

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-TR-851939

Adjoint Waveform Tomography for Crustal and Upper Mantle Structure the Middle East and Southwest Asia for Improved Waveform Simulations Using Openly Available Broadband Data

A. Rodgers

July 21, 2023

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Adjoint Waveform Tomography for Crustal and Upper Mantle Structure the Middle East and Southwest Asia for Improved Waveform Simulations Using Openly Available Broadband Data

Report to the National Nuclear Security Agency Ground-Based Nuclear Explosion Detection

For the FY2023 WAVEFORMS Project

Arthur J. Rodgers

Geophysical Monitoring Program, Lawrence Livermore National Laboratory,

Livermore, CA 94551 USA

July 27, 2023

13 **Summary**

14 We present a new model of radially anisotropic seismic wavespeeds for the crust and
15 upper mantle of a broad region of the Middle East and Southwest Asia (MESWA) derived from
16 adjoint waveform tomography. We inverted waveforms from 192 Global Centroid Moment
17 Tensor earthquakes (M_w 5.5-7.0) recorded by over 1000 openly available broadband seismic
18 stations from permanent and temporary networks in the region. Spatial coverage of the
19 available data is highly uneven due to earthquakes clustered along plate boundaries and sparse
20 coverage of open seismic networks in the region. We considered three possible starting
21 models: the SPiRaL global model (Simmons et al., 2021); MEC-1 (Kaviani et al., 2020); and
22 CSEM2.0 (Noe et al., 2023). Because the SPiRaL model provides good fits to the observed
23 waveforms measured by the time-bandwidth product of selected windows in several period
24 bands, provides all the necessary parameters and covers the entire domain we used it for the
25 starting model with the period band 50-100 seconds. Inversion iterations proceeded using
26 time-frequency phase misfits in six stages and 54 total iterations reducing the minimum period
27 to 30 seconds. Our final model, MESWA, provides improved waveform fits compared to the
28 starting model for both the data used in the inversion and an independent validation data set of
29 66 events. Two metrics of waveform fit (the time-frequency phase misfit used in the
30 optimization and normalized L2 misfit) were both reduced by nearly 60% for both data sets and
31 MESWA provides significantly larger misfit reductions relative to the SPiRaL model than the
32 MEC-1 or CSEM models. We also find that MESWA provides a larger time-bandwidth product
33 of selected windows indicating that more information content of the observed waveforms is
34 explained by MESWA than the other models. Our new model reveals tectonic features imaged

35 by other studies and methods but in a new holistic model of shear and compressional
36 wavespeeds (v_s and v_p , respectively) with anisotropy covering the crust and uppermost mantle
37 of a larger domain. MESWA has smaller scale-length features and tends to sharpen some
38 features relative to the SPiRaL starting model. Examples include: low crustal v_s in the Turkish-
39 Iranian Plateau, Zagros Mountains, Afghan Central Blocks and Sulaiman Fold Belt; low mantle v_s
40 following divergent (Gulf of Aden, Red Sea) and transform (Dead Sea Fault) margins of the
41 Arabian Plate; low and high v_s in the mantle beneath the Arabian Shield and Platform,
42 respectively. Low v_s is imaged below Cenozoic volcanic centers of the Arabian Peninsula, the
43 so-called Mecca-Madina-Nafud (MMN) Line. Positive anisotropy ($v_{SH} > v_{SV}$) is inferred for
44 asthenospheric depths across the region except where up/downwelling may influence fabric
45 alignment (e.g. Afar, Red Sea, Arabian Shield). Elevated v_s tracks Makran subduction under
46 southeast Iran. MESWA resembles the SPiRaL model in its long-wavelength structure, but
47 enhances shorter wavelengths features on the order of 200 km and smaller. The resulting
48 model could be used for as a starting model for further improvements, say using waveforms
49 from in-country seismic networks that are not openly available or smaller-scale studies
50 targeting shorter period waveforms. The model also could be used for source characterization
51 and moment tensor inversion to improve earthquake hazard studies and nuclear explosion
52 monitoring.

53

54 **Key Words:** Tomography, Waveform inversion, Computational seismology, Middle East,
55 Southwest Asia

56

57 **Introduction**

58 The Middle East and Southwest Asia (MESWA) is a geologically complex region including
59 the interaction of several tectonic plates. Figure 1 shows the study region, which includes all of
60 the Arabian Plate and parts of the Eurasian, African and Indian Plates. Plate boundaries include:
61 continental transforms of the North Anatolian and Dead Sea Faults; continental convergence
62 along the Turkish-Iranian Plateau, and Indian-Eurasian Collision (transpressional plate boundary
63 along Afghanistan-Pakistan border, Sulaiman Fold Belt, Central Afghanistan Highlands, Hindu
64 Kush, Pamirs); ocean spreading along the Red Sea, Gulf of Aden and Owen Fracture Zone; and
65 subduction of oceanic lithosphere along the Makran north of the Gulf of Oman and Arabian
66 Sea. Complex active tectonics of the region is revealed by abundant but uneven seismicity
67 including large damaging earthquakes and volcanic activity. Figure 2 shows the events used for
68 the model inversion and validation (discussed in detail below) and is representative of the
69 seismicity in the region.

70

71 Parts of the region have been intensively studied tracking the deployment of seismic
72 sensors, while other regions have been the subject of fewer investigations. Many of the
73 detailed investigations of the region have benefited from access to closed (proprietary) data
74 from networks operating in specific countries (Al-Lazki et al., 2004; Al-Damegh et al., 2005;
75 Hansen et al., 2006; Hansen et al., 2007; Park et al., 2007; Park et al., 2008; Al-Lazki et al., 2014;
76 Tang et al., 2019; Kaviani et al., 2020; Kim et al., 2023; Movaghari and Doloei, 2023). Structure
77 of the crust and upper mantle has been revealed by seismic tomography using various
78 methodologies and data sets. These include travel time tomography (Hearn and Ni, 1994; Al-

79 Lazki et al., 2003, 2004, 2014; Park et al., 2007), receiver functions (Al-Damegh et al., 2005;
80 Hansen et al., 2006), earthquake and ambient noise surface wave dispersion (e.g. Mokhtar et
81 al., 2001; Villasenor et al., 2001; Park et al., 2008; Kim et al. 2023), waveform inversion (Maggi
82 and Priestley, 2005; Chang et al., 2010a) and joint inversions of different data sets (Julia et al.,
83 2003; Tkalcic et al., 2005; Chang et al., 2010b; Tang et al., 2019; Kaviani et al., 2020; Movaghari
84 and Doloei, 2020) with this list meant to be representative but not exhaustive.

85

86 This study reports a new model of radially anisotropic seismic wavespeeds for the
87 MESWA region shown in Figure 1. The model is derived from adjoint waveform tomography
88 using broadband seismic waveform data from only openly available sources through Federation
89 of Digital Seismic Networks (FDSN) webservices. Several permanent seismic networks operate
90 stations in the region, however those with global coverage and openly available data are sparse
91 (e.g. IRIS-Ida, IRIS-USGS, Geofone, Geoscope). Regional networks in Turkey, Greece and Central
92 Asia provide open data for clustered stations. Temporary networks have been deployed in
93 specific areas for 1-2 year durations and these improve the coverage.

94

95 Adjoint waveform tomography is a waveform inversion methodology which uses the full
96 three-dimensional (3D) sensitivity of observed seismograms to Earth structure (usual only
97 seismic wavespeeds). The methodology is now widely used and is described in seminal studies
98 (e.g., Tarantola, 1988, Tromp et al., 2005; Liu and Tromp, 2005; Fichtner et al, 2006, Tape et al.,
99 2007) and reviews (e.g. Fichtner, 2010; Liu and Gu, 2012; Tromp, 2020). In this study, we
100 closely followed the methodology of Rodgers et al. (2022) for the western United States. The

101 resulting model provides improvement in quantitative measures of waveform misfit compared
102 to the starting and other models and many known large-scale tectonic features are imaged.
103 This study establishes a baseline of what features can be imaged with openly available sparse
104 data for this large and tectonically complex continental-scale domain and will be useful to
105 compare against other studies with data from national seismic networks that are not openly
106 available.

107

108 This article is organized as follows. In the next section we describe the data selection
109 and considerations for choosing a starting model. We follow this with a description of the
110 adjoint waveform tomography methodology applied to the region and data set. We then
111 describe the resulting model, demonstrate its efficacy for fitting observed waveforms and
112 interpret the imaged features in terms of known tectonic processes. We conclude with a
113 discussion of strategies for future improvements and recommendations.

114

115 **Data Selection and Starting Model**

116 We started by selecting earthquakes from the Global Centroid Moment Tensor (GCMT)
117 catalog (Ekström et al., 2012) in the domain (Figure 1) with moment magnitude, M_w , between
118 5.5 and 7.0 for the time period 1995-2020. This resulted in 327 events. We then collected
119 openly available broadband waveforms for these events that were recorded by permanent and
120 temporary seismic station networks in the domain from Federation of Digital Seismic Network
121 (FDSN) webservices using ObsPy (Krischer et al., 2015a). Based on the initial waveform fits
122 (described below) and the number and spatial coverage of paths we selected 192 events for the

123 inversion and 66 events for model validation (Figures 2a and 2b, respectively). These events
124 were recorded by over 1000 stations in the domain. Figure 3 shows the broadband stations
125 from permanent (over 300) and temporary (over 600) seismic networks used in the inversion.
126 Openly available permanent networks (Figure 3a) cover the region are very sparsely.
127 Permanent networks cover the Aegean Sea and Turkish Plateau (Greece and Turkey), Eastern
128 Mediterranean Sea (Cyprus, Israel), the Caucasus (Armenia, Georgia) and the Hindu Kush, Pamir
129 and Tien Shan (Kyrgyzstan, Tajikistan). Some whole countries are covered by no or only a few
130 openly available permanent stations. Temporary networks (Figure 3b) provide about twice as
131 many stations as the permanent networks although they are typically deployed for a short
132 duration (e.g. 1-2 years). These stations provide complementary coverage in some regions
133 poorly covered by permanent stations (e.g. Ethiopia, Eritrea, Yemen, Oman, Saudi Arabia and
134 Iran). A complete listing of events and seismic stations used in both the inversion and
135 validation data sets is provided in Rodgers (2023).

136

137 Adjoint waveform tomography (AWT) requires complete waveform simulations in a
138 three-dimensional (3D) seismic Earth model describing wavespeeds, density and attenuation.
139 Measurements of differences between the observed waveforms and those simulated from the
140 current model to compute sensitivity kernels for model updates. AWT uses a multiscale
141 iterative inversion procedure (e.g. Bunks et al., 1995; Fichtner et al., 2009, 2013; Tape et al.
142 2010) to improve phase errors (e.g. cycle skipping) and avoid getting trapped in local minima.
143 An essential step in AWT is identifying waveform segments (“windows”) where observed and
144 simulated waveforms are in reasonably good agreement with slowly varying phase delay (less

145 than $\pi/2$). Sensitivity kernels are computed from waveform metrics based on these windows.
146 A good starting model should generate simulated waveforms that fit observed waveforms
147 at many receivers (paths). Such a model should provide long durations of well-correlated
148 observed and synthetic waveforms. Ideally, a starting model should provide good waveform
149 fits, cover the central area and depth extent of the target domain and provide the necessary
150 parameters (wavespeeds, density and attenuation). Radial anisotropy which is important to
151 model the Love-Rayleigh discrepancy commonly observed in long-period (> 20 seconds)
152 regional surface waves (e.g. Gaherty and Jordan, 1995).

153

154 Doody et al. (2023) showed that a conservative multiscale inversion approach can result
155 in models that are robust to the choice of starting model. We closely follow that approach
156 here. For this region we considered three possible starting models. The SPiRaL model
157 (Simmons et al., 2021) is a global model based on travel times and surface wave dispersion. It
158 includes radial anisotropy as vertically and horizontally polarized shear wavespeeds (v_{SV} and v_{SH} ,
159 respectively) and compressional wavespeeds (v_{PV} and v_{PH} , respectively). Density and
160 attenuation quality factors were scaled from wavespeeds. This model conforms to the global
161 crustal thickness model CRUST1.0 (Laske et al., 2013). Although this model is not based
162 on waveform simulations, it has been shown to produce good waveform fits in various regions
163 (Simmons et al., 2021; Rodgers et al., 2022).

164

165 The Midd_East_Crust_1 (MEC-1) model (Kaviani et al., 2020) is a regional shear
166 wavespeed, v_s , model covering the Middle East, Arabian Peninsula and the Eastern

167 Mediterranean. It is based on vertical component Rayleigh surface wave dispersion
168 measurements from earthquakes and ambient noise cross-correlations. This model covers all
169 but the northern and eastern $\sim 5^\circ$ of our target domain (Figure 1) and extends to 105 km depth.
170 MEC-1 benefits from data from at least two major national seismic networks that are not
171 openly available (International Institute of Earthquake Engineering and Seismology in Iran and
172 the Saudi Geological Survey in Saudi Arabia). Because MEC-1 is based on vertical component
173 Rayleigh wave data it constrains vertically polarized shear wavespeeds, v_{SV} , and unfortunately
174 has no constraints on transversely polarized shear wavespeeds, v_{SH} , compressional wavespeeds,
175 v_P , and density, ρ . Without constraints on anisotropy in MEC-1, we interpreted MEC-1 as an
176 isotropic model. Compressional wavespeeds and density were scaled from v_S following Brocher
177 (2005). The model was tapered (with a 2° taper width) into isotropic PREM (Dziewonski and
178 Anderson, 1981) to span the computational domain (Figure 1a, inset).

179

180 The Collaborative Seismic Earth Model version 2.0 (CSEM, Noe et al. 2022) is a global
181 model based on multiscale adjoint waveform tomography following the approach of Afanasiev
182 et al. (2016) and Fichtner et al. (2018). This model spans our domain and depth range and
183 includes all the necessary material properties including radial anisotropy, density and
184 attenuation. It is based on several regional models that intersect our target domain and
185 updates the global material properties by waveform inversion.

186

187 In order to objectively select a starting model, we computed the waveforms for the
188 three models described above and all events and paths in the computational domain.

189 Waveform simulations relied on the Salvus spectral-element method (Afanasiev et al., 2019)
190 and the Salvus waveform modeling and inversion package (mondaic.com). We considered five
191 period bands with minimum periods of 50, 40, 30, 25 and 20 seconds and a maximum period of
192 100 seconds. All observed and simulated waveforms were compared to define time windows
193 for adjoint sources and gradients similar to the FLEXWIN algorithm of Maggi et al. (2009). We
194 used the data selection method of Krischer (2015b) following recent studies (Rodgers et al.,
195 2022; Doody et al., 2023). The algorithm finds time windows where agreement in amplitude
196 and phase is good enough so that misfit can be measured, adjoint sources defined and
197 sensitivity kernels can be computed. Waveforms with noise, interfering events, incorrect
198 instrument response or amplitude errors were rejected by the algorithm.

199

200 Using these data selections based on window picking, two subsets were created from all
201 events: one for the inversions and another for validation of the resulting model. Initial analysis
202 of the waveform fits (confirmed below) showed that the SPiRaL model performed better than
203 the MEC-1 and CSEM models across the period bands considered. We then choose 192 events
204 for the inversion using windows picked with the SPiRaL model in the period band 50-100
205 seconds that met two criteria: each event had at least 10 receivers with windows and half of
206 the receivers that recorded the event had windows. These choices were made to select the
207 most well recorded events that best cover the domain. Similar event lists were found with the
208 other models, though fewer and/or shorter windows were picked. A validation data set was
209 created with 66 events from the remaining events also requiring that windows were picked on

210 least 10 receivers. The inversion and validation events are shown in map view in Figure 2 and
211 these events span the domain with similar coverage.

212

213 We then used metrics of the resulting windows to evaluate model performance.
214 Specifically, we measured the time-bandwidth product (TBP) of the picked windows as
215 introduced in Rodgers et al. (2022). The TBP is proportional to the information content in the
216 selected windows, hence the larger this number for a fixed data set the better a model is at
217 explaining the observed seismograms. Figure 4 shows the TBP as a function of the minimum
218 period for the three models considered and all 327 events. For a given model, the TBP
219 generally increases as the minimum period decreases due to the increase in bandwidth and the
220 consistency of waveform agreement. We see how the TBP for the SPiRaL and MEC-1 models
221 closely track each other except for the shortest minimum period of 20 seconds and that the
222 CSEM model has slightly lower TBP values compared to other models. We chose to use the
223 SPiRaL model for our starting model based on the TBP performance and that it includes radial
224 anisotropy and covers the entire target domain and depth range. Note that we also include the
225 TBP for the resulting MESWA model after inversion iterations in Figure 4, which shows how our
226 AWT approach results in a model that improves waveform fits over the starting model and will
227 be discussed below. Note furthermore that the MESWA model provides good performance
228 (large and increasing TBP) for periods shorter than the those used in the inversion (30 seconds).

229

230 Figure 5 shows the events, stations and path coverage of the inversion and validation
231 data sets based on the windows selected from synthetics from the SPiRaL model in the period

232 band 50-100 seconds. Although the validation data set has fewer paths (only about 25% of the
233 inversion data set) the coverage is very similar.

234

235 **Adjoint Waveform Tomography Methodology**

236 We followed a multiscale approach (Bunks et al., 1995; Fichtner et al. 2013) similar to
237 other AWT studies (e.g. Tape et al., 2009; Zhu et al. 2015; Wehner et al., 2021; Rodgers et al.,
238 2022; Doody et al., 2023). We chose to start with the longest periods (50-100 seconds) in order
239 to make adjustments to the large-scale structure including the deep structure sampled by long
240 period surface waves. We then reduced the minimum period and relaxed the smoothing to
241 increase sensitivity to finer-scale structure in six inversion stages. Within each inversion stage
242 the time windows and smoothing parameters were fixed. Inversions relied on the L-BFGS
243 algorithm (Nocedal and Wright, 2006; Kennett and Fichtner, 2021) which has been shown to
244 improve convergence (Modrak and Tromp, 2016; Liu et al., 2022). More specifically, we ran a
245 trust-region L-BFGS inversion algorithm including a smoothing operator based on the diffusion
246 equation into the initial approximation of the Hessian (Bunks et al., 1995; Conn et al., 2000;
247 Boehm et al., 2018). The diffusion equation is solved individually for all inversion parameters as
248 an initial condition. Because seismic wavespeeds vary much more strongly with depth than
249 laterally, isotropic smoothing can have the undesirable effect of smearing sensitivity across a
250 broad depth range. The smoothing operator is designed to be anisotropic with shorter
251 smoothing length in the radial direction, λ_r , than in the arc directions, λ_θ and λ_ϕ . The
252 smoothing length is defined as a fraction of the local v_{SV} wavelength in spherical coordinates.

253

254 Within each stage we allowed the inversion to iterate until it converged by failing to
255 further reduce the misfit or by the trust region shrinking to small values (indicating the descent
256 direction is poorly determined). The final model which we refer to as MESWA was obtained as
257 the seventh (7th) and final iteration from the sixth (6th) inversion stage. The inversion stages
258 and various parameters described in this section are provided in Table 1.

259

260 **Table 1.** Parameters describing the six inversion stages used to develop MESWA. Receiver
261 tapers follow Ruan et al. (2019) and additionally include minimum and maximum taper
262 distances for receiver weighting. Source/receiver cutouts are given in km. Smoothing lengths
263 (l_r, l_q, l_f) are given in units of the local v_{SV} wavelength in spherical coordinate directions. The
264 Region-of-Interest (ROI) depth is the shallowest depth for which model updates are included.
265 “Iterations in stage” tabulates the total number of unique iterations for each stage.
266

Stage	Period	Receiver	Cutouts	Smoothing	ROI	Iterations
	Band	Tapers	(source/receiver,	lengths	Depth	in stage
	(sec)	(min/max,	km)	l_r, l_q, l_f	(km)	
0	50-100	180/400	250/50	0.2, 1.0, 1.0	25	7
1	50-100	180/400	250/50	0.2, 0.5, 0.5	20	10
2	40-100	150/300	220/40	0.2, 0.5, 0.5	20	9
3	40-100	150/300	220/40	0.2, 0.5, 0.5	10	11
4	30-100	100/225	160/30	0.2, 0.5, 0.5	10	11
5	30-100	100/225	160/0	0.2, 0.5, 0.5	0	7

267

268 The data set was updated by re-picking the time windows at the start of each inversion
269 stage. This illustrated the improvement in the model by the general increase of the time
270 duration (window length) of windows picked for each inversion stage and the TBP of selected
271 time windows (Table 2).

272

273

274 **Table 2.** Window statistics for the 6 inversion stages described in Table1 and the text: n_rec is
275 the number of receivers with windows; n_windows is the number of windows; window length is
276 the total time duration of windows in days; and the time-bandwidth product of selected
277 windows is in days-Hz.

stage	n_rec	n_windows	window length (days)	time-bandwidth product (days-Hz)
0	stage 0	13713	34659	58.386877
1	stage_1	14344	36893	65.010631
2	stage_2	15041	50778	73.064618
3	stage_3	15127	47673	71.732055
4	stage_4	15715	59373	68.976879
5	stage_5	15776	60930	73.138763

278

279 Inversions solved for updates to the wavespeeds and density (v_{SV} , v_{SH} , v_{PV} and v_{PH} and ρ).

280 The long periods waveforms considered here were dominated by surface waves. Rayleigh
281 waves provided some sensitivity to compressional wavespeeds, but these wavespeeds and their
282 anisotropy were likely poorly resolved, particularly without isolating P-waveforms over broad
283 distances. While density can have an effect on waveforms (Płonka et al., 2016; Blom et al.,
284 2017), our misfits were based on phase (arrival time) and were most sensitive to wavespeeds.
285 Our analysis here is focused on imaging shear wavespeeds.

286

287 In this study, we used time-frequency phase misfit for the waveform misfit objective
288 function (Fichtner et al., 2009, 2013; Fichtner, 2010; Krischer et al., 2015b; 2016). This method
289 decomposes the observed and simulated waveforms into the time-frequency domain following
290 Kristeková et al., (2006; 2009) where phase difference of different frequency components is
291 measured. Time-frequency phase misfits have the advantage of tracking time-varying phase
292 errors between the observed and synthetic waveforms that can occur in dispersed (e.g. surface
293 waves) or interfering signals (e.g. triplicated arrivals, scattered waves). Sensitivity kernels

294 based on these frequency-dependent misfits include information across the entire range of
295 periods and wavelengths in the bandwidth considered. This misfit function is thus multiscale
296 similar to other misfits such as generalized seismological data functionals (Gee and Jordan,
297 1992), multitaper (Tape et al., 2010) or exponentiated phase (Bozdağ et al., 2011).

298

299 Once the event sensitivity kernels were computed, gradients for the volumetric
300 inversion for model wavespeed updates were computed. These include various manipulations
301 to mitigate potential problems due to: the outsized influence of near-source and near-receiver
302 structure; the uneven distribution of receivers recording each event; and smoothing of rapid
303 spatial variations in the kernels. To mitigate the outsized influence of misfits at short epicentral
304 distances from the event, we applied a tapered weight to the near-source receivers. The taper
305 function has two values: a minimum distance within which receiver contributions to the event
306 kernel are zero; and a maximum distance beyond which receivers can contribute fully to the
307 kernel (receiver taper values in Table 1). To address the uneven station distribution, we
308 followed the strategy proposed by Ruan et al. (2019) and applied weights to the misfit
309 measurements based on the density of recording stations. In this scheme, isolated stations
310 away from the source contribute fully to the event kernel and densely clustered stations
311 contribute less. To address the high sensitivity of waveforms to near-source and near-receiver
312 structure, we use a cut-out to simply set the kernel values to zero within a spherical volume
313 around the source and receiver. The cut-out radii for each inversion stage are compiled in
314 Table 1. Smoothing of the gradients for inversion (after summation of event kernels) was
315 performed as described above with a diffusion equation applying an anisotropic smoothing

316 operator with characteristic length scales proportional to the local v_{SV} wavelength. Finally, we
317 applied the “Region of Interest” (ROI) approach described in Rodgers et al. (2022) to only solve
318 for wavespeed updates below a certain depth for each inversion stage. This started at 25 km
319 and was reduced and then eliminated as the inversion stages progressed. The relative misfit
320 reductions within each stage of the six inversion stages are plotted in Figure 6. Within each
321 inversion stage except the final (sixth) one we obtained 10-25% misfit reduction. Initial
322 iterations in an inversion stage obtained larger reductions and these reductions decreased as
323 the iterations approached convergence.

324

325 To measure performance in terms of waveform fits we computed the misfit reduction
326 between the final (MESWA) and other models relative to the SPiRaL starting model in the final
327 period band 30-100 seconds. For this analysis we computed both the time-frequency phase
328 (TF) misfit used in the inversion and the normalized L2 (NL2) misfit for the windows selected
329 with our final model. Figure 7a shows the average relative misfit reduction for all inversion
330 events (sorted from high to low reduction corresponding to most to least improved fit). These
331 show that some events have TF misfit reduction as high as 75% while others have only a smaller
332 10-20% misfit reduction. The average TF misfit is 59.7% and the NL2 misfits closely tracks the
333 TF misfits with an average misfit of 55.3%. This is encouraging and quantifies the model
334 performance in terms of the waveform misfit reduction for all data from the 192 events
335 considered in the inversion. Also shown in Figure 7a are the event-averaged misfit reductions
336 relative to the SPiRaL starting model of the two other models considered (MEC-1 and CSEM2.0).

337 These models perform much more poorly compared to SPiRaL and MESWA and these plots
338 provide clear evidence that the choice of SPiRaL for the starting model was justified.

339

340 A more objective measure of model performance can be found by analyzing
341 performance of MESWA with the independent validation data that was not used in the
342 inversion. These paths (Figure 5b) are representative of the paths for the inversion data set
343 shown in Figure 5a. The event-averaged relative misfit reductions for our MESWA model
344 relative to the starting model for these events are shown in Figure 7b. The range of these misfit
345 reductions are comparable with those of the inversion data set and the mean values are only
346 slightly smaller (1-2%). This indicates that our final model provides waveform fits for the
347 validation data set that are as good as those obtained in the inversion. This gives us confidence
348 that the resulting model is not a result of overfitting the inversion data.

349

350 Another metric of model performance is seen in the time-bandwidth products (TBP) of
351 selected waveform segments plotted in Figure 4. Our MESWA model consistently shows larger
352 TBP than the SPiRaL (starting), MEC-1 or CSEM models, with the TBP values for MESWA about
353 40% higher than those for SPiRaL. This indicates that MESWA model produces simulated
354 waveforms that agree better than the other models as measured by the selected window
355 metrics. Note that the inversions described above were performed with a minimum period of
356 30 seconds in the sixth and final inversion stage. However, the TBP values show that the
357 MESWA model has larger TBP values than the SPiRaL starting model across the bandwidth
358 shown including periods shorter than 30 seconds. This suggests that the AWT approach

359 adopted here provides models that can produce good waveform fits for shorter periods than
360 those used in the inversions. It is appealing feature that AWT models provide good fits for
361 periods shorter than those consider in the inversions.

362

363 **Results**

364

365 We now describe the results of the waveform inversions described in the previous section. We
366 start by showing waveforms to illustrate the improved fits obtained with the inversions. This
367 will be followed by presentation of the imaged shear wavespeed and anisotropy structure.

368

369 *Waveform Fits*

370 Firstly, we show waveforms for a few stations that recorded a single event and synthetics for
371 the four models discussed: our MESWA (final inversion model); the SPiRaL (Simmons et al.,
372 2021) starting model, MEC-1 (Kaviani et al., 2020) and CSEM (Noe et al., 2023). Figure 8a shows
373 a map of an M_w 5.90 earthquake that occurred 2003-08-21 in Southern Iran along with selected
374 stations that recorded the event with good signal-to-noise ratios on three components. The
375 observed and synthetic waveforms for the four models are shown as record sections in Figure
376 8b-e. Waveforms shown in this section are scaled with distance but each pair of observed and
377 synthetic are shown with true relative amplitudes. The MESWA model (Figure 8b) shows the
378 best fits across distances and components compared to the other models: SPiRaL (Figure 8c);
379 MEC-1 (Figure 8d) and CSEM (Figure 8e). Generally, waveform misfits (errors in phase
380 alignment) tend to be small at short distances and increase with distance as phase errors

381 causing misalignment to accumulate along the path or the entire ‘banana-doughnut’ sensitivity
382 kernel of the waveform. The MEC-1 and CSEM models show clear phase errors approaching
383 half a cycle or more for surface waves at the longest distances. Not surprisingly the MEC-1
384 model fits Love waves on the transverse component very poorly. Recall MEC-1 is based on
385 Rayleigh wave and P-wave receiver function data, is most sensitive to vertically polarized shear
386 wavespeeds, v_{SV} , and does not contain constraints on v_{SH} . MEC-1 also performs poorly for the
387 body waves. The SPiRaL starting model fits the observed waveforms shown in Figure 8c better
388 than the MEC-1 or CSEM models, consistent with the misfit reduction analyses presented in the
389 previous section. However, the MESWA model fits the body waves and dispersed surface
390 waves at long range better than SPiRaL, also consistent with the misfit reduction analyses.
391 Note the good fit of first motions and amplitudes suggests the GCMT source parameters (i.e.,
392 moment tensor, depth, M_w) are reasonably good.

393

394 We show additional examples of waveform fits for the MESWA and SPiRaL models for a few
395 events scattered around the domain with paths sampling the diverse tectonic structures of the
396 region. Figure 9 shows an M_w 6.14 event in Crete, Greece (2011-04-01). The waveforms for
397 the MESWA model (Figure 9b) show good fit to the Rayleigh waves at stations GO.AKH
398 (Georgia), II.RAYN (Saudi Arabia) and II.ABKT (Turkmenistan). In particular the path to II.ABKT is
399 better fit by MESWA (Figure 9b) than SPiRaL (Figure 9c) for a path crossing the thick sediments
400 of the Caspian Sea known to complicate surface wave propagation (Priestley et al, 2001).

401

402 Figure 10 shows an M_w 5.98 event on the Turkey-Iran border region (2020-02-23). The
403 fundamental mode surface waves are well-fit by the MESWA model, particularly at longer
404 distances. Phases errors for Rayleigh waves for the SPiRaL model (Figure 10c) at stations
405 CQ.PARA (Cyprus), KO.GULT (Türkiye), HT.ALN and HL.VAM (Greece) are corrected for MESWA
406 (Figure 10b). Paths crossing the Caspian Sea to Central Asia (KR.BTK, KR.ARSB, KR.NRN,
407 Kyrgyzstan) show better agreement of the fundamental mode and scattered surface waves for
408 the MESWA model (Figure 10b). Similar results are seen for an M_w 6.04 Afghanistan-Tajikistan
409 border region (2001-11-23) shown in Figure 11. The paths crossing the Caspian Sea: IU.GNI
410 (Armenia); II.KIV (Georgia); GE.ISP (Türkiye) are well fit by the MESWA model as are paths
411 crossing the Iranian Plateau and Zagros Mountains: GE.CSS (Cyprus) and II.RAYN (Saudi Arabia).

412

413 Finally, we show two events from the southwestern and southern parts of the domain:
414 an M_w 5.54 Red Sea (2013-07-08) in Figure 12 and an M_w 5.96 Eastern Gulf of Aden (2002-09-
415 01) in Figure 13. These events provide paths crossing the Arabian Shield and Arabian Platform
416 at closest distances with some paths extending across the Turkish and Iranian Plateaus and
417 beyond. The closest paths sampling Arabia and more distant paths sampling adjacent tectonic
418 regions are better fit by the MESWA model than SPiRaL. The paths from the Red Sea to central
419 Asia (IU.KBL, Kabul Afghanistan; 5C.MAR2, Tajikistan; and KR.BTK, Kyrgyzstan) show Rayleigh
420 waves poorly fit by SPiRaL (Figure 12b) that are fit better by MESWA (Figure 12c). The path
421 from the Gulf of Aden to II.ABKT (Turkmenistan) crossing the Arabian Platform, continental
422 collision along the Zagros Mountains and Central Iran Block is poorly fit by SPiRaL with phase
423 errors for the Rayleigh waves approaching half a cycle (Figure 13c). However, the accumulated

424 phase errors for this long path are adjusted by the iterative waveform inversion performed
425 here and the resulting MESWA model fits the waveforms better (Figure 13b). Nonetheless
426 there are dispersed, later arriving and shorter period surface waves that could be fit better with
427 additional inversion iterations and more data.

428

429 *Maps and Cross-Sections*

430 We now show the imaged 3D structure as the isotropic shear wavespeed, $v_s =$
431 $\sqrt{\frac{v_{SH}^2 + 2v_{SV}^2}{3}}$, and anisotropy parameter, $\xi_s = \left(\frac{v_{SH}}{v_{SV}}\right)^2$, (Panning and Romanowicz, 2006). Figure
432 14-18 show the v_s and ξ_s structure in mapview for the SPiRaL and MESWA models and the
433 natural logarithm ratio (MESWA/SPiRaL) at depths of 2, 10, 30, 60 and 100 km below to sea
434 level. As shown below the MESWA model is broadly similar to the SPiRaL starting model, but
435 adjustments made to the 3D wavespeed structure during the multiscale waveform inversion
436 process have improved the waveform fits as described in the previous sections. Generally the
437 updates to the SPiRaL model obtained with the adjoint waveform tomography methodology
438 described above tends to increase the amplitude of lateral variations in v_s and ξ_s structure and
439 reduce the scale-length of variations.

440

441 At 2 km in the upper crust (Figure 14) the main adjustments to SPiRaL (Figure 14c) are a
442 reduction by more than 5% of v_s in the sedimentary structures of the eastern Mediterranean
443 Sea, Caspian Sea, Arabian Platform, the (Arabian/Persian) Gulf and the continental margins.
444 Shear wavespeeds for MESWA are increased relative to SPiRaL at this depth for the Turkish
445 Plateau, Central Iran Block and Central Afghan Highlands. MESWA also reveals a general

446 reduction of ξ_s across the domain (Figure 14f). At this depth $\xi_s < 1$ ($v_{sv} > v_{sh}$) for most of the
447 continental regions. Note that at this depth adjustments are only made to the solid Earth with
448 topography and bathymetry above 2 km below sea level.

449

450 Figure 15 shows the v_s and ξ_s structure at 10 km below sea level. At this depth shear
451 wavespeeds are broadly similar between SPiRaL (Figure 15a) and MESWA (Figure 15b). The
452 oceanic regions (Arabian Sea, Gulf of Aden, Red Sea) have much higher v_s values corresponding
453 to lower crust or mantle material, while the continental regions show lower v_s values with
454 significant variability (standard deviation of about 7%). Adjustments to v_s structure also show
455 reductions of 5% or more in regions of sedimentary basins (eastern Mediterranean Sea, Caspian
456 Sea and Arabian Platform, Gulf) similar to 2 km depths and suggesting the long-period
457 waveforms considered here are weakly sensitive to shallow crustal structure. At this depth the
458 waveform inversion process requires the scale-length of wavespeed adjustments to v_s and ξ_s
459 (Figure 15c and 15e) to have shorter wavelength variability than for SPiRaL. The MESWA model
460 shows a band of low v_s values tracing a long arc across the Turkish Plateau, Zagros and Alborz
461 Mountains and the Sulaiman Fold Belt.

462

463 The 30 km depth cuts through the continental Moho and the oceanic regions are clearly
464 represented by mantle v_s values (> 4000 m/s, Figure 16). Low v_s values are seen in the Turkish-
465 Iranian Plateau, Afghanistan, Pakistan and the Hindu Kush corresponding to thickened
466 continental crust. The Arabian Shield reveals higher v_s values than the Arabian Platform as seen
467 in previous waveform modeling studies (Rodgers et al., 1999).

468

469 At 60 km depth the MESWA model reveals low v_s values surround much of the Arabian
470 Plate along the active spreading centers of the Red Sea, Gulf of Aden and Owen Fracture Zone,
471 the Ethiopian/Afar Hotspot as well as the continental transform of the Dead Sea Fault (Figure
472 17b). These areas of low v_s were intensified from the SPiRaL model as seen in the natural
473 logarithm ratio map (Figure 17c). Low v_s values underlaying the Arabian Shield and Afar as has
474 been reported in several tomographic studies (e.g. Park et al., 2007; 2008; Hansen and Nyblade,
475 2013). These low v_s values at mantle depths follow the Mecca-Madina-Nafud (MMN) volcanic
476 line. Higher v_s values were intensified at this depth in the Zagros Mountains, Central Iran Block
477 and Makran subduction zone (Figure 16c).

478

479 The low v_s values seen at 60 km are broadly similar to those seen at 100 km depth
480 (Figure 18b). The high v_s underlaying the eastern Arabian Platform and Zagros Mountains at 60
481 and 100 km depth is consistent with strong continental lithosphere participating in active
482 continental collision. Higher than average v_s follows Makran subduction at mantle depths
483 (Figures 17b and 18b).

484

485 We now visualize the SPiRaL and MESWA models with cross-sections of the isotropic
486 shear wavespeed, v_s , and anisotropy parameter ζ_s . Figure 19 shows cross-sections and
487 locations: A-A' a west-east section along latitude of 34°; and B-B' is a west-east section along
488 longitude of 28°. For each section we show the v_s and ζ_s structure of the SPiRaL starting model
489 and our final MESWA model from the surface to a depth of 400 km. The A-A' section cuts

490 through the Hellenic Back-Arc, Turkish Plateau, Iranian Plateau, Caspian Sea, Kopet Dagh, Turan
491 Platform and Hindu Kush (Figure 19a). Transitions in the v_s structure clearly mark the
492 geologic/tectonic boundaries. As seen above in the map view plots (Figures 14-18), the MESWA
493 model intensifies the high and low v_s anomalies, sharpens some boundaries and adds smaller
494 scale variations, particularly in ξ_s , relative to SPiRaL. Positive anisotropy ($v_{SH} > v_{SV}$) is revealed
495 under southern Caspian Sea, Kopet Dagh and Turan Platform.

496

497 The B-B' cross-section (Figure 19d) crosses the Nubian Shield, northern Red Sea, Arabian
498 Shield, Arabian Platform, Zagros Mountains, Makran subduction zone, Sulaiman Fold Belt to the
499 Indian Shield. The Red Sea and Arabian Shield are underlain by low v_s , consistent with thin
500 lithosphere (e.g. Hansen et al., 2008). The Arabian Platform and Zagros Mountains are
501 underlain by high v_s , with the strongest feature just north of the Straights of Hormuz separating
502 the Zagros continental collision from the Makran oceanic subduction. High v_s is continuous
503 under the Makran and Indus River Plain on the Indian Shield. The positive radial anisotropy is
504 strongest under the eastern Arabian Platform, Gulf and Zagros Mountains.

505

506 We show south-north sections in Figure 20. The C-C' south-north section along
507 longitude of 44° cuts through the Afar Hotspot, the Arabian Shield, the Arabian Platform,
508 Turkish-Iranian Plateau, Caucasus and stable Eurasian Plate (Figure 20a). Broadly, MESWA v_s
509 anomalies track SPiRaL with some adjustments, but the ξ_s structure of MESWA shows smaller
510 scale features relative to SPiRaL (Figure 20bc). The boundary between the Arabian Shield and
511 Platform is sharper and more vertical in the MESWA image on this longitude. The shallow

512 mantle under the Turkish-Iranian Plateau reveals low v_s and closely follows the Bitlis Suture
513 marking the Arabian-Eurasian plate boundary. Low v_s in this region is associated with low Pn
514 wavespeeds and high Sn attenuation (e.g. Hearn and Ni, 1993; Rodgers et al., 1997). This low
515 mantle v_s feature continues north to the boundary between the Caucasus Mountains and the
516 Scythian Platform (Russia).

517

518 The south-north cross-section along longitude 60° crosses the Owen Fracture Zone,
519 perpendicular to the strike of Makran subduction, the Lut Block, eastern Iran, the Kopet Dagh
520 and Turan Platform. The Owen Fracture Zone is underlain by low v_s in the upper 200 km of the
521 mantle and this continues north to the Makran subduction zone. High v_s is imaged beneath the
522 Makran as a continuous feature from below the Moho to 400 km depth. Eastern Iran is
523 underlain by low v_s , at depths of 100-300 km in the upper mantle extending north of the Kopet
524 Dagh into the Turan Platform. Strong positive anisotropy is imaged beneath the Turan
525 Platform (Figure 20f).

526

527 **Conclusions**

528

529 In this study we applied adjoint tomography to a large region of the Middle East and
530 southwest Asia using only openly available broadband waveform data. The multiscale inversion
531 approach results in modifications to the SPiRaL starting (Simmons et al., 2021) and the
532 minimum period of waveforms is reduced from 50 seconds to 30 seconds. While it may be
533 possible to further reduce the minimum period the highly uneven path coverage of the limited

534 openly available data may not support resolution of smaller-scale features. The resulting model
535 provide quantitatively better waveform fits in terms of the time-bandwidth product
536 (information content, Figure 4) and misfit measurements (Figure 7). This is illustrated in
537 example waveform fits for paths sampling the diverse tectonic provinces of study area (Figures
538 8-12). The imaged structure is illustrated in the isotropic shear wavespeed, v_s , and anisotropy
539 parameter, x_s , as shown in map view (Figures 14-18) and cross-sections (Figures 19-20). We see
540 strong correlation of the imaged v_s structure with tectonic/geologic features as is seen in the
541 SPiRaL model. Relative to the SPiRaL starting model, MESWA generally infers smaller scale-
542 length variation of shear wavespeeds and much smaller scale-length variations in anisotropy.
543 We also see the amplitude of shear wavespeed anomalies tends to increase (i.e., higher highs
544 and lower lows).

545

546 The MESWA model presented in this report shows what can be done with earthquake
547 waveform tomography in a region with highly uneven coverage of openly available broadband
548 data. The event (Figure 1) and station (Figures 2) coverage are dense in some regions and non-
549 existent in others. Figure 5a shows the path coverage used in the inversion. This case is well-
550 suited for the station weighting scheme used in previous inversions (e.g. Wehner et al. 2020;
551 Rodgers et al., 2022; Doody et al. 2023). In this scheme, misfits from areas of dense station
552 sampling are down-weighted and areas of sparse sampling are upweighted. These weights
553 directly impact the contributions to the gradients so that we do not fit data in densely sampled
554 region at the expense of sparsely sampled regions.

555

556 The MESWA model presented in this report demonstrates effective improvements in
557 waveform fits for minimum periods of 30 seconds. The time-bandwidth product (TBP)
558 measured from picked windows shows that MESWA produces longer time-segments of good
559 waveform correlations for periods below 30 seconds compared to the other models considered
560 (Figure 4). It remains for further work to continue inversion iterations with the current openly
561 available data set to investigate if further details can be imaged. Alternatively, adding
562 waveform data from the many seismic networks from the region that do not make their data
563 available (so-called “closed” networks) could greatly improve the resolution of smaller scale-
564 length features, reduce the minimum period and increase the TBP of waveform fits. Many
565 tomography and structural studies of the region have shown the values of closed network data
566 for imaging details of seismic wavespeed variations. We expect similar benefits would be found
567 applying adjoint waveform tomography with closed network data folded into the analysis of
568 open data described here.

569

570 Finally, the MESWA model described in this study could be used for long-period
571 waveform simulations. The most important practical application of the model could be for
572 source characterization using moment tensor inversion. Greens functions for 3D models have
573 been shown to provide better waveform fits and reduced uncertainties in source type estimate
574 inversion (Liu et al., 2004; Covellone and Savage, 2012; Zhu and Zhou, 2016; Sawade et al.,
575 2022; Chiang et al., 2023; Doody et al., 2023). For example, the MESWA model could be used
576 to model the 1998 nuclear explosions in India and Pakistan (Barker et al., 1998) or sub-crustal
577 events in the Zagros Mountains and Makran subduction zone (e.g. Engdahl et al., 2006).

578

579 **Acknowledgements**

580 This work was initiated under Laboratory Directed Research and Development project 20-ERD-
581 008 at Lawrence Livermore National Laboratory and completed with support from the National
582 Nuclear Security Administration. Simulations were performed on the Lassen graphics-
583 processing unit accelerated platform operated by Livermore Computing at LLNL with access for
584 this work coming from the Institutional Computing Grand Challenge program. This work was
585 performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
586 National Laboratory under Contract DE-AC52-07NA27344. This is LLNL contribution LLNL-TR-
587 851939-DRAFT.

588

589 **Data Availability Statement**

590 All earthquake and network/seismic data used in this study are listed in the data repository
591 Rodgers (2023). Waveform forward and inverse simulations were performed with Salvus
592 (mondaic.com). Nathan Simmons provided the SPiRaL model (Simmons et al., 2021). The
593 Midd_East_Crust_1 (Kaviani et al., 2020) model was obtained from the Incorporated Research
594 Institutions for Seismology Earth Model Collaboratory ([http://ds.iris.edu/ds/products/emc-
595 earthmodels](http://ds.iris.edu/ds/products/emc-earthmodels)). The CSEM2 model was provided by Sebastian Noe (Eidgenössische Technische
596 Hochschule, Zurich, Switzerland). The MESWA model described in this report will be made
597 available in the data repository.

598

599 **References**

600 Afanasiev, M., D. Peter, K. Sager, S. Simutè, L. Ermert, L. Krischer and A. Fichtner (2016).
601 Foundations for a multiscale collaborative Earth model, *Geophys. J. Int.*, 204(1), 39–58,
602 <https://doi.org/10.1093/gji/ggv439>

603

604 Afanasiev, M, C Boehm, M van Driel, L Krischer, M Rietmann, D. A. May, M. G. Knepley and A.
605 Fichtner (2019). Modular and flexible spectral-element waveform modelling in two and three
606 dimensions, *Geophys. J. Int.*, 216(3), 1675–1692, doi: 10.1093/gji/ggy469

607

608 Al-Damegh, K., E. Sandvol and M. Barazangi (2005). Crustal structure of the Arabian plate: new
609 constraints from the analysis of teleseismic receiver functions, *Earth Planet. Sci. Lett.*, 231, (3-
610 4), 177-196, <https://doi.org/10.1016/j.epsl.2004.12.020>.

611

612 Al-Lazki, A. I., Seber, D., Sandvol, E., Turkelli, N., Mohamad, R., and Barazangi, M. (2003).
613 Tomographic Pn velocity and anisotropy structure beneath the Anatolian plateau (eastern
614 Turkey) and the surrounding regions, *Geophys. Res. Lett.*, 30, 8043,
615 doi:[10.1029/2003GL017391](https://doi.org/10.1029/2003GL017391),

616

617 Al-Lazki, A.I., Sandvol, E., Seber, D., Barazangi, M., Turkelli, N. and Mohamad, R. (2004), *Pn*
618 tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian,
619 Eurasian and African plates. *Geophysical Journal International*, 158: 1024-1040.
620 <https://doi.org/10.1111/j.1365-246X.2004.02355.x>

621

622 Al-Lazki, A.I., K. S. Al-Damegh , S. Y. El-Hadidy, A. Ghods , and M. Tatar (2014). *Pn*-velocity
623 structure beneath Arabia–Eurasia Zagros collision and Makran subduction zones, *Geological
624 Society, London, Special Publications* (2014), 392 (1): 45, <https://doi.org/10.1144/SP392.3>

625

626 Brian Barker et al. (1998). Monitoring Nuclear Tests. *Science*, 281, 1967-1968,
627 DOI:[10.1126/science.281.5385.1967](https://doi.org/10.1126/science.281.5385.1967)

628

629 Blom, N., C. Boehm & A. Fichtner (2017). Synthetic inversions for density using seismic and
630 gravity data, *Geophys. J. Int.*, 209(2), 1204–1220, <https://doi.org/10.1093/gji/ggx076>

631

632 Bozdağ, E., J. Trampert & J. Tromp (2011). Misfit functions for full waveform inversion based on
633 instantaneous phase and envelope measurements, *Geophys. J. Int.*, 185(2), 845–870,
634 <https://doi.org/10.1111/j.1365-246X.2011.04970.x>

635

636 Bozdağ, E., D. Peter, M. Lefebvre, D. Komatitsch, J. Tromp, J. Hill, N. Podhorszki, D. Pugmire
637 (2016). Global adjoint tomography: first-generation model, *Geophys. J. Int.*, 207(3), 1739–1766,
638 <https://doi.org/10.1093/gji/ggw356>

639

640 Boehm, C., N. K. Martiartu, N. Vinard, I. Jovanović Balic & A. Fichtner (2018). Time-domain
641 spectral-element ultrasound waveform tomography using a stochastic quasi-Newton method,
642 Medical Imaging 2018: Ultrasonic Imaging and Tomography, N. Duric and B. C. Byram eds.,
643 International Society for Optics and Photonics, SPIE, 10580, 92-100, doi:10.1117/12.2293299

644
645 Brocher, T.M. (2005). Empirical relations between elastic wavespeeds and density in the earth's
646 crust. *Bulletin of the Seismological Society of America*, 95 (6): 2081–2092. doi:
647 <https://doi.org/10.1785/0120050077>
648
649 Bunks, C., Saleck, F.M., Zaleski, S. and Chavent, G. (1995). Multiscale Seismic Waveform
650 Inversion. *Geophysics*, 60, 1457-1473. <https://doi.org/10.1190/1.1443880>
651
652 Chiang, A., A. Rodgers, L. Krischer, M. Afanasiev, C. Boehm, N. Simmons and C. Doody (2023).
653 Regional moment tensor inversion of the Western United States using a three-dimensional
654 Earth model, (manuscript in preparation).
655
656 Chang, S.-J., van der Lee, S., Flanagan, M. P., Bedle, H., Marone, F., Matzel, E. M., Pasanos,
657 M. E., Rodgers, A. J., Romanowicz, B., and Schmid, C. (2010a), Joint inversion for three-
658 dimensional S velocity mantle structure along the Tethyan margin, *J. Geophys. Res.*, 115,
659 B08309, doi:[10.1029/2009JB007204](https://doi.org/10.1029/2009JB007204).
660
661 Chang, S.-J., Van Der Lee, S., Matzel, E. and Bedle, H. (2010b), Radial anisotropy along the
662 Tethyan margin. *Geophys. J. Int.*, 182, 1013-1024, <https://doi.org/10.1111/j.1365-246X.2010.04662.x>
664
665 Conn, A.R., N.I.M. Gould & P. L. Toint (2000). Trust Region Methods, SIAM-MPS, Philadelphia,
666 USA
667
668 Covellone, B.M. and B. Savage (2012). A Quantitative Comparison between 1D and 3D Source
669 Inversion Methodologies: Application to the Middle East. *Bull. Seismol. Soc. Am.*, 102 (5): 2189–
670 2199. doi: <https://doi.org/10.1785/0120110278>
671
672 Doody, C., Rodgers, A., Afanasiev, M., Boehm, C., Krischer, L., Chiang, A., & Simmons, N. (2023).
673 Comparing adjoint waveform tomography models of California using different starting models.
674 *Journal of Geophysical Research: Solid Earth*, 128, e2023JB026463.
675 <https://doi.org/10.1029/2023JB026463>
676
677 Doody, C., A. Chiang, A. Rodgers et al. (2023) Moment Tensor Catalogue for California and
678 Nevada Using 3D Green's Functions, (manuscript in preparation)
679
680 Dziewonski, A.M. and D. L. Anderson (1981). Preliminary Reference Earth Model, *Phys. Earth
681 Planet. Int.*, 25, 297– 356, 1981.
682
683 Ekström, G., M. Nettles, & A. M. Dziewonski (2012). The global CMT project 2004-2010:
684 Centroid-moment tensors for 13,017 earthquakes, *Phys. Earth Planet. Inter.*, 200-201, 1-9.
685 doi:[10.1016/j.pepi.2012.04.002](https://doi.org/10.1016/j.pepi.2012.04.002)
686

687 Engdahl, E.R., J.A. Jackson, S.C. Myers, E.A. Bergman and K. Priestley (2006). Relocation and
688 assessment of seismicity in the Iran region, *Geophys. J. Int.*, 167(2), 761–
689 778, <https://doi.org/10.1111/j.1365-246X.2006.03127.x>

690

691 Fichtner, A. (2010). Full seismic waveform modelling and inversion. Berlin, Heidelberg: Springer.

692

693 Fichtner, A., Bunge, H.-P., & Igel, H. (2006). The adjoint method in seismology I. Theory, *Phys.*
694 *Earth Planet. Int.*, 157(1–2), 86–104.

695

696 Fichtner, A., B. L. N. Kennett, H. Igel & H.-P. Bunge (2008). Theoretical background for
697 continental- and global-scale full-waveform inversion in the time–frequency domain, *Geophys.*
698 *J. Int.*, 175(2), <https://doi.org/10.1111/j.1365-246X.2008.03923.x>

699

700 Fichtner, A., Kennett, B.L.N., Igel, H., Bunge, H.P. (2009). Full seismic waveform tomography
701 for upper-mantle structure in the Australasian region using adjoint methods. *Geophysical*
702 *Journal International*, 179, 1703–1725.

703

704 Fichtner, A., Trampert, J., Cupillard, P., Saygin, E., Taymaz, T., Capdeville, Y., & Villaseñor, A.
705 (2013). Multiscale full waveform inversion. *Geophys. J. Int.*, 194, 534–556.

706

707 Fichtner, A., van Herwaarden, D.-P., Afanasiev, M., Simutė, S., Krischer, L., Çubuk-Sabuncu, Y.,
708 et al. (2018). The Collaborative Seismic Earth Model: Generation 1. *Geophysical Research*
709 *Letters*, 45, 4007–4016. <https://doi.org/10.1029/2018GL077338>

710

711 Gaherty, J.B. and Jordan, T.H., 1995. Lehmann discontinuity as the base of an anisotropic layer
712 beneath continents. *Science*, 268(5216), pp.1468–1471.

713

714 Gee, L. S., & T. H. Jordan (1992), Generalized seismological data functionals, *Geophys. J.*
715 *Int.*, 111(2), 363–390, <https://doi.org/10.1111/j.1365-246X.1992.tb00584.x>

716

717 Hansen, S., S. Schwartz, A. Al-Amri and A. Rodgers (2006). Combined plate motion and density-
718 driven flow in the asthenosphere beneath Saudi Arabia: Evidence from shear-wave splitting and
719 seismic anisotropy. *Geology*, 34 (10): 869–872. doi: <https://doi.org/10.1130/G22713.1>

720 Hansen, S.E., A.J. Rodgers, S.Y. Schwartz, A.M.S. Al-Amri (2007). Imaging ruptured lithosphere
721 beneath the Red Sea and Arabian Peninsula, *Earth and Planetary Science Letters*,
722 259, 256–265, <https://doi.org/10.1016/j.epsl.2007.04.035>.

723

724 Hansen, S.E. and A. A. Nyblade (2013). The deep seismic structure of the Ethiopia/Afar hotspot
725 and the African superplume, *Geophys. J. Int.*, 194(1), 118–124,
726 <https://doi.org/10.1093/gji/ggt116>

727

728 Hearn, T. M., & Ni, J. F. (1994). Pn velocities beneath continental collision zones: the Turkish-
729 Iranian Plateau. *Geophysical Journal International*, 117(2), 273–283.

730

731 Julià, J., C. J. Ammon, R. B. Herrmann (2003). Lithospheric structure of the Arabian Shield from
732 the joint inversion of receiver functions and surface-wave group velocities, *Tectonophysics*, 371,
733 1-21, [https://doi.org/10.1016/S0040-1951\(03\)00196-3](https://doi.org/10.1016/S0040-1951(03)00196-3).

734

735 Kaviani, A., Paul, A., Moradi, A., Mai, P. M., Pilia, S., Boschi, L., Rümpker, G., Lu, Y., Tang, Z., and
736 Sandvol, E., 2020, Crustal and uppermost mantle shear-wave velocity structure beneath the
737 Middle East from surface-wave tomography: *Geophys. J. Int.*,
738 <https://doi.org/10.1093/gji/ggaa075>.

739

740 Kim, R., M. Witek, S.-J. Chang, J.-A Lim, P. Martin Mai, H. Zahran (2023). Isotropic and radially
741 anisotropic S-velocity structure beneath the Arabian plate inferred from surface wave
742 tomography, *Tectonophysics*, 862, 229968, <https://doi.org/10.1016/j.tecto.2023.229968>.

743

744 Komatitsch, D. & J. Tromp (2002a). Spectral-element simulations of global seismic wave
745 propagation—I. Validation, *Geophys. J. Int.*, 149(2), 390–412, <https://doi.org/10.1046/j.1365-246X.2002.01653.x>

747

748 Komatitsch, D. & J. Tromp (2002b). Spectral-element simulations of global seismic wave
749 propagation—II. Three-dimensional models, oceans, rotation and self-gravitation, *Geophys. J.*
750 *Int.*, 150(1), 303–318, <https://doi.org/10.1046/j.1365-246X.2002.01716.x>

751

752 Krischer, L., T. Megies, R. Barsch, M. Beyreuther, T. Lecocq, C. Caudron & J. Wassermann (2015a).
753 ObsPy: a bridge for seismology into the scientific Python ecosystem, *Comput. Sci. Discovery*, 8(1),
754 14,003-14,020, doi:10.1088/1749-4699/8/1/014003

755

756 Krischer, L., A. Fichtner, S. Zukauskaitė & H. Igel (2015b). Large-Scale Seismic Inversion
757 Framework. *Seismo. Res. Lett.*, 86 (4) 1198–1207. doi: 10.1785/0220140248

758

759 Krischer, L., J. Smith, W. Lei, M. Lefebvre, Y. Ruan, E. Sales de Andrade, N. Podhorszki, E. Bozdağ,
760 & J. Tromp (2016) An Adaptable Seismic Data Format, *Geophys. J. Int.*, 207(2), 1003–1011, doi:
761 10.1093/gji/ggw319

762

763 Kristeková, M., J. Kristek, P. Moczo & S.M. Day (2006). Misfit Criteria for Quantitative
764 Comparison of Seismograms. *Bull. Seismo. Soc. Am.*, 96 (5), 1836–
765 1850. <https://doi.org/10.1785/0120060012>

766

767 Kristeková, M., J. Kristek & P. Moczo (2009). Time-frequency misfit and goodness-of-fit criteria
768 for quantitative comparison of time signals, *Geophys. J. Int.*, 178(2), 813–825,
769 <https://doi.org/10.1111/j.1365-246X.2009.04177.x>

770

771 Laske, G., G. Masters, Z. Ma and M. Pasyanos (2013). Update on CRUST1.0 – A 1-degree Global
772 Model of Earth's Crust, *Geophys. Res. Abstracts*, 15, [Abstract EGU2013-2658](#),.

773

774 Liu, Q., J. Polet, D. Komatitsch and J. Tromp (2004). Spectral-Element Moment Tensor
775 Inversions for Earthquakes in Southern California. *Bull. Seismol. Soc. Am.*, 94 (5): 1748–1761.
776 doi: <https://doi.org/10.1785/012004038>

777

778 Liu, Q., & Tromp, J. (2008). Finite-frequency sensitivity kernels for global seismic wave
779 propagation based upon adjoint methods. *Geophys. J. Int.*, 174(1), 265–286.
780 <https://doi.org/10.1111/j.1365-246X.2008.03798.x>

781

782 Liu, Q. and Y.J. Gu (2012). Seismic imaging: From classical to adjoint tomography,
783 *Tectonophysics*, 566–567, 31–66, <https://doi.org/10.1016/j.tecto.2012.07.006>.

784

785 Maggi, A. and K. Priestley (2005). Surface waveform tomography of the Turkish–Iranian plateau,
786 *Geophys. J. Int.*, 160 (3), 1068–1080, <https://doi.org/10.1111/j.1365-246X.2005.02505.x>

787

788 Maggi, A., C. Tape, M. Chen, D. Chao, & J. Tromp. An automated time-window selection
789 algorithm for seismic tomography. *Geophys. J. Int.*, 178:257–281, 2009

790

791 Modrak, R. & J. Tromp (2016). Seismic waveform inversion best practices: regional, global and
792 exploration test cases, *Geophys. J. Int.*, 206(3), 1864–1889, doi:10.1093/gji/ggw202

793

794 Modrak, R.T., D. Borisov, M. Lefebvre, & J. Tromp (2018). SeisFlows—Flexible waveform
795 inversion software, *Computers & Geosciences*, 115, 88–95, doi: 10.1016/j.cageo.2018.02.004.

796

797 Mokhtar, T. A., Ammon, C. J., Herrmann, R. B., & Ghalib, H. A. A. (2001). Surface wave velocities
798 across Arabia. In *Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Surface Waves* (pp.
799 1425–1444). Birkhäuser, Basel.

800

801 Movaghari, R. and G. Javan Doloei (2020). 3-D crustal structure of the Iran plateau using phase
802 velocity ambient noise tomography, *Geophys. J. Int.*, 220(3), 1555–1568,
803 <https://doi.org/10.1093/gji/ggz537>

804

805 Nocedal, J. & S. Wright (2006). Numerical Optimization, Springer, New York, USA

806

807 Noe, S., D. Van Herwaarden, S. Thrastarson, Y. Gao, F. Tilmann, J. Ma, H. Bunge, H., N.
808 Masouminia, D. Wehner, A. Rodgers and A. Fichtner (2022). The Collaborative Seismic Earth
809 Model: Generation 2 (abstract), Seismic Tomography: What Comes Next?

810

811 Panning, M & B. Romanowicz (2006). A three-dimensional radially anisotropic model of shear
812 velocity in the whole mantle, *Geophys. J. Int.*, 167(1), 361–379, <https://doi.org/10.1111/j.1365-246X.2006.03100.x>

814

815 Park, Y., Nyblade, A. A., Rodgers, A. J., and Al-Amri, A. (2007), Upper mantle structure beneath
816 the Arabian Peninsula and northern Red Sea from teleseismic body wave tomography:

817 Implications for the origin of Cenozoic uplift and volcanism in the Arabian Shield, *Geochem.*
818 *Geophys. Geosyst.*, 8, Q06021, doi:[10.1029/2006GC001566](https://doi.org/10.1029/2006GC001566).

819

820 Park, Y., Nyblade, A. A., Rodgers, A. J., and Al-Amri, A. (2008), S wave velocity structure of the
821 Arabian Shield upper mantle from Rayleigh wave tomography, *Geochem. Geophys. Geosyst.*, 9,
822 Q07020, doi:[10.1029/2007GC001895](https://doi.org/10.1029/2007GC001895).

823

824 Plonka, A., Blom, N., & Fichtner, A. (2016). The imprint of crustal density heterogeneities on
825 regional seismic wave propagation. *Solid Earth*, 7(6), 1591–1608. <https://doi.org/10.5194/se-7-1591-2016>

826

827

828 Priestley, K., H. J. Patton, C. A. Schultz (2001). Modeling Anomalous Surface-Wave Propagation
829 across the Southern Caspian Basin. *Bull. Seismol. Soc. Amer.*, 91(6), 1924–1929,
830 <https://doi.org/10.1785/0120010118>

831

832 Rodgers, A., W. Walter, R. Mellors, A.M.S. Al-Amri, Y.-S. Zhang, Yu-Shen (1999). Lithospheric
833 structure of the Arabian Shield and Platform from complete regional waveform modelling and
834 surface wave group velocities, *Geophys. J. Int.*, 138(3), 871–878,
835 <https://doi.org/10.1046/j.1365-246x.1999.00918.x>

836

837 Rodgers, A., L. Krischer, M. Afanasiev, C. Boehm, C. Doody, A. Chiang, N. Simmons (2022).
838 WUS256: An Adjoint Waveform Tomography Model of the Crust and Upper Mantle of the
839 Western United States for Improved Waveform Simulations, *J. Geophys. Res.*,
840 <https://doi.org/10.1029/2022JB024549>

841

842 Rodgers, A.J. (2023). Dataset for “MESWA: Seismic structure of the crust and upper mantle of
843 the middle east and southwest asia from adjoint waveform tomography using openly available
844 broadband data”. [Dataset]. Zenodo. <https://doi.org/https://doi.org/10.5281/zenodo.7230323>

845

846 Ruan, Y., Lei, W., Modrak, R., Örvurhan, R., Bozdağ, E., & Tromp, J. (2019). Balancing unevenly
847 distributed data in seismic tomography: A global adjoint tomography example. *Geophysical*
848 *Journal International*, 219(2), 1225–1236. <https://doi.org/10.1093/gji/ggz356>

849

850 Simmons N. A., S. C. Myers, C. Morency, A. Chiang, and D. R. Knapp (2021). SPiRaL: A multi-
851 resolution global tomography model of seismic wave speeds and radial anisotropy variations in
852 the crust and mantle, *Geophys. J. Int.*, 227(2), 1366-1391,
853 doi:<https://doi.org/10.1093/gji/ggab277>

854

855 Sawade, L., S. Beller, W. Lei, Jeroen Tromp (2022). Global centroid moment tensor solutions in a
856 heterogeneous earth: the CMT3D catalogue, *Geophysical Journal International*, 231 ,1727–
857 1738, <https://doi.org/10.1093/gji/ggac280>

858

859 Tang, Z., Mai, P. M., Julià, J., & Zahran, H. (2019). Shear velocity structure beneath Saudi Arabia
860 from the joint inversion of *P* and *S* wave receiver functions, and Rayleigh wave group velocity

861 dispersion data. *Journal of Geophysical Research: Solid Earth*, 124, 4767–4787.
862 <https://doi.org/10.1029/2018JB017131>

863

864 Tarantola, A. (1988). Theoretical background for the inversion of seismic waveforms including
865 elasticity and attenuation. *Pure and Applied Geophysics PAGEOPH*, 128, 365-399
866 doi:10.1007/bf01772605

867

868 Tape, C., Q. Liu, A. Maggi & J. Tromp (2010), Seismic tomography of the southern California
869 crust based on spectral-element and adjoint methods, *Geophys. J. Int.*, 180(1), 433–462,
870 doi:10.1111/j.1365-246X.2009.04429.x

871

872 Tkalčić, H., Pasyanos, M. E., Rodgers, A. J., Gök, R., Walter, W. R., and Al-Amri, A. (2006), A
873 multistep approach for joint modeling of surface wave dispersion and teleseismic receiver
874 functions: Implications for lithospheric structure of the Arabian Peninsula, *J. Geophys. Res.*, 111,
875 B11311, doi:[10.1029/2005JB004130](https://doi.org/10.1029/2005JB004130).

876

877 Tromp, J., C. Tape, & Q. Liu. (2005). Seismic tomography, adjoint methods, time reversal, and
878 banana-donut kernels, *Geophys. J. Int.*, 160 195–216. doi: 10.1111/j.1365-246X.2004.02453.x

879

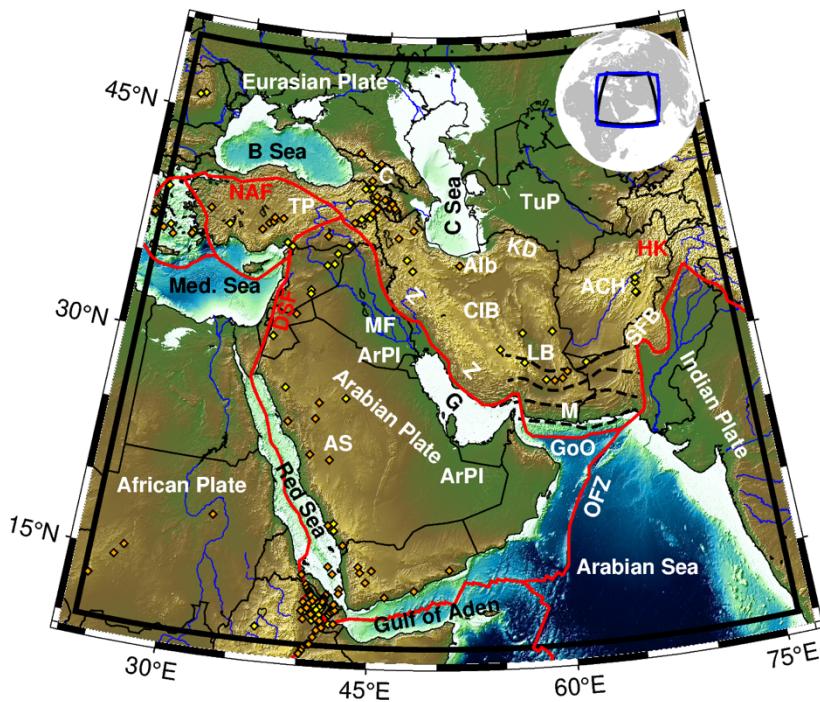
880 Tromp, J. (2020). Seismic wavefield imaging of Earth's interior across the scales, *Nature
Reviews*, 1, 40-53 . doi: 10.1038/s43017-019-0003-8

881

882 Villasenor, A., Ritzwoller, M. H., Levshin, A. L., Barmin, M. P., Engdahl, E. R., Spakman, W., &
883 Trampert, J. (2001). Shear velocity structure of central Eurasia from inversion of surface wave
884 velocities. *Phys. Earth and Planet. Int.*, 123(2-4), 169-184.

885

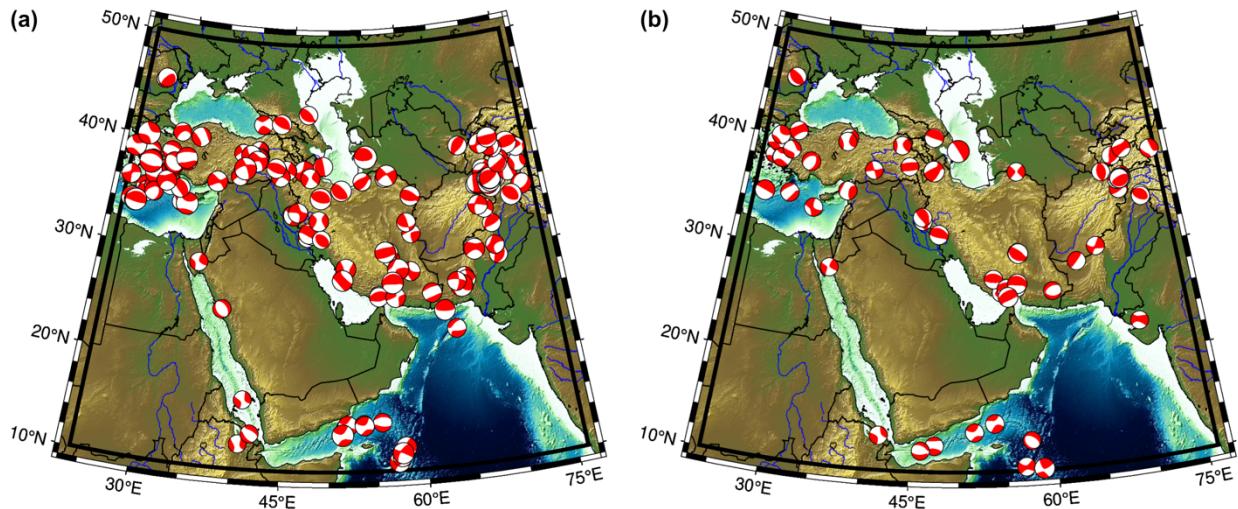
886


887 Wehner, D., N. Blom, N. Rawlinson, Daryono, C. Boehm, M. Miller, P. Supendi, & S. Widjiantoro
888 (2022) 3-D Seismic Structural Model of the Lithosphere and Underlying Mantle Beneath
889 Southeast Asia from Multi-Scale Adjoint Waveform Tomography. *Journal of Geophysical
890 Research: Solid Earth*, 127, e2021JB022930. <https://doi.org/10.1029/2021JB022930>

891

892 Zhu, H., Bozdağ, E., & Tromp, J. (2015). Seismic structure of the European upper mantle based
893 on adjoint tomography. *Geophys. J. Int.*, 201(1), 18–52. <https://doi.org/10.1093/gji/ggu492>

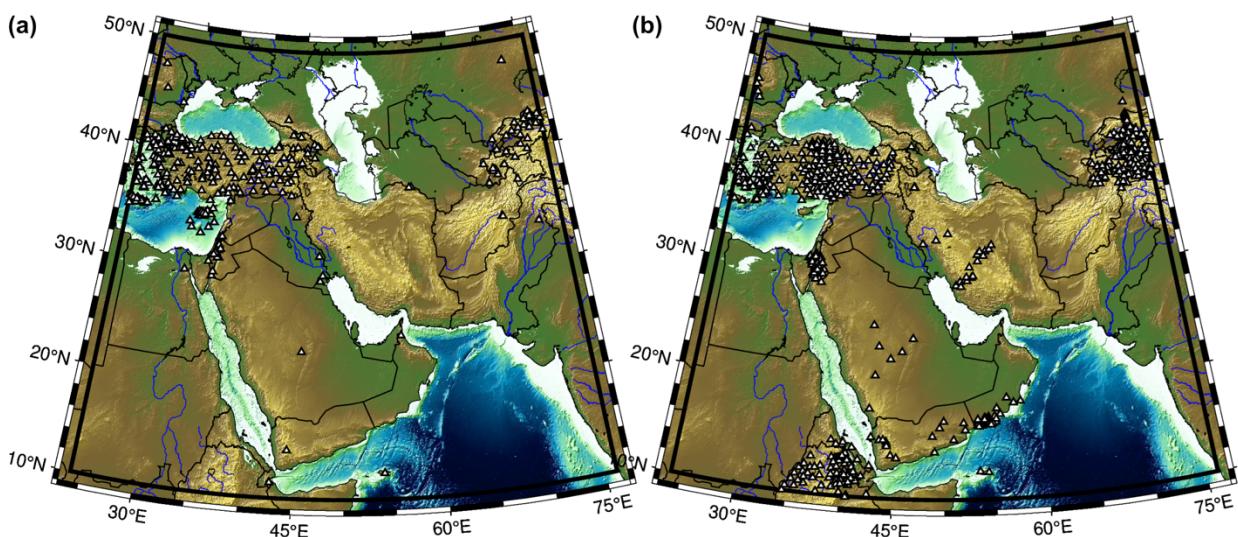
894


895

896 **Figures and Captions**

897

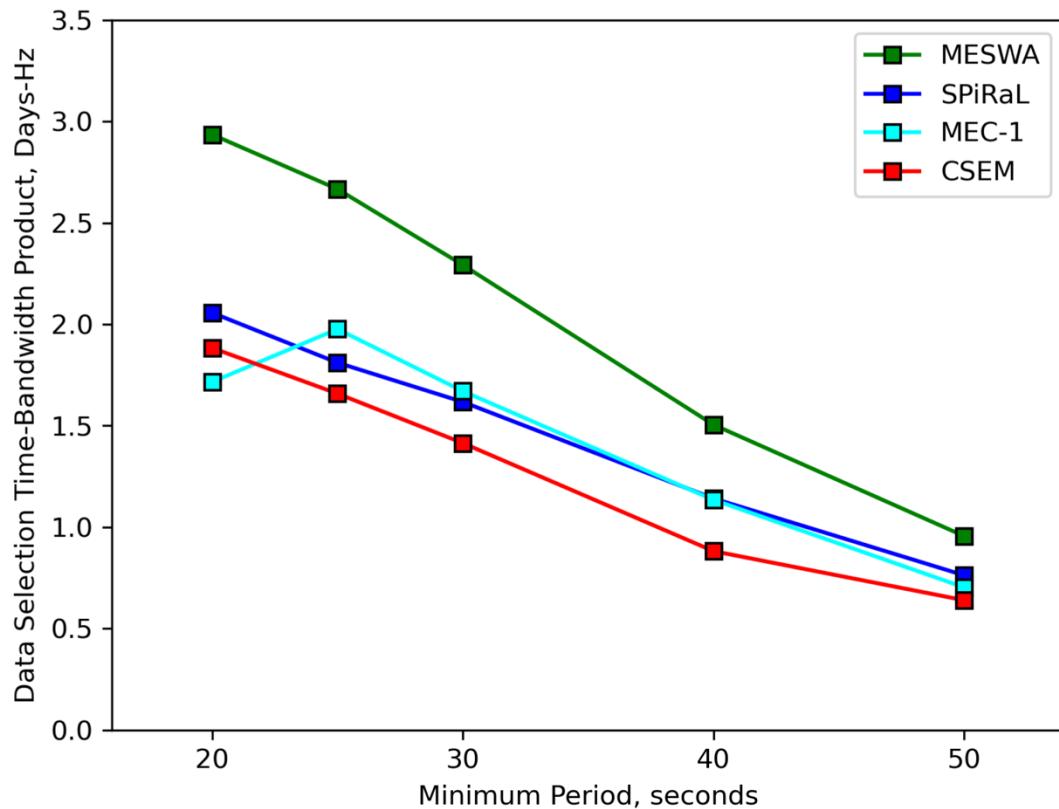
898 **Figure 1.** Map of the Middle East and Southwest Asia (MESWA) study area showing major
899 geological provinces (labels), tectonic plate boundaries (red lines), Pleistocene and Holocene
900 volcanic centers (yellow and orange diamonds, respectively). Abbreviations for tectonic
901 features are: ACP, Afghanistan Central Highlands; Alb, Alborz Mountains; ArPI, Arbaian
902 Platform; AS, Arabian Shield; B Sea, Black Sea; C, Caucasus; CIB, Central Iranian Block; GoO, Gulf
903 of Oman; HK, Hindu Kush; KD, Kopet Dag; LB, Lut Block; Med. Sea, Mediterranean Sea; MF,
904 Mesopotamian Foredeep; NAF, North Anatolian Fault; OFZ, Owen Fracture Zone; SFB, Sulaiman
905 Fold Belt; TP, Turkish Plateau; TuP, Turan Platform; Z, Zagros Mountains. The inset global map
906 shows the Salvus domain (blue line) with the target domain (black line).


907

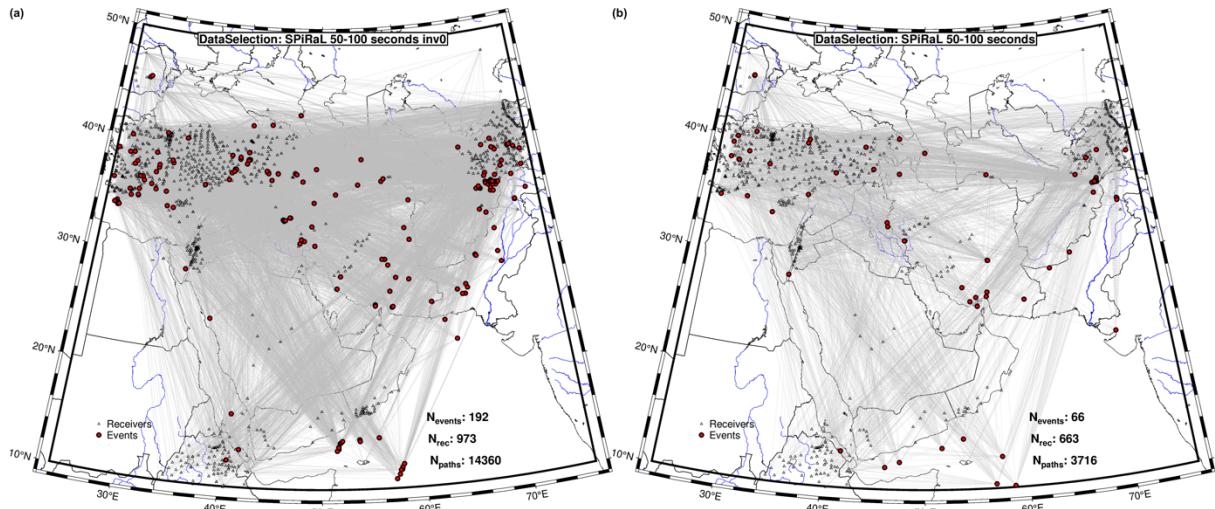
908

909 **Figure 2.** Maps of earthquake moment tensors for (a) 192 events used in the inversion and (b)
 910 66 events used for validation.

911

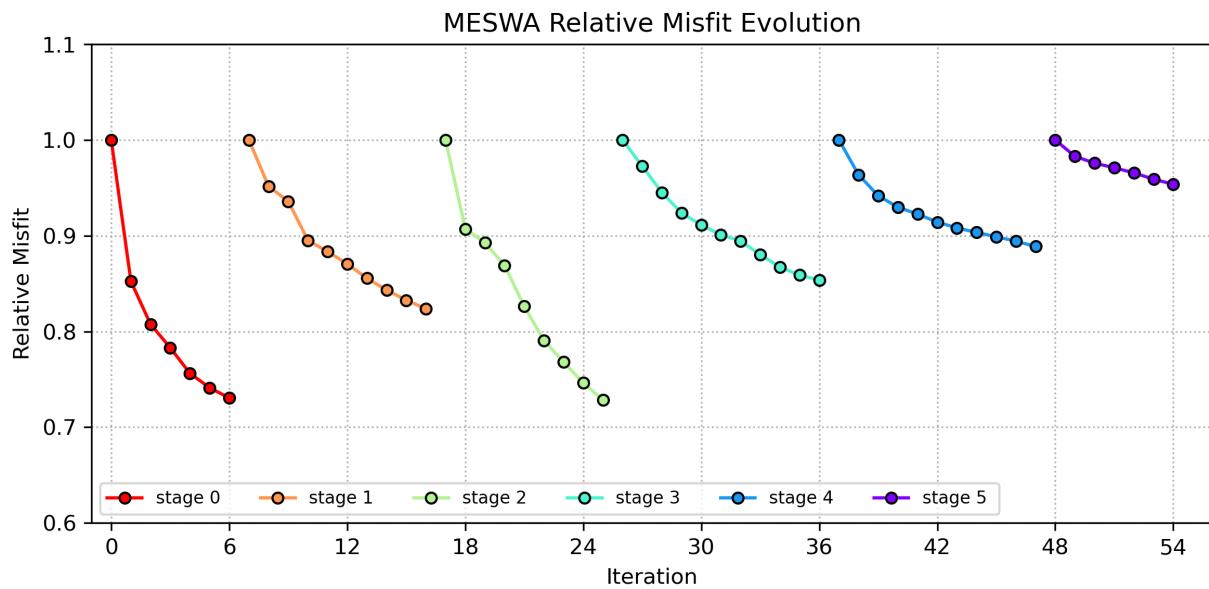


912


913 **Figure 3.** Map of the open access seismic stations used in this study for (a) permanent and (b)
 914 temporary networks.

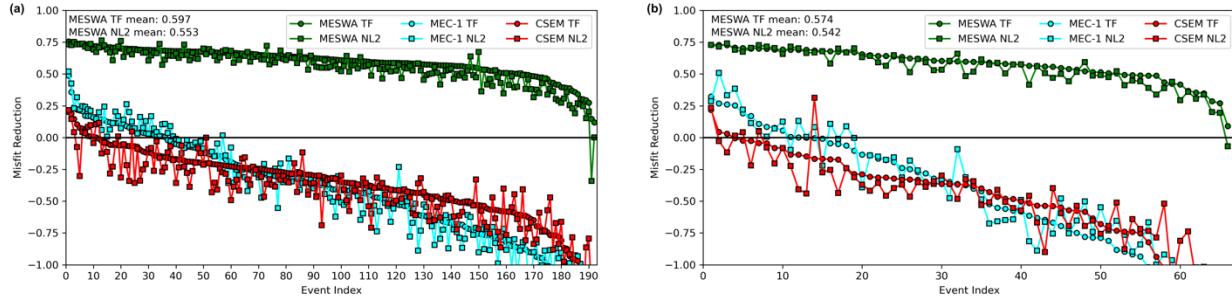
915

916


919 **Figure 4.** Time-bandwidth product versus minimum period for windows selected by comparing
 920 observed and simulated waveforms for over 320 events. The models are discussed in the text:
 921 SPiRaL (Simmons et al., 2021); MEC-1 (Kaviani et al. 2020); CSEM (Noe et al., 2023) and MESWA
 922 (this study).

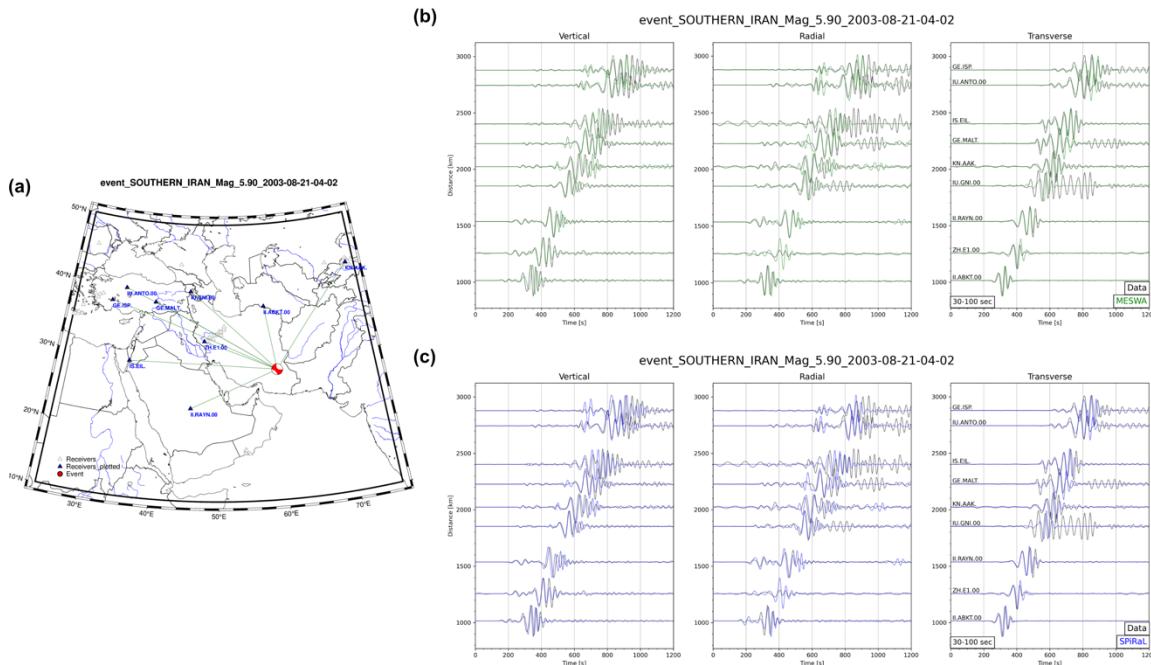
924

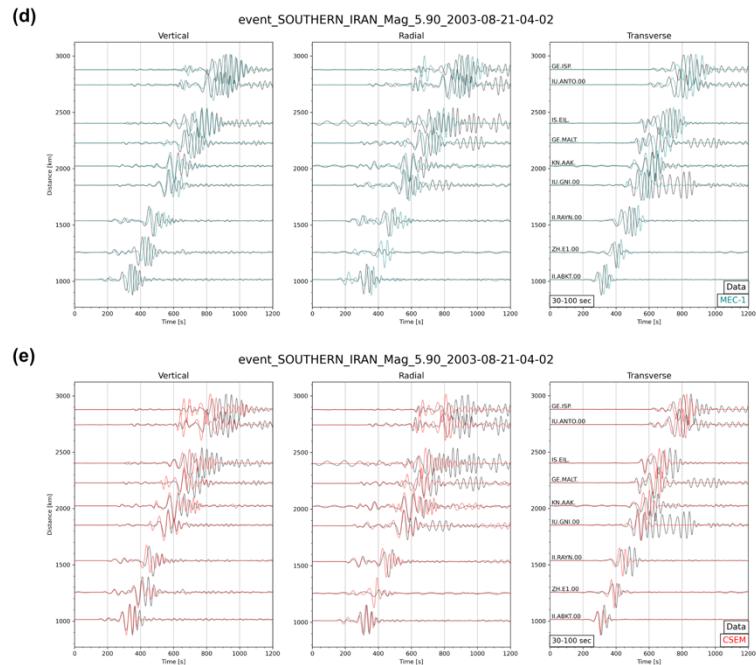
925 **Figure 5.** Map of events, stations and paths for the **(a)** inversion and **(b)** validation data sets for
926 the SPiRaL starting model in the period band 50-100 seconds.


927

928

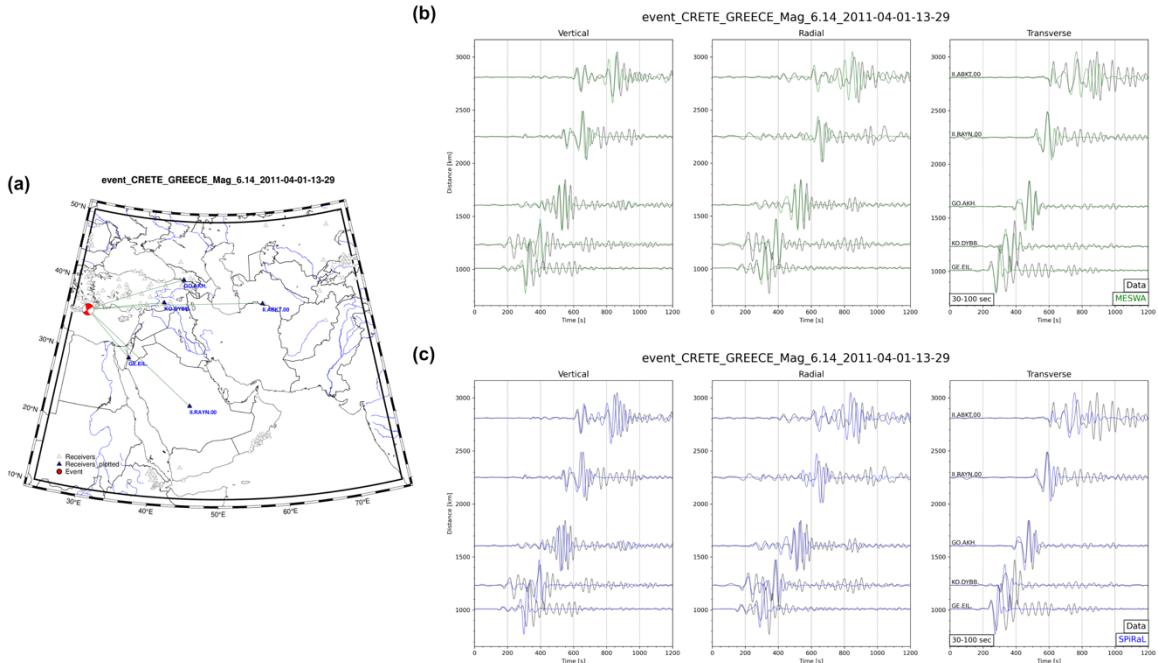
929 **Figure 6.** Misfit evolution as a function of iteration number for the relative misfit reduction
930 within each inversion stage (colored symbols).


931


932

933 **Figure 7.** Event-averaged time-frequency phase (TF) and normalized L2 (NL2) misfit reductions
 934 for our final MESWA model (green) relative to the SPiRaL starting model for the **(a)** inversion
 935 data set and **(b)** validation data set. Also shown are the misfit reductions for the MEC-1 (cyan)
 936 and CSEM (red) models. Events are sorted by misfit reduction highest-to-lowest for the
 937 MESWA model and the mean TF and NL2 reductions for MESWA are recorded in text on each
 938 panel.

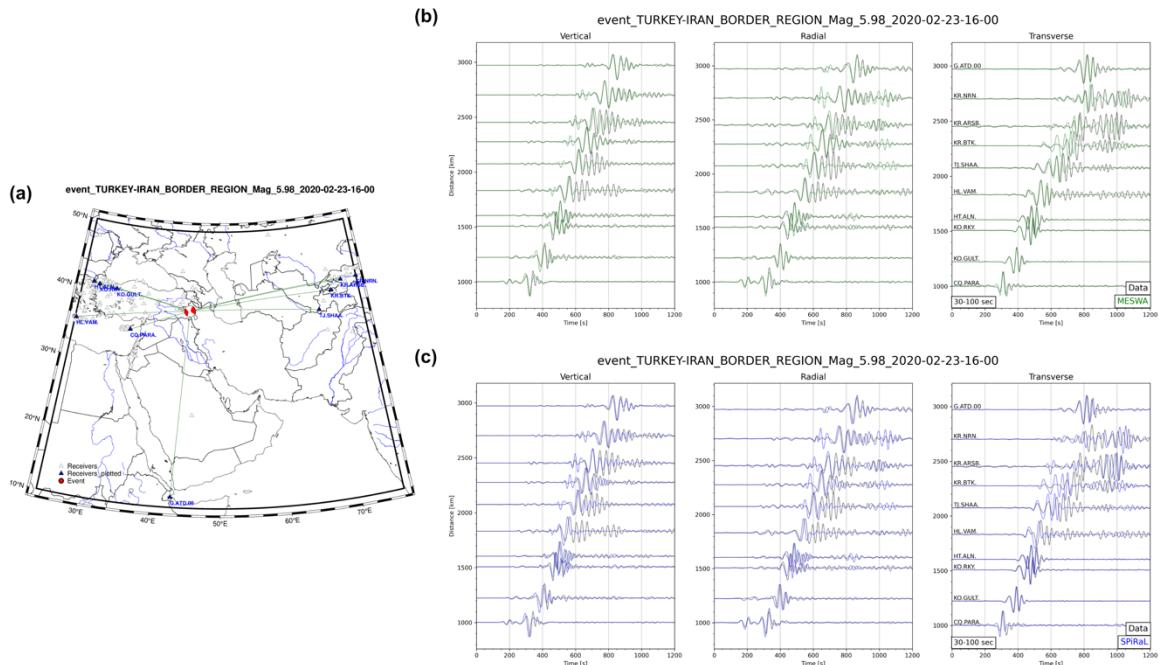
939


940

941

942 **Figure 8.** Examples of waveform fits for an Mw 5.90 earthquake in Southern Iran (date: 2003-
 943 08-21). **(a)** Map of the event (moment tensor) and stations (blue triangles) for which waveforms
 944 are shown. Three-component (vertical, radial and transverse) observed (black) and synthetic
 945 (colored) waveforms filtered 30-100 seconds for four models: **(b)** MESWA (green); **(c)** SPiRaL
 946 **(blue); (d)** MEC-1 (teal) and **(e)** CSEM (red).

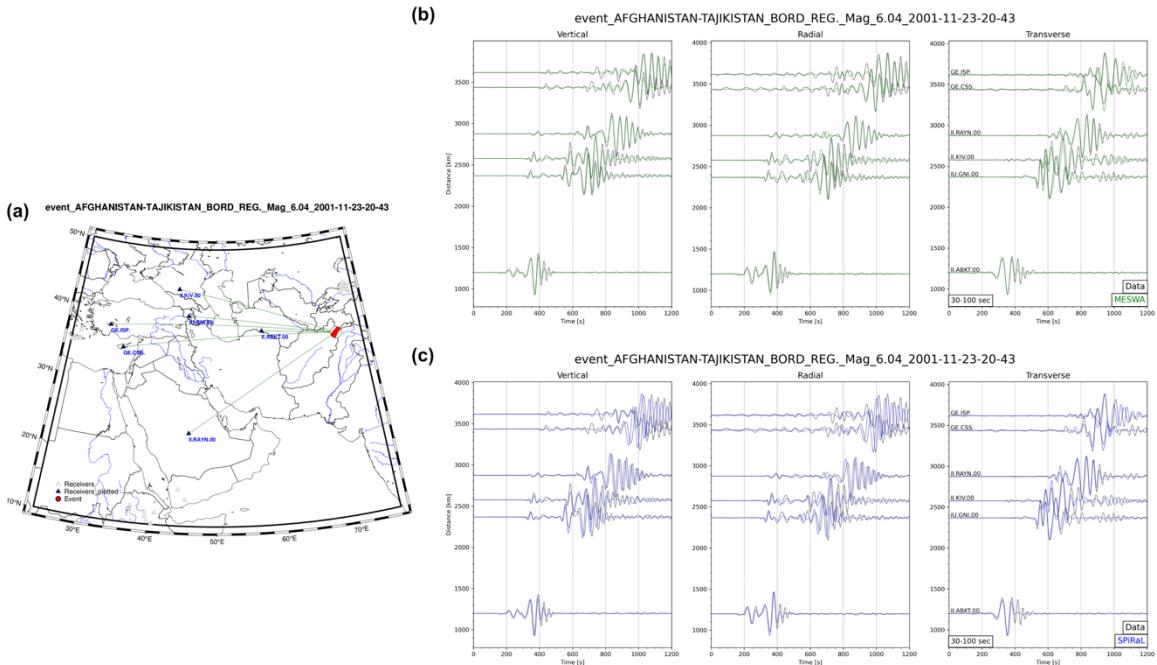
947



948

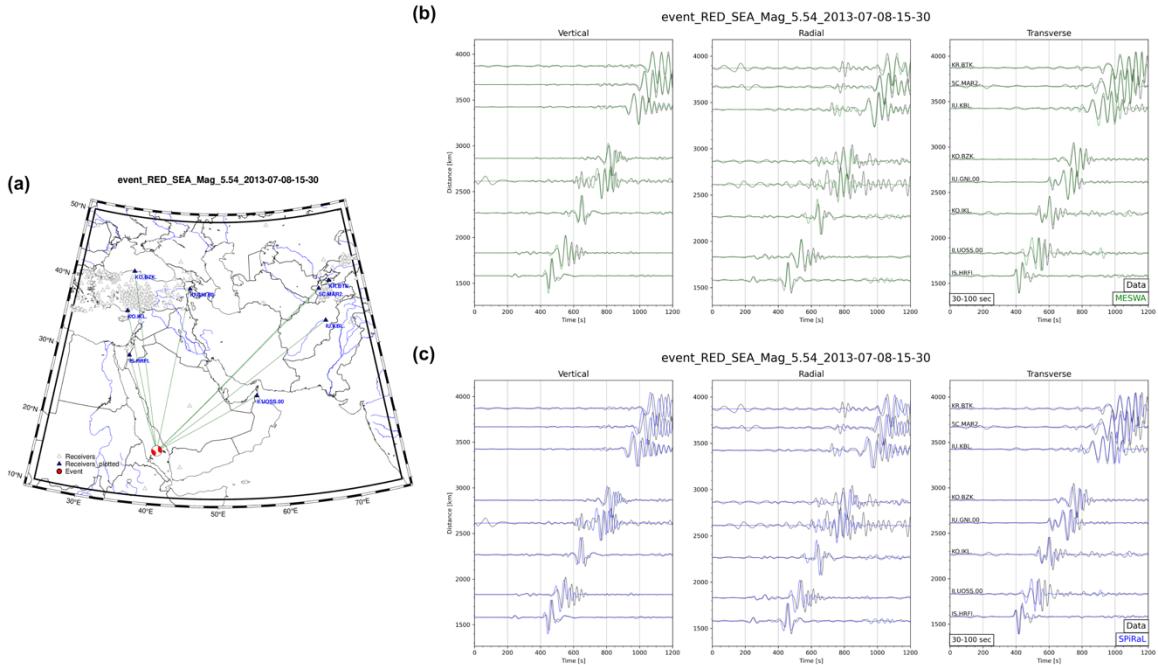
949 **Figure 9.** Examples of waveform fits for an M_w 6.14 event in Crete, Greece (date: 2011-04-01).

950 **(a)** Map of the event (moment tensor) and stations (blue triangles) for which waveforms are
 951 shown. Three-component (vertical, radial and transverse) observed (black) and synthetic
 952 (colored) waveforms filtered 30-100 seconds for two models: **(b)** MESWA (green) and **(c)** SPiRaL
 953 (blue).


954

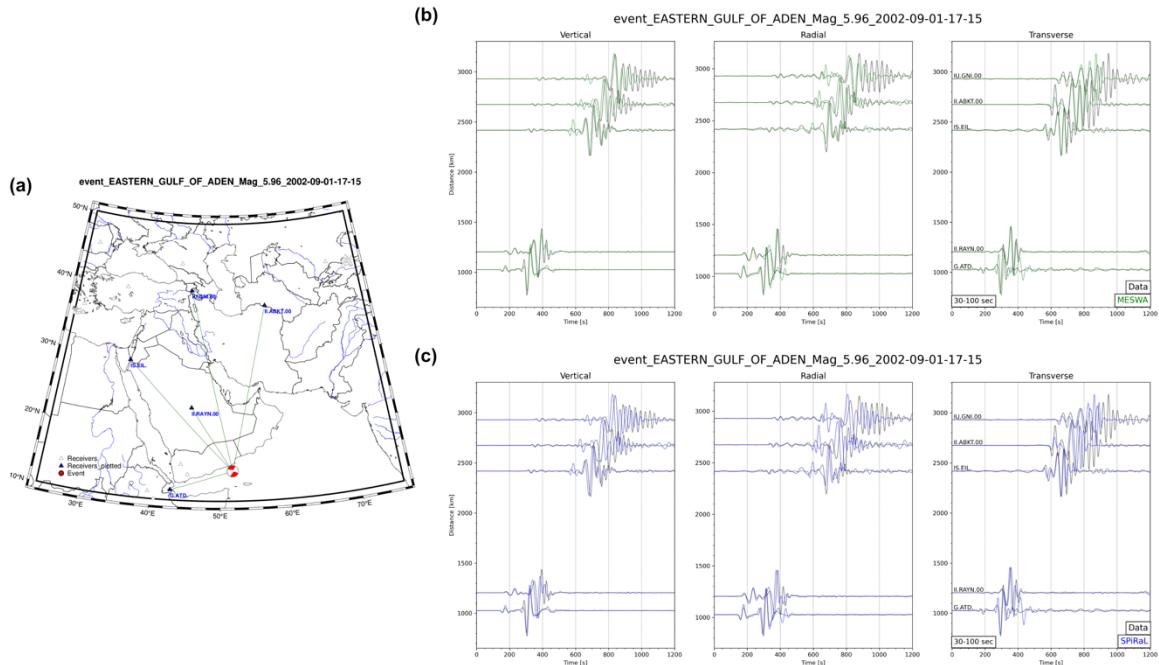
955

956 **Figure 10.** Examples of waveform fits for an Mw 5.98 event on the Turkey-Iran border region
 957 (date: 2020-02-23). **(a)** Map of the event (moment tensor) and stations (blue triangles) for
 958 which waveforms are shown. Three-component (vertical, radial and transverse) observed
 959 (black) and synthetic (colored) waveforms filtered 30-100 seconds for two models: **(b)** MESWA
 960 (green) and **(c)** SPiRaL (blue).


961

962

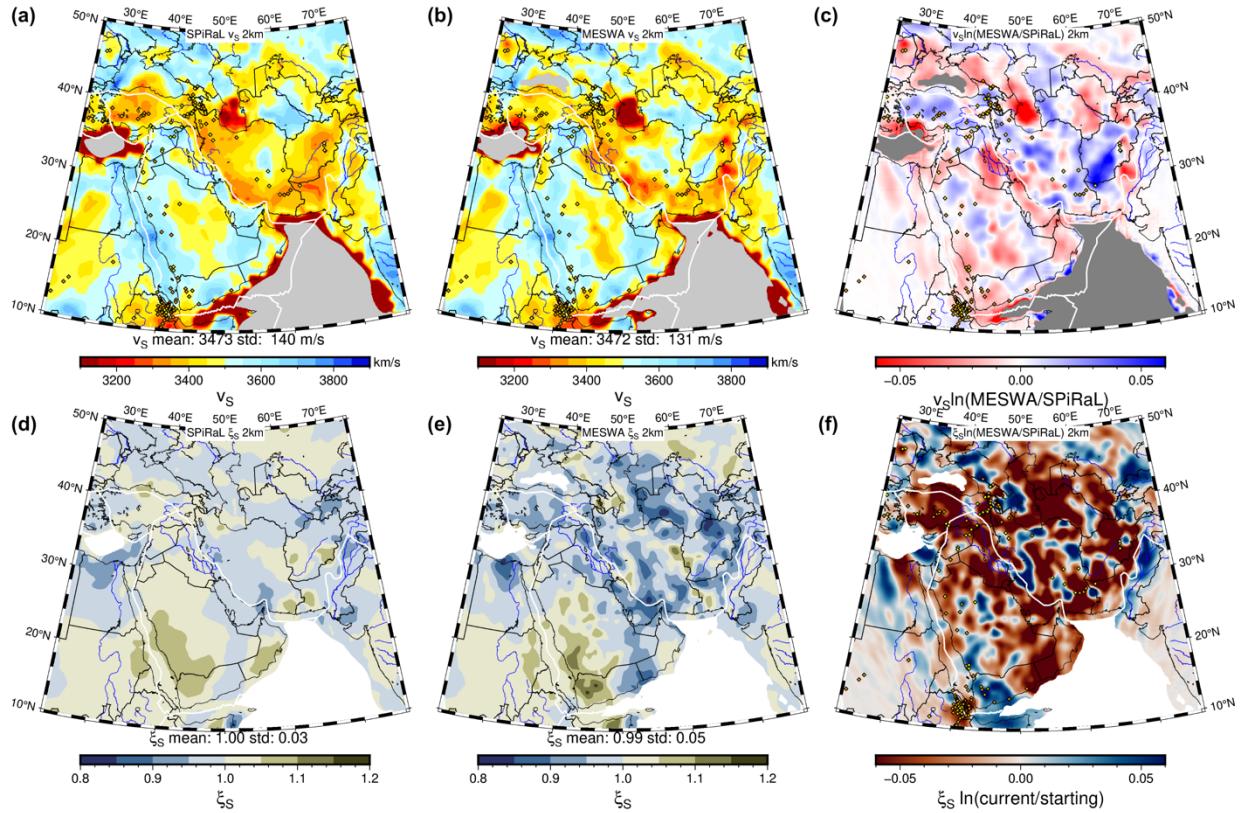
963 **Figure 11.** Examples of waveform fits for an M_w 6.04 Afghanistan-Tajikistan border region
 964 (date: 2001-11-23). **(a)** Map of the event (moment tensor) and stations (blue triangles) for
 965 which waveforms are shown. Three-component (vertical, radial and transverse) observed
 966 (black) and synthetic (colored) waveforms filtered 30-100 seconds for two models: **(b)** MESWA
 967 **(green)** and **(c)** SPiRaL (blue).


968

969

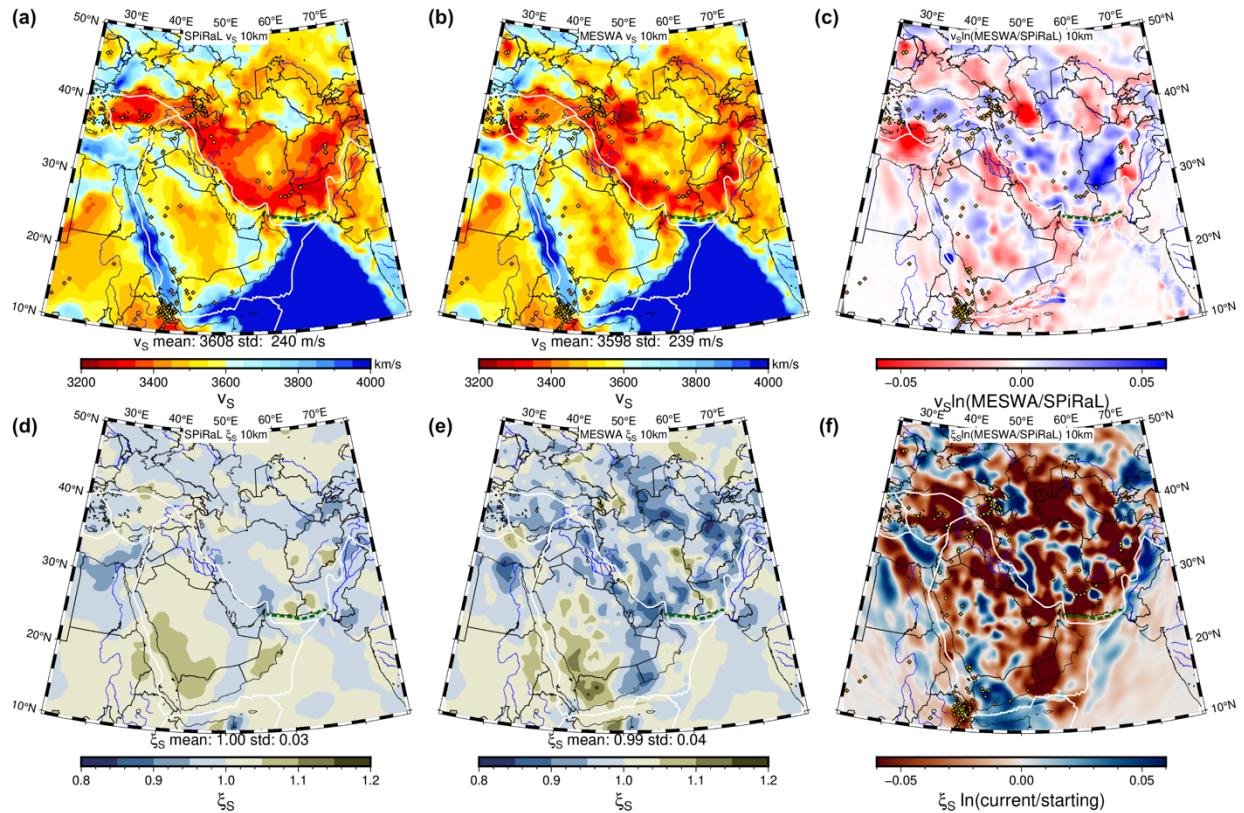
970 **Figure 12.** Examples of waveform fits for an M_w 5.54 Red Sea (date: 2013-07-08). **(a)** Map of
 971 the event (moment tensor) and stations (blue triangles) for which waveforms are shown.
 972 Three-component (vertical, radial and transverse) observed (black) and synthetic (colored)
 973 waveforms filtered 30-100 seconds for two models: **(b)** MESWA (green) and **(c)** SPiRaL (blue).

974



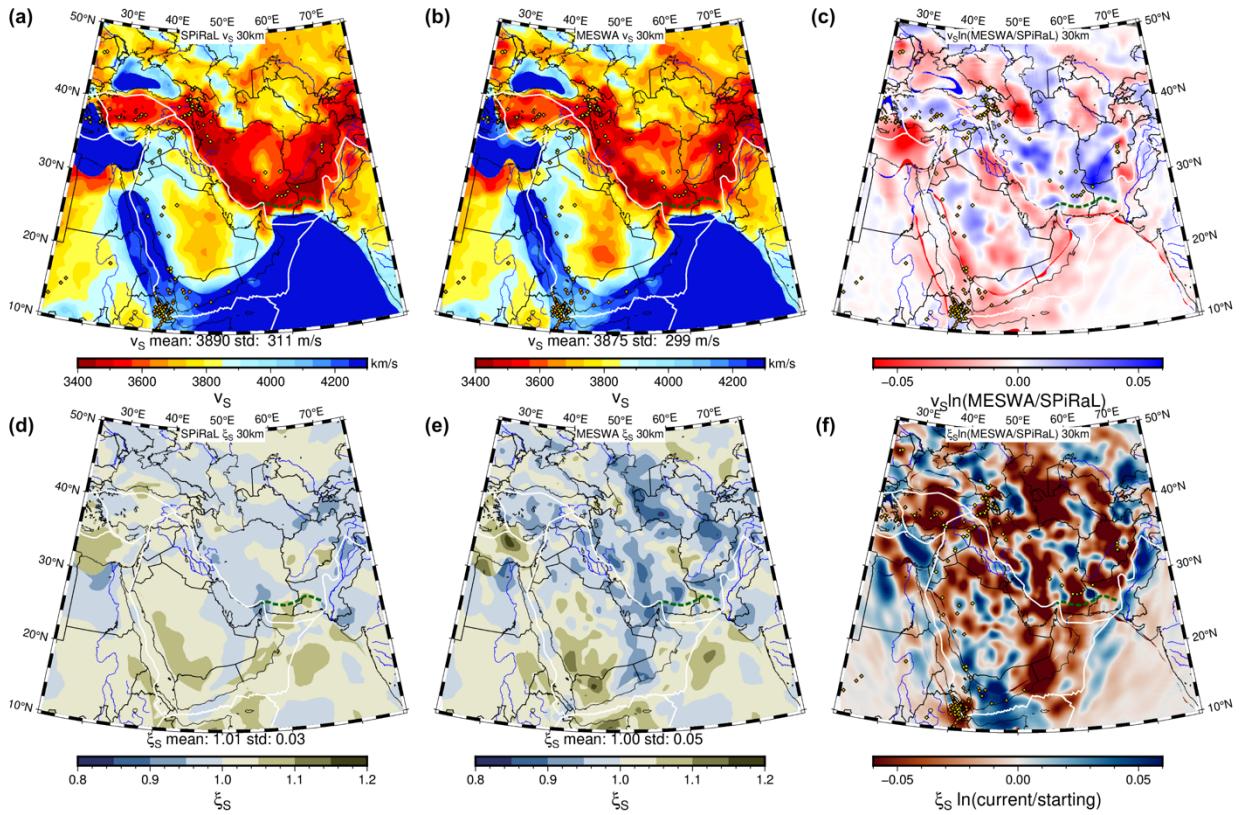
975

976 **Figure 13.** Examples of waveform fits for an M_w 5.96 Eastern Gulf of Aden (date: 2002-09-01).


977 **(a)** Map of the event (moment tensor) and stations (blue triangles) for which waveforms are
 978 shown. Three-component (vertical, radial and transverse) observed (black) and synthetic
 979 (colored) waveforms filtered 30-100 seconds for two models: **(b)** MESWA (green) and **(c)** SPiRaL
 980 (blue).

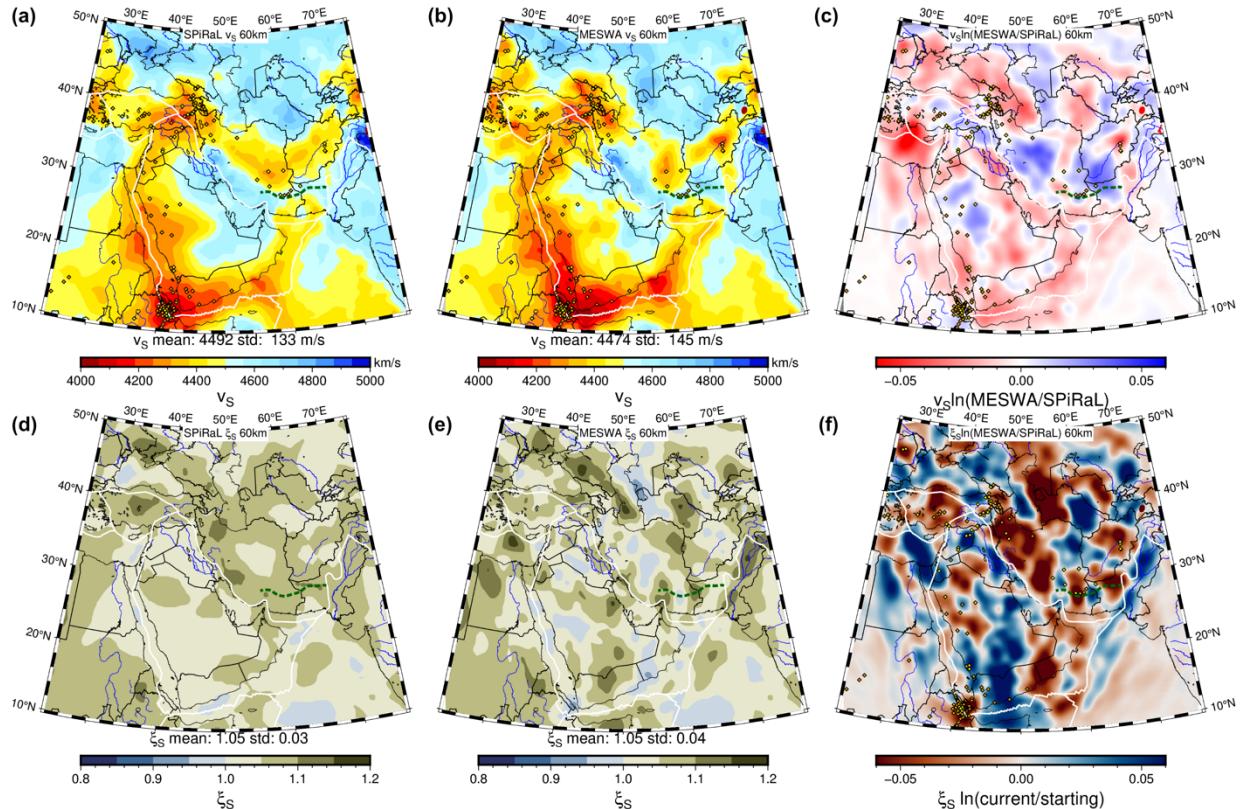
981

982


983 **Figure 14.** Map of the isotropic shear wavespeeds, v_s , at depth of 2 km below sea level for (a)
984 the SPiRaL (Simmons et al., 2021) starting model and the (b) MESWA with (c) the natural
985 logarithm ratio of v_s (MESWA/SPiRaL). Also shown are maps of the anisotropy parameter, ξ_s , in
986 the same fashion: (d) SPiRaL starting model; (e) MESWA and (f) the natural logarithm ratio of ξ_s
987 (MESWA/SPiRaL). Also shown are volcanic centers and Makran slab contour (Figure 1).

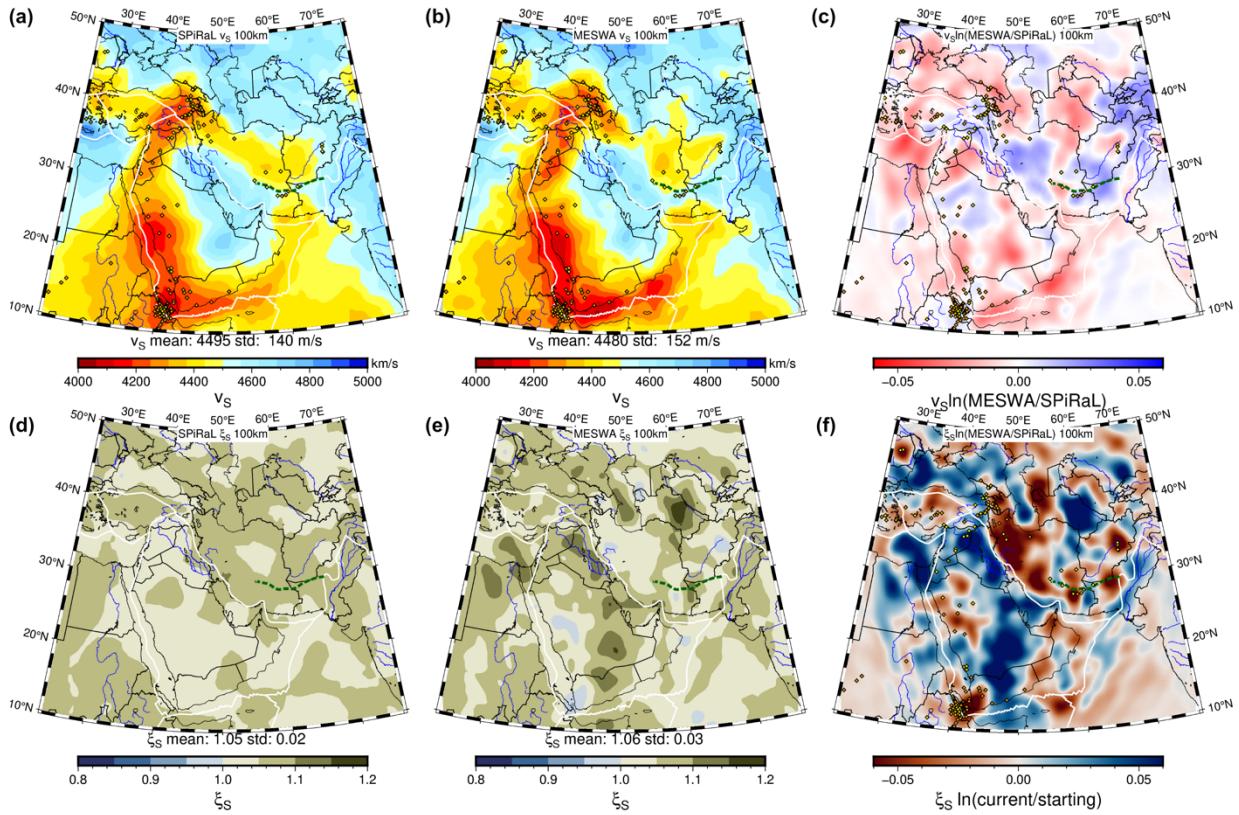
988

989 **Figure 15.** Same as Figure 14, but for a depth of 10 km.


990

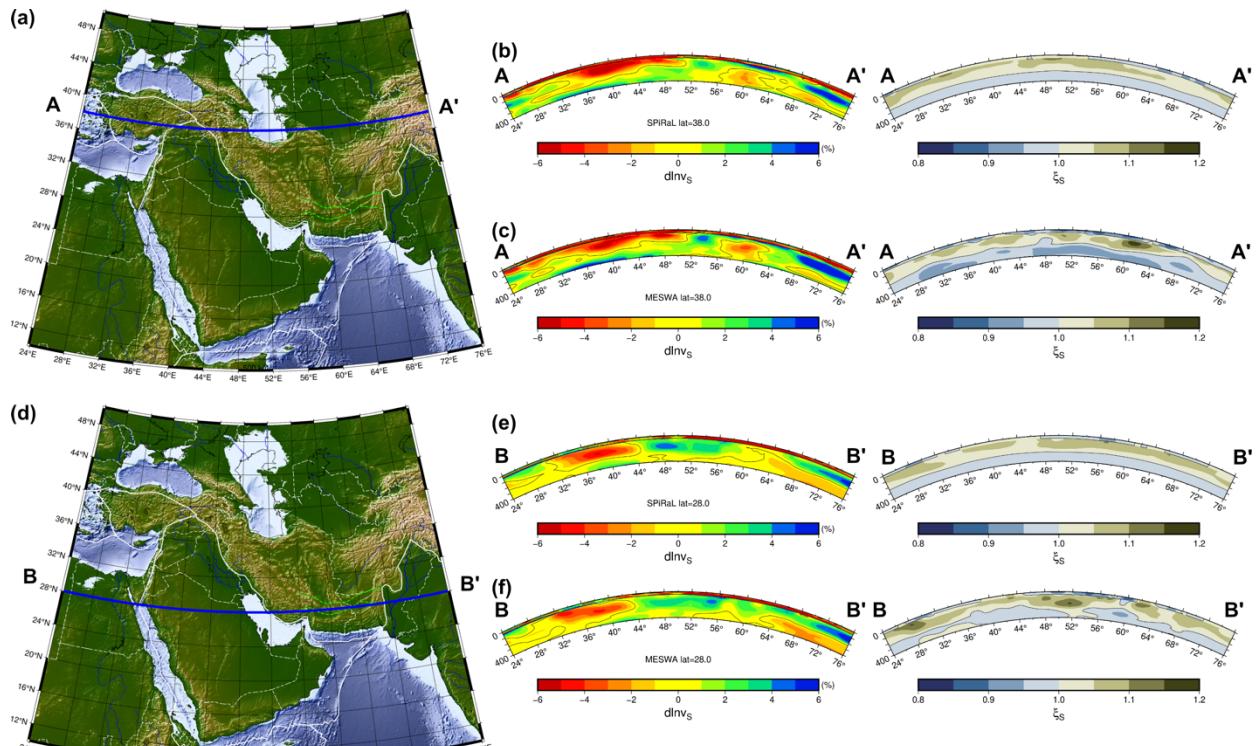
991

992 **Figure 16.** Same as Figure 14, but for a depth of 30 km.

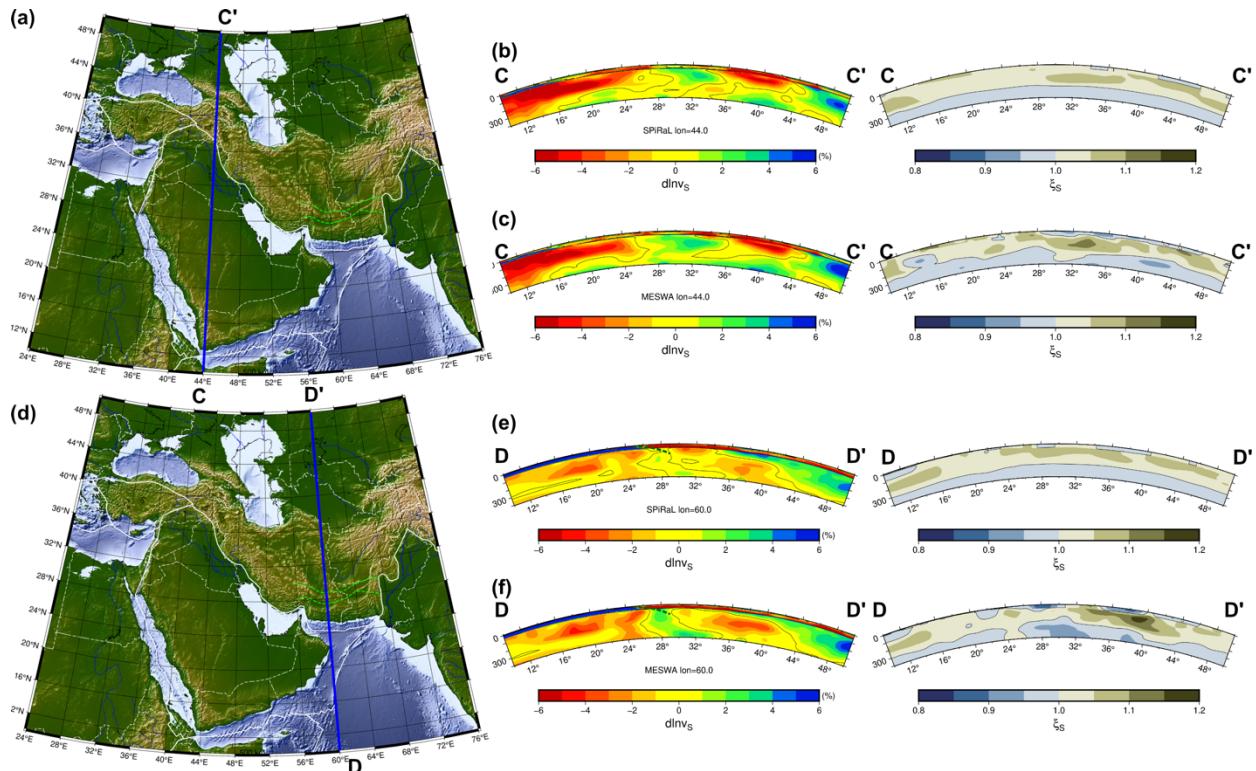

993

994

995 **Figure 17.** Same as Figure 14, but for a depth of 60 km.


996

997


998 **Figure 18.** Same as Figure 14, but for a depth of 100 km.

999

1000

1001 **Figure 19.** West-east cross-sections: **(a)** map of section A-A'; **(b)** v_s and ξ_s for the SPIRAL starting
 1002 model along A-A'; **(c)** v_s and ξ_s for the MESWA model along A-A'; **(d)** map of section B-B'; **(e)** v_s
 1003 and ξ_s for the SPIRAL starting model along B-B'; **(f)** v_s and ξ_s for the MESWA model along B-B'.

1004

1005 **Figure 20.** South-north cross-sections: **(a)** map of section C-C'; **(b)** v_S and ξ_S for the SPiRaL
1006 starting model along C-C'; **(c)** v_S and ξ_S for the MESWA model along D-D'; **(d)** map of section D-
1007 D'; **(e)** v_S and ξ_S for the SPiRaL starting model along D-D'; **(f)** v_S and ξ_S for the MESWA model
1008 along B-B'.

1009

1010