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Abstract—The converter-interfaced generation (CIGs) are ex-
pected to dominate the grid of the future. These CIGs will
cohabit with a small percentage of synchronous generators (SGs)
producing power from hydro, solar thermal or even nuclear
resources. It appears that the literature lacks comprehensive
modeling adequacy studies on such grids with SGs and CIGs.
This paper takes the first step in that direction. To that end,
a nonlinear averaged phasor model of the system with detailed
model of the converters including grid-forming converters (GFCs)
and their control is developed. Then a singular perturbation
analysis based model reduction approach for such system is
proposed. Based on the proposed method, two levels of reduced
order models for the GFCs are derived. Finally, the adequacy
of these reduced-order models are presented via time-domain
simulations on two test system models using MATLAB/Simulink.

Index Terms—Grid-forming converter, droop-control, dc cur-
rent limit, singular perturbation analysis, model reduction.

I. INTRODUCTION

The present-day grid is dominated by a declining fleet of
synchronous generators (SGs) with increasing penetration of
converter-interfaced generation (CIG) technology. The grid
of the future is expected to be dominated by CIGs, which
will cohabit with a small percentage of SGs producing power
from hydro, solar thermal or even nuclear resources. A com-
prehensive understanding of the dynamics of such systems
is crucial for planning and operation of the power systems.
The CIGs introduce dynamics of different time-scales than
traditional SGs and their associated controls. Typically, dif-
ferential algebraic equations (DAEs) are used to represent
such power system models that can easily reach thousands of
equations, even for a moderately large system. Simulation of
these models, particularly for large-scale system with detailed
electromagnetic transient (EMT) models of converters, for
dynamic analysis becomes a computationally challenging task,
especially due to a wide range of time-scales involved.

A significant amount of literature exists that has studied
the impact of high penetration of CIGs in bulk power grids
with progressively declining inertia and its impact on system
stability [1]–[4]. Most of the research, however, has only
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focused on “use-cases” based upon either time- or frequency-
domain analysis. These use-cases, although valuable, are
mostly numerical in nature and draw conclusions dependent
on system configurations and loading conditions. Moreover,
since the CIGs are typically based on grid-following convert-
ers (GFLCs), most studies have considered this technology.
Furthermore, these studies have assumed a varying degree of
fidelity of CIG models and considered that the traditional fun-
damental frequency phasor models that neglect transmission
line dynamics are adequate for such studies.

Although significant work has been done on modeling of
microgrids (e.g., [5]–[7]) and grids with 100% CIGs (e.g. [8]–
[11]), few studies exist on developing a modeling framework
for the grid of our interest that can be analytically justified to
meet the requirement of capturing frequency dynamics in the
grid under transition. On the other hand, extensive research
including [12] has been reported on determining modeling
adequacy in traditional grids with SGs, to the best of our
knowledge, there exist a few papers that have performed
similar analysis on grids with both SGs and CIGs. Singular
perturbation theory was applied in [13] for model reduction of
a system with a single converter connected to an infinite bus.

In [14], singular perturbation analysis was performed for
nonlinear models with SGs and CIGs, which did not take the
control loops into account. Reference [15] presented the effect
of transmission line dynamics in a couple of test systems with
SGs, grid-forming converters (GFCs), and GFLCs through
numerical analysis of the linearized models. It was shown
in [15] that network dynamics introduces both positive and
negative effects on stability in systems with GFCs and SGs.
A recent paper [16] applied singular perturbation theory on
the modeling adequacy study of grids with GFLCs.

In a recent work [11], the authors pointed out deficiencies of
the existing literature and summarized the major challenges of
low-inertia systems where SGs, and GFCs coexist. Out of these
challenges, one important area is primary frequency response
following loss of an SG. To develop understanding of the
timescale separation present between GFCs and SGs in the
context of frequency dynamics, an analytical approach has to
be developed to establish modeling adequacy of such systems.
This will in turn help reduce the models, while retaining
the dynamics of interest. It appears that the literature lacks



comprehensive modeling adequacy studies on grids with SGs
and GFCs. This paper takes the first step in that direction.

The paper is organized as follows: Section II presents the
details power system models and controls. In Section III, the
proposed singular perturbation analysis is discussed. Section
IV presents case studies on two test systems with a GFC.
Section V summarizes this study and identifies the future work.

II. NONLINEAR STATE-SPACE MODEL OF THE SYSTEM

In this study, a positive sequence fundamental frequency
phasor models for representing the test systems is considered.
A brief description each of the components are described
below.
SG Model: The SGs are represented using either a classical
model or an 8th-order model in an orthogonal d-q reference
frame rotating at the same speed as that of the machine’s
rotor [17]. The stator transients are represented using the
stator fluxes as state variables.
Exciter Model: The 8th-order SG models are also modeled
with an IEEE-DC1A type exciter [17].
Load Model: The loads in the system are modeled as con-
stant impedance, constant current, or constant power load or
combinations of them.
AC Network Model: The transformers and transmission lines
in this system are modeled algebraically. The AC network
is modeled algebraically using a Y -bus matrix in a current
injection framework.
The detailed modeling of GFC is discussed next.

A. Grid-Forming Converter and Controls

In this paper, we considered the voltage-sourced converters
(VSCs) as the power processors for the GFCs. As shown in
Fig. 1, the averaged model of GFCs is represented in a d− q
frame [18].

Fig. 1. Circuit diagram of GFC: The dc side is represented as a current
source, which mimics the characteristics of a renewable source.

The AC side dynamics of the GFC is represented by the RLC
filter as:

i̇tdq = −R
L
itdq ± ωcitqd +

1

L
(vdq − vtdq) (1)

v̇dq = ±ωcvqd +
1

C
(itqd − idq) (2)

The RLC filter connects the converters to the ac grid through
a transformer, whose dynamics are represented by equivalent
leakage inductance as:

i̇dq = −Rtf

Ltf
idq ± ωciqd +

1

Ltf
(vbdq − vdq) (3)

where vbdq is grid side voltage at the point of common
coupling.
The dc-link voltage dynamics on the dc side of the VSC is
modeled as

v̇dc = (−Gcvdc + imax
dc sat (idcs/i

max
dc )− Ptc/vdc) /Cc (4)

where, Ptc is the converter terminal power on the ac side. In
this study, a lossless converter is assumed, therefore, Ptc is
same as the dc side power. The saturation function is defined
as:

sat(u) =

{
u, if |u| ≤ 1

sgn (u) , otherwise
(5)

The dc-link current limit imax
dc is determined by factors like the

maximum power point (MPP) combined with the renewable’s
characteristics. It should be noted that the minimum current
limit of the GFC is considered as zero, which implies that the
GFC does not receive any power from the grid.

To represent the renewable resource, a dependent dc current
source is considered, see Fig. 1. The reference input current
i∗dc is expressed as [18]

i∗dc = kdc(v
∗
dc − vdc) +Gcvdc + (P ∗

c + Ptc − Pc)/v
∗
dc (6)

where, v∗dc and P ∗
c are the nominal values of the dc voltage and

the GFC power, respectively, and kdc is the dc voltage droop
coefficient. Rest of the parameters in (6) are self explanatory
from Fig. 1. A delay of τc is considered for the dc current to
replicate the delay associated with a renewable energy source.

B. GFC Controls
The GFC is controlled in a rotating d − q reference frame

whose angular frequency ωc is imposed by the converter using
a power-frequency droop as:

θ̇c = dpc(P
∗
c − Pc) = ∆ωc (7)

where, θc is the angle of the voltage across the capacitor C,
see Fig. 1, and ωc = ω∗ +∆ωc.
Two loops of inner controls are considered for the VSC, see
Fig. 2. The inner current controller PIi that controls the
current through the RL (Fig. 1) series components, and the
voltage controller PIv that controls the voltage across the
capacitor C (Fig. 1). The state variables (xGFC) and the input
variables (uGFC) of a detailed GFC model are:

xGFC = [idcs vdc itd itq vd vq id iq θc xv
xvd xvq xid xiq]

uGFC =
[
v∗dq v

∗
q v

∗
dc P

∗
c ω∗

] (8)

Fig. 2. Schematic of GFC current and voltage controls.



where, xv , xvdq , and xidq are the state variables of the voltage
regulator, voltage controllers (PIv), and current controllers
(PIi), respectively.
The nonlinear state-space averaged phasor model of a power
system with GFC can be derived in the form of the following
DAEs:

Ẋ = F (X,U, Y )
0 = G (X,U, Y ) ,

(9)

where X, U , and Y are the state-variables, input variables,
and algebraic variables, respectively.
Remark I: It can be observed from equations (9) that the
power system with GFC model has a nonlinear characteristic
with different time-scale dynamics. As these models are used
to perform transient stability analysis or design controls for
GFC-based system, it is important to know the limitations and
characteristics associated with different levels of details in the
system models. It is therefore important to derive meaningful
reduced order models of the original system. To that end,
the singular perturbation analysis make available to derive
approximate models to the original system as well as it lightens
the high dimensional problem, which is presented next.

III. SINGULAR PERTURBATION ANALYSIS

Consider a singularly perturbed system of ordinary differ-
ential equation [19]:

ẋ = f (t, x, z), x(t0) = x0 (10)
εż = g (t, x, z) , z(t0) = z0 (11)

where, ϵ ∈ ℜ+ is a small and typically derived from (di-
mensionless) normalized time-constants of the system, x ∈
ℜN , z ∈ ℜn are Euclidean space vectors of state variables,
and t ∈ (t0,+∞).
We are interested in the faster dynamic states (i.e., z) of
dimension n that can be represented as:

z = h(t, x) (12)

which is an isolated root of 0 = g (t, x, z). Substituting z into
(10) gives the reduced order dynamics of the system that can
be described as:

ẋ = f (t, x, h(x)) (13)

Then the boundary layer model can be derived as:

dy/dτ = g (t, x, y + h(x)) (14)

where a change of variable y = z−h(x) is performed to shift
the equilibrium of the boundary layer model to the origin, and
τ = t/ϵ represents a stretched time-scale in which x(t) varies
very slowly. Therefore, x is assumed to be a fixed parameter
in the boundary layer model.

A. Proposed Approach for the Nonlinear System

Figure 3 shows the process to determine the states to be
removed during simplification of the model. Following are the
steps of the proposed approach:
Step (1): Develop the nonlinear state-space averaged model
of the system that can be expressed in a compact form in

Fig. 3. Steps of the proposed model reduction approach.

equation (9) and solve for the steady state operating conditions
(x̄, ū).
Step (2): Linearize the nonlinear system around the operating
point (x̄, ū) and expressed in state-space form as:

∆ẋ = A∆x+B∆u (15)

where, ∆x and A are the state-vector and the state-matrix,
respectively.
Step (3): Find the eigenvalues (λ) of the system and rank
them based on their absolute values from highest to lowest
magnitudes and classify them as slow and fast eigenvalues.
Step (4): Perform the participation factor analysis. The right
(ψi) and the left (ϕi) eigen vectors corresponding to the
eigenvalues λi, i = 1, 2, . . . , n that satisfy:

Aϕi = λiϕi, ψiA = λiψi (16)

Then the participation matrix, P whose elements are calculated
as pki = ϕkiψki.
The highest-magnitude eigenvalues are the fastest modes and
can be segregated based on a pre-determined threshold. Then
participation factor analysis is performed to determine the
corresponding states participating in those modes. These states
are then removed from the model by replacing the relevant
differential equations with algebraic equations.
Step (5): Approximate the differential equations correspond
to slowest dynamics states as algebraic equations and derive
the reduced order nonlinear model.

IV. CASE STUDIES

A. Test System 1: Single machine and GFC test system

To perform a fundamental analysis, first, a basic model of a
power grid with one GFC, an SG, and a load is developed in
Matlab/Simulink and is shown in Fig. 4. The detailed model
of the GFC discussed in Section II is used here and the SG
is represented by a classical model along with a governor
model. The load is assumed to be constant power.

Fig. 4. Test System 1: Single machine and GFC system.



This nonlinear state-space model has 17 states (14 from
GFC including transformer and 3 from SG). This model
is linearized around the operating point and the eigenvalue
analysis is performed (i.e., Steps (2) and (3) of the proposed
approach in Section III-A). Then, the participation factor
analysis is performed on the linearized system and Table I
summarizes participation factors for the first four dominant
modes of the system (Step (4)). Table I indicates that the
transformer current states participate more in mode 1 and
the next three modes have highest participation from states
of associated with the RLC filter. Based on this analysis, (by

TABLE I
PARTICIPATION FACTOR ANALYSIS

Pole-pair Pole Dominant
number states

1 -7.39e+05 ± 3.71e+02i itdq
2 -3.90e+01 ± 6.44e+04i vdq
3 -3.77e+01 ± 6.20e+04i vdq
4 -2.37e+01 ± 7.54e+02i idq

performing Step (5) of the proposed approach in Section III-A)
two types of reduced order models are derived.

• Type 01 Reduced Model: The GFC transformer dynamics
are approximated by algebraic equations. There are 15
states in this model.

• Type 02 Reduced Model: In addition to the transformer
dynamics, this model approximates all the RLC filter
dynamics (i.e., vdq , and idq) by algebraic equations and
the corresponding controls are also ignored (i.e., PIi, and
PIv in Fig. 2). Moreover, the voltage tracking is assumed
to be perfect (i.e., |vdq| = |v∗dq|). There are 5 states in this
model.

1) Time-Domain Analysis: Dynamic response following a
step increase in the load in Fig. 4 is performed for both the
reduced models and are compared against the full order model
response, is shown in Fig. 5. It can be seen from the Fig. 5
that both reduced-models capture the average performance of
the full order model.

0.5 0.6 0.7 0.8 0.9 1 1.1

0

0.1

0.2

0.5 0.6 0.7 0.8 0.9 1 1.1

-2

-1

0

Fig. 5. Test System 1: Comparison of system dynamics following step change
in the load.

B. Test System 2: 1-GFC 4-machine system
Our next test system is a modified 2-area 4-machine test

system, see Fig. 6 [17]. In this model, all the SGs are

represented by the 8th-order subtransient models and are
equipped with the IEEE DC1A excitation system and turbine-
governors as described in Section II. The detailed model is
used for the GFC located at bus 12, see Fig. 6. In the base
case, the GFC delivers 350 MW.

Fig. 6. Test System 2:1-GFC 4-machine system.

The Steps (2)-(4) of the proposed approach in Section III-A
are followed here as well, which reveals a similar conclusions
for the dominating modes and corresponding states for this
test system. Based on these analysis two types reduced order
models defined in the Section IV-A are derived.
Remark II: It has been observed from an extensive simulation
study that the response from the ‘Type 01 Reduced Model’
closely matches with that of the full-order model. Due to the
space constraints in this paper, we are only reporting case
studies where the response of the ‘Type 02 Reduced Model’ is
significantly different compared to that of the full-order model.
In each case, the GFC will be tripped if its dc-link voltage falls
below a 40% threshold of its rated value.

1) Case 1: In this case, the generator G2 producing 83 MW
power at the steady state is tripped in test system shown in
Fig. 6 when the load composition is constant power. Figure 7
shows the dynamic responses of the full and reduced (Type 02)
-order models following this outage. In can be seen from Fig. 7
that for the full-order model, the dc-link voltage collapses
leading to a tripping of the GFC. Moreover, in the full-order
model, following the GFC tripping the system experiences an
ac voltage instability, see bus 7 voltage in Fig. 7. The result
based on the reduced model however shows dc-link voltage
dips followed by recovery.
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Fig. 7. Case 1: G2 producing 83 MW is tripped when load composition is
of constant power. fCOI : Centre of inertia frequency.

2) Case 2: In this case, the generator G1 producing 95
MW power is tripped when load composition is of 50%
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Fig. 8. Case 2: G1 producing 95 MW is tripped when load composition is
50% constant power and 50% constant impedance. fCOI : Centre of inertia
frequency.

constant power and 50% constant impedance. Here the full
model shows a dc-link voltage collapse followed by GFC
tripping (Fig. 8), which leads to frequency nadir of 59.72
Hz and steady state frequency deviation as shown in Fig. 8.
The GFC tripping leads to significant ac voltage dip but the
voltage recovers. On the contrary, the reduced model (Type
02) does not lead to GFC dc-link voltage collapse and its
subsequent tripping. Hence the dynamical behavior including
the frequency dynamics appear quite different.

3) Case 3: In this case, we trip G4 producing 174 MW
power when load composition is of 50% constant power and
50% constant impedance – the dynamic response is shown in
Fig. 9. The ac voltage diverges (possibly voltage instability)
in the full order model, whereas the reduced model (Type 02)
does not show such an impact.

V. CONCLUSIONS AND FUTURE WORK

A singular perturbation analysis-based model reduction
approach for nonlinear power system models with GFCs is
proposed. The proposed approach have led to two types of
reduced order models for GFCs (i.e., Type 01 and Type 02).
Using nonlinear time-domain simulations, it was observed that
the ’Type 01 Reduced Model’ can track the averaged response
of the detailed model very closely. Although the ’Type 02
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Fig. 9. Case 3: G4 producing 174 MW is tripped when load composition is
50% constant power and 50% constant impedance. fCOI : Centre of inertia
frequency.

Reduced Model’ works fine in most of the time, it was found
that in certain scenarios in which a generation loss can lead to
non-conservative behavior of reduced models. In those cases,
the detailed model show dc or ac voltage instability, whereas
the reduced model does not show any instability problems.
Our future studies will include GFLCs along with GFCs in the
system. Moreover, an analytical approach will be developed to
establish modeling adequacy of such complex systems.
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