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1. Introduction

This progress report (Level 4 Milestone Number M4SF-23LL010302062) summarizes
research conducted at Lawrence Livermore National Laboratory (LLNL) within the
Crystalline International Collaborations Activity Number SF-23LL01030206. The
activity is focused on our long-term commitment of engaging our partners in international
nuclear waste repository research. This includes participation in the Nuclear Energy
Agency Thermochemical Database (NEA-TDB) Project and development of
methodologies for integrating US and international thermodynamic databases for use in
SFWST Generic Disposal System Assessment (GDSA) efforts.

A continuing focus for FY23 efforts has been to support the US participation in the NEA-TDB
effort (Mavrik Zavarin replaced Cindy Atkins-Duffin on the NEA-TDB Management Board
(MB) and Executive Group (EG)) and developing mechanisms for integration of NEA-TDB
thermochemical data with LLNL’s SUPCRTNE thermodynamic database that supports the
SFWST GDSA activities. This effort is coordinated with the Argillite work package SUPCRTNE
database development efforts. The goal is to provide a downloadable database that will be hosted
on a LLNL website which integrates NEA-TDB data into the LLNL SUPCRTNE database where
appropriate.

As part of our international activities, we continue our effort to integrate international sorption
databases into L-SCIE (Zavarin et al., 2022b). We presented opportunities to include sorption in
the next phase of NEA-TDB efforts at the April 2023 EG meeting in Paris. FY23 efforts focused
on ensuring interoperable database development across multiple international database
development activities. The overall goal is to produce an open source database that can be shared
and integrated with multiple nuclear waste programs internationally and harness modern data
science workflows and algorithms to incorporate these new approaches into reactive transport and
performance assessment models.

In collaboration with our Helmholtz Zentrum Dresden Rossendorf partners, we recently
demonstrated the power of FAIR open source databases by fitting iron oxide (hydrous ferric
oxide, goethite, hematite, and magnetite) protolysis constants to all available L-SCIE data. The
results were submitted as a manuscript to J. Colloid Interface Science. This work will inform
future metal sorption studies on a variety of iron oxides in order to discern the most appropriate
acidity constants and surface complexation modeling constructs to account for pH-dependent
mineral surface charge behavior. This work also explored automated surface complexation model
development workflows in order to generate higher throughput model input files for a more facile
incorporation into GDSA activities.

2. Nuclear Energy Agency Thermochemical Database Program

The Nuclear Energy Agency (NEA) Thermochemical Database Program (TDB) was
conceived of and initiated with the goal to 1) make available a comprehensive, internally
consistent, internationally recognized database of selected chemical elements; 2) meet the
specialized modeling requirements for safety assessments of radioactive waste and; 3)
prioritize the critical review of relevant data for inorganic compounds and complexes
containing actinides. Data from other elements present in radioactive waste are also
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critically reviewed as well as compounds and complexes of the previously considered
elements with selected organic ligands.

The objective of the Program is to produce a database that contains data for all the
elements of interest in radioactive waste disposal systems; document why and how the
data are selected; give recommendations based on original experimental data, rather than
compilation and estimates; document the sources of experimental data; provide internally
consistent thermodynamic parameters, and treat solids and aqueous species of the
elements of interest for nuclear storage performance assessment calculations.

The qualification of existing data is conducted using documented Guidelines which
include several components. A Technical Review is conducted by subject matter experts
who critically review experimentally determined literature data; reanalyze the data as
necessary; and select data for inclusion in the database. Upon completion of the
Technical Review, a Peer Review is undertaken. A second, independent panel of
reviewers ensure that the technical reviewers followed the review Guidelines. A
Comment Resolution component ensures that the Technical Reviewers address the
comments made by the Peer Reviewers. At this time, the volume is readied for final
publication. Distribution of the Reviews is completed as open source material and in
electronic form via the NEA TDB website.

Phases VI of the NEA-TDB program was officially started in February 2019 with all
participating member parties having signed the Framework Agreement. The First
Meeting of the Management Board (MB) and the Executive Group (EG) were held at the
NEA in Paris February 19-20, 2019. Lena Evins (Sweden-SKB) was elected Chair of the
MB and Stephane Brassinnes (ONDRAF/NIRAS- Belgium) Vice Chair. Canada and the
Netherlands joined the Programme for this Phase. Elected to the Executive Group were
Chair Marcus Altmaier (INE-Germany), Cindy Atkins-Duffin (DOE/LLNL-USA),
Benoit Made (ANDRA-France), Pascal Reiller (CEA Saclay — France), and Kastriot
Spahiu (SKB (retired)-Sweden. Som of the projects that were not completed in Phase V
were brought forward to Phase 6.

The U.S. representative to the NEA TDB Management Board, Cynthia Atkins-Duffin,
retired from LLNL in FY23. Mavrik Zavarin, also from LLNL, replaced her on the
Management Board. The Management Board also elected Mavrik Zavarin to replace
Cynthia Atkins-Duffin on the Executive Group. Mavrik Zavarin is also the point of
contact to complete the Cements State of the Art Report. The Cement SOAR review will
be completed in FY24.

A Management Board (MB) and Executive Group (EG) meetings were held in Paris on
November 7 and 8, 2022. At this meeting Mavrik Zavarin was introduced as the new US
representative to the Management Board. An EG meeting was held in Paris on April 3,
2023 where Mavrik Zavarin joined the EG. Follow-on online meetings were held by the
EG on May 31, 2023 and by the MB on June 29, 2023 to discuss the path forward for a
Phase 7 of the NEA-TDB project.
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The current status of the Phase 6 program and the associated reviews are:

Iron (Part 11) Volume — Published online (NEA TDB website) in January, 2020.
2nd Update of the Actinides Volume — Published online (NEA TDB website) in
October, 2020

Ancillary Data Volume — The volume is in the final stages of production,
expected publication (NEA TDB website) in 2023. Carlos Jove-Colon (USA)
served as one of the peer reviewers.

Molybdenum Data VVolume — This review continues to struggle with delivery of
information from the team to the NEA. Several rescoping and personnel
assignments were put into place. The EG has taken a more active management
role in this project (Pascal Reiller is the EG liaison). To motivate the completion
of this data volume, a hard deadline for the first internally reviewed draft of the
volume was set for December 2023. At that point, some sections that are not
complete may need to be omitted from the final volume. Final publication of the
volume is anticipated in 2025.

Cements State of the Art Report —The NEA Project Coordinator and the EG
liaison (previously Cindy Atkins-Duffin, USA and new Mavrik Zavarin, USA)
convened quarterly meetings with the review team. The SOAR is now ready for
peer review and the external review team is being assembled. Thomas Matschei
(Aachen University) and Ed Matteo (SNL) have been confirmed as reviewers.
An additional reviewer is being identified. Final publication of the volume is
anticipated in Q3 of 2024.

High lonic Strength Solutions State of the Art Report — Progress continues to
be slow on this project. The next deliverable, a complete draft delivered to NEA,
is due in September 2023. As in the Mo report, the EG has decided to make this a
hard deadline. If some sections are not ready in September, 2023, they may be
omitted from the SOAR rather than extending the deadline. The current planned
review by the NEA TDB is planned for the fourth quarter of 2023 and external
peer review to start in Q3 of 2024.

Organics Update — The initiation report has been completed and the
Management Board accepted the report as presented, paid, and closed out the
reviewer contracts. The Management Board has prioritized the completion of the
existing volumes higher than the start of new activities. While recognizing the
importance of this Update, the decision was made to defer the start of this effort to
a possible Phase 7 of the TDB Program.

Lanthanides Volume — This activity is ongoing. Work on this volume continues
with anticipated draft submission to NEA TDB by Q4 of 2024 and external peer
review in 2025.

High Temperature State of the Art Report — The initiation report has been
completed and accepted. The Management Board has prioritized the completion
of the existing volumes higher than the start of new activities. While recognizing
the importance of this Update, the decision was made to defer the start of this
effort to a possible Phase 7 of the TDB Program.

TDB course —The 7" edition of the TDB course is being planned as an in-person
event to be held in conjunction with Migration 2023, Nantes, France.
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e TDB Electronic Database — Currently only maintenance activities such as the
populations of the eTDB with the new selected values from the Ancillary and
Molybdenum volumes are being undertaken. All available NEA staff resources
have been focused on the management, editing, and publication of the review
volumes. Thus, updates to the electronic database may not be made until the start
of a proposed Phase 7.

Based on the pace of Phase 6 deliverables and the expressed interest by the NEA-TDB
partners not to enter into a Phase 7 until all ongoing activities reach the peer review stage,
the MB decided to extend Phase 6 into a second no-cost 1 year extension. This allows
Phase 6 to be extended to Q1 of 2025. At that point, we anticipate that the Ancillary Data
volume will be published and the Molybdenum Data volume, Cements SOAR, and High
lonic Strength SOAR will be in the peer review stage or completed. The Lanthanides
Data volume will also be nearing the peer review stage. This will also allow for sufficient
time to develop a plan forward for Phase 7 which, if approved, would begin at the end of
Phase 6. The tentative schedule for preparing a Phase 7 agreement is as follows:

e Draft agreement: end of 2023

e Ready for signature: mid 2024

e Start of TDB-7: Q1 2025
Discussion of Phase 7 priority activities has already begun. The MB members were sent a
TDB 7 Questionnaire entitled “Towards a future TDB Phase”. The value of the NEA
TDB was acknowledged by most MB members and the value of the NEA-TBD activity
was predominantly associated with the production of Data Volumes. The MB was in
general agreement that Phase 7 should prioritize the Update to Organics Data volume and
the High Temperatures and Pressures SOAR which already have approved initiation
reports from Phase 6. Some significant interest in developing a Data VVolume on iodine
thermodynamics was noted. Discussion of Phase 7 priority research areas will continue as
the draft agreement is put in place and identification of participating countries is
established. Depending on the level of participation and the interests of the participating
agencies, the scope and effort associated with Phase 7 activities will be defined.

3. International Collaboration on L-SCIE Database Development

Garcia, D., Dagnelie, R.V.H., Zavarin, M., 2023. Editorial: Sorption Processes in
Nuclear Waste Management: Data Knowledge Management and New Methodologies for
Data Acquisition/Prediction. Frontiers in Nuclear Engineering.

In late FY22, we collaborated with Dr. Garcia (Amphos21) to develop a special research
topic in the Frontiers in Nuclear Engineering journal entitled “Sorption processes in
nuclear waste management: Data knowledge management and new methodologies for
data acquisition/prediction”. In FY23, the full research topic was published and an
editorial was accepted for publication as part of this special topic (Garcia et al., 2023). In
addition to this activity, we are pursuing access to a number of new data streams to
support the continued development of the L-SCIE community database and we will
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continue to pursue international collaborations that promote interoperable design of
databases and the principles of Open Science and FAIR data (Wilkinson et al., 2016).

The following is a shortened version of the editorial that was included in the special
research topic “Sorption processes in nuclear waste management: Data knowledge
management and new methodologies for data acquisition/prediction”

A fundamental approach to Nuclear Waste Repository research involves the collection of
experimental data in a laboratory setting, development of empirical and/or mechanistic
numerical models representing those observations, and application of these models into
reactive transport and performance assessment models as predictive tools for informing
society of impacts and risks associated with nuclear waste repository scenarios (Stevens
et al., 2020). The assimilation and interpretation of experimental data must take
advantage of both new data and the rich historical data available in the literature and
apply novel modeling approaches to improve predictive tools, particularly from the
standpoint of uncertainty quantification, for nuclear waste repository performance
assessment (Zavarin et al., 2022a).

Experimental data collected in a laboratory setting is fundamentally different from large
formatted sensor data that are much more amenable to “big data” approaches. New data
science approaches to interrogate experimental laboratory data have been limited, in large
part, by the lack of common standards and approaches to archiving these data types (i.e.
findable, accessible, interoperable, reusable “FAIR” data) (Wilkinson et al., 2016). As
these new approaches are applied to sorption and other data, they will fundamentally
change how predictive tools quantify impacts and risks associated with siting nuclear
waste repositories.

In the series of articles published as a special research topic in the Frontiers in Nuclear
Engineering, authors apply novel modeling approaches to experimental data categorized
as sorption data. Traditionally, these data inform empirical (e.g. Kd) or mechanistic (e.g.
surface complexation) models that are subsequently used in reactive transport models at
various scales as predictive tools for assessing transport behavior. These same data and/or
models can also inform the development of Reduced Order Models (Garibay-Rodriguez
et al., 2022; Li and Zarzycki, 2022) that can be applied more efficiently to complex large
scale models (e.g. performance assessment models).

Romanchuk et al. (2022) focus on the question of self-consistent Surface Complexation
Model (SCM) database development by presenting a data fitting workflow that combines
new and literature-derived sorption data for three radionuclides in specific oxidation
states (U(VI), Eu(l11), Np(V)) and the iron(I11) oxide mineral goethite fit using the
PHREEQC (Parkhurst, D.L. and Appelo, C.A.J., 2013) geochemical solver linked to the
MOUSE (Linge et al., 2020) optimization software with automation that relies on the
Python programming language. They show that expansion of their approach to a larger
set of elements (Cd(I1) and Zn(I1)) is relatively straightforward and suggests further
expansion by adopting Linear Free Energy Relationships (LFER) across an even greater
number of sorbing elements.
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The application of SCMs to predict organic compounds’ behavior at solid-water
interfaces is particularly complicated by the large number of organic compounds present
in nuclear waste repositories and the associated near- and far-fields. Organic compounds
can sorb to mineral surfaces but can also form aqueous and ternary complexes with
radionuclides. As a result, developing comprehensive modeling approaches for organic
compounds’ reactive transport remain elusive. Szabo et al. (2022) explore this topic by
examining the uptake of multiple organic compounds (degradation products of
polyacrylonitrile-based polymers) to cements. They use relatively simple Langmuir
models to explore the relative affinity of these organic compounds and review affinity
patterns of a large number of organic compounds reported in the literature. The
examination of sorption behavior across a wide number of organic compounds reveals
relationships between functional group type, functional group density, and surface
affinity.

Hinchliff et al. (2022) examine the role of cellulosic organic compounds on Sr sorption to
hydrated cements. Again, new and literature data are combined to develop a
comprehensive understanding of Sr diffusivity and sorption to hydrated cements. The
analysis reveals surprisingly enhanced retardation of Sr and suggests that cellulose
organic degradation products impact Sr retention though the exact mechanisms have yet
to be revealed. Nevertheless, the results point to the need to expand surface complexation
and surrogate modeling approaches beyond simple binary radionuclide sorption models.
Importantly, the increased complexity brings increased importance to the development of
large FAIR sorption databases (Wilkinson et al., 2016) that capture the multidimensional
sorption conditions. Development of software and workflows that can readily take
advantage of the rich data sources available in the literature will greatly benefit the
nuclear waste repository research community in the coming years.

An apparent roadblock in SCM database development is the apparent data paucity as it
relates to development of well constrained geochemical models. However, Zavarin et al.
(2022) determined that the cumulative number of peer reviewed publications referencing
the topic of sorption and adsorption has already reached ~1,000,000. Thus, as several
authors discuss, this apparent lack of data is, in large part, due to a lack of FAIR data
rather than lack of data per se. This lack of FAIR data has severely limited the
development of self-consistent SCM databases. A recent data assimilation effort at
Lawrence Livermore National Laboratory and collaborators at the Helmholtz Zentrum
Dresden Rossendorf, has been developing a data digitization pipeline (Zavarin et al.,
2022a). To date, the manual digitization of data has yielded a LLNL SCIE database that
includes 211 references and a total of 22,732 individual digitized data and associated
metadata. Importantly, this approach to data mining is labor intensive and cannot be
expanded beyond a set of targeted data (e.g. reactions specific to the nuclear waste
performance assessment needs). Adoption of new approaches to data assimilation are
clearly needed.

New modeling approaches that take advantage of FAIR database development efforts are
also needed. Garibay-Rodriguez et al. (2022) describe a computational framework for
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radionuclide migration assessment in clay rocks that is based on OpenGeoSys6 which is
linked to a number of geochemical solvers (PHREEQC, GEMS, etc.) and can be applied
to both traditional surface complexation/ion exchange models as well as surrogate
models. For portability, the modeling framework is built around the JupyterLab Python
framework that guarantees that all the source code and its dependencies can be executed
efficiently and reliably, independent of any computing environment. Importantly, the
surrogate models (aka look-up tables) are explicitly tied to the mechanistic surface
complexation/ion exchange models. Test cases suggest that surrogate models can yield
significant computational speed-up while maintaining a similar level of precision in
model output. Garibay-Rodriguez et al. (2022) argue that open source software
approaches are key to continuing software development and longterm improvements in
nuclear waste performance assessment models.

Li and Zarzycki (2022) describe a computational pipeline to generate synthetic SCM data
and discuss approaches to transform this dataset into Al-learnable input for use in
surrogate models. In their approach, available surface complexation model databases are
used to produce high density sorption data across a very wide range of conditions. The
generated synthetic datasets can more readily take advantage of Al algorithms that can be
used in surrogate model development. The approach is tested for determination of the
electrostatic properties of a prototypical oxide/electrolyte interface using the triple-layer
surface complexation modeling construct. The authors provide a theoretical framework
for developing surrogate models using Al and based on developing synthetic sorption
data from traditional surface complexation databases.

Nuclear Waste Repository reactive transport and performance assessment modeling
teams have a number of opportunities to apply modern processes, workflows, and
machine learning in predictive tools for informing society of impacts and risks associated
with nuclear waste repository scenarios. Both the assimilation and interpretation of
experimental data can harness ML to improve predictive tools, particularly from the
standpoint of uncertainty quantification. While a number of challenges are still present
(e.g. automation of various component of the data assimilation and interpretation in the
data stream), these approaches will provide a robust and nimble framework for evaluating
nuclear waste repository performance that is adaptable to the unique timescales that
repository performance, oversight, and monitoring will require.

4. Workflow development for community potentiometric titration data
modeling and database development

Han, S.-C., Chang, E., Zechel, S., Bok, F., Zavarin, M., 2023. Application of community
data to surface complexation modeling framework development: Iron oxide protolysis.
Journal of Colloid and Interface Science 648, 1015-1024.
doi.org/https://doi.org/10.1016/j.jcis.2023.06.054.

The information presented below is a summary from a manuscript published in June 2023
in the Journal of Colloid and Interface Science (Han et al., 2023). This publication



M4SF-23LL010302062-NEA-TDB Management and International Sorption Model Collaboration
July 21, 2023

describes the workflow developed, in conjunction with our L-SCIE database, to simulate
community potentiometric titration data. The development of a consistent set of surface
protonation reactions is an important first step in the development of self-consistent
surface complexation databases. In this manuscript, we develop surface protonation
constants for a series of iron oxide phases.

4.1 Introduction

Since the surface charge of the mineral affects the sorption affinity between adsorbate
and adsorbent, estimating the protolysis of mineral surface is crucial for surface
complexation models (SCM). For this reason, surface protolysis constants of minerals,
which describe degree of the protonation and deprotonation of surface functional groups,
are essential input parameter of SCMs and the selection of proper values for the constants
is important in terms of reliable modeling. In various studies, however, different
protolysis constants have been utilized even when the type of SCM and mineral used in
their studies are identical (see Table 1). This fact leads to ambiguity in the selection of
‘representative’ protolysis constants and uncertainty in the further development of self-
consistent surface complexation databases. In other words, there now exists an impasse in
the integration of the experimental data scattered in different studies into comprehensive
SCM frameworks that reconcile the full community-wide data.

In light of this challenge, our task aimed at developing potentiometric titration modeling
workflow for modeling digitized community potentiometric titration data. The workflow
focuses on fitting compiled community data for each individual iron oxide mineral (i.e.,
ferrihydrite, goethite, hematite, and magnetite) to produce representative protolysis
constants that account for all potentiometric titration data collected from multiple
literature sources.
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Table 1. Diffuse double layer surface complexation model protolysis constants and
site densities for ferrihydrite reported in the literature. Data from RES®T database
(Brendler et al., 2003; Dresden-Rossendorf, 2013).

1%t protolysis 2" protolysis Site densit
cons[t)ant (gKal) consfant (pyKaz) (sites-nm'z))/ Reference

1 6.09 7.38 2.2583 (Nowack et al., 1996)
2 6.51 9.13 0.0203 (Arnold et al., 1998)

3 7 9.2 7.0903 (Nomaan et al., 2021)
4 7.01 7.86 0.7300 (Veselska et al., 2016)
5 7.29 8.93 2.2553 (Eibl et al., 2019)

6 7.5 10.2 9.9966 (Landry et al., 2009)

4.2 Development of Surface Complexation Modeling Framework

As part of this effort, a community data driven surface complexation modeling
framework has been developed. The framework begins with a database of community
titration/sorption data, i.e., L-SCIE (Zavarin et al., 2022a), followed by a potentiometric
titration modeling workflow, which is then followed by surface complexation modeling
workflow (Figure 1). The L-SCIE database provides input data for both potentiometric
titration modeling workflow (L-ASTM, LLNL Automated Surface Titration Model) and
surface complexation modeling workflow (L-ASCM, LLNL Automated Surface
Complexation Model). The protolysis constants produced by L-ASTM are used as input
parameters for the surface complexation model (L-ASCM).

atabase construction ata extraction
Datab: truct Dat tracti
. i <> + Data unification (+ error
Dataimportsto MSACCESS AR estimation / propagation)
* Data formatting .. ]
. -) & « Data export as CSV format for
* Produce data table (sorption data) —_F1J

Data mining from literatures

+ Data acauisition anlln
* Originalimage / Metadala —
* Data (Exp. conditions, K4, etc.) iy /4

modeling

I

: Surface titration modeling Traditional SC modeling ML based SC modeling

: * Coded in Python environment » Coded in Python environment N * Coded in Python environment ——

: + Automized Phreeac/PEST imp | * Automized Phreeqc/PEST _ Intercomparsson” COUPled with Phreeac for "
1 simulation for surface titration ° » simulation (various combinations %DQ: c% - aqueous speciation otie

: of minerals = of surface reactions) « Predict partition of adsorbate il i
: * Produce oplimized surface — * Produce oplimized surface ? based on machine learning:

1| protolysis constants complexation constructs random forest algorithm

i N L-SURF

: (LLNL Automized Surface Titration Model) (LLNL Speciation Updated Random Forest)

(@ Sorption prediction / data fitting workflow

Figure 1. Workflow of community data driven surface complexation modeling
framework
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Data processing and workflow associated with L-ASTM was written in Python and the
code was integrated with PHREEQC (Parkhurst, David L and Appelo, C.A.J., 2013) and
PEST (Doherty, 2018) for data fitting. The details of the workflow of L-ASTM are shown
in Figure 2. First, the code imports potentiometric titration data extracted from the L-
SCIE database and categorizes the data by dataset. For example, single reference may
include several experimental datasets conducted under various experimental conditions,
e.g., ionic strength. For each of these datasets, the L-ASTM code generates the relevant
PHREEQC/PEST input files and runs a separate PHREEQC/PEST data fitting. Once the
fitting is performed for each dataset, two protolysis constants (pKa: and pKa2) and
associated 95% confidence intervals (+2c) are generated. Finally, weighted arithmetic
mean pKaz1 and pKa2 values of all datasets are calculated to produce ‘representative’
average protolysis constants by using equations (1) — (3).

(1) Import raw ) (2) categorize the imported (3) Generate input files (4) Run simulations (5) Produce ‘representative’
Potentiometric titration data data by datasets for Phreeqc/PEST (Phreeqc/PEST) protolysis constants of
community data
aUSGS || ¢
— o ©
- = . ° /o
-— science for a changing world (-] °
- 2 o o /o
-— g o
(-]
Watermar ing
S

Figure 2. Surface complexation modeling workflow (L-ASTM code) for
potentiometric titration data.

Weighted average (xwav) is the best estimation for the true x value when there are N
measurements of x with corresponding uncertainties (i.e., X1 £ 61, ..., XN £ on), and can
be calculated by the following Eqgs. (1) and (2) (Heckert and Filliben, 2003; Taylor, 1997):

wix;
Xwav = ZWWT (1)
1

where xi denotes i'" measurement of x and w; represents the corresponding weight which
is the reciprocal square of uncertainty of i measurement (o). Finally, uncertainty in the
weighted average can be calculated by Eq. (3) (Heckert and Filliben, 2003):

_ Y wi(Xi—Xwav)?
Owav = N “Dyw; (3)

N

where N denotes the number of non-zero weights. In our case, total number of
measurements, N, is equal to total number of datasets, xi corresponds to pKaz or pKaz
from the i dataset and oi is the uncertainty of pKa1 or pKaz from the i dataset.

10
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4.3 Case Study of Potentiometric Titration Modeling for Iron Oxides

The FY23 efforts were focused on potentiometric titration modeling for iron oxides to
demonstrate a method to reconcile community data-wide potentiometric titration data
using FAIR data principles to produce mineral protolysis constants. In this FY23 task,
potentiometric titration data for four iron oxide minerals (i.e., ferrinydrite, goethite,
hematite, and magnetite) were evaluated. It should be noted that the data used in this
study (Table 2) was extracted from the L-SCIE database and may not reflect all available
data in the literature. Nevertheless, since our SCM framework is based on the FAIR data
principle, one can easily refit the protolysis constants as new data become available.

Table 2. Description of iron oxide potentiometric titration data used in this study.?

Iron oxide minerals Data count No. of datasets No. of references pH range
Ferrihydrite 1,119 40 12 2.7-11.7
Goethite 1,982 79 23 3.0-11.0
Hematite 1,702 61 16 27-111
Magnetite 301 14 8 2.3-120

2 Potentiometric titration data included in the L-SCIE database and evaluated here include: 1) ferrihydrite:
(Antelo et al., 2010; DAVIS 111, 1978; Dyer, 2003; Ghoneimy et al., 1997; Hofmann et al., 2005; Hsi and
Langmuir, 1985; Kanungo and Mahapatra, 1989; Moon and Peacock, 2013; Nagata and Fukushi, 2010;
Nagata et al., 2009; Pivovarov, 2009; Trivedi and Axe, 2001), 2) goethite: (Balistrieri and Murray, 1981;
BARROW and COX, 1992; Bowden et al., 1980; Fujita et al., 1994; Gunnarsson et al., 2002; Hayes et al.,
1991; Hoins et al., 1993; Hsi and Langmuir, 1985; Lackovic et al., 2003; Lumsdon and Evans, 1994;
Missana et al., 2003b; Muller and Sigg, 1992; Naveau et al., 2005; Peacock and Sherman, 2004;
Rahnemaie et al., 2006; Robertson and Leckie, 1997, 1998; Rundberg et al., 1994; Sigg, 1980; Trivedi and
Axe, 2001; van Geen et al., 1994; Villalobos and Leckie, 2000; Yates, 1975), 3) hematite: (Breeuwsma and
Lyklema, 1971; Christl and Kretzschmar, 1999; Coli¢ et al., 1991; Estes et al., 2013; Gibb and Koopal,
1990; Gunnarsson et al., 2001; Hesleitner et al., 1987; Hesleitner et al., 1991; Hwang and Lenhart, 2008;
Kobhler et al., 1999; Marmier and Fromage, 1999; Murphy et al., 1999; Peacock and Sherman, 2004;
Pivovarov, 1998; Romanchuk and Kalmykov, 2014; Yates, 1975), and 4) magnetite: (Blesa et al., 1984;
Catalette et al., 1998; Fujita et al., 1994; Marmier et al., 1999; Mayant et al., 2008; Missana et al., 2003a;
Regazzoni et al., 1983; Tamura et al., 1983).

One of the most significant improvement in the workflow compared to FY 22 is that now
the current workflow utilizes the surface site densities (SSDs) of iron oxides obtained
using a crystallographic approach (Eibl et al., 2019; Neumann et al., 2021). The
crystallographically-derived SSDs for singly coordinated groups on ferrihydrite, goethite,
hematite, and magnetite are 6.53, 6.60, 5.83, and 4.56 sites-nm2, respectively (Table 3).
These values were used in the estimation of protolysis constants. However, natural
minerals likely include irregularities that may cause variation in SSD values. For this
reason, sensitivity analysis of SSD was also conducted to examine the effect of SSD on
pKa estimation. The SSDs applied in the sensitivity analysis ranged from 3 to 10
sites-nm (i.e., 3, 5, 7, and 10 sites-nm?). An SSD of 2.31 sites-nm, suggested by
Dzombak and Morel (1990) for hydrous ferric hydroxide, has previously been
recommended for use in estimating binding constants on many types of minerals (Davis
and Kent, 1990). By considering the fact that the value has been conventionally used in a
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number of surface complexation modeling efforts, SSD of 2.31 sites-nm was also
included in our sensitivity analysis.

Table 3. Surface site densities of ferrihydrite, goethite, hematite, and magnetite.

Iron oxide Crystallographically-Derived Iron oxide Crystallographically-Derived
mineral SSD (sites-nm-) mineral SSD (sites-nm?)
Ferrihydrite 6.53 Hematite 5.83

Goethite 6.60 Magnetite 4.56

4.4 Diffuse Double Layer Model Protolysis Constants of Ferrihydrite,
Goethite, Hematite, and Magnetite

The iron oxide pKa values were estimated by fitting the community potentiometric
titration data. The diffuse double layer model (DDLM) was initially adopted to describe
the electrical double layer, and SSDs obtained from the crystallographic approach were
used (see Table 3). The calculated iron oxide pKa values are summarized in Table 4 and
Figure 3 shows a modeling example: ferrihydrite potentiometric titration data, model fits
using weighted mean pKa values, and fits to individual datasets. As shown in Figure 3,
protolysis constants produced by the community data-driven workflow can reproduce
most of the experimental data with reasonable accuracy. In the case of some datasets,
however, the fitted model did not reproduce the experimental data. The poor fit to the
data is, in most cases, indicative of erroneous reporting of potentiometric titration data
(e.g., afpmagl10 datasets by Antelo et al. (2010)).
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Table 4. Diffuse double layer model protolysis constants for iron oxides as a
function of surface site density.

Iron oxides SSD (sites-nm-?) pKarff pKan'f R value
2.31 6.7+04 8.7+£0.6 0.916
3 6.5+04 8.7+£0.6 0.916
Ferrihydrite 5 6.2+04 8.9+0.6 0.915
6.53f 6.1+04 9.0+0.6 0.915
7 6.1+04 9.0+0.6 0.915
10 59+04 9.2+0.6 0.916
2.31 6.9+0.8 9.1+£0.7 0.880
3 6.7+0.7 9.2+0.7 0.877
Goethite 5 6.4+0.7 9.4+0.7 0.868
6.60° 6.2+0.7 95+0.6 0.867
7 6.2+0.7 9.6+0.6 0.867
10 6.0£0.7 9.7+£0.6 0.868
2.31 7607 9.2+£0.82 0.875
3 7.3+£0.7 9.3+£0.86 0.877
Hematite 5 6.9+£0.8 9.4+£0.79 0.874
5.83f 6.8+£0.8 9.4+£0.79 0.872
7 6.7+£0.8 9.5+£0.79 0.873
10 6.5+0.8 9.6 +0.77 0.872
2.31 6.2+0.2 7.3+0.2 0.922
3 6.1+0.2 75204 0.923
Magnetite 4.56" 59+0.2 7406 0.935
5 58+0.2 7.5+0.6 0.934
7 57+0.3 7607 0.940
10 55+0.3 7.6+0.7 0.944

fCrystallographically-derived surface site density (used as reference case).
TReported uncertainties are mean weighted +o of the fitted pK, values (Eq. 3).
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Figure 3. Potentiometric titration data of ferrihydrite (blue), modeling data using
weighted mean DDLM pKa values (orange), and DDLM fits obtained for individual
datasets (black). All models used the crystallographically-derived surface site
density (Table 4). Error bars represent estimated data uncertainties at one standard
deviation.
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4.5 Effect of Type of Electrical Double Layer

In order to build a self-consistent SCM reaction database, protolysis constants should be
estimated using a consistent SCM type (e.g., non-electrostatic model (NEM), DDLM, or
constant capacitance model (CCM)) which, in turn, is identical to that used for
downstream sorption modeling. In this task, we examined how the SCM type affects the
protolysis constants and evaluated how well each SCM type reproduces the
potentiometric titration data. The modeling was conducted for four iron oxides (i.e.,
ferrinydrite, goethite, hematite, and magnetite) and three types of SCM: NEM, DDLM,
and CCM (Table 5). As summarized in Table 5, estimated pKa values were different
according to the type of SCM. For example, pKa1 of the NEM is lower than that of the
DDLM, while pKa2 of the NEM is higher than that of the DDLM.

Table 5. Estimated protolysis constants of iron oxide minerals with different surface
complexation models using crystallographically estimated surface site densities

(Table 3).
Iron oxides SCM type pKaz pKaz (pKa1 + pKaz)/2  Capacitance

NEM 3.51+£0.65 11.03 +0.57 7.27 £0.43 -

Ferrihydrite DDLM 6.09 + 0.40 9.00 + 0.56 7.55+0.34 -
CCM 6.41 +0.38 9.78 + 0.39 8.10 £ 0.27 1.11+0.52

NEM 5.06 +£1.08 9.96+1.10 7.51+£0.77 -

Goethite DDLM 6.23 +0.69 9.54 +0.63 7.89 £0.47 -
CCM 6.93 +0.37 10.90 + 0.33 8.92+0.25 0.90+0.18

NEM 3.99+0.61 10.83+0.61 7.41+£0.43 -

Hematite DDLM 6.84 +£0.75 9.42 +£0.79 8.13+0.54 -
CCM 7.25+0.39 10.94 + 0.44 9.10+0.29 1.07 £0.22

NEM 4,17 +£0.70 8.73+1.46 6.45+0.81 -

Magnetite DDLM 5.85+0.22 7.44 +0.60 6.65 + 0.32 -
CCM 6.06 + 0.37 6.07 £ 0.36 6.07 +0.26 2.08 +1.46

The type of SCM also significantly affects the quality of fit. Figure 4 illustrates the fit
quality for each SCM type and mineral phase in the form of normalized histograms as a
percent difference between the experimental and modeled surface charge. The
interquartile ranges (IQRs) of weighted residual data obtained from the models using
each SCM type are also reported. The histograms exclude outliers where the data points
fall below Q1 (first quartile of the data) — 1.5%IQR or above Q3 (third quartile of the
data) + 1.5xIQR. As shown in Figure 4, the IQR of the NEM is always greater than the
IQR of the DDLM and CCM. This implies that the fit quality of DDLM and CCM is
overall better than that of the NEM.
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Figure 4. Normalized histograms as a percent difference between the experimental
and modeled surface charge for NEM, DDLM, and CCM models of (a) ferrihydrite,
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equivalent to one tenth of IQR.
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4.6 Effect of Surface Site Density on Protolysis Constants

As summarized in Table 4 and Figure 5, the value chosen for SSD significantly affects
the modeled pKa values for iron oxides. The most remarkable observation was that pKaz
decreased with increasing SSD, while pKa2 increased with increasing SSD. This
systematic tendency was consistent regardless of the type of iron oxide mineral and is in
good agreement with other studies (Christl and Kretzschmar, 1999; Hayes et al., 1991;
Hwang and Lenhart, 2008).

The quality of DDLM fit, i.e., R value which is equivalent to a weighted Pearson
correlation coefficient and calculated excluding outliers, derived based on each SSD
value is given in Table 4. As evident in Table 4, no clear correlation was found between
R value and SSD, and no obvious maximum was obtained for R value. The observed
sensitivity of SSD to quality of data fitting is in good agreement with other studies by
Christl and Kretzschmar (1999) and Hwang and Lenhart (2008). Since the data fitting
quality is insensitive to SSD while modeled pKa values are not, fitting the potentiometric
titration data by optimizing arbitrary SSD might impede the accuracy in determining pKa
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values. In similar, Christl and Kretzschmar (1999) noted that fitting the surface titration data
would not be recommended for determining SSD.
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Figure 5. Diffuse double layer model protolysis constants for iron oxides as a
function of surface site density. Large symbols represent the protolysis constants
obtained with crystallographically-derived surface site density.

4.7 Concluding Remarks

In the FY23 study, the community data-based surface complexation modeling framework
was successfully developed and was utilized for iron oxide potentiometric titration
systems to produce ‘representative’ protolysis constants that account for all
potentiometric titration data collected from multiple literature sources. In addition, the
influence of SCM type and effect of SSD on potentiometric titration modeling were
examined.

Simulation results showed that the protolysis constants produced by the potentiometric
titration data workflow can reproduce most of the experimental data with reasonable
accuracy. In addition, the present study shows that the application of community data-
driven modeling can additionally identify erroneous datapoints. This feature can be
investigated to increase the robustness and reliability of databases and/or surface
complexation models.
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Importantly, our current modeling results emphasize the need for consistency in SSD,
pKa values, and SCM type in any self-consistent SCM database. The framework
developed through this task provides an approach to developing such a self-consistent
database using the principles of FAIR community data. Furthermore, since this
framework is readily expandable (as community data increase) and extensible (as the
number of minerals increase), the framework can be easily applied to other minerals of
interest.

5. Planned FY 24 Efforts

A continuing focus for FY 24 efforts will be to support the US participation in the NEA-
TDB effort. The focus of FY24 activities will be the development of an agreement for a
Phase 7 activity that will start in Q1 of 2025.

In FY24, we will use our position on the NEA-TDB MB and EG to facilitate the
integration of NEA-TDB thermochemical data with LLNL’s SUPCRTNE
thermodynamic database that supports the SFWST GDSA activities. This effort is
coordinated with the Argillite work package SUPCRTNE database development efforts.
The goal is to provide a downloadable database that will be hosted on LLNL’s
thermodynamics website which incorporates NEA-TDB data into the LLNL database
where appropriate.

Finally, we will continue our effort to integrate international sorption databases into the
L-SCIE database. FY24 efforts will focus on incorporating the PSI clay dataset into L-
SCIE, as described in the Argillite international activity milestone report. We will also
actively pursue opportunities to engage in the EURAD program that will be initiated in
FY24 by our European collaborators at the Karlsruhe Institute of Technology (KIT),
Germany.
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