) Ground state probability.

of the noise adaptive compilation and giving initial layout

compilation should result in near minimum aggregate error

in most cases.

Figure 7 (top row) plots aggregate error as a function of

IBM Q backend for the 4 different possible QISKIT transpiler

optimization levels. Besides the optimization flag, the layout-
method option was set to noise adaptive. The figure shows

that optimization level 3 performs best with the exception of

the Sydney backend. Variance in the performance of different

backends (such as Sydney) is likely due a mismatch between

the latest calibration data for that system and the noise

experienced by the circuit when executed on the backend.

Generally, increasing optimization levels decrease aggregate

error as expected, with the exception of optimization level

1. Optimization level 1 seems to work better on average

in the case of a noise adaptive layout method; the reason

being that optimization level 1 reduces overall circuit depth

(thus decreasing aggregate error), but does not introduce a

large number of CNOT gates as a result of SWAP operations

attempting to adapt to the noise levels of different qubits (as

higher optimization levels do).

C. D-Wave

We investigate how our metrics change as a function of

annealing time for three D-Wave quantum annealing backends.

For the LANL 2000Q backend, we plot the mean metric out of

the 20 device calls (each call with 8192 shots) as a function

of annealing time. For the other two backends (Advantage-

System1.1 and 2000Q-6), we plot all 20 points for the two

annealing times they were run on (2 microseconds and 100

microseconds).

In Figure 8 (top row), we observe a high variance in

the fairness metric across all problems. Problems (a), (b)

consistently show that the LANL 2000Q balanced embedding

has the highest fairness over annealing time. Problems (c), (d),

(e) on the other hand show that the LANL 2000Q minorminer

embedding has the highest fairness over annealing time.

In Figure 8 (bottom row), we observe different annealing
time dependent trends across each of the problems, largely

from the LANL 2000Q balanced embedding data (the LANL

2000Q minorminer embedding results are relatively constant

over annealing time). For Problems (a), (c), and (d), we

observe a sharp increase in GSP in the first few microseconds

of annealing time. Problems (a) and (d) then decrease in GSP

after that initial increase. Problem (c) continues to increase

GSP up until it plateaus at roughly 100 microseconds. Problem

(b) shows no initial increase in GSP, instead it starts out at a

high GSP and decreases over all annealing times. Problem (e)

shows effectively no difference in GSP over time. It is hard to

tell whether these D-Wave results are in agreement with the

theoretical predictions of [13], which call for initial fairness

with low annealing times and then unfairness but higher GSP

as we increase annealing times, because all modern D-Wave

backends have a minimum annealing time of 1 microsecond.

VI. CONCLUSION

In this article, we compare IBM Q’s, Rigetti’s, IonQ’s and

D-Wave NISQ devices with respect to their performance in

finding ground states and fairness across a set of five paradig-

matic problems. While no platform turned out to be dominant,

we noticed performance differences in both metrics. It is

encouraging to see that leading NISQ vendors are relatively

close in performance and we hope that further technological

advances will increase the fairness of sampling as well as bring

advances to various compilation techniques.

As for open problems, we plan to compare D-Wave perfor-

mance against QAOA-based circuits that use the transverse

field mixer (as opposed to the Grover mixer), we would

like to relate our D-Wave results more cleanly to theoretical

predictions. We also plan to continue our studies for novel

NISQ backends.
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