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Figure S1. (a) Rietveld refinement and (b) the shapes of (105) and (114) Bragg peaks of 

Pr0.75Gd0.25ScGeH hydrogenated at 150 bar.  The data presented in (a) are from a laboratory powder 

diffractometer using Mo-Kα radiation, while the data in (b) are from APS, ANL using λ = 0.457897 

Å. The noticeable mismatch of intensities in (a) is due to deteriorated crystallinity and non-

analytical peak shapes after hydrogenation, exemplified in (b). 

Figure S2 depicts the heat capacity of Pr0.75Gd0.25ScGeH and LaScGeH.  Contributions 

from magnetic and nuclear effects (exemplified by the low-temperature differences between 

LaScGeH and Pr0.75Gd0.25ScGeH) makes low-temperature fitting to determine the electronic 

specific heat, �, impractical.  Assuming that isostructural LaScGeH has the same Debye 



temperature, θD, as Pr0.75Gd0.25ScGeH, it is still possible to estimate � for the latter as the constant 

difference between their CP/T in the region (~30 – 80 K) where both the nuclear and magnetic 

contributions become negligible, see Eq. S1 and Figure S2. 
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Figure S2. Heat capacity (Cp) of Pr0.75Gd0.25ScGeH measured in zero and applied magnetic fields 

of 20, 50, and 90 kOe shown as Cp/T vs. temperature (T). LaScGeH data are taken from Ref [1]. 

Inset shows low-temperature details as Cp vs T. 

 



The band structures, plotted in Figure S3, indicate a sharp peak of the 4f states close to the 

EF. Additionally, the Gamma point has a very narrow gap at EF in the majority-spin channel (Figure 

S3a), whereas the minority-spin channel is metallic in Pr0.75Gd0.25ScGe (Figure S3b). As the 

density of states for a system is inversely proportional to the derivative of energy dispersion Ek, 

the sharp minority-spin 4f-peak in PDOS (see Figure 4b) of hydrogenated Pr0.75Gd0.25ScGe around 

EF is flat in the band structure (Figure S3b). Flat bands mean larger effective electron mass or 

possible heavy-fermion behavior however, they are not exactly at the EF. Therefore, the flat 4f 

band leads to an enhanced effective electron mass without necessarily reflecting heavy-fermion-

Figure S3: Spin-polarized DFT band structure of (a, b) Pr0.75Gd0.25ScGe and (c, d) its hydride, 

showing both spin-up (a, c) and spin-down (b, d) electron manifolds. 



like state. To confirm this, electronic specific heat (�) has been calculated for both Pr0.75Gd0.25ScGe 

and its hydride, which are 9.35 and 13.22 mJ/mol. K2, respectively. The theoretical value of � for 

the hydride is smaller than experimental values (28.7 mJ/mol. K2) by a factor of nearly two, 

whereas both theory and experiment agree for the Pr0.75Gd0.25ScGe system (Table 1). Electron 

mass enhancement in rare-earth metals and the effect on specific heat were discussed by Fulde et 

al. [2]. Experimental electronic specific heat of Pr metal determined from heat capacity data 

between 1 and 6 K is larger than the DFT value by a factor of ~4, and the difference is reduced by 

applying a magnetic field. The reason for the mass enhancement of conduction electrons in Pr-

metal (and other lanthanides) at low temperature and low magnetic field is the interaction of 

conduction electrons with localized 4f moments, which is neglected in calculating � by DFT 

methods. Hence, theoretically calculated values are commonly different from experimental ones. 

Here, the predicted interactions of conduction and 4f-electrons of Pr1 atoms around EF leads to 

electron mass enhancements in hydrogenated Pr0.75Gd0.25ScGe compared to the non-hydrogenated 

parent. Although � is enhanced with H-insertion, the increase is far from sufficient to classify the 

hydride as a heavy-fermion system. 



Figure S4: Magnetization of the PCTPro hydride measured as a function of applied magnetic 

field at T = 2 K. 
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