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Summary

We present a new model of radially anisotropic seismic wavespeeds for the crust and
upper mantle of a broad region of the Middle East and Southwest Asia (MESWA) derived from
adjoint waveform tomography. We inverted waveforms from 192 Global Centroid Moment
Tensor earthquakes (Mw 5.5-7.0) recorded by over 1000 openly available broadband seismic
stations from permanent and temporary networks in the region. Spatial coverage of the
available data is highly uneven due to earthquakes clustered along plate boundaries and sparse
coverage of open seismic networks in the region. We considered three possible starting
models: the SPiRaL global model (Simmons et al., 2021); MEC-1 (Kaviani et al., 2020); and
CSEM2.0 (Noe et al., 2023). Because the SPiRaL model provides good fits to the observed
waveforms measured by the time-bandwidth product of selected windows in several period
bands, provides all the necessary parameters and covers the entire domain we used it for the
starting model with the period band 50-100 seconds. Inversion iterations proceeded using
time-frequency phase misfits in six stages and 54 total iterations reducing the minimum period
to 30 seconds. Our final model, MESWA, provides improved waveform fits compared to the
starting model for both the data used in the inversion and an independent validation data set of
66 events. Two metrics of waveform fit (the time-frequency phase misfit used in the
optimization and normalized L2 misfit) were both reduced by nearly 60% for both data sets and
MESWA provides significantly larger misfit reductions relative to the SPiRaL model than the
MEC-1 or CSEM models. We also find that MESWA provides a larger time-bandwidth product
of selected windows indicating that more information content of the observed waveforms is

explained by MESWA than the other models. Our new model reveals tectonic features imaged
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by other studies and methods but in a new holistic model of shear and compressional
wavespeeds (vs and vp, respectively) with anisotropy covering the crust and uppermost mantle
of a larger domain. MESWA has smaller scale-length features and tends to sharpen some
features relative to the SPiRaL starting model. Examples include: low crustal vs in the Turkish-
Iranian Plateau, Zagros Mountains, Afghan Central Blocks and Sulaiman Fold Belt; low mantle vs
following divergent (Gulf of Aden, Red Sea) and transform (Dead Sea Fault) margins of the
Arabian Plate; low and high vs in the mantle beneath the Arabian Shield and Platform,
respectively. Low vs is imaged below Cenozoic volcanic centers of the Arabian Peninsula, the
so-called Mecca-Madina-Nafud (MMN) Line. Positive anisotropy (vsu > vsy) is inferred for
asthenospheric depths across the region except where up/downwelling may influence fabric
alignment (e.g. Afar, Red Sea, Arabian Shield). Elevated vs tracks Makran subduction under
southeast Iran. MESWA resembles the SPiRaL model in its long-wavelength structure, but
enhances shorter wavelengths features on the order of 200 km and smaller. The resulting
model could be used for as a starting model for further improvements, say using waveforms
from in-country seismic networks that are not openly available or smaller-scale studies
targeting shorter period waveforms. The model also could be used for source characterization
and moment tensor inversion to improve earthquake hazard studies and nuclear explosion

monitoring.

Key Words: Tomography, Waveform inversion, Computational seismology, Middle East,

Southwest Asia
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Introduction

The Middle East and Southwest Asia (MESWA) is a geologically complex region including
the interaction of several tectonic plates. Figure 1 shows the study region, which includes all of
the Arabian Plate and parts of the Eurasian, African and Indian Plates. Plate boundaries include:
continental transforms of the North Anatolian and Dead Sea Faults; continental convergence
along the Turkish-Iranian Plateau, and Indian-Eurasian Collision (transpressional plate boundary
along Afghanistan-Pakistan border, Sulaiman Fold Belt, Central Afghanistan Highlands, Hindu
Kush, Pamirs); ocean spreading along the Red Sea, Gulf of Aden and Owen Fracture Zone; and
subduction of oceanic lithosphere along the Makran north of the Gulf of Oman and Arabian
Sea. Complex active tectonics of the region is revealed by abundant but uneven seismicity
including large damaging earthquakes and volcanic activity. Figure 2 shows the events used for
the model inversion and validation (discussed in detail below) and is representative of the

seismicity in the region.

Parts of the region have been intensively studied tracking the deployment of seismic
sensors, while other regions have been the subject of fewer investigations. Many of the
detailed investigations of the region have benefited from access to closed (proprietary) data
from networks operating in specific countries (Al-Lazki et al., 2004; Al-Damegh et al., 2005;
Hansen et al., 2006; Hansen et al., 2007; Park et al., 2007; Park et al., 2008; Al-Lazki et al., 2014;
Tang et al., 2019; Kaviani et al., 2020; Kim et al., 2023; Movaghari and Doloei, 2023). Structure
of the crust and upper mantle has been revealed by seismic tomography using various

methodologies and data sets. These include travel time tomography (Hearn and Ni, 1994; Al-
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Lazki et al., 2003, 2004, 2014; Park et al., 2007), receiver functions (Al-Damegh et al., 2005;
Hansen et al., 2006), earthquake and ambient noise surface wave dispersion (e.g. Mokhtar et
al., 2001; Villasenor et al., 2001; Park et al., 2008; Kim et al. 2023), waveform inversion (Maggi
and Priestley, 2005; Chang et al., 2010a) and joint inversions of different data sets (Julia et al.,
2003; Tkalci¢ et al., 2005; Chang et al., 2010b; Tang et al., 2019; Kaviani et al., 2020; Movaghari

and Doloei, 2020) with this list meant to be representative but not exhaustive.

This study reports a new model of radially anisotropic seismic wavespeeds for the
MESWA region shown in Figure 1. The model is derived from adjoint waveform tomography
using broadband seismic waveform data from only openly available sources through Federation
of Digital Seismic Networks (FDSN) webservices. Several permanent seismic networks operate
stations in the region, however those with global coverage and openly available data are sparse
(e.g. IRIS-Ida, IRIS-USGS, Geofone, Geoscope). Regional networks in Turkey, Greece and Central
Asia provide open data for clustered stations. Temporary networks have been deployed in

specific areas for 1-2 year durations and these improve the coverage.

Adjoint waveform tomography is a waveform inversion methodology which uses the full
three-dimensional (3D) sensitivity of observed seismograms to Earth structure (usual only
seismic wavespeeds). The methodology is now widely used and is described in seminal studies
(e.g., Tarantola, 1988, Tromp et al., 2005; Liu and Tromp, 2005; Fichtner et al, 2006, Tape et al.,
2007) and reviews (e.g. Fichtner, 2010; Liu and Gu, 2012; Tromp, 2020). In this study, we

closely followed the methodology of Rodgers et al. (2022) for the western United States. The



101 resulting model provides improvement in quantitative measures of waveform misfit compared
102  to the starting and other models and many known large-scale tectonic features are imaged.
103 This study establishes a baseline of what features can be imaged with openly available sparse
104  data for this large and tectonically complex continental-scale domain and will be useful to

105  compare against other studies with data from national seismic networks that are not openly

106  available.
107
108 This article is organized as follows. In the next section we describe the data selection

109  and considerations for choosing a starting model. We follow this with a description of the

110  adjoint waveform tomography methodology applied to the region and data set. We then

111 describe the resulting model, demonstrate its efficacy for fitting observed waveforms and

112 interpret the imaged features in terms of known tectonic processes. We conclude with a

113 discussion of strategies for future improvements and recommendations.

114

115  Data Selection and Starting Model

116 We started by selecting earthquakes from the Global Centroid Moment Tensor (GCMT)
117  catalog (Ekstrom et al., 2012) in the domain (Figure 1) with moment magnitude, Mw, between
118 5.5and 7.0 for the time period 1995-2020. This resulted in 327 events. We then collected
119  openly available broadband waveforms for these events that were recorded by permanent and
120  temporary seismic station networks in the domain from Federation of Digital Seismic Network
121  (FDSN) webservices using ObsPy (Krischer et al., 2015a). Based on the initial waveform fits

122 (described below) and the number and spatial coverage of paths we selected 192 events for the
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inversion and 66 events for model validation (Figures 2a and 2b, respectively). These events
were recorded by over 1000 stations in the domain. Figure 3 shows the broadband stations
from permanent (over 300) and temporary (over 600) seismic networks used in the inversion.
Openly available permanent networks (Figure 3a) cover the region are very sparsely.
Permanent networks cover the Aegean Sea and Turkish Plateau (Greece and Turkey), Eastern
Mediterranean Sea (Cyprus, Israel), the Caucasus (Armenia, Georgia) and the Hindu Kush, Pamir
and Tien Shan (Kyrgyzstan, Tajikistan). Some whole countries are covered by no or only a few
openly available permanent stations. Temporary networks (Figure 3b) provide about twice as
many stations as the permanent networks although they are typically deployed for a short
duration (e.g. 1-2 years). These stations provide complementary coverage in some regions
poorly covered by permanent stations (e.g. Ethiopia, Eretria, Yemen, Oman, Saudi Arabia and
Iran). A complete listing of events and seismic stations used in both the inversion and

validation data sets is provided in Rodgers (2023).

Adjoint waveform tomography (AWT) requires complete waveform simulations in a
three-dimensional (3D) seismic Earth model describing wavespeeds, density and attenuation.
Measurements of differences between the observed waveforms and those simulated from the
current model to compute sensitivity kernels for model updates. AWT uses a multiscale
iterative inversion procedure (e.g. Bunks et al., 1995; Fichtner et al., 2009, 2013; Tape et al.
2010) to improve phase errors (e.g. cycle skipping) and avoid getting trapped in local minima.
An essential step in AWT is identifying waveform segments (“windows”) where observed and

simulated waveforms are in reasonably good agreement with slowly varying phase delay (less
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than 1/2). Sensitivity kernels are computed from waveform metrics based on these windows.
A good starting model should generate simulated waveforms that that fit observed waveforms
at many receivers (paths). Such a model should provide long durations of well-correlated
observed and synthetic waveforms. Ideally, a starting model should provide good waveform
fits, cover the central area and depth extent of the target domain and provide the necessary
parameters (wavespeeds, density and attenuation). Radial anisotropy which is important to
model the Love-Rayleigh discrepancy commonly observed in long-period (> 20 seconds)

regional surface waves (e.g. Gaherty and Jordan, 1995).

Doody et al. (2023) showed that a conservative multiscale inversion approach can result
in models that are robust to the choice of starting model. We closely follow that approach
here. For this region we considered three possible starting models. The SPiRaL model
(Simmons et al., 2021) is a global model based on travel times and surface wave dispersion. It
includes radial anisotropy as vertically and horizontally polarized shear wavespeeds (vsv and vsu,
respectively) and compressional wavespeeds (vev and vpn, respectively). Density and
attenuation quality factors were scaled from wavespeeds. This model conforms to the global
crustal thickness model CRUST1.0 (Laske et al., 2013). Although this model is not based
waveform simulations, it has been shown to produce good waveform fits in various regions

(Simmons et al., 2021; Rodgers et al., 2022).

The Midd_East_Crust_1 (MEC-1) model (Kaviani et al., 2020) is a regional shear

wavespeed, vs, model covering the Middle East, Arabian Peninsula and the Eastern
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Mediterranean. It is based on vertical component Rayleigh surface wave dispersion
measurements from earthquakes and ambient noise cross-correlations. This model covers all
but the northern and eastern ~5° of our target domain (Figure 1) and extends to 105 km depth.
MEC-1 benefits from data from at least two major national seismic networks that are not
openly available (International Institute of Earthquake Engineering and Seismology in Iran and
the Saudi Geological Survey in Saudi Arabia). Because MEC-1 is based on vertical component
Rayleigh wave data it constrains vertically polarized shear wavespeeds, vsv, and unfortunately
has no constraints on transversely polarized shear wavespeeds, vsi, compressional wavespeeds,
vp, and density, p. Without constraints on anisotropy in MEC-1, we interpreted MEC-1 as an
isotropic model. Compressional wavespeeds and density were scaled from vs following Brocher
(2005). The model was tapered (with a 2° taper width) into isotropic PREM (Dziewonski and

Anderson, 1981) to span the computational domain (Figure 1a, inset).

The Collaborative Seismic Earth Model version 2.0 (CSEM, Noe et al. 2022) is a global
model based on multiscale adjoint waveform tomography following the approach of Afanasiev
et al. (2016) and Fichtner et al. (2018). This model spans our domain and depth range and
includes all the necessary material properties including radial anisotropy, density and
attenuation. Itis based on several regional models that intersect our target domain and

updates the global material properties by waveform inversion.

In order to objectively select a starting model, we computed the waveforms for the

three models described above and all events and paths in the computational domain.
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Waveform simulations relied on the Salvus spectral-element method (Afanasiev et al., 2019)
and the Salvus waveform modeling and inversion package (mondaic.com). We considered five
period bands with minimum periods of 50, 40, 30, 25 and 20 seconds and a maximum period of
100 seconds. All observed and simulated waveforms were compared to define time windows
for adjoint sources and gradients similar to the FLEXWIN algorithm of Maggi et al. (2009). We
used the data selection method of Krischer (2015b) following recent studies (Rodgers et al.,
2022; Doody et al., 2023). The algorithm finds time windows where agreement in amplitude
and phase is good enough so that misfit can be measured, adjoint sources defined and
sensitivity kernels can be computed. Waveforms with noise, interfering events, incorrect

instrument response or amplitude errors were rejected by the algorithm.

Using these data selections based on window picking, two subsets were created from all
events: one for the inversions and another for validation of the resulting model. Initial analysis
of the waveform fits (confirmed below) showed that the SPiRaL model performed better than
the MEC-1 and CSEM models across the period bands considered. We then choose 192 events
for the inversion using windows picked with the SPiRaL model in the period band 50-100
seconds that met two criteria: each event had at least 10 receivers with windows and half of
the receivers that recorded the event had windows. These choices were made to select the
most well recorded events that best cover the domain. Similar event lists were found with the
other models, though fewer and/or shorter windows were picked. A validation data set was

created with 66 events from the remaining events also requiring that windows were picked on

10
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least 10 receivers. The inversion and validation events are shown in map view in Figure 2 and

these events span the domain with similar coverage.

We then used metrics of the resulting windows to evaluate model performance.
Specifically, we measured the time-bandwidth product (TBP) of the picked windows as
introduced in Rodgers et al. (2022). The TBP is proportional to the information content in the
selected windows, hence the larger this number for a fixed data set the better a model is at
explaining the observed seismograms. Figure 4 shows the TBP as a function of the minimum
period for the three models considered and all 327 events. For a given model, the TBP
generally increases as the minimum period decreases due to the increase in bandwidth and the
consistency of waveform agreement. We see how the TBP for the SPiRaL and MEC-1 models
closely track each other except for the shortest minimum period of 20 seconds and that the
CSEM model has slightly lower TBP values compared to other models. We chose to use the
SPiRaL model for our starting model based on the TBP performance and that it includes radial
anisotropy and covers the entire target domain and depth range. Note that we also include the
TBP for the resulting MESWA model after inversion iterations in Figure 4, which shows how our
AWT approach results in a model that improves waveform fits over the starting model and will
be discussed below. Note furthermore that the MESWA model provides good performance

(large and increasing TBP) for periods shorter than the those used in the inversion (30 seconds).

Figure 5 shows the events, stations and path coverage of the inversion and validation

data sets based on the windows selected from synthetics from the SPiRaL model in the period

11
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band 50-100 seconds. Although the validation data set has fewer paths (only about 25% of the

inversion data set) the coverage is very similar.

Adjoint Waveform Tomography Methodology

We followed a multiscale approach (Bunks et al., 1995; Fichtner et al. 2013) similar to
other AWT studies (e.g. Tape et al., 2009; Zhu et al. 2015; Wehner et al., 2021; Rodgers et al.,
2022; Doody et al., 2023). We chose to start with the longest periods (50-100 seconds) in order
to make adjustments to the large-scale structure including the deep structure sampled by long
period surface waves. We then reduced the minimum period and relaxed the smoothing to
increase sensitivity to finer-scale structure in six inversion stages. Within each inversion stage
the time windows and smoothing parameters were fixed. Inversions relied on the L-BFGS
algorithm (Nocedal and Wright, 2006; Kennett and Fichtner, 2021) which has been shown to
improve convergence (Modrak and Tromp, 2016; Liu et al., 2022). More specifically, we ran a
trust-region L-BFGS inversion algorithm including a smoothing operator based on the diffusion
equation into the initial approximation of the Hessian (Bunks et al., 1995; Conn et al., 2000;
Boehm et al., 2018). The diffusion equation is solved individually for all inversion parameters as
an initial condition. Because seismic wavespeeds vary much more strongly with depth than
laterally, isotropic smoothing can have the undesirable effect of smearing sensitivity across a
broad depth range. The smoothing operator is designed to be anisotropic with shorter
smoothing length in the radial direction, 4,, than in the arc directions, Ay and 44. The

smoothing length is defined as a fraction of the local vsy wavelength in spherical coordinates.

12
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Within each stage we allowed the inversion to iterate until it converged by failing to

further reduce the misfit or by the trust region shrinking to small values (indicating the descent

direction is poorly determined). The final model which we refer to as MESWA was obtained as

the seventh (7t") and final iteration from the sixth (6!") inversion stage. The inversion stages

and various parameters described in this section are provided in Table 1.

Table 1. Parameters describing the six inversion stages used to develop MESWA. Receiver

tapers follow Ruan et al. (2019) and additionally include minimum and maximum taper

distances for receiver weighting. Source/receiver cutouts are given in km. Smoothing lengths
(I¢ 1, If) are given in units of the local vsy wavelength in spherical coordinate directions. The

Region-of-Interest (ROI) depth is the shallowest depth for which model updates are included.
“Iterations in stage” tabulates the total number of unique iterations for each stage.

Stage Period
Band
(sec)

50-100
50-100
40-100
40-100
30-100
30-100

u b~ wWNPEFEL O

Receiver

Tapers

(min/max,

km)
180/400
180/400
150/300
150/300
100/225
100/225

Cutouts
(source/receiver,

km)

250/50
250/50
220/40
220/40
160/30
160/0

Smoothing
lengths

le g Lo

0.2,1.0,1.0
0.2,0.5,0.5
0.2,0.5,0.5
0.2,0.5,0.5
0.2,0.5,0.5
0.2,0.5,0.5

ROI
Depth
(km)

25
20
20
10
10
0

10

11
11

Iterations
in stage

The data set was updated by re-picking the time windows at the start of each inversion

stage. This illustrated the improvement in the model by the general increase of the time

duration (window length) of windows picked for each inversion stage and the TBP of selected

time windows (Table 2).
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Table 2. Window statistics for the 6 inversion stages described in Tablel and the text: n_rec is
the number of receivers with windows; n_windows is the number of windows; window length is
the total time duration of windows in days; and the time-bandwidth product of selected
windows is in days-Hz.

stage n_rec n_windows window length (days) time-bandwidth product (days-Hz)

0 stage0 13713 34659 58.386877 0.681180
1 stage_1 14344 36893 65.010631 0.758457
2 stage 2 15041 50778 73.064618 1.217744
3 stage_ 3 15127 47673 71.732055 1.195534
4 stage_4 15715 59373 68.976879 1.724422
5 stage 5 15776 60930 73.138763 1.828469

Inversions solved for updates to the wavespeeds and density (vsy, vsu, vev and vey and p).
The long periods waveforms considered here were dominated by surface waves. Rayleigh
waves provided some sensitivity to compressional wavespeeds, but these wavespeeds and their
anisotropy were likely poorly resolved, particularly without isolating P-waveforms over broad
distances. While density can have an effect on waveforms (Ptonka et al., 2016; Blom et al.,
2017), our misfits were based on phase (arrival time) and were most sensitive to wavespeeds.

Our analysis here is focused on imaging shear wavespeeds.

In this study, we used time-frequency phase misfit for the waveform misfit objective
function (Fichtner et al., 2009, 2013; Fichtner, 2010; Krischer et al., 2015b; 2016). This method
decomposes the observed and simulated waveforms into the time-frequency domain following
Kristekova et al., (2006; 2009) where phase difference of different frequency components is
measured. Time-frequency phase misfits have the advantage of tracking time-varying phase
errors between the observed and synthetic waveforms that can occur in dispersed (e.g. surface

waves) or interfering signals (e.g. triplicated arrivals, scattered waves). Sensitivity kernels

14
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based on these frequency-dependent misfits include information across the entire range of
periods and wavelengths in the bandwidth considered. This misfit function is thus multiscale
similar to other misfits such as generalized seismological data functionals (Gee and Jordan,

1992), multitaper (Tape et al., 2010) or exponentiated phase (Bozdag et al., 2011).

Once the event sensitivity kernels were computed, gradients for the volumetric
inversion for model wavespeed updates were computed. These include various manipulations
to mitigate potential problems due to: the outsized influence of near-source and near-receiver
structure; the uneven distribution of receivers recording each event; and smoothing of rapid
spatial variations in the kernels. To mitigate the outsized influence of misfits at short epicentral
distances from the event, we applied a tapered weight to the near-source receivers. The taper
function has two values: a minimum distance within which receiver contributions to the event
kernel are zero; and a maximum distance beyond which receivers can contribute fully to the
kernel (receiver taper values in Table 1). To address the uneven station distribution, we
followed the strategy proposed by Ruan et al. (2019) and applied weights to the misfit
measurements based on the density of recording stations. In this scheme, isolated stations
away from the source contribute fully to the event kernel and densely clustered stations
contribute less. To address the high sensitivity of waveforms to near-source and near-receiver
structure, we use a cut-out to simply set the kernel values to zero within a spherical volume
around the source and receiver. The cut-out radii for each inversion stage are compiled in
Table 1. Smoothing of the gradients for inversion (after summation of event kernels) was

performed as described above with a diffusion equation applying an anisotropic smoothing
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316  operator with characteristic length scales proportional to the local vsy wavelength. Finally, we
317  applied the “Region of Interest” (ROI) approach described in Rodgers et al. (2022) to only solve
318 for wavespeed updates below a certain depth for each inversion stage. This started at 25 km
319 and was reduced and then eliminated as the inversion stages progressed. The relative misfit
320  reductions within each stage of the six inversion stages are plotted in Figure 6. Within each
321 inversion stage except the final (sixth) one we obtained 10-25% misfit reduction. Initial

322  iterations in an inversion stage obtained larger reductions and these reductions decreased as
323  theiterations approached convergence.

324

325 To measure performance in terms of waveform fits we computed the misfit reduction
326  between the final (MESWA) and other models relative to the SPiRaL starting model in the final
327  period band 30-100 seconds. For this analysis we computed both the time-frequency phase
328  (TF) misfit used in the inversion and the normalized L2 (NL2) misfit for the windows selected
329  with our final model. Figure 7a shows the average relative misfit reduction for all inversion
330 events (sorted from high to low reduction corresponding to most to least improved fit). These
331  show that some events have TF misfit reduction as high as 75% while others have only a smaller
332  10-20% misfit reduction. The average TF misfit is 59.7% and the NL2 misfits closely tracks the
333 TF misfits with an average misfit of 55.3%. This is encouraging and quantifies the model

334  performance in terms of the waveform misfit reduction for all data from the 192 events

335  considered in the inversion. Also shown in Figure 7a are the event-averaged misfit reductions

336 relative to the SPiRaL starting model of the two other models considered (MEC-1 and CSEM2.0).
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These models perform much more poorly compared to SPiRaL and MESWA and these plots

provide clear evidence that the choice of SPiRal for the starting model was justified.

A more objective measure of model performance can be found by analyzing
performance of MESWA with the independent validation data that was not used in the
inversion. These paths (Figure 5b) are representative of the paths for the inversion data set
shown in Figure 5a. The event-averaged relative misfit reductions for our MESWA model
relative to the starting model for these events are shown in Figure 7b. The range of these misfit
reductions are comparable with those of the inversion data set and the mean values are only
slightly smaller (1-2%). This indicates that our final model provides waveform fits for the
validation data set that are as good as those obtained in the inversion. This gives us confidence

that the resulting model is not a result of overfitting the inversion data.

Another metric of model performance is seen in the time-bandwidth products (TBP) of
selected waveform segments plotted in Figure 4. Our MESWA model consistently shows larger
TBP than the SPiRalL (starting), MEC-1 or CSEM models, with the TBP values for MESWA about
40% higher than those for SPiRaL. This indicates that MESWA model produces simulated
waveforms that agree better than the other models as measured by the selected window
metrics. Note that the inversions described above were performed with a minimum period of
30 seconds in the sixth and final inversion stage. However, the TBP values show that the
MESWA model has larger TBP values than the SPiRal starting model across the bandwidth

shown including periods shorter than 30 seconds. This suggests that the AWT approach
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adopted here provides models that can produce good waveform fits for shorter periods than
those used in the inversions. It is appealing feature that AWT models provide good fits for

periods shorter than those consider in the inversions.

Results

We now describe the results of the waveform inversions described in the previous section. We
start by showing waveforms to illustrate the improved fits obtained with the inversions. This

will be followed by presentation of the imaged shear wavespeed and anisotropy structure.

Waveform Fits

Firstly, we show waveforms for a few stations that recorded a single event and synthetics for
the four models discussed: our MESWA (final inversion model); the SPiRaL (Simmons et al.,
2021) starting model, MEC-1 (Kaviani et al., 2020) and CSEM (Noe et al., 2023). Figure 8a shows
a map of an Mw 5.90 earthquake that occurred 2003-08-21 in Southern Iran along with selected
stations that recorded the event with good signal-to-noise ratios on three components. The
observed and synthetic waveforms for the four models are shown as record sections in Figure
8b-e. Waveforms shown in this section are scaled with distance but each pair of observed and
synthetic are shown with true relative amplitudes. The MESWA model (Figure 8b) shows the
best fits across distances and components compared to the other models: SPiRaL (Figure 8c);
MEC-1 (Figure 8d) and CSEM (Figure 8e). Generally, waveform misfits (errors in phase

alignment) tend to be small at short distances and increase with distance as phase errors
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causing misalignment to accumulate along the path or the entire ‘banana-doughnut’ sensitivity
kernel of the waveform. The MEC-1 and CSEM models show clear phase errors approaching
half a cycle or more for surface waves at the longest distances. Not surprisingly the MEC-1
model fits Love waves on the transverse component very poorly. Recall MEC-1 is based on
Rayleigh wave and P-wave receiver function data, is most sensitive to vertically polarized shear
wavespeeds, vsy, and does not contain constraints on vsi. MEC-1 also performs poorly for the
body waves. The SPiRaL starting model fits the observed waveforms shown in Figure 8c better
than the MEC-1 or CSEM models, consistent with the misfit reduction analyses presented in the
previous section. However, the MESWA model fits the body waves and dispersed surface
waves at long range better than SPiRal, also consistent with the misfit reduction analyses.
Note the good fit of first motions and amplitudes suggests the GCMT source parameters (i.e.,

moment tensor, depth, Mw) are reasonably good.

We show additional examples of waveform fits for the MESWA and SPiRaL models for a few
events scattered around the domain with paths sampling the diverse tectonic structures of the
region. Figure 9 shows an My 6.14 event in Crete, Greece (2011-04-01). The waveforms for
the MESWA model (Figure 9b) show good fit to the Rayleigh waves at stations GO.AKH
(Georgia), Il.RAYN (Saudi Arabia) and Il.ABKT (Turkmenistan). In particular the path to Il.ABKT is
better fit by MESWA (Figure 9b) than SPiRaL (Figure 9c) for a path crossing the thick sediments

of the Caspian Sea known to complicate surface wave propagation (Priestley et al, 2001).
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Figure 10 shows an Mw 5.98 event on the Turkey-Iran border region (2020-02-23). The
fundamental mode surface waves are well-fit by the MESWA model, particularly at longer
distances. Phases errors for Rayleigh waves for the SPiRaL model (Figure 10c) at stations
CQ.PARA (Cyprus), KO.GULT (Tirkiye), HT.ALN and HL.VAM (Greece) are corrected for MESWA
(Figure 10b). Paths crossing the Caspian Sea to Central Asia (KR.BTK, KR.ARSB. KR.NRN,
Kyrgyzstan) show better agreement of the fundamental mode and scattered surface waves for
the MESWA model (Figure 10b). Similar results are seen for an My 6.04 Afghanistan-Tajikistan
border region (2001-11-23) shown in Figure 11. The paths crossing the Caspian Sea: IU.GNI
(Armenia); IL.KIV (Georgia); GE.ISP (Turkiye) are well fit by the MESWA model as are paths

crossing the Iranian Plateau and Zagros Mountains: GE.CSS (Cyprus) and II.RAYN (Saudi Arabia).

Finally, we show two events from the southwestern and southern parts of the domain:
an My 5.54 Red Sea (2013-07-08) in Figure 12 and an Mw 5.96 Eastern Gulf of Aden (2002-09-
01) in Figure 13. These events provide paths crossing the Arabian Shield and Arabian Platform
at closest distances with some paths extending across the Turkish and Iranian Plateaus and
beyond. The closest paths sampling Arabia and more distant paths sampling adjacent tectonic
regions are better fit by the MESWA model than SPiRaL. The paths from the Red Sea to central
Asia (IU.KBL, Kabul Afghanistan; 5C.MAR2, Tajikistan; and KR.BTK, Kyrgyzstan ) show Rayleigh
waves poorly fit by SPiRaL (Figure 12b) that are fit better by MESWA (Figure 12c). The path
from the Gulf of Aden to Il.ABKT (Turkmenistan) crossing the Arabian Platform, continental
collision along the Zagros Mountains and Central Iran Block is poorly fit by SPiRalL with phase

errors for the Rayleigh waves approaching half a cycle (Figure 13c). However, the accumulated
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phase errors for this long path are adjusted by the iterative waveform inversion performed
here and the resulting MESWA model fits the waveforms better (Figure 13b). Nonetheless
there are dispersed, later arriving and shorter period surface waves that could be fit better with

additional inversion iterations and more data.

Maps and Cross-Sections

We now show the imaged 3D structure as the isotropic shear wavespeed, vg=

2 2 2
/@, and anisotropy parameter, g = (ZS—H) , (Panning and Romanowicz, 2006). Figure
SV

14-18 show the vs and &s structure in mapview for the SPiRaL and MESWA models and the
natural logarithm ratio (MESWA/SPiRal) at depths of 2, 10, 30, 60 and 100 km below to sea
level. As shown below the MESWA model is broadly similar to the SPiRal starting model, but
adjustments made to the 3D wavespeed structure during the multiscale waveform inversion
process have improved the waveform fits as described in the previous sections. Generally the
updates to the SPiRaL model obtained with the adjoint waveform tomography methodology
described above tends to increase the amplitude of lateral variations in vs and &s structure and

reduce the scale-length of variations.

At 2 km in the upper crust (Figure 14) the main adjustments to SPiRaL (Figure 14c) are a
reduction by more than 5% of vs in the sedimentary structures of the eastern Mediterranean
Sea, Caspian Sea, Arabian Platform, the (Arabian/Persian) Gulf and the continental margins.
Shear wavespeeds for MESWA are increased relative to SPiRalL at this depth for the Turkish

Plateau, Central Iran Block and Central Afghan Highlands. MESWA also reveals a general
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reduction of &s across the domain (Figure 14f). At this depth &s < 1 (vsv > vsy) for most of the
continental regions. Note that at this depth adjustments are only made to the solid Earth with

topography and bathymetry above 2 km below sea level.

Figure 15 shows the vs and &s structure at 10 km below sea level. At this depth shear
wavespeeds are broadly similar between SPiRal (Figure 15a) and MESWA (Figure 15b). The
oceanic regions (Arabian Sea, Gulf of Aden, Red Sea) have much higher vs values corresponding
to lower crust or mantle material, while the continental regions show lower vs values with
significant variability (standard deviation of about 7%). Adjustments to vs structure also show
reductions of 5% or more in regions of sedimentary basins (eastern Mediterranean Sea, Caspian
Sea and Arabian Platform, Gulf) similar to 2 km depths and suggesting the long-period
waveforms considered here are weakly sensitive to shallow crustal structure. At this depth the
waveform inversion process requires the scale-length of wavespeed adjustments to vs and &s
(Figure 15c and 15e) to have shorter wavelength variability that for SPiRaL. The MESWA model
shows a band of low vs values tracing a long arc across the Turkish Plateau, Zagros and Alborz

Mountains and the Sulaiman Fold Belt.

The 30 km depth cuts through the continental Moho and the oceanic regions are clearly
represented by mantle vs values (> 4000 m/s, Figure 16). Low vs values are seen in the Turkish-
Iranian Plateau, Afghanistan, Pakistan and the Hindu Kush corresponding to thickened
continental crust. The Arabian Shield reveals higher vs values than the Arabian Platform as seen

in previous waveform modeling studies (Rodgers et al., 1999).
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At 60 km depth the MESWA model reveals low vs values surround much of the Arabian
Plate along the active spreading centers of the Red Sea, Gulf of Aden and Owen Fracture Zone,
the Ethiopian/Afar Hotspot as well as the continental transform of the Dead Sea Fault (Figure
17b). These areas of low vs were intensified from the SPiRalL model as seen in the natural
logarithm ratio map (Figure 17c). Low vsvalues underlaying the Arabian Shield and Afar as has
been reported in several tomographic studies (e.g. Park et al., 2007; 2008; Hansen and Nyblade,
2013). These low vs values at mantle depths follow the Mecca-Madina-Nafud (MMN) volcanic
line. Higher vs values were intensified at this depth in the Zagros Mountains, Central Iran Block

and Makran subduction zone (Figure 16c).

The low vs values seen at 60 km are broadly similar to those seen at 100 km depth
(Figure 18b). The high vs underlaying the eastern Arabian Platform and Zagros Mountains at 60
and 100 km depth is consistent with strong continental lithosphere participating in active
continental collision. Higher than average vs follows Makran subduction at mantle depths

(Figures 17b and 18b).

We now visualize the SPiRaL and MESWA models with cross-sections of the isotropic
shear wavespeed, vs, and anisotropy parameter &s. Figure 19 shows cross-sections and
locations: A-A” a west-east section along latitude of 34°; and B-B’ is a west-east section along
longitude of 28°. For each section we show the vs and &s structure of the SPiRalL starting model

and our final MESWA model from the surface to a depth of 400 km. The A-A’ section cuts
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through the Hellenic Back-Arc, Turkish Plateau, Iranian Plateau, Caspian Sea, Kopet Dagh, Turan
Platform and Hindu Kush (Figure 19a). Transitions in the vs structure clearly mark the
geologic/tectonic boundaries. As seen above in the map view plots (Figures 14-18), the MESWA
model intensifies the high and low vs anomalies, sharpens some boundaries and adds smaller
scale variations, particularly in &s, relative to SPiRaL. Positive anisotropy (vs4 > vsy) is revealed

under southern Caspian Sea, Kopet Dagh and Turan Platform.

The B-B’ cross-section (Figure 19d) crosses the Nubian Shield, northern Red Sea, Arabian
Shield, Arabian Platform, Zagros Mountains, Makran subduction zone, Sulaiman Fold Belt to the
Indian Shield. The Red Sea and Arabian Shield are underlain by low vs, consistent with thin
lithosphere (e.g. Hansen et al., 2008). The Arabian Platform and Zagros Mountains are
underlain by high vs, with the strongest feature just north of the Straights of Hormuz separating
the Zagros continental collision from the Makran oceanic subduction. High vs is continuous
under the Makran and Indus River Plain on the Indian Shield. The positive radial anisotropy is

strongest under the eastern Arabian Platform, Gulf and Zagros Mountains.

We show south-north sections in Figure 20. The C-C’ south-north section along
longitude of 44° cuts through the Afar Hotspot, the Arabian Shield, the Arabian Platform,
Turkish-Iranian Plateau, Caucasus and stable Eurasian Plate (Figure 20a). Broadly, MESWA vs
anomalies track SPiRaL with some adjustments, but the &s structure of MESWA shows smaller
scale features relative to SPiRaL (Figure 20bc). The boundary between the Arabian Shield and

Platform is sharper and more vertical in the MESWA image on this longitude. The shallow
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mantle under the Turkish-Iranian Plateau reveals low vs and closely follows the Bitlis Suture

marking the Arabian-Eurasian plate boundary. Low vs in this region is associated with low Pn
wavespeeds and high Sn attenuation (e.g. Hearn and Ni, 1993; Rodgers et al., 1997). This low
mantle vs feature continues north to the boundary between the Caucasus Mountains and the

Scythian Platform (Russia).

The south-north cross-section along longitude 60° crosses the Owen Fracture Zone,
perpendicular to the strike of Makran subduction, the Lut Block, eastern Iran, the Kopet Dagh
and Turan Platform. The Owen Fracture Zone is underlain by low vs in the upper 200 km of the
mantle and this continues north to the Makran subduction zone. High vs is imaged beneath the
Makran as a continuous feature from below the Moho to 400 km depth. Eastern Iran is
underlain by low vs, at depths of 100-300 km in the upper mantle extending north of the Kopet
Dagh into the Turan Platform. Strong positive anisotropy us imaged beneath the Turan

Platform (Figure 20f).

Conclusions

In this study we applied adjoint tomography to a large region of the Middle East and
southwest Asia using only openly available broadband waveform data. The multiscale inversion
approach results in modifications to the SPiRal starting (Simmons et al., 2021) and the
minimum period of waveforms is reduced from 50 seconds to 30 seconds. While it may be

possible to further reduce the minimum period the highly uneven path coverage of the limited
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openly available data may not support resolution of smaller-scale features. The resulting model
provide quantitatively better waveform fits in terms of the time-bandwidth product
(information content, Figure 4) and misfit measurements (Figure 7). This is illustrated in
example waveform fits for paths sampling the diverse tectonic provinces of study area (Figures
8-12). The imaged structure is illustrated in the isotropic shear wavespeed, vs, and anisotropy
parameter, xs, as shown in map view (Figures 14-18) and cross-sections (Figures 19-20). We see
strong correlation of the imaged vs structure with tectonic/geologic features as is seen in the
SPiRaL model. Relative to the SPiRalL starting model, MESWA generally infers smaller scale-
length variation of shear wavespeeds and much smaller scale-length variations in anisotropy.
We also see the amplitude of shear wavespeed anomalies tends to increase (i.e., higher highs

and lower lows).

The MESWA model presented in this report shows what can be done with earthquake
waveform tomography in a region with highly uneven coverage of openly available broadband
data. The event (Figure 1) and station (Figures 2) coverage are dense in some regions and non-
existent in others. Figure 5a shows the path coverage used in the inversion. This case is well-
suited for the station weighting scheme used in previous inversions (e.g. Wehner et al. 2020;
Rodgers et al., 2022; Doody et al. 2023). In this scheme, misfits from areas of dense station
sampling are down-weighted and areas of sparse sampling are upweighted. These weights
directly impact the contributions to the gradients so that we do not fit data in densely sampled

region at the expense of sparsely sampled regions.
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The MESWA model presented in this report demonstrates effective improvements in
waveform fits for minimum periods of 30 seconds. The time-bandwidth product (TBP)
measured from picked windows shows that MESWA produces longer time-segments of good
waveform correlations for periods below 30 seconds compared to the other models considered
(Figure 4). It remains for further work to continue inversion iterations with the current openly
available data set to investigate if further details can be imaged. Alternatively, adding
waveform data from the many seismic networks from the region that do not make their data
available (so-called “closed” networks) could greatly improve the resolution of smaller scale-
length features, reduce the minimum period and increase the TBP of waveform fits. Many
tomography and structural studies of the region have shown the values of closed network data
for imaging details of seismic wavespeed variations. We expect similar benefits would be found
applying adjoint waveform tomography with closed network data folded into the analysis of

open data described here.

Finally, the MESWA model described in this study could be used for long-period
waveform simulations. The most important practical application of the model could be for
source characterization using moment tensor inversion. Greens functions for 3D models have
been shown to provide better waveform fits and reduced uncertainties in source type estimate
inversion (Liu et al., 2004; Covellone and Savage, 2012; Zhu and Zhou, 2016; Sawade et al.,
2022; Chiang et al., 2023; Doody et al., 2023). For example, the MESWA model could be used
to model the 1998 nuclear explosions in India and Pakistan (Barker et al., 1998) or sub-crustal

events in the Zagros Mountains and Makran subduction zone (e.g. Engdahl et al., 2006).
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Figures and Captions

Figure 1. Map of the Middle East and Southwest Asia (MESWA) study area showing major
geologic provinces (labels), tectonic plate boundaries (red lines), Pleistocene and Holocene
volcanic centers (yellow and orange diamonds, respectively). Abbreviations for tectonic
features are: ACP, Afghanistan Central Highlands; Alb, Alborz Mountains; ArPl, Arbaian
Platform; AS, Arabian Shield; B Sea, Black Sea; C, Caucasus; CIB, Central Iranian Block; GoO, Gulf
of Oman; HK, Hindu Kush; KD, Kopet Dag; LB, Lut Block; Med. Sea, Mediterranean Sea; MF,
Mesopotamian Foredeep; NAF, North Anatolian Fault; OFZ, Owen Fracture Zone; SFB, Sulaiman
Fold Belt; TP, Turkish Plateau; TuP, Turan Platform; Z, Zagros Mountains. The inset global map

shows the Salvus domain (blue line) with the target domain (black line).
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Figure 2. Maps of earthquake moment tensors for (a) 192 events used in the inversion and (b)

66 events used for validation.
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Figure 3. Map of the open access seismic stations used in this study for (a) permanent and (b)

temporary networks.
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(this study).

38



924

925

926

927

928

929

930

931

Relative Misfit

Novess 192 . - Rocevef
Nyt 973 \ / © Events | |

Noatns: 14360 S S ) N - .= Noguns: 3716

the SPiRaL starting model in the period band 50-100 seconds.

MESWA Relative Misfit Evolution

Figure 5. Map of events, stations and paths for the (a) inversion and (b) validation data sets for

1.1
1.0 A o o
o \,.‘“
(o]
o
0.9 % %o %00
° O o ° (e]
S %o
Oo o
0.8 + o
o
o
o]
0.7 A
stage 1 O stage 2 O~ stage 3 —Q@— stage 4 —@— stage 5
0-6 T T T T T T T T
12 18 24 30 36 42 48 54
Iteration

Figure 6. Misfit evolution as a function of iteration number for the relative misfit reduction

within each inversion stage (colored symbols).

39



932

933

934

935

936

937

938

939

940

MESWA TF mean: 0.597
MESWA NL2 mean: 0.553

—e— MESWATF
—&— MESWA NL2

©- MEC-1TF
@~ MEC-1 NL2

—e— CSEM TF
—&— CSEM NL2

Misfit Reduction
)
o
3

I
°
N
a

-0.50

-0.75

-1.00
0 10 20 30 40 50 60

70 80 90 100 110 120 130 140 150 160 170 180 190
Event Index

(b) 1.00

Misfit Reduction
o
°
S

-0.25

-0.50

-0.75

-1.00

MESWA TF mean: 0.574
MESWA NL2 mean: 0.542
sad,

B8aoBa.

~o— CSEMTF
—&— CSEM NL2

~e— MESWATF
—@— MESWA NL2

b acns VVW'"W

©- MEC-1TF
@ MEC-1 NL2

Event Index

Figure 7. Event-averaged time-frequency phase (TF) and normalized L2 (NL2) misfit reductions

for our final MESWA model (green) relative to the SPiRaL starting model for the (a) inversion
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942  Figure 8. Examples of waveform fits for an Mw 5.90 earthquake in Southern Iran (date: 2003-
943  08-21). (a) Map of the event (moment tensor) and stations (blue triangles) for which waveforms
944  are shown. Three-component (vertical, radial and transverse) observed (black) and synthetic
945  (colored) waveforms filtered 30-100 seconds for four models: (b) MESWA (green); (c) SPiRaL
946  (blue); (d) MEC-1 (teal) and (e) CSEM (red).
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Figure 9. Examples of waveform fits for an Mw 6.14 event in Crete, Greece (date: 2011-04-01).

(a) Map of the event (moment tensor) and stations (blue triangles) for which waveforms are

shown. Three-component (vertical, radial and transverse) observed (black) and synthetic

(colored) waveforms filtered 30-100 seconds for two models: (b) MESWA (green) and (c) SPiRaL

(blue).
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Figure 10. Examples of waveform fits for an Mw 5.98 event on the Turkey-Iran border region

(date: 2020-02-23). (a) Map of the event (moment tensor) and stations (blue triangles) for

which waveforms are shown. Three-component (vertical, radial and transverse) observed

(black) and synthetic (colored) waveforms filtered 30-100 seconds for two models: (b) MESWA

(green) and (c) SPiRaL (blue).
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Figure 11. Examples of waveform fits for an Mw 6.04 Afghanistan-Tajikistan border region
(date: 2001-11-23). (a) Map of the event (moment tensor) and stations (blue triangles) for

which waveforms are shown. Three-component (vertical, radial and transverse) observed

(black) and synthetic (colored) waveforms filtered 30-100 seconds for two models: (b) MESWA

(green) and (c) SPiRaL (blue).
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Figure 12. Examples of waveform fits for an Mw 5.54 Red Sea (date: 2013-07-08). (a) Map of

the event (moment tensor) and stations (blue triangles) for which waveforms are shown.

Three-component (vertical, radial and transverse) observed (black) and synthetic (colored)

waveforms filtered 30-100 seconds for two models: (b) MESWA (green) and (c) SPiRaL (blue).
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Figure 13. Examples of waveform fits for an My 5.96 Eastern Gulf of Aden (date: 2002-09-01).

(a) Map of the event (moment tensor) and stations (blue triangles) for which waveforms are

shown. Three-component (vertical, radial and transverse) observed (black) and synthetic

(colored) waveforms filtered 30-100 seconds for two models: (b) MESWA (green) and (c) SPiRaL

(blue).
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Figure 14. Map of the isotropic shear wavespeeds, vs, at depth of 2 km below sea level for (a)
the SPiRaL (Simmons et al., 2021) starting model and the (b) MESWA with (c) the natural
logarithm ratio of vs (MESWA/SPiRaL). Also shown are maps of the anisotropy parameter, &, in
the same fashion: (d) SPiRaL starting model; (e) MESWA and (f) the natural logarithm ratio of &s

(MESWA/SPiRal). Also shown are volcanic centers and Makran slab contour (Figure 1).
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Figure 15. Same as Figure 14, but for a depth of 10 km.
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992  Figure 16. Same as Figure 14, but for a depth of 30 km.
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995  Figure 17. Same as Figure 14, but for a depth of 60 km.
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998  Figure 18. Same as Figure 14, but for a depth of 100 km.
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Figure 19. West-east cross-sections: (a) map of section A-A’; (b) vs and &s for the SPiRaL starting

model along A-A’; (c) vs and &s for the MESWA model along A-A’; (d) map of section B-B’; (e) vs

and &s for the SPiRaL starting model along B-B’; (f) vs and &s for the MESWA model along B-B’.
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Figure 20. South-north cross-sections: (a) map of section C-C’; (b) vs and &s for the SPiRaL

starting model along C-C’; (c) vs and &s for the MESWA model along D-D’; (d) map of section D-

D’; (e) vs and &s for the SPiRaL starting model along D-D’; (f) vs and &s for the MESWA model

along B-B'.

53



