

Greenhouse Gases: Science and Technology / Volume 13, Issue 3 / p. 493-504

Original Research Article

Mapping existing wellbore locations to compare technical risks between onshore and offshore CCS activities in Texas

Tip A. Meckel , Ramón H. Treviño, Susan D. Hovorka, Alex P. Bump

First published: 30 April 2023

<https://doi.org/10.1002/ghg.2220>

Abstract

Carbon dioxide capture and geologic storage (CCS; geologic sequestration) is a promising technology for reducing anthropogenic greenhouse gas emissions to the atmosphere from industrial point sources. Aspects of CCS have been investigated for over two decades, and many large- and small-scale geologic storage field demonstration projects are now underway globally. Interest in offshore CCS has been increasing in recent years (e.g., European Union, Australia, Japan, and the United States). Deep geologic storage in offshore settings is analogous to onshore CCS activities in many respects (i.e., geologic and geotechnical aspects), but is distinct from previously explored seabed sediment CO₂ storage or deep marine dissolution). Given the large subsurface geologic storage volumes available in offshore settings, much discussion of offshore CCS is focused on the benefits and risks of such activity compared to onshore settings. Similar to onshore settings, existing (legacy) wells likely present the most direct migration pathway and largest risk of noncontainment in offshore settings. As part of current studies to evaluate geologic storage options in offshore settings along the Texas coast and greater Gulf of Mexico (GoM), mapping of the geographic distribution and ages of wells in a region containing coastal counties and extending 30 miles offshore Texas indicates that both well spatial density and well age decrease moving from onshore to offshore. Results suggest reduced risk of leakage owing to more rigorous and documented well completion and abandonment practices for these generally younger wells (although many are decades old). A result of decreased well density is that larger areas are available for leasing for CCS projects that avoid legacy wells altogether (> 1 mile from any existing well). The one-mile designation is used as an arbitrary convention, and while it is recognized that this is smaller than a typical area of review (AoR) for permitting, each site will have a different AoR radius for consideration. The combination of large subsurface storage volumes under control of a single landowner and reduced risks

from legacy wells makes offshore CCS attractive in the GoM. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.

References

- 1 House KZ, Schrag DP, Harvey CF, Lackner KS. Permanent carbon dioxide storage in deep-sea sediments. *Proc Natl Acad Sci*. 2006; **103**(33): 12291– 5.
- 2 Herzog HJ. What future for carbon capture and storage? *Environ Sci Technol*. 2001; **35**(7): 148A- 53A. <https://doi.org/10.1021/es012307j> .
- 3 Lu J, Wilkinson M, Haszeldine RS, Fallick AE. Long-term performance of a mudrock seal in natural CO₂ storage. *Geology*. 2009; **37**(1): 35- 38. <https://doi.org/10.1130/G25412A.1> .
- 4 Chadwick RA, Zweigel P, Gregersen U, Kirby GA, Holloway S, Johannessen PN. Geological reservoir characterization of a CO₂ storage site: the Utsira Sand, Sleipner, northern North Sea. *Energy*. 2004; **29**: 1371– 81. <https://doi.org/10.1016/j.energy.2004.03.071> .
- 5 Feenstra CFJ, Mikunda T, Brunsting S. What happened in Barendrecht – Case study on the planned onshore carbon dioxide storage in Barendrecht, the Netherlands. [Internet.] 2010. Available from: <https://www.globalccsinstitute.com/archive/hub/publications/8172/barendrecht-ccs-project-case-study.pdf>
- 6 Elementenergy. One North Sea: a study into North Sea cross-border CO₂ transport and storage. [Internet.] 2010. Available from: https://www.regjeringen.no/globalassets/upload/oed/onenortsea_fulldoc.pdf
- 7 Sustainable Energy Ireland. Assessment of the potential for geological storage of carbon dioxide for the island of Ireland. [Internet.] 2008. [cited 28 March 2011]. Available from: <http://www.seai.ie/>

8 Yorkshire Forward. A carbon capture and storage network for Yorkshire and Humber: an introduction to understanding the transportation of CO₂ from Yorkshire and Humber emitters into offshore storage sites. [Internet.] 2009. [cited 14 March 2011]. Available from: www.yorkshire-forward.com/media-centre/documents/10789

9 O'Brien GW, Tingate PR, Goldie Divko LM, Harrison ML, Boreham CJ, Liu K, et al. First order sealing and hydrocarbon migration processes, Gippsland Basin, Australia: Implications for CO₂ geosequestration. In: PESA Eastern Australasian Basins Symposium III, Sydney, 14–17 September. 2008.

10 Tanase D and Kimishima S. Pilot CO₂ injection into an onshore aquifer in Nagaoka, Japan. *Sekiyu Gijutsu Kyokaishi: J Jpn Assoc Pet Technol.* 2007; **72**(2): 205– 14.

11 Tanaka Y, Sawada Y, Kasukawa T. Tomakomai CCS demonstration project of Japan, CO₂ injection in process. In: 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13 114, 2017: 5836– 46.

12 Magi M. Evaluation study of CCS for the mitigation measure of atmospheric CO₂ and ocean acidification by the global carbon cycle model. *Geo Et Cosm Acta.* 2009; **73**(13): A815.

13 Litynski J, Plasynski S, Spangler L, Finley R, Steadman E, Ball D, et al. U.S. department of energy's regional carbon sequestration partnership program: overview. *Energy Procedia.* 2009; **1**: 3959– 67.

14 Duncan IJ, Anderson S, Nicot JP. Pore space ownership issues for CO₂ sequestration in the US. *Energy Procedia.* 2009; **1**: 4427– 31.

15 Dixon T, Greaves A, Christophersen O, Vivian C, Thomson J. International Marine regulation of CO₂ geological storage – developments and strongly ons of London and OSPAR. *Energy Procedia.* 2009; **1**: 4503– 10, <https://doi.org/10.1016/j.egypro.2009.02.268> .

16 Oldenburg CM and Pan L. Major CO₂ blowouts from offshore wells are strongly attenuated in water deeper than 50 m. *GHG Sci Technol.* 2019. <https://doi.org/10.1002/ghg.1943>

17 Gros J, Schmidt M, Dale AW, Linke P, Vielstädt L, Bigalke N. Simulating and quantifying multiple natural subsea CO₂ seeps at Panarea Island (Aeolian Islands, Italy) as a proxy for potential leakage from seabed carbon storage sites. *Env Sci Tech.* 2019; **53**: 10258– 68, <https://doi.org/10.1021/acs.est.9b02131>

18 Gros J, Schmidt M, Linke P, Dötsch S, Triest J, Martínez-Cabanas M, et al. Quantification of dissolved CO₂ plumes at the Goldeneye CO₂-release experiment. *IJGGC.* 2021. <https://doi.org/10.1016/j.ijggc.2021.103387>

19 Furre A-K, Eiken O, Alnes H, Vevants JN, Kier AF. 20 years of monitoring CO₂-injection at Sleipner. *Energy Procedia.* 2017; **114**: 3916– 26. <https://doi.org/10.1016/j.egypro.2017.03.1523>

20 Hermanrud C, Andresen T, Eiken O, Hansen H, Janbu A, Lippard J, et al. Storage of CO₂ in saline aquifers – lessons learned from 10 years of injection into the Utsira Formation in the Sleipner area. *Energy Procedia.* 2009; **1**. <https://doi.org/10.1016/j.egypro.2009.01.260> .

21 Meckel TA, Feng YE, Trevino RT. High-resolution 3D seismic acquisition at Tomakomai CO₂ storage project, offshore Hokkaido, Japan. *SEG Technical Program Expanded Abstracts:* 4898-4902. 2019. <https://doi.org/10.1190/segam2019-3215012.1>

22 Judd A and Hovland M. *Seabed fluid flow: the impact on geology, biology and the marine environment.* Cambridge, UK: Cambridge University Press; 2007

23 Huang B, Xiao X, Li X, Cai D. Spatial distribution and geochemistry of the nearshore gas seepages and their implications to natural gas migration in the Yiggehai Basin, offshore South China Sea. *Mar Pet Geol.* 2009; **26**: 928– 35.

24 Cathles LM, Su Z, Chen D. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration. *Mar Pet Geol.* 2010; **27**: 82– 91.

25 Espa S, Caramanna G, Bouche V. Field study and laboratory experiments of bubble plumes in shallow seas as analogues of sub-seabed CO₂ leakages. *Appl Geochem.* 2010; **25**: 696– 704.

26 Blackford J, Romanak K, Huvenne VAI, Lichtschlag A, Strong JA, Alendal G, et al., Efficient marine environmental characterization to support monitoring of geological CO₂ storage. *IJGGC*. 2021; **109**. <https://doi.org/10.1016/j.ijggc.2021.103388>

27 Nicot J-P. A survey of oil and gas wells in the Texas Gulf Coast, USA, and implications for geological sequestration of CO₂. *Environ Geol.* 2008; **57**: 1625– 38. <https://doi.org/10.1007/s00254-008-1444-4> .

28 Huerta NJ, Checkai D, Bryant SL. Utilizing sustained casing pressure analog to provide parameters to study CO₂ leakage rates along a wellbore. In: SPE International Conference on CO₂ Capture, Storage, and Utilization, San Diego, CA. 2009. <https://doi.org/10.2118/126700-MS>

29 Brody SD, Grover H, Bernhardt S, Tang Z, Whitaker B, Spence C. Identifying potential conflict associated with oil and gas exploration in Texas State coastal waters: a multi-criteria approach. *Environ Manag.* 2006; **38**: 597– 617.

30 Nordbotten J, Celia MA, Bachu S, Dahle HK. Analytical solution for CO₂ leakage between two aquifers through an abandoned well. *Environ Sci Technol.* 2005; **39**(2): 602– 11.

31 Nordbotten JM, Kavetski D, Celia MA, Bachu S. A semi-analytical model estimating leakage associated with CO₂ storage in large-scale multi-layered geological systems with multiple leaky wells. *Environ Sci Technol.* 2009; **43**(3): 743– 9. <https://doi.org/10.1021/es801135v> .

32 Gasda SE, Bachu S, Celia MA. Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. *Environ Geol*. 2004; **46**: 707- 20.

33 Meckel TA and Hovorka SD. Above-zone pressure monitoring as a surveillance tool for carbon sequestration projects. *Soc Pet Eng*. 2010; **7**. #139720.

34 Celia MA. The role of existing wells as pathways for CO₂ leakage. AAPG National Convention, New Orleans, LA, April 11–14, 2010. Search and Discovery article #80093. 2010.

35 Roberts HH and Carney RS. Evidence of episodic fluid, gas, and sediment venting on the northern Gulf of Mexico continental slope. *Econ Geol*. 1997; **92**: 863– 79.

36 Sawtelle G. Salt-dome statistics. *AAPG Bull*. 1936; **20**(6): 726– 35.

37 EPA. Underground injection control (UIC) program Class VI implementation manual for UIC program directors. EPA 816-R-18-001. 2018. Available from: https://www.epa.gov/sites/default/files/2018-01/documents/implementation_manual_508_010318.pdf

38 Holloway S, Pearce JM, Hards VL, Ohsumi T, Gale J. Natural emissions of CO₂ from the geosphere and their bearing on the geological storage of carbon dioxide. *Energy*. 2007; **32**(7): 1194– 1201.

39 Chadwick RA, Noy DJ, Holloway S. Flow processes and pressure evolution in aquifers during the injection of supercritical CO₂ as a greenhouse gas mitigation measure. *Pet Geosci*. 2009; **15**: 59– 73.

40 Trevino RH, Meckel TA. Geological CO₂ Sequestration Atlas of Miocene Strata, Offshore Texas State Waters, Report of Investigations No. 283. *Bureau of Economic Geology*, 2007; 80 p.

41 Meckel TA, Bump AP, Hovorka SD, Trevino RH. Carbon capture, utilization, and storage hub development on the Gulf Coast. *Greenhouse Gas Sci Technol.* 2021; 0: 1– 14.
<https://doi.org/10.1002/ghg.2082>

[Download PDF](#)

About Wiley Online Library

[Privacy Policy](#)[Terms of Use](#)[About Cookies](#)[Manage Cookies](#)[Accessibility](#)

[Wiley Research DE&I Statement and Publishing Policies](#)
[Developing World Access](#)

Help & Support

[Contact Us](#)[Training and Support](#)[DMCA & Reporting Piracy](#)

Opportunities

[Subscription Agents](#)[Advertisers & Corporate Partners](#)

Connect with Wiley

[The Wiley Network](#)[Wiley Press Room](#)