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CdTe solar cells

O Most competitive PV thin-film technology

- low production cost 50 -

- simple manufacturing Si CdTe
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Doping and defects in CdTe

O Group-V impurities (As, P and Sb) are shallow acceptors in CdTe
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O Observed doping efficiencies are quite low;
source of hole compensation is unknown

Which defects act as hole killers?

Formation energies and stability
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Electronic structure of CdTe

DFT-GGA + SOC
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Band gap drastically underestimated

Hybrid DFT + SOC
(Hartree Fock mixing of 33%)
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Electronic structure of CdTe

Hybrid DFT + SOC

6 Pr-GAA + S0C (Hartree Fock mixing of 33%)
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Hybrid DFT + SOC

Effect of spin-orbit coupling

(Hartree Fock mixing of 33%) Effect of SOC
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f defects

ion energies o
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Formation energy (eV)

Formation energies of native defects in CdTe
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Similar to previous calculations, but not quite
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Cd-poor conditions

O Cdi, Ve and Tecq are the lowest energy
defects in p-type CdTe

O V4 is the dominant acceptor in n-type CdTe

O Vcq is deep acceptor with (0/2-) at 0.36 eV
= cannot lead to p-type conductivity

O Without external dopants, CdTe cannot

be p-type
O Increasing hole concentration must rely
on Group-V (As, P and Sb) doping



Cd interstitial stability

' = FOe_Eb/kBT, assuming I" =5 THz

O Cdihas a very low migration barrier

= unstable
= not likely a compensation center, will move out or form complexes
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Te and Cd vacancies

Migration of Te vacancy

(CdCl2 treatment and annealing at 400-500°C )
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O The vacancies are stable at the room temperature
O Vrelimits hole concentration, acting as a stable compensation center
O V4 is more mobile than Ve
O Ve may survive post-treatment of p-type CdTe layer

J. D. Major et al., Nature 511, 334 (2014)



Summary

O To explain the electronic properties of CdTe, the inclusion of SOC and the additional
Hartree Fock mixing of 33% is required

O For p-type CdTe growth under Cd-rich conditions, Te vacancy is a limiting defect,
decreasing hole concentration

O Cd;is not stable at room temperature and is not a compensation center in p-type CdTe

O Cd vacancies is a deep acceptor; cannot lead to p-type conductivity
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