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Abstract—We present the first algorithm capable of efficiently 
computing certifiably optimal solutions to range-aided simulta- 
neous localization and mapping (RA-SLAM) problems. Robotic 
navigation systems are increasingly incorporating point-to-point 
ranging sensors, leading state estimation which takes the form of 
RA-SLAM. However, the RA-SLAM problem is more difficult to 
solve than traditional pose-graph SLAM; ranging sensor models 
introduce additional non-convexity, unlike pose-pose or pose- 
landmark measurements, a single range measurement does not 
uniquely determine the relative transform between the involved 
sensors, and RA-SLAM inference is highly sensitive to initial 
estimates. Our approach relaxes the RA-SLAM problem to 
a semidefinite program (SDP), which we show how to solve 
efficiently using the Riemannian staircase methodology. The 
solution of this SDP provides a high-quality initialization for 
our original RA-SLAM problem, which is subsequently refined 
via local optimization, as well as a lower-bound on the RA- 
SLAM problem’s optimal value. Our algorithm, named certifi- 
ably correct RA-SLAM (CORA), applies to problems comprised 
of arbitrary pose-pose, pose-landmark, and ranging measure- 
ments. Evaluation on simulated and real-world marine examples 
shows that our algorithm frequently produces certifiably optimal 
RA-SLAM solutions; moreover, even suboptimal estimates are 
typically within 1-2% of the optimal value. 

 

I. INTRODUCTION 

Range-aided simultaneous localization and mapping (RA- 

SLAM) is a state estimation task with application domains 

spanning underwater [1, 2], in air [3], underground [4], and 

planetary [5] environments. RA-SLAM extends standard pose- 

graph SLAM [6, 7] with point-to-point range measurements, 

enabling sensor modalities not found in pose-graph SLAM. 

Range sensing possesses notable advantages, as measurements 

often have known data-association and in many environments 

(e.g., underwater) range measurements are critical to long- 

term positional estimation. Despite the broad applicability of 

RA-SLAM and the advantages of range sensing, RA-SLAM 

approaches lack the optimality guarantees and robustness to 

initialization found in modern pose-graph SLAM [8]. 

The difficulties surrounding RA-SLAM arise from the 

problem structure. RA-SLAM is often posed as maximum 

a posteriori estimation, leading to a nonlinear least-squares 

(NLS) problem [9, 10]. As the NLS formulation is non-convex, 

standard approaches only guarantee locally optimal solutions 

and cannot distinguish local from global optimality. These 

issues have been circumvented in pose-graph SLAM [8]. How- 

ever, range sensing introduces additional non-convexity to the 

cost function which prevents application of these techniques. 

Fig. 1. A schematic overview of the proposed algorithm on a four robot 
RA-SLAM problem. (Top) the high-level flow, which takes an initial estimate 
solves a semidefinite program (SDP) relaxation of the RA-SLAM problem. 
As the SDP solution is not necessarily feasible for the RA-SLAM problem, 
a final estimate to the original problem is then extracted and returned. 
(Bottom-Left) The Riemannian staircase methodology used to solve the SDP, 
in which a optimization is performed over increasingly lifted Riemannian 
optimization problems until a certified solution to the SDP is found. The 
Riemannian optimization is over a product manifold involving orthonormal 
frames and vectors on the unit-sphere, certification involves evaluating positive 
semidefiniteness of a specific matrix, and lifting is equivalent to increasing 
the dimensions of the product manifold. (Bottom-Right) extracting the final 
estimate via feasible set projection followed by Riemannian optimization. 

This work presents CORA, an algorithm capable of return- 

ing certifiably optimal estimates to the RA-SLAM problem. 

We establish connections between RA-SLAM, SDPs, and 

Riemannian optimization to develop efficient methodologies 

for RA-SLAM state estimation and solution certification. 

CORA solves an SDP relaxation of the RA-SLAM problem 

to obtain a lower bound on the optimal value of the original 

RA-SLAM problem and an initialization to a local optimiza- 

tion approach. To improve the scalability of solving this SDP, 

we demonstrate that the feasible set of the Burer-Monteiro- 

factored SDP [11, 12] admits a Riemannian interpretation, and 

apply the Riemannian staircase approach [13, 14]. Importantly, 

we construct a certification scheme to determine if a given 



estimate solves the SDP. This certification scheme leverages 

analysis of the Karush-Kuhn-Tucker (KKT) conditions of the 

SDP [15] to reduce optimality verification to a series of 

sparse linear algebraic operations. Finally, the SDP solution is 

projected to the feasible set of the original RA-SLAM problem 

and locally optimized to produce a final estimate and an upper 

bound on the suboptimality of the estimate. 

We evaluate CORA on (1) two marine platforms equipped 

with inertial sensing and acoustic modems for ranging and (2) 

simulated RA-SLAM problems. We demonstrate that CORA 

often obtains certifiably optimal solutions to realistic RA- 

SLAM scenarios. Moreover, in instances when the solution 

is not exactly optimal, it typically achieves an objective value 

within 1-2% of the lower bound 

We summarize the contributions of this paper as follows: 

• The first RA-SLAM algorithm capable of producing 
certifiably optimal estimates. 

• An open-source implementation, including all experimen- 
tal data presented in this paper1. 

Additionally, we consider several proofs contained in Ap- 

pendix D as minor contributions of independent interest. 

II. RELATED WORKS 

Certification in robotic perception typically describes a 

certificate of optimality of some estimated quantity, where the 

estimation procedure is defined as an optimization problem 

[15, 16, 17]. Works in certifiable estimation generally are 

either an optimizer paired with a global optimality certification 

scheme or an exhaustive search approach. 

A. Sufficient Conditions for Global Optimality 

Many certification schemes leverage relationships between 

quadratically constrained quadratic programs (QCQPs) and 

SDPs to construct KKT-based certifiers. These certifiers es- 

tablish sufficient conditions for optimality which, if satisfied, 

guarantee global optimality [15, 18, 19]. Broadly, certifiable 

perception approaches fall under the class of probably certifi- 

ably correct algorithms, as described by Bandeira [17]. 

Additionally, works in certification can be separated by 

the estimation methodology proposed; works typically pair a 

certifier with a local-optimizer or a SDP relaxation. The SDP 

approaches solve a relaxation of the original problem and then 

project the relaxed solution to the feasible set of the original 

problem. In general, both approaches can obtain optimal 

solutions but do not guarantee such. Notable SDP-based works 

[8, 20] established conditions when such guarantees exist. 

Importantly, unlike local optimization, the estimates from SDP 

methods are initialization-dependent. 

Local-optimization approaches: KKT-based sufficient con- 

ditions were derived from various QCQPs and paired with 

local optimizers to solve problems in point-cloud registra- 

tion [21, 22], multi-view geometry [23], pose-graph SLAM 

[24, 25], and range-only localization [26]. In addition to 

KKT-based certificates, a number of computer vision works 

1https://github.com/MarineRoboticsGroup/cora 

developed certification schemes based on proving problem 

convexity over the feasible set [27, 28, 29]. 

SDPs and Interior Point Methods: Many approaches in 

robotic perception formulate problems as a QCQP, solve an 

SDP relaxation of the QCQP [30], and then project the SDP 

solution to the feasible set of the original problem. Often 

the SDP relaxation is exact, and thus the projection is a 

certifiably optimal solution to the original problem. Previous 

approaches applied standard SDP solvers to problems in geo- 

metric registration [31, 32, 33], robust point-cloud registration 

[34], relative pose estimation [35, 36], triangulation [37], 

anonymous bearing-only multi-robot localization [38], essen- 

tial matrix estimation [39], pose-graph SLAM [40], and sensor 

calibration [41]. While standard interior point methods scale 

poorly for large problems, these approaches are successful on 

small problems and can use a broad set of solvers. 

SDPs and the Riemannian staircase: SDP relaxations of 

robotic perception problems typically admit low-rank so- 

lutions. A growing body of work applies the Riemannian 

staircase methodology [13, 14] to leverage this low-rank 

structure and more efficiently solve the SDP. Riemannian 

staircase approaches differ from the previously mentioned 

SDP approaches in that they (1) optimize over a series of 

lower-dimension, non-convex, rank-restricted SDPs to solve 

the original SDP and (2) Riemannian optimization techniques 

are used to enhance the rank-restricted SDP optimization. 

Importantly, while the approach of solving a series of rank- 

restricted SDPs can be applied to all SDPs [11, 12, 15], usage 

of Riemannian optimization depends on specific problem 

structure and does not apply to all SDPs. Within robotics, the 

Riemannian staircase has been applied to pose-graph SLAM 

[8, 42, 43] and range-only localization [44]. 

Placement of this Work: This work falls under the Rieman- 

nian staircase class of works. We present a SDP formulation, 

certification procedure, Riemannian staircase methodology, 

and means for extracting a solution from the SDP solution. Our 

work differs from recent, important papers in certification for 

the closely related problem of range-only localization [26, 44], 

as a novel problem formulation and certification methodology 

were necessary to account for pose variables. Our certification 

approach builds upon the KKT-based analyses of [15, 18]. Ad- 

ditionally, our problem formulation and estimation procedure 

generalize similar, key works in range-only localization [44] 

and pose-graph SLAM [8, 42] to the case of RA-SLAM. 

B. Exhaustive Search 

Exhaustive search approaches largely use either polynomial 

root finding or branch-and-bound (BnB) techniques to guar- 

antee a globally optimal solution will be found [45, 46]. Such 

a priori guarantees typically cannot be made for other ap- 

proaches. These approaches come at increased computational 

cost, particularly as problem sizes increase. 

Polynomial solving via Gro¨bner basis computation was 

applied to multi-view geometry [47, 48] and range-only lo- 

calization [49]. Similarly, [50] solved a polynomial system 

via eigendecomposition to estimate relative camera pose. 

https://github.com/MarineRoboticsGroup/cora
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BnB was applied to consensus maximization in rotation 

search [51] and special Euclidean registration [52]. [53] lin- 

early approximated SO(3) to solve pose estimation as a mixed- 

integer convex program for improved BnB efficiency. Sim- 

ilarly, [54] integrated the iterative closest point solver into a 

BnB framework to efficiently perform point cloud registration. 

BnB was also applied to the estimation of: camera focal length 

and relative rotation [55], correspondence-free relative pose 

Sd−1, where Sd−1 is the d-dimensional unit sphere). This re- 
formulation of the range cost terms in Problem 2 is equivalent 
to the terms presented in Problem 1 in the sense that optimal 

solutions are identical [44, Lemma 1]. 

We present this relaxation in Problem 2, noting that all costs 

and constraints are quadratic. 

Problem 2 (QCQP relaxation of RA-SLAM). Given the 
measurements of Problem 1, find the variables, {R , t }n  ∪ 

[56, 57], essential matrices [58, 59], and triangulation [60]. 

III. RA-SLAM AS AN SDP 
{rij}(i,j)∈Er 

, which solve: 
i  i i=1 

In this section we demonstrate how the maximum a pos- 

teriori (MAP) formulation of RA-SLAM can be used to 

derive a novel SDP. This SDP will underpin many of the key 

min 
Ri∈Rd×d 

ti∈Rd 

rij∈Rd
 

(i,

L

j)∈Ep 

κij/1Rj − R i R̃ij  /12 

contributions of this work. The MAP formulation is based 

on generative measurement models with Langevin distributed 
rotational noise and Gaussian distributed translational and 
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Rij = Rij Rij, Rij ∼ Langevin (Id, κij) (1) subject to RTR = I , i = 1, . . . , n 
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where R̃ i j  , t˜ij , r˜ij are noisy relative rotational, translational, 
and range measurements. Similarly, Rij, tij, rij are the true 

relative rotations, translations, and ranges. Finally, RE , tE , rE 

Furthermore, we note that any QCQP can be relaxed to 

an SDP via Shor’s relaxation [63]. This SDP relaxation of 

Problem 2 takes the form of, 
Problem 3 (SDP relaxation of RA-SLAM). Find Z ∈ Rk×k 

represent the noisy perturbations to the measurements where 

the coefficients κij, τij, and (1/(σ2 )) are, respectively, the 

rotational, translational, and ranging measurement precisions. 

From the measurement models of Eqs. (1) to (3) the MAP 

that solves 
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formulation of RA-SLAM is as follows [61], 

Problem 1 (MAP formulation of RA-SLAM). Given sets of 

subject to tr(AiZ) = bi, i = 1, . . . , m 

Z 0. 

(6) 

relative pose measurements, {R̃ij  , t˜ij }(i,j)∈E , and of distance where t:, and t:, |E | is the number of range 
measurements, {r˜ij ∈ R}(i,j)∈E find the problem variables, k n(d + 1) + l l r 
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r 

measurements. Q ∈ Sk , and Ai ∈ Rk×k are real, symmetric, 
{Ri, ti}i=1 , which solve + 
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k ×k matrices defined in Appendices B and C. S+ defines the 

set of k × k positive semidefinite matrices. 

The key contributions of this work stem from Problem 3, 

+ 
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τij 
1tj

 − ti − Rit̃ ij 
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2
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which is convex and thus admits several critical properties. 

The SDP of Problem 3 is a strict relaxation of the original 

problem in Problem 1. Thus, a solution to the SDP provides  1  
+ (/1t 

 
 

− t /1 − r̃  )2 both a principled initialization to the original problem and a 

 

where Ep and Er are the sets of edges representing relative 
pose measurements and range measurements, respectively. 

Additionally, d is the dimension of the problem (e.g., 2D or 

3D) and n is the number of pose variables. 

From Problem 1 we derive a relaxed problem, which takes 

the form of a QCQP and, in turn, leads to a convenient SDP 

relaxation. This QCQP (Problem 2) relaxes the special orthog- 

However, in this work we do not solve the SDP of Problem 3 

in its existing form. We instead apply the Burer-Monteiro 

method to take advantage of the expected low-rank solution 

to Problem 3. We substitute Z = XXT, X ∈ Rk×p to arrive 
at a rank-restricted SDP of the form: 

Problem 4 (Burer-Monteiro factorization of Problem 3). Find 

X ∈ Rk×p that solves 
onal constraint (Ri ∈ SO(d)) to an orthogonality constraint 
(Ri ∈ O(d)). This relaxation was found to have no impact on min 

X∈Rk×p 

tr(QXXT)  
(7) 

typical pose-graph SLAM solution quality [8, 42, 62]. 

Additionally, the range cost terms of Problem 1 are modi- 

fied. We introduce auxiliary unit-norm vector variables (rij ∈ 

subject to  tr(AiXXT) = bi,  i = 1, . . . , m. 

In this rank-restricted SDP the problem variable, X, is 

(i,j)∈Er lower bound on the optimal cost of the original problem. 

p 

/1r . 
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composed as follows, semidefiniteness of a real, symmetric matrix. All matrices in 

Ti ∈ Rp×(d+1) t:,  [Ri
 | ti] (8) 

these computations are sparse, enabling efficient computation. 

Our certification scheme first computes a certificate matrix, 
X ∈ Rk×p t:, [T1 | · · · | Tn | r1 | · · · | rl]

T (9) S, and then evaluates if S  0. Following the presentation of 

where each element, e.g., Ri ∈ Rp×d, can be considered a 
[15], the certificate matrix can be written as: 

m 

natural lifting of the variables in the QCQP of Problem 2, 

e.g., Ri ∈ Rd×d, when p > d. Furthermore, the rank-restricted 
SDP of Problem 4 is equivalent to the QCQP of Problem 2 

S t:, Q + λiAi 
i=1 

(11) 

when p = d. Importantly, p constrains the rank of the solution 

to Problem 4, as rank(X) = rank(XXT) ≤ p. 

From these observations, it follows that incrementing p 
provides an interpretable means of relaxing Problem 4 by 

increasing the allowable rank of the solution. This relaxation 

methodology is a key aspect to our estimation procedure. 

IV. DERIVING THE OPTIMALITY CERTIFICATES 

In this section we demonstrate how previous results in 

certifiable estimation [15] can be applied to Problem 4. This 

approach centers around the certificate matrix, S, which relates 

the rank-restricted SDP of Problem 4 to the SDP of Problem 3. 

where λi is the Lagrange multiplier corresponding to the 

constraint Ai. 

Computing Lagrange Multipliers: As the Lagrange multi- 

pliers are a function of the specific solution point evaluated, 

they must be computed for each candidate solution. By the 

stationarity condition of the KKT conditions, we determine the 

Lagrange multipliers via a linear least-squares problem. For 

any stationary point, the partial derivative of the Lagrangian 

with respect to the problem variable is zero [65, Theorem 
12.1]. Gathering the Lagrange multipliers as a vector, λ ∈ 
Rm t:, [λ1, . . . , λm], the partial derivative of the Lagrangian 

of Problem 4 is 

Specifically, if a S obtained from a candidate solution, X∗
, to 

Problem 4 is positive semidefinite, then X∗ solves Problem 3 ∂XL(X, λ) = ∂X tr(QXXT) 
m 

and must be optimal for Problem 4. 

Critically, our approach to obtaining S requires that the 

linear independence constraint qualification (LICQ) is satis- 

fied. We discuss the LICQ and its relationship to S and then 

describe our algorithm for performing certification. 

+ ∂X (tr(AiXXT) − bi)λi 
i=1 

m 

= 2QX + 2( Aiλi)X. 
i=1 

(12) 

A. The Linear Independence Constraint Qualification 

The certificate matrix we devise is a function of the 
Lagrange multipliers (λi) at a given solution point (X∗

). 
 

the LICQ must be satisfied [64]. Without satisfying the LICQ 

there is no guarantee that the computed Lagrange multipliers 

will lead to a PSD certificate matrix [15, footnote 3]. 

The LICQ requires that the set of gradients of the constraints 

is linearly independent. For Problem 4, the LICQ is equivalent 

It follows from Eq. (12) that the first-order stationarity 

condition of Problem 4 is, 

QX∗ + (
L 

A λ )X∗ = 0, (13) 
 

 

where X∗ ∈ Rk×p is a stationary point of Problem 4 and 0 
is the zero matrix. 

Observe that Eq. (13) is linear with respect to the Lagrange 

multipliers. We rearrange Eq. (13) to arrive at 
to linear independence of {∇ tr(A XXT),  i = 1, . . . , m} m 

X i 

evaluated at 
∗ 

L
(A X∗)λ  = −QX∗. (14) 

following constraint gradient matrix, 

K ∈ R(kd)×m t:, [vec(A1X
∗) | · · · | vec(AmX∗)] (10) 

having full column rank, where vec(·) is the columnwise 

vectorization operator. 

We ensure that for our application the LICQ will always be 

satisfied (Theorem 1). 

Theorem 1 (LICQ for Problem 4). The LICQ is satisfied for 

any feasible point, X, of Problem 4. 

Proof: See Appendix D. 

B. Performing Certification 

In this section we demonstrate how solution certification is 

reduced to three steps: (1) solving a single linear least-squares 

problem, (2) matrix addition, (3) and evaluating positive 

i=1 

By vectorizing each side of Eq. (14) we arrive at 

Kλ = − vec(QX∗) (15) 

where K is the constraint gradient matrix of Eq. (10). Thus, 

the Lagrange multipliers, λ, may be estimated by solving the 

linear system of Eq. (15). 

Building S and Evaluating Optimality: Given the Lagrange 

multipliers, λ, the certificate matrix can be formed as in 

Eq. (11). By [15, Theorem 4], if S  0, the candidate solution, 

X∗
, is globally optimal. For this problem, the most efficient 

means of checking S 0 is by attempting to Cholesky 

factorize S + βI, where 0 < β « 1. Cholesky factorization 
requires positive definite matrices, and thus β is a numerical 

tolerance parameter for the positive semidefiniteness of S. We 

summarize this certification scheme in Algorithm 1. 

i=1 However, to guarantee a unique set of Lagrange multipliers 

. This condition is equivalent to the 
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F 

L 2 

  

Algorithm 1 Certify Optimality of a Candidate Solution, X∗ 
Input: the solution to certify X∗ ∈ Rk×p, positive semidefi- 
nite tolerance parameter β ∈ R++ 
Output: whether X∗ is globally optimal 

Require: X∗ is locally optimal 

function ISOPTIMAL(X∗, β) 

λ ← solve the linear system of Eq. (15) 

S ← Q + m  λiAi 
try Cholesky(S + βI) 

return is optimal = True 

catch S + βI not positive definite 

return is optimal = False 

 

 

V. CERTIFIABLY CORRECT ESTIMATION 

In this section we describe our approach to certifiably 

correct estimation. We demonstrate that the rank-restricted 

SDP of Problem 4 can be solved via Riemannian optimization, 

enabling use of the Riemannian staircase methodology. We 

then describe the Riemannian staircase as applied to Problem 4 

and discuss how we use the Riemannian staircase estimate to 

extract an estimate to the original problem, Problem 1. 

A. Problem 4 as Riemannian Optimization 

We consider the variable X ∈ Rk×p as described in Eq. (9). 

The constraints imposed on X by the Ai of Problem 4 are 
equivalent to the quadratic equality constraints described in the 
QCQP of Problem 2. Specifically, RTRi = Id and /1rij/12 = 1. 

 
 

Algorithm 2 Certifiably Correct RA-SLAM  

Input: an initial estimate X0 ∈ Rk×p 

Output: an estimate, X∗ 
function CORA(X0) 

β ← 10−8 

X∗ ← X0 

certified ← isOptimal(X∗, β) 
while not certified do 

// lift X∗ by appending a column 
// and adding a small perturbation2 

X∗ ← [X∗ | δ] 

X∗ ← RiemannianOpt(X∗, Q) 

certified ← isOptimal(X∗, β) 
end 

X∗ ← ProjectSolution(X∗, d) [> [8, Algorithm 2] 

X∗ ← RiemannianOpt(X∗, Q) 

return X∗ 
 

 
We emphasize that Problem 5 is exactly the rank-restricted 

SDP of Problem 4, reformatted to explicitly state that the fea- 

sible set of Problem 4 is a product of Riemannian manifolds. 

B. The Riemannian Staircase 

The Riemannian staircase approach we use follows the 

general methodology outlined in [13, Algorithm 1] with slight 

alterations. Specifically, Riemannian optimization is performed 

at a given level of relaxation, as determined by p. If the ∗ 
i 2 estimate, X , is found to be optimal (Algorithm 1) then the 

Through this lens, we show that the feasible set of Problem 4 

admits a Riemannian description. The orthonormal constraint, 

RTRi = Id, Ri ∈ Rp×d, is equivalent to the Stiefel manifold 

St(d, p) [8]. Similarly, the l unit-norm constraints, /1rij/12 = 
1, rij ∈ Rp, define the unit-sphere in Rp. Furthermore, the 
product manifold of l unit spheres can also be expressed as 

the oblique manifold [44], OB(p, l), the set of matrices in 

Rp×l with unit-norm columns. Finally, the remaining variables 
are translations, ti, and are unconstrained vectors and thus are 

defined by the Euclidean manifold. Therefore, the feasible set 

of Problem 4 can be expressed as a product of Riemannian 

manifolds for any p. We describe the corresponding Rieman- 

nian optimization problem in Problem 5. 

Problem  5  (Problem  4  as  Riemannian  optimization). 

Given the measurements of Problem 1, find the variables, 

algorithm returns the certified solution. If X∗ is not found to 
be optimal, the problem is relaxed by incrementing p and the 
previous estimate is used to initialize the relaxed problem. As 

the estimate will be a first-order stationary point if trivially 
lifted (i.e., if appending a column of zeros to X∗

) we perturb 
the point slightly. This process continues until a certifiably 

optimal solution is found3. 

The primary differences between our approach and [13, 

Algorithm 1] are that the previous work (1) was defined 

solely over Stiefel manifolds of uniform dimension and (2) 

used rank-deficiency of the estimate to certify the solution. 

Structural differences between RA-SLAM and [13] drove 

the need for a novel problem formulation and corresponding 

certification scheme. 

C. Certifiably Correct Estimation 

{Ri, ti}n ∪ {rij}(i,j)∈Er , which solve: We have now established: a certification scheme, means 

min 
Ri∈St(d,p) 

ti∈Rd 

r∈OB(p,l) 

(i,

L

j)∈Ep 

κij/1Rj − R i R̃ij  /12 for lifting the Problem 4 to higher dimensions, and how to 

represent each lifted relaxation of Problem 4 as a Riemannian 

optimization problem. We combine these three contributions to 

+ 
(i,j)∈Ep 

τij 
1tj

 − ti − Rit̃ ij 
1

2 . (16)  2The perturbation shifts the lifted solution from a first-order critical point. 
While we randomly sample the perturbation δ ∈ Rk without observing errors, L  1  2 we note other approaches with theoretical guarantees exist [13, 15]. 

+ 
(i,j)∈Er 

2 /1tj − ti − r ĩjrij/12 

ij 

3For similar rank-restricted SDPs there are known bounds on the required 
p to guarantee convergence (with nuanced caveats regarding the geometry of 
the SDP) [12, 14]. In practice, these bounds are often well above the level of 

where {rij}(i,j)∈Er 
are the l unit-norm columns of r. relaxation required to obtain an optimal solution. 
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Fig. 2. The equipment used in our marine experiments. (Top) A Jetyak [66], 
which we refer to as a beacon, equipped with a GPS transponder. (Bottom) 
Standard watercraft, which we will refer to as Low-Nav craft, equipped with 
an electric trolling motor, Sparton AHRS-M2 attitude and heading reference 
system, and GPS transponder. Each platform has a MicroModem-2 [67] and 
acoustic transducer for inter-platform acoustic ranging and communications. 

 

construct an initialization-independent approach to certifiably 

correct RA-SLAM (CORA). 

Given an initial estimate, X0, our Riemannian staircase 

approach is applied to obtain a low-rank, certifiably optimal 

solution to Problem 3. This SDP solution is projected to the 

feasible set of the original problem (Problem 1) and the pro- 

jected solution is refined with local Riemannian optimization. 

We describe these steps in Algorithm 2. 

We note that by obtaining a certifiably optimal solution to 

Problem 3 we also establish a lower-bound on the optimal 

value of Problem 1. This lower-bound both provides a means 

of certification, and an upper-bound on suboptimality should 

the final estimate not be certifiable. 

Additionally, while we find that, in practice, the Riemannian 

staircase obtains a certifiable solution to Problem 3 regardless 

of the choice of X0, we currently lack strict theoretical guar- 

antees for our specific problem (see Footnote 3). Regardless, 

X0 affects the practical efficiency of Algorithm 2, as a high- 

quality initialization can aid in finding certifiable solutions at 

lower levels of relaxation. 

VI. EXPERIMENTS 

We present two sets of RA-SLAM experiments: two marine 

surface vehicles with acoustic ranging and simulated examples 

with multiple robots. We demonstrate that we are typically 

able to certify the optimality of our solutions. Furthermore, we 

identify certain conditions which appear to affect the tightness 

of the relaxation we pose, suggesting areas of theoretical 

interest and future investigation. 

A. Marine Experiments 
The marine experiments were conducted with the platforms 

Fig. 3. Certified optimal result from marine acoustic ranging experiments 
described in Section VI-A. Our estimate of the Low-Nav trajectory (green) 
closely matches the ground-truth obtained from GPS (red). Similarly, the 
estimated beacon positions almost exactly match the GPS groundtruth. 

 

GPS or high-cost inertial navigation) could enhance a low- 

accuracy navigation system. In this experiment the beacon 

(yellow Jetyak) localizes via GPS fixes at 1 Hz, as proxy 

for high-accuracy navigation system. In contrast, the Low-Nav 

craft (blue-white watercraft) obtains odometry by combining 

heading estimates from a Sparton AHRS-M2 attitude heading 

reference system with a constant-velocity assumption. The 

beacon effectively acts as a moving landmark, with a GPS 

prior on its location and intermittent range measurements to 

the Low-Nav Craft. 

Inter-agent acoustic ranging used two Micromodem-2 sys- 

tems [67]. Ground-truth vehicle positions were obtained from 

GPS receivers mounted on each vehicle. The assumed constant 

velocity was obtained from the average velocity over 10 hand- 

timed point-to-point 100 meter traverses. 

Our estimation problem considers the GPS measurements 

of the beacon position, inter-agent acoustic ranges, and the 

constant-velocity odometry. We jointly estimate the pose of 

the Low-Nav craft and the positions of the beacon. Low-Nav 

poses are taken at 1 Hz frequency while beacon positions are 

only considered when new range measurements occur. 

As seen in Fig. 3, our method returns a qualitatively correct 

and certifiably optimal estimate of the Low-Nav and beacon 

trajectories despite being given a random initialization. We 

claim this as evidence of robustness of CORA, particularly 

with respect to the naive odometry model used. 

 
B. Simulated Multirobot Experiments 

To empirically characterize our algorithm we simulate 2D 

multi-robot experiments. We perform parameter sweeps over: 

the number of robots, ranging sensor noise parameters, number 

of range measurements, number of pose variables. Default 

values of 4 robots, (0.5)2 meters squared ranging covariance, 

500 range measurements, and 4000 poses were used for each 

parameter not being swept. For each parameter sweep we 

ran a scenario with no interrobot relative pose measurements 

and 100 interrobot relative pose measurements, with notable 

differences observed between the two. 
For each sweep we plot the relative suboptimality, f

∗−f∗ 
, 

 

described in Fig. 2 over a 250-meter by 100-meter river where f∗ is the cost of the final estimate and f∗ 
f∗ 

is the 

section. This system was intended as a heterogeneous platform 

to investigate how agents with high-accuracy navigation (e.g., 

certified lower bound obtained from CORA. These plots can 

be observed in Fig. 4. 



ij 

ij 

 
 

Fig. 4. Comparison of relative suboptimality gaps achieved on different parameter sweeps. There is a substantial effect observed by the insertion of interrobot 
relative pose measurements. In the case of no relative pose measurements (top row) there are substantially higher suboptimality gaps computed and trends 
emerge between the suboptimality gap and various parameters. In the case of 100 relative pose measurements (bottom row) we observe suboptimality gaps 
consistently below 0.5% and can often certify the optimality of the solution (suboptimality is zero). 

Number of Robots: We sweep from 2 to 20 robots while 

maintaining a constant number of total poses. As observed in 

Fig. 4, the number of robots has a substantial effect on the sub- 

optimality in the case of no interrobot pose measurements. We 

hypothesize this is because each new robot introduces addi- 

tional symmetries into the solution, which must be constrained 

by the relative measurements to other robots. As a single range 

measurement is not sufficient to fully constrain the relative 

pose between robots, the cost landscape in this scenario is 

likely more symmetrical and possibly does not contain a single 

unique solution. This hypothesis is further supported by the 

results when 100 relative pose measurements are added, in 

which suboptimality gap is consistently zero regardless of the 

number of robots. In this instance, the relative poses are likely 

fully constrained by the relative pose measurements and the 

range measurements just further improve the estimate. 

Number of Range Measurements: We sweep from 100 to 

2000 range measurements. In Fig. 4 we find that, in the 

case of no interrobot pose measurements, an increase in 

range measurement density leads to a sharp decrease in the 

suboptimality gap. This trend is not observed in the case of 100 

interrobot pose measurements. We hypothesize this is due to 

the increased number of measurements reducing the potential 

symmetries in the cost landscape. Effectively this is the same 

mechanism we hypothesize caused the trends found as the 

number of robots increased. 

Range Noise Parameters: Furthermore, we sweep over the 

ranging sensor additive noise covariance, σ2 , from (0.02)2 
to (2)2. This parameter sweep has a minor, but clear, effect 

on the relative suboptimality gap in the case of no interrobot 

pose measurements. Specifically, as the covariance increases 

the suboptimality gap appears to decrease and approach a clear 

asymptote. This is likely due to how the range covariance 

shapes the cost landscape, with range cost scaling as 1/σ2 . 

Number of Pose Variables: We sweep from 103 to 104 
pose variables. The plots in Fig. 4 suggest that increasing the 

number of pose variables may lead to increasing suboptimality 

gap. A driving mechanism for this is unclear, but may be due 

to increased degrees of freedom in the solution. These trends 

are not as pronounced as in the other observed phenomena. 

 

VII. CONCLUSION 

In this work we described CORA, the first algorithm to ob- 

tain certifiably optimal RA-SLAM solutions. CORA combines 

two novel algorithmic capabilities described in this work, (1) 

a global optimality certification method and (2) a Riemannian 

staircase methodology for initialization-independent certifiably 

correct RA-SLAM. 

We demonstrated the efficacy of CORA on a real-world 

experiment utilizing acoustic ranging as well as multiple simu- 

lated multi-robot RA-SLAM problems. Notably, in addition to 

returning solution estimates, CORA obtains an upper bound on 
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ij 

ij 
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ij 

solution suboptimality. We found this bound was often tight, 

i.e., we obtained solutions with zero suboptimality. 

Constructing Qr: We first recall the form of the range-cost 

terms of Problem 2: 

Furthermore, we used this suboptimality bound to em- 

pirically observe underlying challenges of RA-SLAM (e.g., 

potential solution symmetries). These observations point to 
(i,

L

j)∈Er 

 1  

2 /1tj 
ij 

− ti − r̃ ij rij /1
2 (17) 

notable differences between the loss-landscapes of RA-SLAM 

and pose-graph SLAM problems, which typically admit unique 

solutions. These unique challenges in RA-SLAM motivate 

Without loss of generality, we ignore the weighting term 

(1/(σ2 )) and expanding Eq. (17) results in: 

/1tj/12 + /1ti/12 + /1r˜ijrij/12 

further development of algorithms and analysis, specifically 

at the intersection of RA-SLAM and the geometry of SDPs. 
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ically, the range cost terms are (weighted) sums of the inner 

products between these variables. 

In the form of Problem 4 the range cost is equivalently 

written as tr(QXXT). 

We observe the entries of XXT at row p and column q are 
as follows, 
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their employees, makes any warranty, express or implied, or 

assumes any legal liability or responsibility for the accuracy, 

completeness, or usefulness of any information, apparatus, 

where vari is the variable in the i-th row of X. More precisely, 

vari t:, id−1(i), where id−1(·) is the inverse of id (·). 

As the cost is simply an inner product between Qr and 

XXT
, we can consider Qr as a weighting function over these 

respective inner products. Furthermore, we can think of Qr as 

a sum of matrices, each representing a single measurement. 

That is, 
product, or process disclosed, or represents that its use would 

not infringe privately owned rights. Reference herein to any 

specific commercial product, process, or service by trade 

Qr = 

(i,j)∈Er 

Qrij . (21) 

name, trademark, manufacturer, or otherwise does not nec- 

essarily constitute or imply its endorsement, recommendation, 

or favoring by the United States Government or any agency 

thereof. The views and opinions of authors expressed herein 

do not necessarily state or reflect those of the United States 

Government or any agency thereof. 

As Eq. (19) describes each range term as a weighted sum 
of inner products, we can thus determine the values at index 

(p, q) of Qrij as: 

1, p = q = iti 

1, p = q = itj 

r̃2 , p = q = ir 
Qrij (p, q) t:, ij ij or (i , i ) (22) 

APPENDIX A −1, (p, q) = (iti , itj ) 
 tj  ti 

VARIABLE AND CONSTRAINT INDEXING 

The constructions of Q and Ai require defining specific 

indices of the matrices. We designate a bijective function, 

id : Var → {1, . . . , k}, mapping each variable to the cor- 

responding row in X. For rotation variables, id (Ri,p) returns 

−r˜ij, (p, q) = (iti , irij ) or (irij , iti ) 

r˜ij, (p, q) = (itj , irij ) or (irij , itj ) 

where we use the shorthands iti t:, id (ti), iti t:, id (tj), irij t:, 
id (rij). To recover the weighting term, each resulting Qrij 

can be multiplied by the respective 1/(σ2 ). 

the row index corresponding to the pth column of Ri in X. 

 
APPENDIX B 

FORM OF THE DATA MATRIX, Q 

Q is a sparse, real, symmetric, positive-semidefinite ma- 

trix which encodes the cost of the RA-SLAM problem. We 

describe Q as the summation of the relative-pose cost terms 

with the range cost terms, i.e., Q t:, Qp + Qr. 

Construction of Qp follows the approach of [42, Appendix 

II], which connects Qp to the graph connection Laplacian. 

APPENDIX C 

DEFINING THE CONSTRAINTS, Ai 

We give the form of the various constraint matrices, Ai, in 

Problem 4. These matrices – particularly the sparsity patterns 

of these matrices – are the central objects in our subsequent 

demonstration that the linear independence constraint qualifi- 

cation (LICQ) is satisfied for our problem. While we prove the 

LICQ for Problem 4, we point to Problem 2, to observe that 

the constraints are naturally sorted into two sets: orthonormal 

(Aorth) and distance constraints (Adist). 

σ 

XX 



i 

i 

i 

id(R 

id(R  ) 

 

i 

 

id(R  ) i,p 

f 

i 

f 
i,p 

i,s 

Orthonormal Constraints: Inspection of XXT reveals that 

the RTRi entries exist as symmetric, block-diagonal values. 

To enforce the constraint RTRi = Id each unique entry must 

be independently constrained, and as RTRi is symmetric there 

are only d(d + 1)/2 constraints on its elements, corresponding 

to the number of elements in its upper triangle. The orthonor- 

mal constraint matrices differ by whether they represent a 
constraint on a diagonal or off-diagonal element of RTRi 

Proof: we prove that ∇Aorth is an independent set by 
demonstrating that the constraint gradients are orthogonal to 

each other. We demonstrate that the constraint gradients are 
nonzero for any feasible X∗

. As the gradients are nonzero, if 
they are orthogonal they must have inner product, (A, B) = 

tr(BTA), of zero. 

Direct computation of Ai,p,qX∗ obtains, 

We define the constraint matrix Ai,p,p ∈ R k×k i , correspond- (1/2)X∗
 

), row = id (R i,p) 

ing to the pth diagonal entry of RTRi , as follows: Ai,p,q X
∗
 = (1/2)X∗ 

i,q 

,  row = id (Ri,q) , (26) 
 

Ai,p,p = 

 
1,  id (Ri,p)-th diagonal 

0,  otherwise 

 
. (23) 

 
 

where X∗ 
i,p 

id(Ri,p) 

0, otherwise 

is the id (Ri,p)-th row of X∗
. 

The corresponding right-hand side, b Next, we define the matrix 
 

i,p,p , is equal to 1. k×k, corresponding 
In the case of p = q these two terms sum such that the 

resulting product is, 
Ai,p,q ∈ R 

to the off-diagonal entry at row p and column q of RTRi, as 
follows: 

 
 

Ai,p,p 

 
X∗ = 

X∗ ,  row = id (R  ) 
id(Ri,p) . (27) 

0, otherwise 

 
Ai,p,q = 

1/2,  row = id (Ri,p), col = id (Ri,q) 
1/2,  row = id (Ri,q), col = id (Ri,p) . (24) 

0, otherwise 

As X∗ is a feasible point to problem Problem 2, X∗ 
must be unit norm. Therefore, any orthonormality constraint 

gradient must be nonzero. 

The corresponding right-hand side, bi,p,q, is equal to 0. 

Distance Constraints: Each distance constraint is a unit- 

norm constraint on a single variable (rij), the corresponding 

constraint matrix (Arij ) is thus as follows: 

For any pair of two unique orthonormality constraint matri- 

ces, Ai,p,q and Aj,r,s, there are three possible cases: 

1) the rotations are different (i /= j) 
2) the rotations are the same but the rotation sub-indices 

are entirely different (i = j, p /= r, q /= s) 

Arij = 
1,  id (rij)-th diagonal 

. (25)
 

0,  otherwise 

3) the rotations are the same and a single pair of sub-indices 

is the same (i = j, p = r or q = s). 
For cases 1 and 2 (Ai,p,qX∗, Aj,r,sX

∗) must be zero, as the 

The corresponding right-hand side, brij , is 1. 

APPENDIX D 

THE LINEAR INDEPENDENCE CONSTRAINT 

QUALIFICATION 

Within this appendix we prove the statement of Theorem 1, 

namely that the LICQ is satisfied for any feasible point of 

Problem 4. The LICQ is a statement of the gradients of the 

problem constraints. 

two constraint gradients will have entirely separate nonzero 

rows (Eq. (26)). 

Now we show that in case 3, the inner product is zero for 

any feasible point (i.e., any point satisfying RTRi = Id). 
As the constraint matrices are symmetric, without loss of 

generality we assume that the overlapping indices are p and r. 

Drawing from the form of the orthonormality constraint gra- 

dients in Eq. (26), we observe that: 

To simplify notation, we respectively use ∇A orth and ∇A dist 
(Ai,p,q X

∗, Ai,p,sX
∗) 

to refer to the set of constraint gradients defined by Aorth and 

Adist (see Section C). E.g., ∇Aorth = {AiX
∗, Ai ∈ Aorth}. 

To prove Theorem 1, we first separately prove linear inde- 

∝  (Ri,s, Ri,q) 

=  (RT )Ri,q 

, (28) 

pendence for ∇Aorth and ∇Adist for any Problem 4 feasible 
point. We then show that, by construction, ∇Aorth and ∇Adist 
span complementary vector spaces. Finally, we apply the 

fact that the union of two linearly independent sets over 

complementary vector spaces is linearly independent to prove 

that the LICQ is always satisfied for any feasible point in 

Problem 4. 

Lemma 2 (Linear independence of orthonormality constraint 

gradients). The set of gradients of the orthonormality con- 

straints, ∇Aorth = {AiX
∗|Ai ∈ Aorth}, of Problem 4 is 

where, ∝ indicates two terms are proportional up to a scalar 
constant and Ri,s is the s-th column of Ri. The proportionality 

comes into play as the entries of the gradients may be scaled by 

(1/2) per Eq. (26). As all Ri are constrained to be orthonormal, 

for any feasible point this inner product must be zero. 

As a result, for any Problem 4 feasible point, the gradients 

of all orthonormality constraints are orthogonal. Therefore, 

∇Aorth must be linearly independent. 

Lemma 3 (Linear independence of distance constraint gra- 
dients). The gradients of the unit-ball constraints, ∇Adist = 

a linearly independent set for any feasible point, X∗
, in {Arij X∗|Ar ∈ Aorth}, of Problem 4 is a linearly indepen- 

Problem 4. dent set. 

i 
f 

ij 



f
r ,  row = id (rij) 

ij 

ij ∗ 

Proof: Computation of Arij 
X∗ attains, localization algorithm and experiments for multiple un- 

manned aerial vehicles in GPS denied environments. In- 

Arij 
X∗ = 

∗ 
ij 

0, otherwise 
(29) 

ternational Journal of Micro Air Vehicles, 9(3):169–186, 

2017. ISSN 17568307. doi: 10.1177/1756829317695564. 
[4] Nobuhiro Funabiki, Benjamin Morrell, Jeremy Nash, 

where r∗ is the estimate of the variable rij contained in X∗
. 

For any feasible point X∗ to Problem 4, /1r∗ /12 must be 1. 

Therefore, each unit-ball constraint gradient, Arij X , must 

have nonzero components in its id (rij)-th row and nowhere 
else. As there is only one constraint per each rij, no two 
unit-ball constraint gradients have overlapping nonzero entries. 

Therefore, the gradients of all unit-ball constraints are orthog- 

onal to each other. As all gradients are orthogonal and nonzero, 

∇Adist must be linearly independent. 

Lemma  4  (Complementarity  of  Constraint  Gradients). 

∇Aorth ∩ ∇Adist = {0} 

Proof: We draw on the forms of the orthonormality 

constraint gradients (Eq. (26)) and the unit-ball constraint 

gradients (Eq. (29)). 
The nonzero rows of ∇Aorth correspond to the indices of all 

rotation variables, {id (Ri,p), i = 1, . . . , n and p = 1, . . . , d}. 
Similarly, the nonzero rows of ∇Adist correspond to the 
indices of all distance variables, {id (rij) | rij ∈ Er}. 

The set of rotation variables, {Ri, i = 1, . . . , n}, is disjoint 

to the set of distance variables, {rij | rij ∈ Er}. Observe that 

the sets of nonzero rows of each set of constraints result from 

applying id (·) to the respective variables. 

As id (·) is bijective, and the sets of variables are dis- 
joint, the sets of nonzero rows of ∇Aorth and ∇Adist must 
also be disjoint. Therefore, the linear spaces spanned by 

∇Aorth and ∇Adist have no common nonzero entries and 

∇Aorth ∩ ∇Adist = {0}. 

Finally, we prove the LICQ is satisfied for all feasible points 

of Problem 4. 

Proof of Theorem 1: By Lemma 2 and Lemma 3, for 
any feasible point of Problem 4 the sets ∇Aorth and ∇Adist are 
each linearly independent. Additionally, by Lemma 4, 

∇Aorth ∩ ∇Adist = {0}. As each set is linearly independent 
when evaluated at a feasible point of Problem 4 and ∇Aorth ∩ 
∇Adist = {0}, the union of these sets, ∇Aorth ∪ ∇Adist, is a 
linearly independent set for any feasible point of Problem 4. 

Therefore, for any feasible point of Problem 4 the set of all 

constraint gradients is linearly independent. 
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