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Supported metallic nanoparticles play a central role in catalysis. However, predictive modeling is particularly challeng-
ing due to the structural and dynamic complexity of the nanoparticle, and of its interface with the support, and given
that sizes of interest are often well beyond that accessible via traditional ab initio methods. With recent advances in
Machine Learning, it is now feasible to perform MD simulations with potentials retaining near-DFT accuracy which
can elucidate the growth and relaxation of supported metal nanoparticles, as well as reactions on those catalysts, at
temperatures and time scales approaching those relevant to experiments. Furthermore, surfaces of the support mate-
rials can also be modeled realistically through simulated annealing to include effects such as defects and amorphous
structure. We study adsorption of fluorine atoms on ceria and silica supported palladium nanoparticles using machine
learning potential trained by DFT data using the DeePMD framework. We show defects on ceria and Pd/ceria interfaces
are crucial for initial adsorption of fluorine, while the interplay between Pd and ceria and the reverse oxygen migration
from ceria to Pd controls spillover of fluorine from Pd to ceria at later stages. In contrast, silica supports do not induce
fluorine spillover from Pd particles.

I. INTRODUCTION

It has long been speculated that catalyst supports often par-
ticipate actively in heterogeneous catalysis rather than acting
as inert bystanders merely providing a high surface area ma-
terial on which catalysts are dispersed. One of the ways that
supports can participate in the reaction is through spillover of
adsorbate species from the metal catalyst to the support.1–3

Theoretical studies of spillover are currently being pursued,
but mostly for carbon supports.4–6 To date, studies of metal
oxide supports are more limited.5,7 This is due to the inherent
complexity of the systems, where the structure of the oxide
support, the interface between the catalyst and support, and
the shape and structure of the catalyst nanoparticles, all pro-
vide challenges for modeling. In addition, it is necessary to
realistically describe adsorption and diffusion of chemisorbed
reactant species in these complex systems.

Metallic nanoparticles supported on oxides, as well adsorp-
tion and reaction on these nanoparticles, provide a distinctive
challenge for computational studies.8 Their sizes are often too
large for direct ab initio calculations, but too small for more
phenomenological coarse-grained continuum modeling. Also,
the need to treat a combination of transition metal, oxide, and
chemical reactions makes the development of effective empir-
ical potentials difficult. Machine learning naturally provides
an enticing new approach to the problem, and there are some
new developments in applying machine learning to the gen-
eral problem of nanoparticles, supported or unsupported.9–11

It should, however, be noted that other phenomenon such
as morphological evolution for larger metal nanoparticles on
time scales up to minutes or longer are best addressed via
stochastic modeling ideally incorporating a realistic descrip-
tion of surface diffusion kinetics.12–14

Recent advances in development of machine learning

potentials15–19 make molecular dynamics (MD) simulations
feasible for up to thousands of atoms and for up to a few
nanoseconds. In this contribution, we will demonstrate that
simulations at a size and time scale achievable through ma-
chine learning potential can facilitate answering many ques-
tions for heterogeneous catalysis on supported metal nanopar-
ticles. Using fluorine adsorption on ceria and silica supported
Pd nanoparticles as an example, we develop simulation meth-
ods that can be used to study the structure of the oxide support
(Sec. III), size and shapes of the supported catalyst nanopar-
ticles (Sec. IV), and adsorption and migration of reactants on
supported nanoparticles as well as spillover to the supports
(Sec. V). General methodology for using DeePMD to train
ML potential from DFT data is given in Sec. II and conclu-
sion is given in Sec. VI.

II. DEVELOPING GENERAL POTENTIALS FOR
HETEROGENEOUS CATALYSTS

A. Training

Some aspects of the methodology and code develop-
ment have already being reported previously.20,21 Plane-
wave density-functional theory (DFT) calculations were
performed using the VASP code,22 with Perdew-Burke-
Ernzerhof (PBE)23 functional and the recommended PAW po-
tentials released with VASP 5.4. The energy cutoff is 400
eV for all elements. The extraction of energy and forces,
training to an artificial neural network with the se_e2_a
descriptor were performed using the DeePMD-kit (v2.1.5)
software.24 MD simulations and data analysis were performed
with Python, heavily relying on the atomistic simulation envi-
ronment (ASE).25 MD simulations are mostly performed us-
ing constant NVT (caononical ensemble) and the the temper-



2

ature is controlled by a fluctuation Langevin force and equili-
brated by a friction force with coefficient of 0.002. The time
step is 2 fs for systems where the lightest element is O, and 5
fs for systems where the lightest element is F.

Through trial and error, we have formulated some guide-
lines for efficient development of machine learning potentials
from ab initio data for systems involving nanoclusters and sur-
faces. We train individual potentials for all combinations of
relevant elements. For example, for the fluorine adsorption
on ceria supported palladium particle, potentials for Ce, F, O,
Pd, CeF, CeO, CePd, FO, ..., CeFOPd, are all developed, in-
stead of just a single potential for CeFOPd. This is because
it is much more efficient to perform calculation using the po-
tential tailored to individual components, also they are gener-
ally more accurate with same amount of training. Although
strictly speaking, potentials developed for individual compo-
nents do not give exactly the same result as the potentials for
more complete systems, they are generally close enough not
to cause any physical problem. For example, structure mini-
mized using the potential for smaller systems will also be sta-
ble using potential for the larger system. This is also related
to the feature that the library of DFT data is shared between
all components, so that DFT results for Pd are also used for
training of potential for PdO, CePd, CeOPd, etc.

The generation of DFT data is an iterative process. The ini-
tial configuration for training is generally a nanocluster con-
sisting of the relevant elements. In cases where there is a
common and stable bulk phase for those elements, such as fcc
for the single element Pd, we choose it as the starting point.
Otherwise, we search for the densest phase from the Material
Project.26 Nanoclusters with side lengths around 1.3 nm are
placed in a cubic supercell with twice the volume so that they
are allowed to expand and/or melt at 3000 K, simulated for
2000 time steps using the VASP code. Note that we use a sin-
gle Γ k-point, and so tend to choose supercells of at least 1.5
nm in side length. The results are then used for training the
initial ML potential. Using Pd as an example, we first create
a cubic Pd nanocluster with 108 atoms and place it in a cubic
supercell with 1.5 nm cell length. We perform DFT MD simu-
lations at 3000 K for 2000 time steps or 10 ps. The initial ML
potential is obtained by training these DFT data for 105 train-
ing steps. We then create another system of 256 Pd atoms with
the fcc structure in a supercell with periodic boundary condi-
tion with the equilibrium volume (15.8 nm)3. The system is
then simulated using the ML potential at 4000 K, while grad-
ually increasing the supercell size from 1.58 nm to 1.6 nm for
another 2000 time steps (10 ps) (this slight increase in volume
is optional, it is used here for ease of systematically adjusting
the volume when the need of additional densities arises). The
resulting configuration is then used as the starting point for an-
other DFT simulation at the same temperature. The new DFT
data, combined with the old data, is used to train a new ML
potential. We the use this ML potential to simulate the 256 Pd
atoms system at 4000 K, but this time compress it to a super-
cell with size length 1.4 nm, so that density is about 1.43 time
the equilibrium value. We then simulate this denser structure
with DFT, and then combine the new data to train a new ML
potential. We find that it is important to vary the density of

the system to obtain a ML potential with general applicabil-
ity, not just for the equilibrium bulk system. Even though as
a whole system, the palladium system will not reach a den-
sity as high as 1.4 times the equilibrium volume under normal
conditions, the ability to model correctly much shorter bond
lengths than the equilibrium value is important for describing
defects at step edges and kink sites.

We find in general, after three iterations, a model with no
obvious pathologies can be obtained. Under conditions of
normal temperature and pressure, the ML potential does not
give catastrophically wrong answer. Results can be consid-
ered generally acceptable for instructive purpose. However,
for more serious applications, further refinements and addi-
tional validation are often necessary. For a specific applica-
tion of the ML potential, we perform DFT calculations first
on a system of reasonable size achievable by DFT, generally
started with a configuration obtained by simulations with ML
potentials. We than compared the DFT results with the ML
potential. For example, simulated annealing of Pd nanoparti-
cles of 192 atoms was performed using the ML potentials, and
configurations below and near the melting temperature (1000
K and 1500 K) are used for the initial configuration of further
DFT simulations. If the rms errors for energy comparing DFT
and ML potentials are too big (e.g., larger than 0.05 eV/atom),
further training of ML potential are conducted using the new
DFT data. In the case of Pd, we find the rms error is only 0.01
eV, even without further training. Most systems, however, do
require additional training and further iterations.

B. Validation

Methodology for systematic validation of the ML potentials
is still in development. At this stage, much of the validation
relies on our own physical and chemical knowledge and intu-
ition. We inspect manually results of MD simulations using
ML potentials and compare with existing knowledge of the
system. When a system behaves “strangely”, it is usually the
consequence that the ML potential is exploring part of the PES
that it is not trained. Additional DFT calculations are then per-
formed, results of which are used for further refinement of the
ML potential.

For a more quantitative assessment, we need to compare
ML potentials with that of DFT calculations. Here we use
a two-pronged approach. The first is an application specific
approach. We use ML potentials to create systems that are ex-
pected to be encountered during the the specific application,
such as pure Pd, ceria, and silica nanoparticles, ceria and sil-
ica supported Pd, and flurine adsorbed on those nanoparticles.
They are of sufficiently small sizes so that DFT calculations
can be performed, results are compared with the prediction of
the ML potentials.

Table I shows error estimates of two ML potentials used
in this work for these selected systems. The RMSE for the
total energy (per atom) and forces on each atom is obtained
from 30 randomly selected configurations for each DFT MD
simulation.

Accuracy of the ML potentials for these scenario is the most
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TABLE I. Errors estimates between selected ML potential and DFT
caluclations for application specific systems.

System Temperature
(K)

Error in energy
(eV/atom)

Error in force
(eV/Å)

ML potential for Ce-F-O-Pd
Pd192 1000 0.0098 0.073

Ce72O144 1300 0.0035 0.25
Pd32/Ce72O144 800 0.0065 0.16

F36Pd36/Ce72O144 800 0.023 0.23

ML potential for F-O-Pd-Si
Pd192 1000 0.012 0.072

Si72O144 3000 0.0095 0.25
Pd32/Si72O144 800 0.0062 0.19

F64Pd38/Si72O144 800 0.012 0.33

important specific to our applications. However, it may not be
an accurate gauge for their general applicabilities. In fact, the
choice of the training data set inevitably reflects the desired
application due to the nature of our iterative procedue, so the
training is biased towards these applications. To provide a
more unbiased assessment, we conduct more systematic tests.
First, we fill up randomly a simulation box with atoms of each
element sequentially. The system is equilibrated at 1600 K for
2000 time steps between each addition of atoms by perform-
ing MD simulations using the ML potentials. The resulting
configurations are then used as the starting point for DFT MD
simulations for another 200 to 2000 time steps. The DFT tra-
jectories are then compared with ML potentials. The equili-
bration using the ML potentials versus purely randomly fill-
ing the cell with atoms serves two important considerations:
firstly it allows us to validate the most energetically favorable
part of the ML PES, secondly, assuming the ML potential is
reliable, it allows us to focus on the physically meaningful
part the PES. There is no need to model the unphysical part of
the PES very accurately.

Table II summarizes the RMSE erros in energy/atom and
forces for various randomly synthesized systems using above
described procedues. As expected, the errors for random sys-
tems are generally larger than those for application-specific
systems. There are some variances, such as agreement for
pure Pd system is much better than for Ce, perhaps reflect-
ing the facts that there are more extensive DFT for Pd sys-
tem than Ce. Fortunately, it is in line with our application,
since we expect to see pure Pd nanoparticles, but not pure Ce
nanoparticles in our system. For systems that do involve pure
Ce, naturally more DFT data for Ce should be generated.

A more physical illustration of the validness of the ML po-
tential can be represented by the comparison of the composi-
tional formation energy between DFT and ML potential. Re-
sults for selected pairs of elements are shown in the supple-
mentary material.

TABLE II. Errors estimates between selected ML potential and
DFT caluclations for synthesized systems by randomly depositing
32 atoms of each species in a (1.5nm)3 cell with periodic boundary
conditions, equilibrated at 1600 K.

System Error in energy
(eV/atom)

Error in force
(eV/Å)

ML potential for Ce-F-O-Pd
Ce 0.122 0.26
F 0.075 0.17
O 0.014 0.33
Pd 0.008 0.11

Ce, F 0.070 0.28
Ce, O 0.060 0.27
Ce, Pd 0.024 0.15
F, O 0.040 0.57
F, Pd 0.027 0.33
O, Pd 0.009 0.32

Ce, F, O 0.014 0.35
Ce, F, Pd 0.009 0.18
Ce, O, Pd 0.011 0.19
F, O, Pd 0.036 0.36

Ce, F, O, Pd 0.017 0.19

ML potential for F-O-Pd-Si
F 0.056 0.16
O 0.016 0.34
Pd 0.006 0.11
Si 0.018 0.32

F, O 0.055 0.41
F, Pd 0.024 0.30
F, Si 0.031 0.40
O, Pd 0.013 0.31
O, Si 0.030 0.45
Pd, Si 0.032 0.22

F, O, Pd 0.026 0.35
F, O, Si 0.020 0.40
F, Pd, Si 0.032 0.24
O, Pd, Si 0.015 0.31

F, O, Pd, Si 0.018 0.25

III. MODELS FOR CERIA AND SILICA SUPPORTS

Ceria (CeO2) and silica (SiO2) are two common catalyst
supports. The crystal structure of ceria and silica are well-
studied and can be used to design the model surfaces for cat-
alyst support. For example, it is known from DFT calcula-
tions that CeO2(111) surface is the most stable.27,28 Thus, it
is natural to study, e.g., catalytic properties, using the ideal
CeO2(111) surface as the basis, but potentially also introduc-
ing defects such as oxygen vacancies using energy derived
from DFT calculations29 or from experiments.30

Here, we develop a methodology for preparing metal oxide
surfaces using MD simulations with ML potentials that could
be widely applicable for a variety of systems. For ceria, we
start with a nanocube of Ce600O1200 and raise the temperature
to 3000 K at a rate of 25 K/ps using the ML potential, so that
the precise starting configuration is not so relevant. We then
put the nanoparticle in a 3.8× 3.8× 7.6 nm3 supercell and
gradually increase the supercell to a size of 4.8× 4.8× 9.6
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FIG. 1. (a)-(d) Top and side-views of Ce600O1200 slabs cooled down
to 800 K at various cooling rate from MD simulations using ML
potential. Side views show both top and bottom surfaces of the ce-
ria slab. Lower panel shows the energy per atom plot, where c is
the specific heat averaged over 300K to 3000K from the simulations
(usually from results with the fastest cooling rate, but the same num-
ber is used for all cooling rates so that comparisons between the plots
are not distorted by the choice of c) used to shift the plot making the
transition near 1200 K more pronounced.

nm3 at 3000 K in 10 ps. The nanoparticle dimension is suffi-
ciently close to 3.8 nm that at this temperature and time scale,
there are enough mobility for the ceria nanoparticle to bridge
the simulation cell and given the periodic boundary conditions
convert into a near flat slab. We then reduce system tempera-
ture at various cooling rates to 800 K, while maintaining the
same supercell.

Figure 1 shows results of such a simulated annealing pro-
cess for ceria. With faster cooling rate (above 1 K/ps), the
system is not very ordered, with only short range hexagonal
structure present. The surface consists of many single-atom-
wide ridges. With slower cooling rate, the system becomes
more ordered, with smooth facet of hexagonal surfaces. At the
slowest cooling rate performed, a step structure is also present
on the surface. The energy versus temperature plot has a clear
signature of first-order transition corresponding to crystalliza-
tion around 1200 K with the slower cooling rate. The feature
that this is much lower than the usually cited 2700 to 2900 K
bulk melting temperature for ceria is expected to be associated
with effects of both small sizes and hysteresis in simulations,
and does not necessarily indicate any deficiency of the ML po-
tentials. For comparison, MD simulations of a homogeneous
ceria system (Ce108O216 in a cube with 16.40 Å side length
and periodic boundary conditions) yield a melting tempera-
ture around 2800 K at a heating rate of 2.5 K/ps.

Silica of the type used as a catalyst supports is less

(a) 5 K/ps (b) 2.5 K/ps (c) 1.25 K/ps (d) 0.5 K/ps
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FIG. 2. Similar to Fig. 1, but for a Si576O1152 system in a 3.8×3.8×
7.6 nm3 supercell.

amenable to standard DFT analysis since the material is gen-
erally amorphous. Using a similar method as for ceria, Fig-
ure 2 shows results for simulated annealing of SiO2. A slower
cooling rate leads to a more stable structure. However, even at
0.5 K/ps, no ordered structure is found. There are signatures
for latent heat in the E − cT versus T plots, but the transition
is much further spread out and does not become obviously
sharper as the cooling rate increases. Also the energy at lower
temperatures are not as sensitive to the cooling rate, at least
for the range simulated. Those are indicative to formation of
amorphous silica, which is consistent with the observations
that amorphous and glassy silica is a common product solid-
ifying silica melt or from the sol-gel process, while crystal-
lization requires more carefully controlled cooling. MD sim-
ulations have long been used to study amorphous silica, but
mostly using empirical potentials.31 However, recently, ma-
chine learning potentials have started to compete with empir-
ical potentials.32

IV. FORMATION OF PALLADIUM NANOPARTICLES ON
MODEL CERIA AND SILICA SURFACES

After preparing model ceria and silica surfaces, we can
now model supported Pd nanoparticles. One could consider
the following two approaches to describe this process. The
simpler one is to directly place a preformed Pd nanoparticle
on the surface of the support, then study the evolution of its
shape and structure due to interaction with the support using
MD simulations. The other approach is to simulate impreg-
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(a) 0.25 atom/ps (b) 0.5 atom/ps
(c) 1.0 atom/ps (d) 2.0 atom/ps

FIG. 3. Top and side views of Pd nanoparticles which are formed
on both sides of a CeO2 slab with deposition rates 0.25, 0.5, 1.0,
2.0 atoms/ps in (a)-(d), respectively, after 1.024 ns. Simulations are
performed at 800 K and in a 4.8× 4.8× 9.6 nm3 cell with periodic
boundary conditions. Pd atoms that are not attached to support are
deleted from the picture.

nation of the support with Pd precursors via incipient wet-
ness followed by calcination and reduction, as often utilized
in experiments.21

While the second approach is beyond our current capabili-
ties, we develop a methodology that mimics the formation of
metal nanoparticles (although on much shorter times scales),
and which thus can be used to systematically explore this
process. We assume individual free Pd atoms spontaneously
emerge through reduction during the formation process. For
Pd/CeO2, we use the model system obtained in Sec. III (also
see Fig.1) by cooling to 800 K with the slowest cooling rate.
Pd atoms are randomly placed in the 4.8×4.8×9.6 nm3 sim-
ulation cell, with the condition that new atom is at least 0.3
nm away from any existing atoms. One of the parameters that
can be adjusted is the rate that Pd atoms added to the simu-
lations. In principle, this should be a stochastic process that
occurs randomly throughout a simulation. However, for sim-
plicity, in this work we just add a fixed number of Pd atoms
for every 4 ps of simulations.

Figure 3 shows results of simulations with different Pd de-
position rates after 1.024 ns of simulations at 800 K. Most of
the Pd islands have a semi-spherical shape, but some of them
are triangular or trapezoidal. Those more exotic shapes are
due to the merging of smaller islands and represent transient
configurations during a reshaping process.

Figure 4 show the results for the formation of Pd islands on
a silica support. A smaller 3.8× 3.8× 7.6 nm3 cell is used
here but containing approximately the same amount of atoms
as the ceria. We observe a higher mobility of Pd nanoparticles
compared with ceria. This feature is consistent with the obser-
vation that the shape of Pd nanoparticle is more spherical. The
smaller contact area with the support indicates weaker bind-
ing between Pd and silica than for ceria, which correlates with
higher mobility.

(a) 0.25 atom/ps (b) 0.5 atom/ps
(c) 1.0 atom/ps

(d) 2.0 atom/ps

FIG. 4. Same as Fig.3, but with SiO2 support, after 512 ps and in the
3.8×3.8×7.6 nm3 simulation cell.

(a) Pd (b) CeO2 (c) SiO2

FIG. 5. Sample of configurations of F adsorption simulated at 800K
on models for (a) Pd, (b) ceria, and (c) silica substrates. Top panels:
using substrates annealed from melt. Bottom panel: using crytalline
Pd(111), CeO2(111), and α-quartz(0001) with (2× 1) reconstruc-
tion.

V. FLUORINE ADSORPTION ON CERIA AND SILICA
SUPPORTED PD NANOPARTICLES

A. Fluorine adsorption on Pd, on ceria, and on silica

Before we present results of fluorine adsorption on the sup-
ported Pd catalyst nanoparticles, we briefly discuss results for
fluorine adsorption separately on each of the components (on
Pd, on ceria, and on silica). We perform MD simulations us-
ing the same method as in Sec. IV for Pd, but now instead
using F atoms. This is not intended to simulate any particular
reaction, but rather to provide a generic picture of F adsorp-
tion.

The prepared model Pd slab has a (111) surface orientation,
with a Pd island on one side of the slab. At low F dosage, F
adatoms occupy 3-fold sites. At the elevated temperature of
800 K, no preference to step edges is observed. As the cover-
age of F increases, the surface consists of a large semi-ordered
Pd-F structure and smaller Pd-F complexes that scattered on
the lower terrace [see Fig. 5(a)]. At even higher dosage, pal-
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ladium fluoride grows in height and become 3D islands.
For fluorine adsorption on ceria, we observe that F prefer-

entially adsorbs at the step edge at low coverage. Some of the
Ce atoms at kink sites can have two F atoms attached. As F
coverage increase, more and more Ce atoms detach from the
step edges and have multiple F atoms attached to them. Those
CeFx units can also form small Ce-F complexes, but no large
ordered surface cerium fluoride is observed. At much larger F
coverage, CeFx molecules start to detach from the surface (at
800 K).

Fluorine adsorption on the model amorphous silica is much
harder to characterize, with no obvious stages. It can be gener-
ally described as competition of fluorine with oxygen to form
bond with silicon atoms. Unlike oxygen, silicon and fluorine
do not form any complex network. Finally, at very high F cov-
erage, SiFx molecules also start to detach from the surface.

Some quantitative analysis can be performed on the MD
simulation results. By measuring the change in potential en-
ergy as the number of F atoms increases, we can deduce the
heat of adsorption and use it as the adsorption energy for fluo-
rine adatoms. Using the energy (per atom) of a F2 dimer in the
gas phase as the reference, the fluorine adsorption energy on a
clean surface is estimated to be −2.4 eV for Pd, −2.5 eV for
ceria, and −1.5 eV for silica. A more negative energy means a
stronger preference for F to attach to the surface. Note that on
a flat CeO2(111) surface, the adsorption energy is only −1.6
eV from our MD simulations, so defect sites are crucial for
understanding the catalytic properties of ceria supports. On
the other hand, we also study the fluorine adsorption on a α-
quartz(0001) surface with no defects and no dangling bonds.
A similar adsorption energy of −1.5 eV is obtained for low F
coverage as for the model silica slab analyzed above. The F
adsorption energy on a flat Pd(111) surface is −1.9 eV from
MD simulations.

B. Fluorine adsorption on ceria-supported palladium
nanoparticles

Using a ceria-supported Pd catalyst obtained with the
methodology described in Sec. IV, we simulate F adsorption
as in Sec. V A. Figure 6 shows the heat of adsorption as a
function of number of F atoms as they are incrementally added
to the simulation. As the ceria support is generally free of de-
fects, initially most of F adatoms are on the Pd nanoparticles.
Also note the initial heat of adsorption has a value indicating
much stronger adsorption for F than either Pd and ceria sur-
face obtained in the section above. This is likely due to the
presence of some very small Pd particles on the ceria support.
As the number of F atoms increase, one starts to see some
Ce atoms that are free of oxygen being lifted out the surface
around the Pd-ceria interface. As more of the Ce atoms are
reduced, the oxygen density on the surface increases. Even-
tually these oxygen atoms start to migrate towards the Pd
nanoparticles and are ultimately chemisorbed on the Pd sur-
face.

The hill-and-valley feature of differential heat of adsorp-
tion curve is sensitive to the F deposition rate used in the sim-
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FIG. 6. The differential heat of adsorption for F on a ceria supported
Pd nanoparticle, simulated at 800K with the number of F increases
at a rate of 0.5 atom/ps. Insets show configurations when the number
F atoms is 32, 128, and 320 respectively. The catalyst has a compo-
sition of Ce320O640Pd536 in a 3.8×3.8×7.6nm3 simulation cell.
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FIG. 7. The differential heat of adsorption for F on a silica supported
Pd nanoparticle, simulated at 800K with the number of F increases at
a rate of 0.25 atom/ps. Insets show configurations when the number
F atoms is 48 and 192 respectively. The catalyst has a composition
of Si300O600Pd253 in a 3.0×3.0×6.0nm3 simulation cell.

ulations. The peak tends to shift to the left and flatten out
as the deposition rate decreases. Thus, the feature indicates
some activated or slow processes that delay the system from
finding the more energetically favorable configurations. Here,
we tentatively identify the rate limiting process for fluorine
spillover from the Pd nanoparticle to ceria support as being
the migration of oxygen from ceria to Pd. We are currently
developing methodology to derive activation energy from MD
simulations which should further clarify this issue.

Results for F deposition on a silica-supported Pd catalyst
model is shown in Fig. 7. The differential heat of adsorp-
tion initially assumes the same value as for F/Pd, and become
less negative as the F coverage increases due to repulsion be-
tween chemisorbed F adatoms, eventually reaching the value
for F/silica obtained in Sec. V A. There is no big drop in the
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curve as the case of Pd/ceria (cf. Fig. 6), consistent with the
observation that no significant migration of oxygen from silica
to Pd is observed. It is worth mentioning that when the num-
ber of F atoms is sufficiently high, F atoms do adsorb onto the
silica surface, but only after Pd is fully covered by F. Thus we
conclude from this MD study that spillover of F from Pd to
silica is not significant.

VI. CONCLUSION

Molecular dynamic simulations using machine learning po-
tential trained by DFT data enable us to provide a truly dy-
namic picture of the migration of reactants during heteroge-
neous catalysis on supported nanoparticles, an important phe-
nomena which is difficult to study theoretically with tradi-
tional methods. There are several novel applications of ma-
chine learning potentials here: a) preparing model surfaces
using simulated annealing as catalyst supports; b) mimicking
the formation of catalytic metal nanoparticles on model sup-
ports; and c) adsorption on catalyst surfaces and its study us-
ing the differential heat of adsorption. The latter constitutes
an extension of an earlier study of S adsorption on coinage
metal surfaces.20

Part of the motivation of this study is a previous experi-
mental study21 which shows that a ceria-supported Pd cata-
lyst has exceptional ability to remove fluorine from fluorophe-
nols (compared to Pd catalysts on other supports). Fluorine
spillover from Pd to ceria support was conjectured from some
preliminary MD studies to be one of the factors enabling this
enhanced ability. The presence of fluorine on ceria have been
verified experimentally.21 In this study, we use a more realistic
crystalline ceria substrate rather than an amorphous nanoclus-
ter used in the previous study, thus more realistically modeling
the experiments. We suggest that the rate limiting process for
spillover is likely to be the reverse migration of oxygen from
the ceria support to the Pd nanoparticles.

The existence of potential complex synergetic effects in-
volving supported metal nanoparticles, as well as the supports
themselves, in catalytic processes means that traditional meth-
ods of separating complex systems to different components
for analysis might not capture key aspects of behavior. In
study of fluorine adsorption separately on Pd and ceria, no sig-
nificant differences are found. Worse yet, using CeO2(111) as
the substrate, even weaker F adsorption is found than on Pd.
Only through MD studies using a ML potential, which can
access time scales on the order of nanoseconds, is it revealed
that migration of fluorine in this system is a result of the inter-
play between multiple elements. The ability of Pd to partially
reduce ceria is crucial, especially at the later stages of the fluo-
rine adsorption. By systematically comparing ceria and silica
for their roles in fluorine adsorption, we also clarify why this
is a unique feature of ceria, despite the fact that fluorine is
known to also reduce silica.

Insights obtained from studies using the ML potential also
identify the limitation and pitfalls of relying only on DFT cal-
culations for modeling catalysis. Since the CeO2(111) sur-
face is shown to be the most stable surface and is also ob-

served on ceria nanocubes in experiments, it is natural to use a
CeO2(111) slab as a model surface for DFT studies. As men-
tioned earlier, the F adsorption energy is much weaker on a
flat Ce2(111) surface than on Pd(111) surface, thus a standard
DFT study will not reveal any F spillover on ceria supported
Pd. One can systematically introduce defects such as steps
and kinks, and even some amorphousness to the ceria model.
However, one also needs to account for the energetics of the
defects in addition to many different ways that fluorine can
adsorb on those defects. Such a study is beyond the capability
of typical DFT calculations, while machine learning potential
is most suitable for this type of studies.

A recent experimental study33 of Ir clusters on CeO2(111)
thin films grown on a Cu(111) substrate is consistent with
many of the findings of this work, including stability of
nanoparticles and reverse oxygen spillover effects. It provides
further indication that the use of ML potentials derived from
DFT calculations can be a reliable method to study heteroge-
neous catalysis on supported nanoparticles.

SUPPLEMENTARY METERIAL

See the supplementary metrial for lists of systems used for
training of the potenials, comparison between DFT and the
ML potentials for select pairs of elements (Ce-O, Si-O, and F-
Pd); and potential files for Ce-F-O-Pd and F-O-Pd-Si systems
and input file for training.
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