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Abstract—Skin and proximity effects can cause a significant
drop in the effective leakage inductance of a transformer when
the operating frequency is increased. Although the magnetic
image method-based double-2-D model can calculate the low-
frequency leakage inductance with sufficient accuracy, it is inher-
ently a frequency-independent model. While Dowell’s 1-D model
uses frequency-dependent relations to account for both skin and
proximity effects, its accuracy is severely affected by the assumed
winding geometry. In this paper, a hybrid model is proposed
that uses superposition to combine a modified Dowell’s model
with the double-2-D model. The proposed model is investigated
on a variable inductance transformer (VIT)—a partially-filled
transformer whose leakage inductance can be varied by moving
one of the windings mechanically. The frequency-dependent
leakage inductances of the VIT evaluated using the hybrid model
are in excellent agreement with the corresponding finite element
method (FEM) simulated and experimentally measured values,
thereby validating the proposed hybrid model.

Index Terms—Double-2-D model, Dowell’s 1-D model, hybrid
model, leakage inductance, variable inductance transformer.

I. INTRODUCTION

Leakage inductance is a critical design element of a trans-
former used in a galvanically isolated power electronic con-
verter. In a multi-layered transformer with integrated mag-
netics, the skin and proximity effects can disturb the homo-
geneity of the current density across the cross-sections of
the conductors. For a given wire gauge, these eddy current
effects become more pronounced as the operating frequency
of the power converter is increased. Consequently, the leakage
inductance seen at a higher frequency can be significantly
smaller than that at a lower frequency [1]. Therefore, it is
important to determine the leakage inductance at the specific
operating frequency range of the transformer, especially in
resonant converters with variable frequency control.

The calculation of leakage inductance is inherently a 3-D
problem. Numerical techniques to solve this 3-D problem are
available in the form of Finite Element Methods (FEM), which
are accurate but computationally expensive [2, 3]. On the other
hand, multi-objective optimizations of power electronic con-
verters require swift yet accurate calculation methods. Hence,
analytical or semi-analytical methods are usually preferred
[4, 5]. Such methods can be broadly classified into either

1-D or 2-D models, and either low-frequency (LF) or high-
frequency (HF) models. While 1-D models consider only
the axial component of magnetic field intensity [6], the 2-
D models consider both the axial and the radial components,
which makes them an excellent choice for partially-filled trans-
formers. In contrast to LF models, the HF models take into
account the eddy current effects in transformer windings, thus
making them suitable for HF magnetic designs. A comparison
of the existing LF models can be found in [5]. Among the
LF models, the magnetic image method-based double-2-D
model has drawn a lot of attention lately due to its exceptional
adaptability to different winding geometries and core shapes
including partially-filled transformers [2, 3, 7, 8, 9, 10, 11, 12].

A 2-D HF model currently does not exist. Dowell pioneered
the development of a 1-D model that accounts for the eddy
current effects in the windings of fully-filled transformers
[13, 14]. The fundamental assumption was that the wind-
ing cross-sections are frequency-dependent and non-winding
spaces are frequency-independent regions. Inspired by Dow-
ell’s work, Hurley [15, 16] and Niemela [17] individually
made some remarkable progress in solving the Helmholtz
differential equation for the magnetic field intensity inside
the winding cross-section of a rectangular foil. To enhance
accuracy, Bahmani [18] and Ouyang [19] made some further
improvements to Hurley’s model. However, all of these models
assume that the radial component of magnetic field intensity is
zero, and that its axial component depends only on the position
of the foil along the radial axis. These drastic simplifications
limit the applicability of the existing HF models to fully-filled
transformers only that have a winding height comparable to the
window height. Although Rogowski’s factor or other porosity
factors are suggested in [1, 14, 20] for winding heights shorter
than window height, the resulting error still increases with the
difference between the two heights. Therefore, an HF model
that can calculate the frequency-dependent leakage inductance
of partially-filled transformers is still missing in literature.

Recently, a variable inductance transformer (VIT) was in-
troduced in [12]. It is a partially-filled transformer that has a
winding height significantly smaller than the window height.
Fig. 1 shows the 2-D model of a VIT. By moving one of



Fig. 1. 2-D model of a VIT.

the bobbins along the core leg, the overlapping height of the
two windings (= hw − g) can be reduced. This increases
the radial component of magnetic field intensity, leading to
a higher leakage inductance. The improved double-2-D model
proved very effective in evaluating the variable LF leakage
inductance of a VIT in [2].

In this paper, a hybrid model is proposed for evaluating
the variable HF leakage inductance of a VIT. The model uses
superposition to combine a modified HF Dowell’s model with
the LF double-2-D model. The paper is arranged as follows.
Section II gives a brief outline of the double-2-D model.
Section III uses previous results from the double-2-D model
to explain the phenomenon of varying leakage inductance in a
VIT; also highlighting the shortcomings of the existing HF
models. Section IV derives the Dowell’s 1-D model from
Maxwell’s equations. Section V modifies the derived Dowell’s
model and proposes the new hybrid model. Section VI presents
and discusses the results obtained using the proposed model,
and section VII finally concludes the paper.

II. DOUBLE-2-D MODEL

Evaluation of leakage inductance is inherently a 3-D prob-
lem. The double-2-D model reduces this 3-D problem into two
separate 2-D problems, wherein the magnetic energy per unit
length E′ is evaluated across two planes—the IW plane and
the OW plane—using the fundamental equation [2, 12],

E′ =
µ0

2

∫∫
H2

2-D(x, y) dx dy (1)

where µ0 is the permeability of free space, and H2-D accounts
for both the radial Hx and axial Hy components of magnetic
field intensity across the entire plane under consideration, thus
making the double-2-D model very promising especially for
partially-filled transformers.

Fig. 2 illustrates the concept of the improved double-2-D
model [2, 12]. The general form of this model is given by,

Llk,double-2-D = sc (L
′
2-D(IW)dl(IW) + L′

2-D(OW)dl(OW)) (2)

sc =

{
1, core-type transformer
2, shell-type transformer

Fig. 2. Double-2-D model: (a) shell-type transformer, (b) core-type trans-
former. l(IW) and l(OW) are the leakage radii for the IW and OW planes. θ(IW),
θ(IW) and θ(TR) are the leakage angles for the IW, OW and transition (TR)
regions. Partial leakage lengths are calculated using these parameters in [2].

where L′
2-D is the leakage inductance per unit length across the

IW or OW plane, and dl is the partial leakage length of the
IW or OW region. The underlying assumptions are that the
leakage inductance per unit length evaluated across a plane
is uniform along its leakage length, and the stored magnetic
energy inside the core is zero.

To find the leakage inductance per unit length across a plane,
the magnetic energy per unit length evaluated using (1) must
be scaled by a factor of 2/I21 , where I1 is the primary current.
The improved model averages the magnetic energy per unit
length across each plane to find the corresponding leakage
radius, which is then used to find the partial leakage length.
Finally, the total leakage inductance can be obtained by using
(2). The detailed mathematics of the improved double-2-D
model can be found in [2, 12].

The double-2-D model uses the magnetic image method to
calculate the magnetic energy per unit length across the two
planes. As per the image method, the transformer core acts as
a reflective medium for any current-carrying conductor placed
near it. The IW plane that is bounded by the core on all four
sides results in an infinite series of image conductors, while
the OW plane that is bounded by the core on one side only
results in a single image conductor. Hence, the accuracy of
the double-2-D model depends on the number of image layers
being considered in the IW plane. Reference [2] suggests
that two image layers must be considered at the least for an
acceptable accuracy of the evaluated leakage inductance.



0 2 4 6 8 10

g (mm)

12

14

16

18

20

22

24

26

L
ea

k
ag

e 
in

d
u
ct

an
ce

 (
u
H

)

0

50

100

150

200

250

300

350

L
ea

k
ag

e 
in

d
u
ct

an
ce

 p
er

 u
n
it

 l
en

g
th

 (
u
H

/m
)

L
lk, double-2-D

L
lk, 3-D FEM

L'
Hx(IW)

L'
Hy(IW)

L'
2-D(IW)

L'
Hx(OW)

L'
Hy(OW)

L'
2-D(OW)

Fig. 3. Plot showing the variable LF leakage inductance of a VIT [2].

III. VARIABLE INDUCTANCE TRANSFORMER

A VIT is a partially-filled transformer that allows users
to vary its leakage inductance mechanically. The improved
double-2-D model proved very effective in evaluating the
variable LF leakage inductance of a VIT because it: 1)
analyzes an OW plane in addition to the IW plane, 2) considers
both radial and axial components of magnetic field intensity,
3) accounts for the position of the winding along both x−
and y−axes, and 4) uses partial leakage lengths as the depths
of the planes. Fig. 3 plots the analytical and FEM simulated
variable LF leakage inductance as a function of the reduction
in overlap g between the two windings. A maximum error of
only 4.5 % was noticed at g = 10 mm when the nearest three
image layers (48 images) were considered in the IW plane [2].

Fig. 3 also plots the variations in L′
Hx, L′

Hy and L′
2-D with g,

where L′
Hx, L′

Hy and L′
2-D are the LF leakage inductances per

unit length across the IW or OW plane considering the radial
component of magnetic field intensity Hx, axial component
Hy , and their phasor sum H2-D, respectively, so that L′

Hx +
L′
Hy = L′

2-D. This figure suggests that an increase in g has a
negligible effect on Hy in both planes. Instead, the increase
in leakage inductance is an outcome of the increase in Hx

only, if partial leakage lengths are assumed constant. Since
the existing HF models ignore Hx entirely and fail to account
for the position of the winding along the y−axis, using such
models in a VIT will result in a constant leakage inductance
at different overlaps g. Moreover, the increase in L′

Hx is seen
to be much more across the IW plane than the OW plane so
that L′

2-D(IW) ≫ L′
2-D(OW) for g > 0 mm. Hence, analyzing the

IW plane only will overestimate the total leakage inductance.
Therefore, a new HF model is desired that analyzes an OW
plane besides the IW plane, accounts for the radial component
in addition to the axial component at least in the non-winding
spaces, and takes into account the true position of the windings
along both x− and y−axes to compute the variable HF leakage
inductance of a VIT.

Fig. 4. (a) 2-D axisymmetric transformer cross-section with three primary
and and three secondary winding layers. Corresponding FEM plots across the
marked cut-line at different frequencies: (b) current density, (c) magnetic field
intensity, (d) magnetic energy density.

IV. DOWELL’S 1-D MODEL

Fig. 4 shows a 2-D axisymmetric transformer cross-section
with multiple rectangular foil layers that constitute the primary
and secondary windings. It also shows the current density,
magnetic field intensity and magnetic energy density plots
at different frequencies across the marked cut-line, obtained
from 2-D FEM simulations. At 1 kHz, the current density
is uniform; so the corresponding change in magnetic field
intensity is also linear across the foil cross-sections. But at
100 kHz, the skin and proximity effects cause a non-uniform
current density that further lead to a non-linear magnetic field
intensity across the foil cross-sections. These effects become
more severe at higher frequencies as the skin depth δ shrinks
further. δ is a measure of the current density across the cross-
section of the conductor and is given by,

δ =

√
1

πµfσ
(3)

where f is the frequency, and µ and σ are the permeability
and conductivity of the material, respectively.

Fig. 4 further suggests that the skin and proximity effects
influence the magnetic energy densities in the foil cross-
sections only, but not so much in the non-winding spaces
because the net current is conserved [14]. Hence, the winding
cross-sections can be assumed as frequency-dependent regions
and the non-winding spaces as frequency-independent regions.
Dowell investigated the orthogonality between the two effects,
and derived a simple 1-D model from Maxwell’s equations.

Maxwell’s equations for a divergence-free linear isotropic
homogeneous medium with zero displacement current are,



Fig. 5. Rectangular foil carrying a net current I .

∇× E = −µ0 ·
∂H

∂t
(4)

∇×H = σ · E. (5)

For the rectangular foil in Fig. 5, assuming that the electric
field intensity E has only the z−component and the magnetic
field intensity H has only the y−component, E and H become
functions of x only. Then, the Maxwell’s equations in phasor
form can be expressed as [14, 19],

dEz

dx
= jωµ0Hy (6)

dHy

dx
= σEz. (7)

Using the above two equations, the Helmholtz second-order
differential equation is reached below,

d2Hy

dx2
= jωµ0σHy. (8)

The general solution of the Helmholtz equation is given by,

Hy(x) = H1e
γx +H2e

−γx (9)

where γ is the propagation constant expressed as,

γ =
1 + j

δ
(10)

and H1 and H2 are constants that can be obtained from the
boundary conditions of the foil,

H1 =
Hext

y e−γxint −Hint
y e−γxext

2 sinh(γtw)
(11)

H2 =
Hint

y eγxext −Hext
y eγxint

2 sinh(γtw)
. (12)

Substituting H1 and H2 in (9) gives the frequency-dependent
axial component of magnetic field intensity across the foil,

Hy(x) = Hext
y

sinh(γ(x− xint))

sinh(γtw)
+Hint

y

sinh(γ(xext − x))

sinh(γtw)
(13)

Fig. 6. Hx across a cut-line parallel to the x−axis and passing through the
center of the IW plane when g = 10.55 mm.

Finally, the magnetic energy per unit area E′′
foil across the

foil can be evaluated,

E′′
foil =

µ0

2

∫ xext

xint

H2
y (x) dx. (14)

The closed-form solution can be expressed as,

E′′
foil =

µ0δ

4

((
Hext

y +Hint
y

)2

φ1 − 2Hext
y Hint

y φ2

)
. (15)

φ1 =
sinh (2∆)− sin (2∆)

cosh (2∆)− cos (2∆)
, φ2 =

sinh (∆)− sin (∆)

cosh (∆)− cos (∆)

where Hint
y and Hext

y are the internal and external magnetic
field intensities in y−direction evaluated at x = int and
x = ext respectively, ∆ = tw/δ is the penetration ratio,
and tw is the thickness of the foil. Here, φ1 and φ2 are the
skin and proximity effect factors, respectively. To find the total
magnetic energy across the foil, E′′

foil in (15) must be scaled
by the height hw and the MLT dw of the foil.

V. HYBRID MODEL

The semi-analytical hybrid model proposed in this paper
is built on the double-2-D model platform presented in (2).
It uses superposition to combine the HF Dowell’s model
with the LF double-2-D model. Dowell’s model calculates the
magnetic energy per unit length from the frequency-dependent
winding cross-sections, while the double-2-D model calculates
the same from the frequency-independent non-winding spaces.

Fig. 6 shows that Hx is non-negligible and varies along the
x−axis at higher frequencies. Additionally, Hy varies along
the height of the foil. To include the variations in Hx and Hy

and to adhere to the double-2-D model requirements, Dowell’s
1-D model in (15) is modified. For the same rectangular foil
in Fig. 5, the modified Dowell’s model evaluates the magnetic
energy per unit length E′

foil across it using,

E′
foil =

µ0δ

4

∫ yup

ydown

((
Hext

xy (y) +Hint
xy (y)

)2

φ1

− 2Hext
xy (y)Hint

xy (y)φ2

)
dy (16)



TABLE I
SPECIFICATIONS OF THE VIT

Turns ratio 1:1
Conductor type, size Round, AWG 19
Number of turns per layer 30
Number of layers per winding 3
Core geometry EC 70
Winding height 31.50 mm
External diameter of the movable bobbin 19 mm
External diameter of the fixed bobbin 33 mm
Insulation gap between layers 0.20 mm
Fill-factor 19.04 %
Maximum travel of the movable bobbin 11 mm
Test frequency range 1 – 200 kHz
Air cube (for OW plane boundary) 803 mm3

where Hxy =
√

(H2
x +H2

y ) accounts for the magnetic field
intensities in both x− and y−directions. Here, a similar
treatment is given to both Hx and Hy in order to reduce
the computational complexity. The integration in y−direction
ensures the accurate estimation of the frequency-dependent
magnetic energy per unit length across the foil. Besides, (16)
also facilitates the use of partial leakage length as the depth
of the plane under investigation.

Hint
xy (y) and Hext

xy (y) in (16) are readily available from
the double-2-D model by evaluating Hx(x, y) and Hy(x, y)
at x = int and x = ext, respectively. E′

foil is evaluated
for each winding layer at the desired frequency. Since non-
winding spaces are frequency-independent regions, the double-
2-D model is directly used to compute the magnetic energy
per unit length E′

nw across them, which remains constant at
all frequencies. Using superposition, the net magnetic energy
per unit length across a plane is obtained by summing the
magnetic energies per unit length across all winding layers
and non-winding spaces that constitute the plane, i.e. E′ =
E′

foil(all) + E′
nw. E′ is scaled by a factor of 2/I21 to find the

leakage inductance per unit length L′ across the plane under
investigation. Since a change in frequency barely changes
the partial leakage lengths, they are directly obtained from
the double-2-D model and remain constant at all frequencies.
Finally, the leakage inductance of the transformer can be
calculated by using,

Llk,hybrid = sc (L
′
(IW)dl(IW) + L′

(OW)dl(OW)) (17)

VI. RESULTS

Table I presents the specifications of the VIT pursued
for validating the proposed hybrid model. MATLAB R2019a
is used for all semi-analytical calculations considering the
nearest two image layers in the IW plane. Fig. 7 shows the
complete experimental setup with the VIT, linear actuator,
1 MHz LCR meter, and Arduino-based control circuitry.
COMSOL Multiphysics 5.5 is used for obtaining the 2-D FEM
results considered as standards for determining the errors. Figs.
8 and 9 plot the magnetic energy densities across the IW plane
of the VIT at 1 and 200 kHz when g = 0 mm and g = 11 mm,
respectively. A visual inspection between these plots suggests

Fig. 7. Experimental measurement setup with the VIT.

the increase in leakage energy with g and its decrease with
frequency. For the specific wire gauge, the frequency at which
δ equals the radius of the conductor is 20.4 kHz.

Figs. 10, 11 and 12 compare the variations in the semi-
analytically evaluated, FEM simulated and experimentally
measured leakage inductances of the VIT with g at six
different frequencies. These plots reiterates the fact that the
effective leakage inductance of the VIT increases with g while
decreases with frequency. In fact, the leakage inductance at
g = 11 mm is nearly 80 % higher than that at g = 0 mm across
all frequencies. The existing HF models cannot evaluate these
variations in the frequency-dependent leakage inductance with
g, resulting flat horizontal curve.

In all three figures, the FEM and the experimental curves
nearly overlap each other at all frequencies. However, some
errors can be observed between the FEM and the semi-
analytical curves at higher g values, especially at 20, 30
and 50 kHz. One of the reasons for this discrepancy is the
number of image layers being considered in the IW plane.
By adding another layer, these errors can be reduced although
the computation time may double because of twice as many
images in the IW plane. Nevertheless, the maximum error is
only 7.1 % observed at 50 kHz and g = 11 mm. Considering
the challenging winding geometry of the VIT, this error is
quite small. Therefore, it can be concurred that the proposed
hybrid model can evaluate the variable HF leakage inductance
of a VIT with sufficient accuracy. Between 1 and 200 kHz,
the leakage inductance of the experimental prototype dropped
by more than 18 % across all overlaps.

VII. CONCLUSION

This paper proposes a new hybrid model for evaluating the
variable leakage inductance of a VIT at the desired frequency.
This model uses superposition to combine the evergreen
Dowell’s model with the versatile double-2-D model. A mod-
ified Dowell’s 1-D model calculates the leakage inductance
contributions from the frequency-dependent winding cross-
sections, while the double-2-D model calculates the same from
the frequency-independent non-winding spaces. Using a 2-
D model in the non-winding spaces and accounting for the
actual positions of the windings make the hybrid model very
attractive for any random winding geometry. The proposed
model is validated through 2-D FEM simulations as well as
experimental measurements. It can prove very effective in
multi-objective optimization-based designs of power electronic
converters employing transformers with integrated magnetics.



Fig. 8. Magnetic energy densities across the IW plane at g = 0 mm: (a)
1 kHz, and (b) 200 kHz.

Fig. 9. Magnetic energy densities across the IW plane at g = 11 mm: (a)
1 kHz, and (b) 200 kHz.
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Fig. 10. Variation of leakage inductance with g at 1 and 50 kHz.
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Fig. 11. Variation of leakage inductance with g at 20 and 100 kHz.
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