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1. Introduction 

This progress report (Level 4 Milestone Number M4SF-23LL010302062) summarizes 

research conducted at Lawrence Livermore National Laboratory (LLNL) within the 

Crystalline International Collaborations Activity Number SF-23LL01030206. The 

activity is focused on our long-term commitment of engaging our partners in international 

nuclear waste repository research. This includes participation in the Nuclear Energy 

Agency Thermochemical Database (NEA-TDB) Project and development of 

methodologies for integrating US and international thermodynamic databases for use in 

SFWST Generic Disposal System Assessment (GDSA) efforts.  

 
A continuing focus for FY23 efforts has been to support the US participation in the NEA-TDB 

effort (Mavrik Zavarin replaced Cindy Atkins-Duffin on the NEA-TDB Management Board 

(MB) and Executive Group (EG)) and developing mechanisms for integration of NEA-TDB 

thermochemical data with LLNL’s SUPCRTNE thermodynamic database that supports the 

SFWST GDSA activities. This effort is coordinated with the Argillite work package SUPCRTNE 

database development efforts. The goal is to provide a downloadable database that will be hosted 

on a LLNL website which integrates NEA-TDB data into the LLNL SUPCRTNE database where 

appropriate. 

 

As part of our international activities, we continue our effort to integrate international sorption 

databases into L-SCIE (Zavarin et al., 2022b). We presented opportunities to include sorption in 

the next phase of NEA-TDB efforts at the April 2023 EG meeting in Paris. FY23 efforts focused 

on ensuring interoperable database development across multiple international database 

development activities. The overall goal is to produce an open source database that can be shared 

and integrated with multiple nuclear waste programs internationally and harness modern data 

science workflows and algorithms to incorporate these new approaches into reactive transport and 

performance assessment models. 

 

In collaboration with our Helmholtz Zentrum Dresden Rossendorf partners, we recently 

demonstrated the power of FAIR open source databases by fitting iron oxide (hydrous ferric 

oxide, goethite, hematite, and magnetite) protolysis constants to all available L-SCIE data. The 

results were submitted as a manuscript to J. Colloid Interface Science. This work will inform 

future metal sorption studies on a variety of iron oxides in order to discern the most appropriate 

acidity constants and surface complexation modeling constructs to account for pH-dependent 

mineral surface charge behavior. This work also explored automated surface complexation model 

development workflows in order to generate higher throughput model input files for a more facile 

incorporation into GDSA activities. 

 

2. Nuclear Energy Agency Thermochemical Database Program  

 

The Nuclear Energy Agency (NEA) Thermochemical Database Program (TDB) was 

conceived of and initiated with the goal to 1) make available a comprehensive, internally 

consistent, internationally recognized database of selected chemical elements; 2) meet the 

specialized modeling requirements for safety assessments of radioactive waste and; 3) 

prioritize the critical review of relevant data for inorganic compounds and complexes 

containing actinides. Data from other elements present in radioactive waste are also 
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critically reviewed as well as compounds and complexes of the previously considered 

elements with selected organic ligands. 

 

The objective of the Program is to produce a database that contains data for all the 

elements of interest in radioactive waste disposal systems; document why and how the 

data are selected; give recommendations based on original experimental data, rather than 

compilation and estimates; document the sources of experimental data; provide internally 

consistent thermodynamic parameters, and treat solids and aqueous species of the 

elements of interest for nuclear storage performance assessment calculations. 

 

The qualification of existing data is conducted using documented Guidelines which 

include several components. A Technical Review is conducted by subject matter experts 

who critically review experimentally determined literature data; reanalyze the data as 

necessary; and select data for inclusion in the database. Upon completion of the 

Technical Review, a Peer Review is undertaken. A second, independent panel of 

reviewers ensure that the technical reviewers followed the review Guidelines. A 

Comment Resolution component ensures that the Technical Reviewers address the 

comments made by the Peer Reviewers. At this time, the volume is readied for final 

publication. Distribution of the Reviews is completed as open source material and in 

electronic form via the NEA TDB website. 

 

Phases VI of the NEA-TDB program was officially started in February 2019 with all 

participating member parties having signed the Framework Agreement. The First 

Meeting of the Management Board (MB) and the Executive Group (EG) were held at the 

NEA in Paris February 19-20, 2019. Lena Evins (Sweden-SKB) was elected Chair of the 

MB and Stephane Brassinnes (ONDRAF/NIRAS- Belgium) Vice Chair. Canada and the 

Netherlands joined the Programme for this Phase. Elected to the Executive Group were 

Chair Marcus Altmaier (INE-Germany), Cindy Atkins-Duffin (DOE/LLNL-USA), 

Benoit Made (ANDRA-France), Pascal Reiller (CEA Saclay – France), and Kastriot 

Spahiu (SKB (retired)-Sweden. Som of the projects that were not completed in Phase V 

were brought forward to Phase 6.  

 

The U.S. representative to the NEA TDB Management Board, Cynthia Atkins-Duffin, 

retired from LLNL in FY23.  Mavrik Zavarin, also from LLNL, replaced her on the 

Management Board.  The Management Board also elected Mavrik Zavarin to replace 

Cynthia Atkins-Duffin on the Executive Group. Mavrik Zavarin is also the point of 

contact to complete the Cements State of the Art Report.  The Cement SOAR review will 

be completed in FY24. 

 

A Management Board (MB) and Executive Group (EG) meetings were held in Paris on 

November 7 and 8, 2022. At this meeting Mavrik Zavarin was introduced as the new US 

representative to the Management Board. An EG meeting was held in Paris on April 3, 

2023 where Mavrik Zavarin joined the EG. Follow-on online meetings were held by the 

EG on May 31, 2023 and by the MB on June 29, 2023 to discuss the path forward for a 

Phase 7 of the NEA-TDB project.  
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The current status of the Phase 6 program and the associated reviews are: 

 

• Iron (Part II) Volume – Published online (NEA TDB website) in January, 2020. 

• 2nd Update of the Actinides Volume – Published online (NEA TDB website) in 

October, 2020 

• Ancillary Data Volume – The volume is in the final stages of production, 

expected publication (NEA TDB website) in 2023. Carlos Jove-Colon (USA) 

served as one of the peer reviewers. 

• Molybdenum Data Volume – This review continues to struggle with delivery of 

information from the team to the NEA. Several rescoping and personnel 

assignments were put into place. The EG has taken a more active management 

role in this project (Pascal Reiller is the EG liaison). To motivate the completion 

of this data volume, a hard deadline for the first internally reviewed draft of the 

volume was set for December 2023. At that point, some sections that are not 

complete may need to be omitted from the final volume. Final publication of the 

volume is anticipated in 2025. 

• Cements State of the Art Report –The NEA Project Coordinator and the EG 

liaison (previously Cindy Atkins-Duffin, USA and new Mavrik Zavarin, USA) 

convened quarterly meetings with the review team. The SOAR is now ready for 

peer review and the external review team is being assembled. Thomas Matschei 

(Aachen University) and Ed Matteo (SNL) have been confirmed as reviewers. 

An additional reviewer is being identified. Final publication of the volume is 

anticipated in Q3 of 2024. 

• High Ionic Strength Solutions State of the Art Report – Progress continues to 

be slow on this project. The next deliverable, a complete draft delivered to NEA, 

is due in September 2023. As in the Mo report, the EG has decided to make this a 

hard deadline. If some sections are not ready in September, 2023, they may be 

omitted from the SOAR rather than extending the deadline. The current planned 

review by the NEA TDB is planned for the fourth quarter of 2023 and external 

peer review to start in Q3 of 2024. 

• Organics Update – The initiation report has been completed and the 

Management Board accepted the report as presented, paid, and closed out the 

reviewer contracts.  The Management Board has prioritized the completion of the 

existing volumes higher than the start of new activities. While recognizing the 

importance of this Update, the decision was made to defer the start of this effort to 

a possible Phase 7 of the TDB Program. 

• Lanthanides Volume – This activity is ongoing. Work on this volume continues 

with anticipated draft submission to NEA TDB by Q4 of 2024 and external peer 

review in 2025. 

• High Temperature State of the Art Report – The initiation report has been 

completed and accepted. The Management Board has prioritized the completion 

of the existing volumes higher than the start of new activities. While recognizing 

the importance of this Update, the decision was made to defer the start of this 

effort to a possible Phase 7 of the TDB Program. 

• TDB course –The 7th edition of the TDB course is being planned as an in-person 

event to be held in conjunction with Migration 2023, Nantes, France.  
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• TDB Electronic Database – Currently only maintenance activities such as the 

populations of the eTDB with the new selected values from the Ancillary and 

Molybdenum volumes are being undertaken.  All available NEA staff resources 

have been focused on the management, editing, and publication of the review 

volumes. Thus, updates to the electronic database may not be made until the start 

of a proposed Phase 7. 

 

Based on the pace of Phase 6 deliverables and the expressed interest by the NEA-TDB 

partners not to enter into a Phase 7 until all ongoing activities reach the peer review stage, 

the MB decided to extend Phase 6 into a second no-cost 1 year extension. This allows 

Phase 6 to be extended to Q1 of 2025. At that point, we anticipate that the Ancillary Data 

volume will be published and the Molybdenum Data volume, Cements SOAR, and High 

Ionic Strength SOAR will be in the peer review stage or completed. The Lanthanides 

Data volume will also be nearing the peer review stage. This will also allow for sufficient 

time to develop a plan forward for Phase 7 which, if approved, would begin at the end of 

Phase 6. The tentative schedule for preparing a Phase 7 agreement is as follows: 

• Draft agreement: end of 2023 

• Ready for signature: mid 2024 

• Start of TDB-7: Q1 2025 

Discussion of Phase 7 priority activities has already begun. The MB members were sent a 

TDB 7 Questionnaire entitled “Towards a future TDB Phase”. The value of the NEA 

TDB was acknowledged by most MB members and the value of the NEA-TBD activity 

was predominantly associated with the production of Data Volumes. The MB was in 

general agreement that Phase 7 should prioritize the Update to Organics Data volume and 

the High Temperatures and Pressures SOAR which already have approved initiation 

reports from Phase 6. Some significant interest in developing a Data Volume on iodine 

thermodynamics was noted. Discussion of Phase 7 priority research areas will continue as 

the draft agreement is put in place and identification of participating countries is 

established. Depending on the level of participation and the interests of the participating 

agencies, the scope and effort associated with Phase 7 activities will be defined. 

 

3. International Collaboration on L-SCIE Database Development  

 

García, D., Dagnelie, R.V.H., Zavarin, M., 2023. Editorial: Sorption Processes in 

Nuclear Waste Management: Data Knowledge Management and New Methodologies for 

Data Acquisition/Prediction. Frontiers in Nuclear Engineering. 

 

In late FY22, we collaborated with Dr. Garcia (Amphos21) to develop a special research 

topic in the Frontiers in Nuclear Engineering journal entitled “Sorption processes in 

nuclear waste management: Data knowledge management and new methodologies for 

data acquisition/prediction”. In FY23, the full research topic was published and an 

editorial was accepted for publication as part of this special topic (García et al., 2023). In 

addition to this activity, we are pursuing access to a number of new data streams to 

support the continued development of the L-SCIE community database and we will 
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continue to pursue international collaborations that promote interoperable design of 

databases and the principles of Open Science and FAIR data (Wilkinson et al., 2016).  

 

The following is a shortened version of the editorial that was included in the special 

research topic “Sorption processes in nuclear waste management: Data knowledge 

management and new methodologies for data acquisition/prediction” 

 

A fundamental approach to Nuclear Waste Repository research involves the collection of 

experimental data in a laboratory setting, development of empirical and/or mechanistic 

numerical models representing those observations, and application of these models into 

reactive transport and performance assessment models as predictive tools for informing 

society of impacts and risks associated with nuclear waste repository scenarios (Stevens 

et al., 2020). The assimilation and interpretation of experimental data must take 

advantage of both new data and the rich historical data available in the literature and 

apply novel modeling approaches to improve predictive tools, particularly from the 

standpoint of uncertainty quantification, for nuclear waste repository performance 

assessment (Zavarin et al., 2022a). 

 

Experimental data collected in a laboratory setting is fundamentally different from large 

formatted sensor data that are much more amenable to “big data” approaches. New data 

science approaches to interrogate experimental laboratory data have been limited, in large 

part, by the lack of common standards and approaches to archiving these data types (i.e. 

findable, accessible, interoperable, reusable “FAIR” data) (Wilkinson et al., 2016). As 

these new approaches are applied to sorption and other data, they will fundamentally 

change how predictive tools quantify impacts and risks associated with siting nuclear 

waste repositories.  

 

In the series of articles published as a special research topic in the Frontiers in Nuclear 

Engineering, authors apply novel modeling approaches to experimental data categorized 

as sorption data. Traditionally, these data inform empirical (e.g. Kd) or mechanistic (e.g. 

surface complexation) models that are subsequently used in reactive transport models at 

various scales as predictive tools for assessing transport behavior. These same data and/or 

models can also inform the development of Reduced Order Models (Garibay-Rodriguez 

et al., 2022; Li and Zarzycki, 2022) that can be applied more efficiently to complex large 

scale models (e.g. performance assessment models).  

 

Romanchuk et al. (2022) focus on the question of self-consistent Surface Complexation 

Model (SCM) database development by presenting a data fitting workflow that combines 

new and literature-derived sorption data for three radionuclides in specific oxidation 

states (U(VI), Eu(III), Np(V)) and the iron(III) oxide mineral goethite fit using the 

PHREEQC (Parkhurst, D.L. and Appelo, C.A.J., 2013) geochemical solver linked to the 

MOUSE (Linge et al., 2020) optimization software with automation that relies on the 

Python programming language. They show that expansion of their approach to a larger 

set of elements (Cd(II) and Zn(II)) is relatively straightforward and suggests further 

expansion by adopting Linear Free Energy Relationships (LFER) across an even greater 

number of sorbing elements. 
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The application of SCMs to predict organic compounds’ behavior at solid-water 

interfaces is particularly complicated by the large number of organic compounds present 

in nuclear waste repositories and the associated near- and far-fields. Organic compounds 

can sorb to mineral surfaces but can also form aqueous and ternary complexes with 

radionuclides. As a result, developing comprehensive modeling approaches for organic 

compounds’ reactive transport remain elusive. Szabo et al. (2022) explore this topic by 

examining the uptake of multiple organic compounds (degradation products of 

polyacrylonitrile-based polymers) to cements. They use relatively simple Langmuir 

models to explore the relative affinity of these organic compounds and review affinity 

patterns of a large number of organic compounds reported in the literature. The 

examination of sorption behavior across a wide number of organic compounds reveals 

relationships between functional group type, functional group density, and surface 

affinity. 

 

Hinchliff et al. (2022) examine the role of cellulosic organic compounds on Sr sorption to 

hydrated cements. Again, new and literature data are combined to develop a 

comprehensive understanding of Sr diffusivity and sorption to hydrated cements. The 

analysis reveals surprisingly enhanced retardation of Sr and suggests that cellulose 

organic degradation products impact Sr retention though the exact mechanisms have yet 

to be revealed. Nevertheless, the results point to the need to expand surface complexation 

and surrogate modeling approaches beyond simple binary radionuclide sorption models. 

Importantly, the increased complexity brings increased importance to the development of 

large FAIR sorption databases (Wilkinson et al., 2016) that capture the multidimensional 

sorption conditions. Development of software and workflows that can readily take 

advantage of the rich data sources available in the literature will greatly benefit the 

nuclear waste repository research community in the coming years. 

 

An apparent roadblock in SCM database development is the apparent data paucity as it 

relates to development of well constrained geochemical models.  However, Zavarin et al. 

(2022) determined that the cumulative number of peer reviewed publications referencing 

the topic of sorption and adsorption has already reached ~1,000,000. Thus, as several 

authors discuss, this apparent lack of data is, in large part, due to a lack of FAIR data 

rather than lack of data per se. This lack of FAIR data has severely limited the 

development of self-consistent SCM databases. A recent data assimilation effort at 

Lawrence Livermore National Laboratory and collaborators at the Helmholtz Zentrum 

Dresden Rossendorf, has been developing a data digitization pipeline (Zavarin et al., 

2022a). To date, the manual digitization of data has yielded a LLNL SCIE database that 

includes 211 references and a total of 22,732 individual digitized data and associated 

metadata. Importantly, this approach to data mining is labor intensive and cannot be 

expanded beyond a set of targeted data (e.g. reactions specific to the nuclear waste 

performance assessment needs). Adoption of new approaches to data assimilation are 

clearly needed. 

 

New modeling approaches that take advantage of FAIR database development efforts are 

also needed. Garibay-Rodriguez et al. (2022) describe a computational framework for 
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radionuclide migration assessment in clay rocks that is based on OpenGeoSys6 which is 

linked to a number of geochemical solvers (PHREEQC, GEMS, etc.) and can be applied 

to both traditional surface complexation/ion exchange models as well as surrogate 

models. For portability, the modeling framework is built around the JupyterLab Python 

framework that guarantees that all the source code and its dependencies can be executed 

efficiently and reliably, independent of any computing environment. Importantly, the 

surrogate models (aka look-up tables) are explicitly tied to the mechanistic surface 

complexation/ion exchange models. Test cases suggest that surrogate models can yield 

significant computational speed-up while maintaining a similar level of precision in 

model output. Garibay-Rodriguez et al. (2022) argue that open source software 

approaches are key to continuing software development and longterm improvements in 

nuclear waste performance assessment models. 

 

Li and Zarzycki (2022) describe a computational pipeline to generate synthetic SCM data 

and discuss approaches to transform this dataset into AI-learnable input for use in 

surrogate models. In their approach, available surface complexation model databases are 

used to produce high density sorption data across a very wide range of conditions. The 

generated synthetic datasets can more readily take advantage of AI algorithms that can be 

used in surrogate model development. The approach is tested for determination of the 

electrostatic properties of a prototypical oxide/electrolyte interface using the triple-layer 

surface complexation modeling construct. The authors provide a theoretical framework 

for developing surrogate models using AI and based on developing synthetic sorption 

data from traditional surface complexation databases. 

 

Nuclear Waste Repository reactive transport and performance assessment modeling 

teams have a number of opportunities to apply modern processes, workflows, and 

machine learning in predictive tools for informing society of impacts and risks associated 

with nuclear waste repository scenarios. Both the assimilation and interpretation of 

experimental data can harness ML to improve predictive tools, particularly from the 

standpoint of uncertainty quantification. While a number of challenges are still present 

(e.g. automation of various component of the data assimilation and interpretation in the 

data stream), these approaches will provide a robust and nimble framework for evaluating 

nuclear waste repository performance that is adaptable to the unique timescales that 

repository performance, oversight, and monitoring will require. 

 

4. Workflow development for community potentiometric titration data 

modeling and database development 

 

Han, S.-C., Chang, E., Zechel, S., Bok, F., Zavarin, M., 2023. Application of community 

data to surface complexation modeling framework development: Iron oxide protolysis. 

Journal of Colloid and Interface Science 648, 1015-1024. 

doi.org/https://doi.org/10.1016/j.jcis.2023.06.054.  

 

The information presented below is a summary from a manuscript published in June 2023 

in the Journal of Colloid and Interface Science (Han et al., 2023). This publication 
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describes the workflow developed, in conjunction with our L-SCIE database, to simulate 

community potentiometric titration data. The development of a consistent set of surface 

protonation reactions is an important first step in the development of self-consistent 

surface complexation databases. In this manuscript, we develop surface protonation 

constants for a series of iron oxide phases. 

 

4.1 Introduction 

 

Since the surface charge of the mineral affects the sorption affinity between adsorbate 

and adsorbent, estimating the protolysis of mineral surface is crucial for surface 

complexation models (SCM). For this reason, surface protolysis constants of minerals, 

which describe degree of the protonation and deprotonation of surface functional groups, 

are essential input parameter of SCMs and the selection of proper values for the constants 

is important in terms of reliable modeling. In various studies, however, different 

protolysis constants have been utilized even when the type of SCM and mineral used in 

their studies are identical (see Table 1). This fact leads to ambiguity in the selection of 

‘representative’ protolysis constants and uncertainty in the further development of self-

consistent surface complexation databases. In other words, there now exists an impasse in 

the integration of the experimental data scattered in different studies into comprehensive 

SCM frameworks that reconcile the full community-wide data. 

 

In light of this challenge, our task aimed at developing potentiometric titration modeling 

workflow for modeling digitized community potentiometric titration data. The workflow 

focuses on fitting compiled community data for each individual iron oxide mineral (i.e., 

ferrihydrite, goethite, hematite, and magnetite) to produce representative protolysis 

constants that account for all potentiometric titration data collected from multiple 

literature sources. 
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Table 1. Diffuse double layer surface complexation model protolysis constants and 

site densities for ferrihydrite reported in the literature. Data from RES3T database 

(Brendler et al., 2003; Dresden-Rossendorf, 2013). 

 
1st protolysis 

constant (pKa1) 

2nd protolysis 

constant (pKa2) 

Site density 

(sites·nm-2) 
Reference 

1 6.09 7.38 2.2583 (Nowack et al., 1996) 

2 6.51 9.13 0.0203 (Arnold et al., 1998) 

3 7 9.2 7.0903 (Nomaan et al., 2021) 

4 7.01 7.86 0.7300 (Veselská et al., 2016) 

5 7.29 8.93 2.2553 (Eibl et al., 2019) 

6 7.5 10.2 9.9966 (Landry et al., 2009) 

 

 

4.2 Development of Surface Complexation Modeling Framework 

 

As part of this effort, a community data driven surface complexation modeling 

framework has been developed. The framework begins with a database of community 

titration/sorption data, i.e., L-SCIE (Zavarin et al., 2022a), followed by a potentiometric 

titration modeling workflow, which is then followed by surface complexation modeling 

workflow (Figure 1). The L-SCIE database provides input data for both potentiometric 

titration modeling workflow (L-ASTM, LLNL Automated Surface Titration Model) and 

surface complexation modeling workflow (L-ASCM, LLNL Automated Surface 

Complexation Model). The protolysis constants produced by L-ASTM are used as input 

parameters for the surface complexation model (L-ASCM). 

 

 
Figure 1.  Workflow of community data driven surface complexation modeling 

framework 
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Data processing and workflow associated with L-ASTM was written in Python and the 

code was integrated with PHREEQC (Parkhurst, David L and Appelo, C.A.J., 2013) and 

PEST (Doherty, 2018) for data fitting. The details of the workflow of L-ASTM are shown 

in Figure 2. First, the code imports potentiometric titration data extracted from the L-

SCIE database and categorizes the data by dataset. For example, single reference may 

include several experimental datasets conducted under various experimental conditions, 

e.g., ionic strength. For each of these datasets, the L-ASTM code generates the relevant 

PHREEQC/PEST input files and runs a separate PHREEQC/PEST data fitting. Once the 

fitting is performed for each dataset, two protolysis constants (pKa1 and pKa2) and 

associated 95% confidence intervals (±2) are generated. Finally, weighted arithmetic 

mean pKa1 and pKa2 values of all datasets are calculated to produce ‘representative’ 

average protolysis constants by using equations (1) – (3). 

 

 

 
Figure 2. Surface complexation modeling workflow (L-ASTM code) for 

potentiometric titration data. 
 

 

Weighted average (xwav) is the best estimation for the true x value when there are N 

measurements of x with corresponding uncertainties (i.e., x1 ± 1, …, xN ± N), and can 

be calculated by the following Eqs. (1) and (2) (Heckert and Filliben, 2003; Taylor, 1997): 

 

𝑥𝑤𝑎𝑣 =
∑𝑤𝑖𝑥𝑖

∑𝑤𝑖
                                                           (1) 

𝑤𝑖 =
1

𝜎𝑖
2                                                               (2) 

where xi denotes ith measurement of x and wi represents the corresponding weight which 

is the reciprocal square of uncertainty of ith measurement (i). Finally, uncertainty in the 

weighted average can be calculated by Eq. (3) (Heckert and Filliben, 2003): 

 

𝜎𝑤𝑎𝑣 = √
∑𝑤𝑖(𝑥𝑖−𝑥𝑤𝑎𝑣)

2

(𝑁′−1)∑𝑤𝑖

𝑁′

                                                      (3) 

 

where N’ denotes the number of non-zero weights. In our case, total number of 

measurements, N, is equal to total number of datasets, xi corresponds to pKa1 or pKa2 

from the ith dataset and i is the uncertainty of pKa1 or pKa2 from the ith dataset. 
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4.3 Case Study of Potentiometric Titration Modeling for Iron Oxides 

 

The FY23 efforts were focused on potentiometric titration modeling for iron oxides to 

demonstrate a method to reconcile community data-wide potentiometric titration data 

using FAIR data principles to produce mineral protolysis constants. In this FY23 task, 

potentiometric titration data for four iron oxide minerals (i.e., ferrihydrite, goethite, 

hematite, and magnetite) were evaluated. It should be noted that the data used in this 

study (Table 2) was extracted from the L-SCIE database and may not reflect all available 

data in the literature. Nevertheless, since our SCM framework is based on the FAIR data 

principle, one can easily refit the protolysis constants as new data become available.  

 

 

Table 2. Description of iron oxide potentiometric titration data used in this study.a 

Iron oxide minerals Data count No. of datasets No. of references pH range 

Ferrihydrite 1,119 40 12 2.7 – 11.7 

Goethite 1,982 79 23 3.0 – 11.0 

Hematite 1,702 61 16 2.7 – 11.1 

Magnetite 301 14 8 2.3 – 12.0 
a Potentiometric titration data included in the L-SCIE database and evaluated here include: 1) ferrihydrite: 

(Antelo et al., 2010; DAVIS III, 1978; Dyer, 2003; Ghoneimy et al., 1997; Hofmann et al., 2005; Hsi and 

Langmuir, 1985; Kanungo and Mahapatra, 1989; Moon and Peacock, 2013; Nagata and Fukushi, 2010; 

Nagata et al., 2009; Pivovarov, 2009; Trivedi and Axe, 2001), 2) goethite: (Balistrieri and Murray, 1981; 

BARROW and COX, 1992; Bowden et al., 1980; Fujita et al., 1994; Gunnarsson et al., 2002; Hayes et al., 

1991; Hoins et al., 1993; Hsi and Langmuir, 1985; Lackovic et al., 2003; Lumsdon and Evans, 1994; 

Missana et al., 2003b; Müller and Sigg, 1992; Naveau et al., 2005; Peacock and Sherman, 2004; 

Rahnemaie et al., 2006; Robertson and Leckie, 1997, 1998; Rundberg et al., 1994; Sigg, 1980; Trivedi and 

Axe, 2001; van Geen et al., 1994; Villalobos and Leckie, 2000; Yates, 1975), 3) hematite: (Breeuwsma and 

Lyklema, 1971; Christl and Kretzschmar, 1999; C̆olić et al., 1991; Estes et al., 2013; Gibb and Koopal, 

1990; Gunnarsson et al., 2001; Hesleitner et al., 1987; Hesleitner et al., 1991; Hwang and Lenhart, 2008; 

Kohler et al., 1999; Marmier and Fromage, 1999; Murphy et al., 1999; Peacock and Sherman, 2004; 

Pivovarov, 1998; Romanchuk and Kalmykov, 2014; Yates, 1975), and 4) magnetite: (Blesa et al., 1984; 

Catalette et al., 1998; Fujita et al., 1994; Marmier et al., 1999; Mayant et al., 2008; Missana et al., 2003a; 

Regazzoni et al., 1983; Tamura et al., 1983). 

 

 

One of the most significant improvement in the workflow compared to FY22 is that now 

the current workflow utilizes the surface site densities (SSDs) of iron oxides obtained 

using a crystallographic approach (Eibl et al., 2019; Neumann et al., 2021). The 

crystallographically-derived SSDs for singly coordinated groups on ferrihydrite, goethite, 

hematite, and magnetite are 6.53, 6.60, 5.83, and 4.56 sites·nm-2, respectively (Table 3).  

These values were used in the estimation of protolysis constants. However, natural 

minerals likely include irregularities that may cause variation in SSD values. For this 

reason, sensitivity analysis of SSD was also conducted to examine the effect of SSD on 

pKa estimation. The SSDs applied in the sensitivity analysis ranged from 3 to 10 

sites·nm-2 (i.e., 3, 5, 7, and 10 sites·nm-2). An SSD of 2.31 sites·nm-2, suggested by 

Dzombak and Morel (1990) for hydrous ferric hydroxide, has previously been 

recommended for use in estimating  binding constants on many types of minerals (Davis 

and Kent, 1990). By considering the fact that the value has been conventionally used in a 
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number of surface complexation modeling efforts, SSD of 2.31 sites·nm-2 was also 

included in our sensitivity analysis.  

 

Table 3. Surface site densities of ferrihydrite, goethite, hematite, and magnetite. 

Iron oxide 

mineral 

Crystallographically-Derived 

SSD (sites·nm-2) 

Iron oxide 

mineral 

Crystallographically-Derived 

SSD (sites·nm-2) 

Ferrihydrite 6.53 Hematite 5.83 

Goethite 6.60 Magnetite 4.56 

 

4.4 Diffuse Double Layer Model Protolysis Constants of Ferrihydrite, 
Goethite, Hematite, and Magnetite 

 

The iron oxide pKa values were estimated by fitting the community potentiometric 

titration data. The diffuse double layer model (DDLM) was initially adopted to describe 

the electrical double layer, and SSDs obtained from the crystallographic approach were 

used (see Table 3). The calculated iron oxide pKa values are summarized in Table 4 and 

Figure 3 shows a modeling example: ferrihydrite potentiometric titration data, model fits 

using weighted mean pKa values, and fits to individual datasets. As shown in Figure 3, 

protolysis constants produced by the community data-driven workflow can reproduce 

most of the experimental data with reasonable accuracy. In the case of some datasets, 

however, the fitted model did not reproduce the experimental data. The poor fit to the 

data is, in most cases, indicative of erroneous reporting of potentiometric titration data 

(e.g., afpmagl10 datasets by Antelo et al. (2010)). 
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Table 4. Diffuse double layer model protolysis constants for iron oxides as a 

function of surface site density. 

Iron oxides SSD (sites·nm-2) pKa1
†† pKa2

†† R value 

Ferrihydrite 

2.31 6.7 ± 0.4 8.7 ± 0.6 0.916 
3 6.5 ± 0.4 8.7 ± 0.6 0.916 
5 6.2 ± 0.4 8.9 ± 0.6 0.915 

6.53† 6.1 ± 0.4 9.0 ± 0.6 0.915 
7 6.1 ± 0.4 9.0 ± 0.6 0.915 

10 5.9 ± 0.4 9.2 ± 0.6 0.916 

Goethite 

2.31 6.9 ± 0.8 9.1 ± 0.7 0.880 
3 6.7 ± 0.7 9.2 ± 0.7 0.877 
5 6.4 ± 0.7 9.4 ± 0.7 0.868 

6.60† 6.2 ± 0.7 9.5 ± 0.6 0.867 
7 6.2 ± 0.7 9.6 ± 0.6 0.867 

10 6.0 ± 0.7 9.7 ± 0.6 0.868 

Hematite 

2.31 7.6 ± 0.7 9.2 ± 0.82 0.875 
3 7.3 ± 0.7 9.3 ± 0.86 0.877 
5 6.9 ± 0.8 9.4 ± 0.79 0.874 

5.83† 6.8 ± 0.8 9.4 ± 0.79 0.872 
7 6.7 ± 0.8 9.5 ± 0.79 0.873 

10 6.5 ± 0.8 9.6 ± 0.77 0.872 

Magnetite 

2.31 6.2 ± 0.2 7.3 ± 0.2 0.922 
3 6.1 ± 0.2 7.5 ± 0.4 0.923 

4.56† 5.9 ± 0.2 7.4 ± 0.6 0.935 
5 5.8 ± 0.2 7.5 ± 0.6 0.934 
7 5.7 ± 0.3 7.6 ± 0.7 0.940 

10 5.5 ± 0.3 7.6 ± 0.7 0.944 
†Crystallographically-derived surface site density (used as reference case). 
††Reported uncertainties are mean weighted ± of the fitted pKa values (Eq. 3). 
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Figure 3. Potentiometric titration data of ferrihydrite (blue), modeling data using 

weighted mean DDLM pKa values (orange), and DDLM fits obtained for individual 

datasets (black). All models used the crystallographically-derived surface site 

density (Table 4). Error bars represent estimated data uncertainties at one standard 

deviation. 
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4.5 Effect of Type of Electrical Double Layer 

 

In order to build a self-consistent SCM reaction database, protolysis constants should be 

estimated using a consistent SCM type (e.g., non-electrostatic model (NEM), DDLM, or 

constant capacitance model (CCM)) which, in turn, is identical to that used for 

downstream sorption modeling. In this task, we examined how the SCM type affects the 

protolysis constants and evaluated how well each SCM type reproduces the 

potentiometric titration data. The modeling was conducted for four iron oxides (i.e., 

ferrihydrite, goethite, hematite, and magnetite) and three types of SCM: NEM, DDLM, 

and CCM (Table 5). As summarized in Table 5, estimated pKa values were different 

according to the type of SCM. For example, pKa1 of the NEM is lower than that of the 

DDLM, while pKa2 of the NEM is higher than that of the DDLM. 

 

 

Table 5. Estimated protolysis constants of iron oxide minerals with different surface 

complexation models using crystallographically estimated surface site densities 

(Table 3). 

Iron oxides SCM type pKa1 pKa2 (pKa1 + pKa2)/2 Capacitance 

Ferrihydrite 

NEM 3.51 ± 0.65 11.03 ± 0.57 7.27 ± 0.43 - 

DDLM 6.09 ± 0.40 9.00 ± 0.56 7.55 ± 0.34 - 

CCM 6.41 ± 0.38 9.78 ± 0.39 8.10 ± 0.27 1.11 ± 0.52 

Goethite 

NEM 5.06 ± 1.08 9.96 ± 1.10 7.51 ± 0.77 - 

DDLM 6.23 ± 0.69 9.54 ± 0.63 7.89 ± 0.47 - 

CCM 6.93 ± 0.37 10.90 ± 0.33 8.92 ± 0.25 0.90 ± 0.18 

Hematite 

NEM 3.99 ± 0.61 10.83 ± 0.61 7.41 ± 0.43 - 

DDLM 6.84 ± 0.75 9.42 ± 0.79 8.13 ± 0.54 - 

CCM 7.25 ± 0.39 10.94 ± 0.44 9.10 ± 0.29 1.07 ± 0.22 

Magnetite 

NEM 4.17 ± 0.70 8.73 ± 1.46 6.45 ± 0.81 - 

DDLM 5.85 ± 0.22 7.44 ± 0.60 6.65 ± 0.32 - 

CCM 6.06 ± 0.37 6.07 ± 0.36 6.07 ± 0.26 2.08 ± 1.46 

 
 

The type of SCM also significantly affects the quality of fit. Figure 4 illustrates the fit 

quality for each SCM type and mineral phase in the form of normalized histograms as a 

percent difference between the experimental and modeled surface charge. The 

interquartile ranges (IQRs) of weighted residual data obtained from the models using 

each SCM type are also reported. The histograms exclude outliers where the data points 

fall below Q1 (first quartile of the data) – 1.5×IQR or above Q3 (third quartile of the 

data) + 1.5×IQR. As shown in Figure 4, the IQR of the NEM is always greater than the 

IQR of the DDLM and CCM. This implies that the fit quality of DDLM and CCM is 

overall better than that of the NEM. 
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Figure 4. Normalized histograms as a percent difference between the experimental 

and modeled surface charge for NEM, DDLM, and CCM models of (a) ferrihydrite, 

(b) goethite, (c) hematite, and (d) magnetite. The bin size of each histogram is 

equivalent to one tenth of IQR. 

 

4.6 Effect of Surface Site Density on Protolysis Constants 

 

As summarized in Table 4 and Figure 5, the value chosen for SSD significantly affects 

the modeled pKa values for iron oxides. The most remarkable observation was that pKa1 

decreased with increasing SSD, while pKa2 increased with increasing SSD. This 

systematic tendency was consistent regardless of the type of iron oxide mineral and is in 

good agreement with other studies (Christl and Kretzschmar, 1999; Hayes et al., 1991; 

Hwang and Lenhart, 2008). 

 

The quality of DDLM fit, i.e., R value which is equivalent to a weighted Pearson 

correlation coefficient and calculated excluding outliers, derived based on each SSD 

value is given in Table 4. As evident in Table 4, no clear correlation was found between 

R value and SSD, and no obvious maximum was obtained for R value. The observed 

sensitivity of SSD to quality of data fitting is in good agreement with other studies by 

Christl and Kretzschmar (1999) and Hwang and Lenhart (2008). Since the data fitting 

quality is insensitive to SSD while modeled pKa values are not, fitting the potentiometric 

titration data by optimizing arbitrary SSD might impede the accuracy in determining pKa 
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values. In similar, Christl and Kretzschmar (1999) noted that fitting the surface titration data 

would not be recommended for determining SSD. 

 

 

 
Figure 5. Diffuse double layer model protolysis constants for iron oxides as a 

function of surface site density. Large symbols represent the protolysis constants 

obtained with crystallographically-derived surface site density. 
 

4.7 Concluding Remarks 

 

In the FY23 study, the community data-based surface complexation modeling framework 

was successfully developed and was utilized for iron oxide potentiometric titration 

systems to produce ‘representative’ protolysis constants that account for all 

potentiometric titration data collected from multiple literature sources. In addition, the 

influence of SCM type and effect of SSD on potentiometric titration modeling were 

examined.  

 

Simulation results showed that the protolysis constants produced by the potentiometric 

titration data workflow can reproduce most of the experimental data with reasonable 

accuracy. In addition, the present study shows that the application of community data-

driven modeling can additionally identify erroneous datapoints. This feature can be 

investigated to increase the robustness and reliability of databases and/or surface 

complexation models. 
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Importantly, our current modeling results emphasize the need for consistency in SSD, 

pKa values, and SCM type in any self-consistent SCM database. The framework 

developed through this task provides an approach to developing such a self-consistent 

database using the principles of FAIR community data. Furthermore, since this 

framework is readily expandable (as community data increase) and extensible (as the 

number of minerals increase), the framework can be easily applied to other minerals of 

interest. 

 

5. Planned FY24 Efforts 

 

A continuing focus for FY24 efforts will be to support the US participation in the NEA-

TDB effort. The focus of FY24 activities will be the development of an agreement for a 

Phase 7 activity that will start in Q1 of 2025.  

 

In FY24, we will use our position on the NEA-TDB MB and EG to facilitate the 

integration of NEA-TDB thermochemical data with LLNL’s SUPCRTNE 

thermodynamic database that supports the SFWST GDSA activities. This effort is 

coordinated with the Argillite work package SUPCRTNE database development efforts. 

The goal is to provide a downloadable database that will be hosted on LLNL’s 

thermodynamics website which incorporates NEA-TDB data into the LLNL database 

where appropriate. 

 

Finally, we will continue our effort to integrate international sorption databases into the 

L-SCIE database. FY24 efforts will focus on incorporating the PSI clay dataset into L-

SCIE, as described in the Argillite international activity milestone report. We will also 

actively pursue opportunities to engage in the EURAD program that will be initiated in 

FY24 by our European collaborators at the Karlsruhe Institute of Technology (KIT), 

Germany.  
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