

BERGEY'S MANUAL OF
SYSTEMATICS OF ARCHAEA
AND BACTERIA

Candidatus Nanopusillus

Journal:	<i>Bergery's Manual of Systematics of Archaea and Bacteria</i>
Manuscript ID	gbm02047.R1
Wiley - Manuscript type:	Genus Paper
Date Submitted by the Author:	22-Feb-2023
Complete List of Authors:	St. John, Emily; Portland State University, Biology Dept. Reysenbach, Anna-Louise; Portland State University, Biology Dept. Podar, Mircea; Oak Ridge National Laboratory,, Biosciences Division
Keywords:	hot spring, hyperthermophile, acidophile, <i>Nanopusillus</i>, symbiote

SCHOLARONE™
Manuscripts

1 **1. PHYLUM/CLASS/ORDER/FAMILY:**

2 "Nanoarchaeota"/Nanobdellia/Nanobdellales/Nanobdellaceae

3

4 **2. MANUSCRIPT NUMBER:**

5 gbm02047

6

7 **3. CHAPTER TITLE:**8 *Candidatus Nanopusillus*

9

10 **4. DEFINING PUBLICATION:**

11 Wurch et al. 2016

12

13 **5. AUTHORS NAMES AND INSTITUTIONS:**14 Emily St. John and Anna-Louise Reysenbach, *Biology Department, Portland State University,*15 *Portland, OR, USA*16 Mircea Podar, *Oak Ridge National Laboratory, Oak Ridge, TN, USA*

17

18 **6. ETYMOLOGY:**19 Na.no.pu.sil'lus. Gr. masc. n. *nânos*, a dwarf; L. masc. adj. *pusillus*, very small; N.L. masc. n.20 *Nanopusillus*, a very small member of the *Nanoarchaeota*

21

1

2

3

4 **22 7. ABSTRACT:**

5
6 The genus *Candidatus Nanopusillus* is comprised of small coccoid cells (~100-400 nm) that live
7
8 epibiotically on the surface of archaeal hosts. The first described species, *Candidatus*
9
10 *Nanopusillus acidilobi*, is an anaerobic, hyperthermophilic acidophile whose best growth is
11
12 observed at 82°C, pH 3.6, cultivated from a hot spring in Yellowstone National Park. *Ca.*
13
14 *Nanopusillus acidilobi* cells associate with the *Crenarchaeota* host organism *Acidilobus* sp. 7A.
15
16 Archaeal flagella (archaella) have been predicted from the genome sequence and shown to be
17
18 expressed in the proteome. A second putative species, *Candidatus Nanopusillus massiliensis*, was
19
20 recently reported from human dental plaque and associates with the methanogen
21
22 *Methanobrevibacter oralis*. The genome consists of a single scaffold which is highly fragmented
23
24 by spans of ambiguous nucleotides, with 16S rRNA gene fragments from *Bacteria*. Both species
25
26 have small genomes (~0.6 Mbp) encoding few biosynthetic genes and no apparent ATP synthase
27
28 complex genes, suggesting that the nanoarchaeotes rely on their host for production of major
29
30 cellular precursors.

31
32
33
34
35
36 *Type species: Candidatus Nanopusillus acidilobi* Wurch et al. 2016

37

41 **8. KEYWORDS:**

42 hot spring, hyperthermophile, acidophile, symbiote, *Nanopusillus*

43

47 **9. DESCRIPTION:**

48 **42 Ultra-small cocci** (~100-400 nm in diameter) cultivated under **anaerobic** conditions. Species
49
50 within *Candidatus Nanopusillus* live as **obligate epibionts** on the surface of specific archaeal
51
52
53
54
55
56
57
58
59

1
2
3 44 hosts, and likely **rely on their hosts for production of the major precursors for cellular**
4
5 45 **biosynthesis**. The first described species, *Ca. Nanopusillus acidilobi*, was grown from Cistern
6
7 46 Spring, a high-temperature acidic geothermal spring in Yellowstone National Park (YNP). *Ca. N.*
8
9 47 *acidilobi* is **hyperthermophilic** and **acidophilic**, with optimal growth observed at 82°C and pH 3.6.
10
11 48 Cells are glycosylated, and **archaeal flagella** (archaella) genes are predicted from the genome and
12
13 49 expressed in proteomic data. *Acidilobus* sp. 7A functions as the specific host. A second putative
14
15 50 species, *Candidatus Nanopusillus massiliensis*, was recently described from the human oral
16
17 51 environment. While the culture is no longer available (Stéphane Alibar 2022, personal
18
19 52 communication, 28 November), *Ca. N. massiliensis* cells are **neutrophilic** and **mesophilic**, with
20
21 53 best growth observed at 37°C, pH 7, and they grow ectosymbiotically on the surface of
22
23 54 *Methanobrevibacter oralis*.

24
25 55 *DNA G + C content (mol %): 24 (genome analysis)*

26
27 56 *Type species: Candidatus Nanopusillus acidilobi* Wurch et al. 2016

28
29 57 Number of *Candidatus* species: 2

30
31 58 Family classification: *Nanobdellaceae*

32
33 59

34
35 60 **10. NUMBER OF CANDIDATUS SPECIES:**

36
37 61 2

38
39 62

40
41 63 **11. FURTHER DESCRIPTIVE INFORMATION:**

42
43 64 **11.1. CELL MORPHOLOGY AND ULTRASTRUCTURE**

4

1
2
3 65 *Ca. N. acidilobi*, the first described species of the genus *Ca. Nanopusillus*, was cultivated from an
4
5 66 acidic, high-temperature hot spring in YNP. Cells are coccoid in shape, approximately 100-300 nm
6
7 67 in diameter (Table 1), and are glycosylated (Wurch et al., 2016). Although an S-layer protein was
8
9 68 predicted from the sequence of the *Ca. N. acidilobi* genome, the protein was not detected in
10
11 69 proteomic analysis. However, identification of the S-layer protein via trypsin-based proteomics
12
13 70 may be hampered by size and a low quantity of proteolytic sites (Wurch et al., 2016). *Ca. N.*
14
15 71 *acidilobi* cells survive on the surface of their crenarchaeotal host, *Acidilobus* sp. 7A (Figure 1), and
16
17 72 electron microscopy has shown distension at the attachment point between host and symbiont
18
19 73 (Wurch et al., 2016). This suggests that the YNP *Nanoarchaeota*–host system forms an intimate
20
21 74 association, potentially similar to what has been described for the shallow marine lineage
22
23 75 *Candidatus Nanoarchaeum equitans* and its host *Ignicoccus hospitalis*, which appear to form a
24
25 76 bridge-like structure that connects the two organisms and allows for cytoplasmic contact
26
27 77 (Heimerl et al., 2017). A second lineage, *Ca. N. massiliensis* (150-400 nm), was recently reported
28
29 78 from the human oral environment and associates with a methanogenic *Euryarchaeota*,
30
31 79 *Methanobrevibacter oralis*.

32
33 80 <Table 1 near here>

34
35 81 <Figure 1 near here>

36
37 82

38
39 83 **11.2 NUTRITION AND GROWTH CONDITIONS**

40
41 84 Optimal growth of *Ca. N. acidilobi* with its host has been observed at 82°C, pH 3.6. The *Ca. N.*
42
43 85 *acidilobi*–*Acidilobus* sp. 7A co-culture can be cultivated anaerobically under a N₂/CO₂ headspace
44
45 86 (80:20, v/v) in media containing yeast extract and peptone (Wurch et al., 2016). The newly
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 87 proposed species *Ca. N. massiliensis* can be grown with its host in modified SAB media under an
4
5 88 H₂/CO₂ headspace (80:20, v/v), with optimal growth observed at 37°C, pH 7 (Hassani et al., 2022).
6
7 89
8
9
10 90 **11.3 GENOME FEATURES**
11
12
13 91 A genome sequence has been determined for *Ca. N. acidilobi*, the first cultivated representative
14
15 92 of *Ca. Nanopusillus*. The genome is 605,887 bp in length, with 656 predicted protein-coding
16
17 93 sequences and a single 5S, 16S and 23S rRNA gene sequence. Genome size is comparable to other
18
19 94 terrestrial *Nanoarchaeota* (Table 1), but somewhat larger than the shallow marine taxon *Ca.*
20
21 95 *Nanoarchaeum equitans* (see gbm01370). Like other nanoarchaeotes, the *Ca. N. acidilobi*
22
23 96 genome points to highly reduced biosynthetic potential, with very minimal genes involved in the
24
25 97 generation of amino acids, nucleotides, lipids or cofactors (Kato et al., 2022; St. John et al., 2019;
26
27 98 Waters et al., 2003; Wurch et al., 2016). In contrast to *Ca. Nanoarchaeum equitans*, but like its
28
29 99 relatives from New Zealand and Japan, the *Ca. N. acidilobi* genome encodes a suite of genes
30
31 100 involved in gluconeogenesis and glycolysis, including several gluconeogenesis genes highly
32
33 101 expressed in the proteome (Wurch et al., 2016). Additionally, the *Ca. N. acidilobi* genome does
34
35 102 not contain any detectable *trans*-encoded tRNA genes or ATP synthase genes, which have been
36
37 103 identified in *Ca. Nanoarchaeum equitans* (Randau, 2012; Waters et al., 2003), and no CRISPR-Cas
38
39 104 cassettes have been identified. Like other described *Nanoarchaeota*, the *Ca. Nanopusillus*
40
41 105 genome encodes several split protein-coding genes, which have been linked to genome reduction
42
43 106 associated with a symbiotic lifestyle (Kato et al., 2022; St. John et al., 2019; Waters et al., 2003;
44
45 107 Wurch et al., 2016).
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 108 By contrast, the *Ca. N. massiliensis* genome quality is poor and consists of a single scaffold
4
5 109 which is highly fragmented by spans of ambiguous nucleotides that link the 593 individual
6
7 110 contigs. Based on genome quality assessment with CheckM (Parks et al., 2015), 64 to 66 of the
8
9 111 unique archaeal marker genes used to estimate genome completeness can be identified in the
10
11 112 *Ca. N. massiliensis* genome, depending on whether the scaffold or contig version of the genome
12
13 113 sequence is analyzed. In contrast, 117 to 119 archaeal marker genes are detectable in the
14
15 114 complete genomes of *Ca. N. acidilobi*, *Ca. Nanoarchaeum equitans* and *Nanobdella aerobiophila*.
16
17 115 Thus, it is likely that ambiguous bases in the *Ca. N. massiliensis* genome hamper gene
18
19 116 identification and severely impair genome quality. Nonetheless, analysis of the *Ca. N. massiliensis*
20
21 117 genome suggests the presence of genes associated with glycolysis and gluconeogenesis, a single
22
23 118 archaeal flagellum gene and the apparent absence of the ATP synthase complex (Hassani et al.,
24
25 119 2022).
32
33 120
34
35 121 **11.4. ECOLOGY**
36
37 122 The first described *Ca. Nanopusillus* species, *Ca. N. acidilobi*, was cultivated with its host from
38
39 123 Cistern Spring, a hot spring in Norris Geyser Basin, YNP (pH 4.5, 82°C). A few years prior, a single-
40
41 124 cell nanoarchaeote genome "Nst1" was also co-sorted with its putative *Sulfolobales* host "Acd1"
42
43 125 from Obsidian Pool, YNP (pH 5.2-5.5, 82°C) (Podar et al., 2013). Although Nst1 was proposed to
44
45 126 represent the unique genus *Candidatus Nanobsidianus stetteri*, reclassification with the Genome
46
47 127 Taxonomy DataBase (GTDB) has since placed Nst1 within the *Ca. Nanopusillus* (Parks et al., 2020).
48
49 128 Additional single-cell genomics, 16S rRNA gene diversity studies and metagenomic data have
50
51
52
53
54
55
56
57
58
59
60

1
2
3 129 suggested that relatives of *Nst1* and *Ca. Nanopusillus* are widely distributed across YNP
4
5 130 geothermal springs (Clingenpeel et al., 2013; Jarett et al., 2018; Munson-McGee et al., 2015).
6
7 131 The recent description of a putative novel *Ca. Nanopusillus* from human dental plaque
8
9 132 (Hassani et al., 2022) raises questions regarding the distribution of the genus. To our knowledge,
10
11 133 *Ca.N. massiliensis* represents the first description of a mesophilic, *Euryarchaeota*-dependent,
12
13 134 human-associated nanoarchaeote to date. However, the 16S rRNA gene associated with *Ca. N.*
14
15 135 *massiliensis* genome (GenBank/EMBL/DDBJ accession NZ_OV100765.1; locus tag
16
17 136 LUA84_RS03675) uses ambiguous bases to link five small contigs, several of which show high
18
19 137 similarity to bacterial sequences, suggesting that the 16S rRNA gene sequence is chimeric. Also,
20
21 138 given the lack of evidence of *Ca. Nanopusillus* in human microbiome datasets, additional
22
23 139 investigation will be crucial to determining the validity of this new species and how it contributes
24
25 140 to our understanding of the distribution and range of host associations found in *Ca. Nanopusillus*.
26
27
28
29
30
31
32 141
33
34
35 142 **12. ENRICHMENTS AND ISOLATION PROCEDURES**
36
37
38 143 Enrichment cultures of *Ca. N. acidilobi* and its host *Acidilobus* sp. 7A can be grown in the following
39
40 144 medium, containing (per liter of deionized water): NH₄Cl, 0.33 g; KH₂PO₄, 0.33 g; MgSO₄ x 7H₂O,
41
42 145 0.33 g; CaCl₂, 0.33 g; KCl, 0.33 g; SL-10 trace metals, 1 ml; Wolfe's vitamin solution, 5 ml of 1000X
43
44 146 solution; yeast extract, 0.3 g; and peptone, 0.5 g. The medium is filter sterilized, and anaerobic
45
46 147 conditions are achieved by three 20-minute rounds of degassing with N₂/CO₂ (80:20, v/v). The
47
48 148 final medium is then reduced overnight at 80°C using 100 µM cysteine. Cultivation can be
49
50 149 performed at 82°C, pH 3.6. Dilution-to-extinction and optical tweezer selection are effective for
51
52 150 isolation of *Ca. N. acidilobi*–*Acidilobus* sp. 7A co-cultures.
53
54
55
56
57
58
59
60

1
2
3 151 Cultivation of the *Ca. N. massiliensis*–*M. oralis* co-culture was done using SAB media
4
5 152 prepared under an H₂/CO₂ headspace (80/20, v/v), followed by growth at 37°C, pH 7 in an SAB
6
7 153 medium supplemented with D-fructose (0.1 g), vitamins, fatty acids (valeric, isovaleric, 2-
8
9 154 methylbutyric and isobutyric acids) and 5% 0.22 µm-filtered bovine rumen.
10
11 155
12
13
14
15

156 **13. MAINTENANCE PROCEDURES**

157 For long-term storage, liquid co-cultures of *Ca. N. acidilobi* and *Acidilobus* sp. 7A can be frozen at
158 -80°C with the addition of 10% dimethylsulfoxide.
159
160

14. DIFFERENTIATION OF THE GENUS *CA. NANOPUSILLUS* FROM OTHER GENERA

161 Features differentiating *Ca. Nanopusillus* from *Candidatus Nanoclepta* (see gbm02046), *Ca.*
162 *Nanoarchaeum* (see gbm01370) and *Nanobdella* (Kato et al., 2022) are listed in Table 1. 16S rRNA
163 gene sequence divergence and whole genome sequence identity also distinguish *Ca.*
164 *Nanopusillus* from related lineages in the *Nanoarchaeota*.
165
166

15. TAXONOMIC COMMENTS

167 Based on phylogenetic reconstruction of 16S rRNA genes (Figure 2), *Ca. N. acidilobi* forms a
168 distinct clade with clone and single-cell genome sequences from YNP (YLNA023, OP-9, SCGC AB-
169 777_F03, Nst1). The YNP-specific branch forms part of a larger clade comprised of sequences
170 from other terrestrial hot springs, including locations in Japan (*Nanobdella aerobiophila*),
171 Kamchatka, Russia (CU-1), China (A2, A39) and New Zealand (*Ca. Nanoclepta minutus*), which
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116<br

1
2
3 172 branches out from marine hydrothermal vent-associated lineages (*Ca. Nanoarchaeum equitans*,
4
5 173 MC-1). Due to the high proportion of ambiguous bases (~17%) and similarity to bacterial 16S
6
7 174 rRNA gene sequences, the *Ca. N. massiliensis* 16S rRNA gene sequence is not included in the
8
9 175 phylogenetic tree. A concatenated protein tree generated with the GTDB Toolkit (Chaumeil et al.,
10
11 176 2020) based on 53 archaeal marker genes also shows a similar overall topology compared to the
12
13 177 16S rRNA gene tree (Figure 3), with the exception that the deep-sea hydrothermal vent
14
15 178 associated lineage MC-1 clusters with a terrestrial hot spring sequence from Nevada, USA (SpSt-
16
17 179 4), and *Ca. N. massiliensis* forms a small clade with *Ca. N. acidilobi*.
18
19
20
21
22
23 180 Currently, the genus *Ca. Nanopusillus* is classified by GTDB in phylum *Nanoarchaeota*,
24
25 181 class *Nanoarchaeia*, order *Nanoarchaeales* and family *Nanopusillaceae* (Parks et al., 2020).
26
27 182 However, a novel classification system was recently proposed and validly published for the entire
28
29 183 *Nanoarchaeota* phylum, which places *Ca. Nanopusillus* within the class *Nanobdellia*, order
30
31 184 *Nanobdellales* and family *Nanobdellaceae* (Kato et al., 2022).
32
33
34 185 <Figure 2 near here>
35
36 186 <Figure 3 near here>
37
38
39
40 187
41
42
43 188 **16. LIST OF SPECIES OF THE GENUS**
44
45
46 189 **1. *Candidatus Nanopusillus acidilobi* Wurch et al. 2016.**
47
48 190 a.ci.di.lo'bi. N.L. gen. masc. n. *acidilobi*, of acidolobus, growth dependent on the archaeal genus
49
50 191 *Acidilobus*
51
52 192 Distinguishing features are shown in Table 1 and in the genus description. This taxon and its host
53
54 193 were co-cultivated from Cistern Spring, YNP, USA (44.723°N, 110.704°W).
55
56
57
58
59
60

1

2
3 194 *DNA G + C content (mol %): 24 (genome analysis)*

4
5 195 *Type strain: N7A*

6
7 196 *GenBank/EMBL/DDBJ accession (genome): CP010514.1*

8
9 197

10
11 198 **2. *Candidatus Nanopusillus massiliensis* Hassani et al. 2022.**

12
13 199 *mas.si.li.en'sis. L. fem. adj. *massiliensis*, referring to Massilia, the past Roman name of Marseille,*

14
15 200 France where this nano-organism has been discovered

16
17 201 Distinguishing features are listed in the genus description and Table 1. This nanoarchaeote and

18
19 202 its host were co-cultivated from a human dental plaque.

20
21 203 *DNA G + C content (mol %; reported in Hassani et al., 2022): 23.6 (genome analysis)*

22
23 204 *DNA G + C content (mol %; re-calculated with BBmap*

24
25 205 (<https://sourceforge.net/projects/bbmap/>): 24.0 (genome analysis)

26
27 206 *Type strain: Marseille-Q6268*

28
29 207 *GenBank/EMBL/DDBJ accession (genome, contigs): CAKLBW000000000.1*

30
31 208 *GenBank/EMBL/DDBJ accession (genome, scaffold): OV100765.1*

32
33 209

34
35 210 **RELATED ARTICLES**

36
37 211 gbm01370

38
39 212 gbm02046

40
41 213 fhm00399

42
43 214 obm00129

44
45 215 cbm00090

1
2
3 216 pbm00038
4
5
6 217
7
8 218 REFERENCES
9
10
11 219 Chaumeil P-A, Mussig AJ, Hugenholz P, & Parks DH (2020) GTDB-Tk: a toolkit to classify genomes
12
13 220 with the Genome Taxonomy Database. *Bioinformatics* **36**: 1925–1927.
14
15
16 221
17
18 222 Clingenpeel S, Kan J, Macur RE, Woyke T, Lovalvo D, Varley J et al. (2013) Yellowstone Lake
19
20 223 *Nanoarchaeota*. *Front Microbiol* **4**: 274. DOI: 10.3389/fmicb.2013.00274.
21
22
23 224
24
25 225 Hassani Y, Saad J, Terrer E, Aboudharam G, Giancarlo B, Silvestri F et al. (2022) Introducing clinical
26
27 226 nanoarchaeology: isolation by co-culture of *Nanopusillus massiliensis* sp. nov. *Curr Res Microb*
28
29 227 *Sci* **3**: 100100. DOI: 10.1016/J.CRMICR.2021.100100.
30
31
32
33 228
34
35 229 Heimerl T, Flechsler J, Pickl C, Heinz V, Salecker B, Zweck J et al. (2017) A complex
36
37 230 endomembrane system in the archaeon *Ignicoccus hospitalis* tapped by *Nanoarchaeum*
38
39 231 *equitans*. *Front Microbiol* **8**: 1072. DOI: 10.3389/fmicb.2017.01072.
40
41
42 232
43
44
45 233 Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, & Stetter KO (2002) A new phylum of
46
47 234 *Archaea* represented by a nanosized hyperthermophilic symbiont. *Nature* **417**: 63–67.
48
49
50 235
51
52 236 Jahn U, Gallenberger M, Paper W, Junglas B, Eisenreich W, Stetter KO et al. (2008)
53
54 237 *Nanoarchaeum equitans* and *Ignicoccus hospitalis*: new insights into a unique, intimate
55
56
57
58
59
60

1

2
3 238 association of two *Archaea*. *J Bacteriol* **190**: 1743-1750.
4
5 239
6
7 240 Jarett JK, Nayfach S, Podar M, Inskeep W, Ivanova NN, Munson-McGee J et al. (2018) Single-cell
8 genomics of co-sorted *Nanoarchaeota* suggests novel putative host associations and
9 diversification of proteins involved in symbiosis. *Microbiome* **6**: 161. DOI: 10.1186/s40168-018-
10 241
11 242
12 243 0539-8.

13
14 244
15 245 Kato S, Ogasawara A, Itoh T, Sakai HD, Shimizu M, Yuki M et al. (2022) *Nanobdella aerobiophila*
16 gen. nov., sp. nov., a thermoacidophilic, obligate ectosymbiotic archaeon, and proposal of
17 246
18 247 *Nanobdellaceae* fam. nov., *Nanobdellales* ord. nov. and *Nanobdella* class. nov.
19
20 248 *Int J Syst Evol Microbiol* **72**: 005489. DOI: 10.1099/ijsem.0.005489.

21
22 249
23 250 Munson-McGee JH, Field EK, Bateson M, Rooney C, Stepanauskas R, & Young MJ (2015)
24 251 *Nanoarchaeota*, their *Sulfolobales* host, and *Nanoarchaeota* virus distribution across
25 252 Yellowstone National Park hot springs. *Appl Environ Microbiol* **81**: 7860–7868.

26
27 253
28 254 Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, & Hugenholtz P (2020) A complete
29 255 domain-to-species taxonomy for *Bacteria* and *Archaea*. *Nat Biotechnol* **38**: 1079–1086.

30
31 256
32 257 Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, & Tyson GW (2015) CheckM: Assessing the
33 258 quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome*
34 259 *Res* **25**: 1043–1055.

1
2
3 260
4
5
6 261 Podar M, Makarova KS, Graham DE, Wolf YI, Koonin EV, & Reysenbach A-L (2013) Insights into
7 archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred
8 crenarchaeal host from Obsidian Pool, Yellowstone National Park. *Biol Direct* **8**: 9. DOI:
9
10 263
11
12 264 10.1186/1745-6150-8-9.
13
14
15 265
16
17
18 266 Randau L (2012) RNA processing in the minimal organism *Nanoarchaeum equitans*. *Genome*
19
20 267 *Biol* **13**: R63. DOI: 10.1186/gb-2012-13-7-r63.
21
22
23 268
24
25 269 Randau L, Münch R, Hohn MJ, Jahn D, & Söll D (2005) *Nanoarchaeum equitans* creates
26
27 functional tRNAs from separate genes for their 5'- and 3'-halves. *Nature* **433**: 537–541.
28
29
30 271
31
32 272 Shimodaira H & Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to
33
34 phylogenetic inference. *Mol Biol Evol* **16**: 1114–1116.
35
36
37 274
38
39
40 275 St. John E, Liu Y, Podar M, Stott MB, Meneghin J, Chen Z et al. (2019) A new symbiotic
41
42 nanoarchaeote (*Candidatus Nanoclepta minutus*) and its host (*Zestosphaera tikiterensis* gen.
43
44 nov., sp. nov.) from a New Zealand hot spring. *Syst Appl Microbiol* **42**: 94–106.
45
46
47 278
48
49
50 279 Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M et al. (2003) The genome of
51
52 *Nanoarchaeum equitans*: Insights into early archaeal evolution and derived parasitism. *Proc Natl
53
54 Acad Sci USA* **100**: 12984–12988.
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

282

283 Wurch L, Giannone RJ, Belisle BS, Swift C, Utturkar S, Hettich RL et al. (2016) Genomics-
 284 informed isolation and characterization of a symbiotic *Nanoarchaeota* system from a terrestrial
 285 geothermal environment. *Nat Commun* 7: 12115. DOI: 10.1038/ncomms12115.

286

287 **20. TABLES AND FIGURES**

288 **Table 1.** Major characteristics differentiating members of the *Ca. Nanopusillus* from *Ca.*
 289 *Nanoclepta minutus*, *Nanobdella aerobiophila* and *Ca. Nanoarchaeum equitans*. Data from
 290 Genbank/EMBL/DDBJ records (*Ca. Nanopusillus*); Wurch et al., 2016 (*Ca. Nanopusillus*
 291 *acidilobi*); Hassani et al., 2022 (*Ca. Nanopusillus massiliensis*); St. John et al., 2019 (*Ca.*
 292 *Nanoclepta minutus*); Kato et al., 2022 (*Nanobdella aerobiophila*); Huber et al., 2002; Jahn et
 293 al., 2008; Randau, 2012; Randau et al., 2005; Waters et al., 2003 (*Ca. Nanoarchaeum equitans*).

Characteristic	<i>Ca. Nanopusillus acidilobi</i>	<i>Ca. Nanopusillus massiliensis</i>	<i>Ca. Nanoclepta minutus</i>	<i>Nanobdella aerobiophila</i>	<i>Ca. Nanoarchaeum equitans</i>
Isolation location	YNP	Human mouth	Tikitere, NZ	Oku-shiobara, Tochigi, Japan	Kolbeinsey Ridge
Optimal temperature (°C)	82	37	80–85	65–70	85–90
Cultivation pH	3.6	7.0	6.0	2.5	5.5
Relationship to oxygen	Anaerobe	Anaerobe	Anaerobe	Aerobe	Anaerobe
Cell size, nm	100–300	150–400	~200	200–500	~400
Genome size (bp)	605,887	607,503 ^b	575,637	668,961	490,885
G + C content (mol%)	24	23.6 ^c	32.2	24.9	31.6

1	Partial ATP	-	-	-	-	+
2	synthase					
3	complex genes					
4	CRISPR-Cas	-	n.d.	+	+	+
5	cassette					
6	<i>Trans-spliced</i>	-	n.d.	-	-	+
7	tRNA genes					
8	Host	<i>Acidilobus</i> sp.	<i>Methanobre</i>	<i>Zestosphaer</i>	<i>Metallospha</i>	<i>Ignicoccus</i>
9		7A	<i>vibacter</i>	<i>a tikiterensis</i>	<i>era sedula</i>	<i>hospitalis</i>
10			<i>oralis</i>			

294 ^an.d., no data295 ^bBased on Genbank/ GenBank/EMBL/DDBJ accession OV100765.1296 ^cReported in Hassani et al., 2022

297

298 **21. FIGURE CAPTIONS**299 **Figure 1.** Scanning electron micrograph of *Ca. Nanopusillus acidilobi* N7A cells attached to the
300 surface of *Acidilobus* sp. 7A cells. Scale bar, 300 nm.301
302 **Figure 2.** Phylogenetic reconstruction of 16S rRNA genes, showing the position of *Ca.*
303 *Nanopusillus acidilobi* in relation to closely related genera *Ca. Nanoarchaeum*, *Nanobdella* and
304 *Ca. Nanoclepta*, with additional clone, single-cell and metagenome derived sequences. The
305 outgroup (not shown) consists of archaeon GW2011_AR15 (CP010425.1), archaeon
306 GW2011_AR20 (CP010426.1), *Candidatus Tiddalikarchaeum anstoanum* LFW-252_1
307 (CABMEV000000000.1) and *Candidatus Parvarchaeum acidiphilum* ARMAN-4
308 (ADCE00000000.1). 80-100% bootstrap support based on 1000 rapid bootstraps is indicated
309 with filled circles. Scale bar, 0.1 substitutions per nucleotide.

310

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

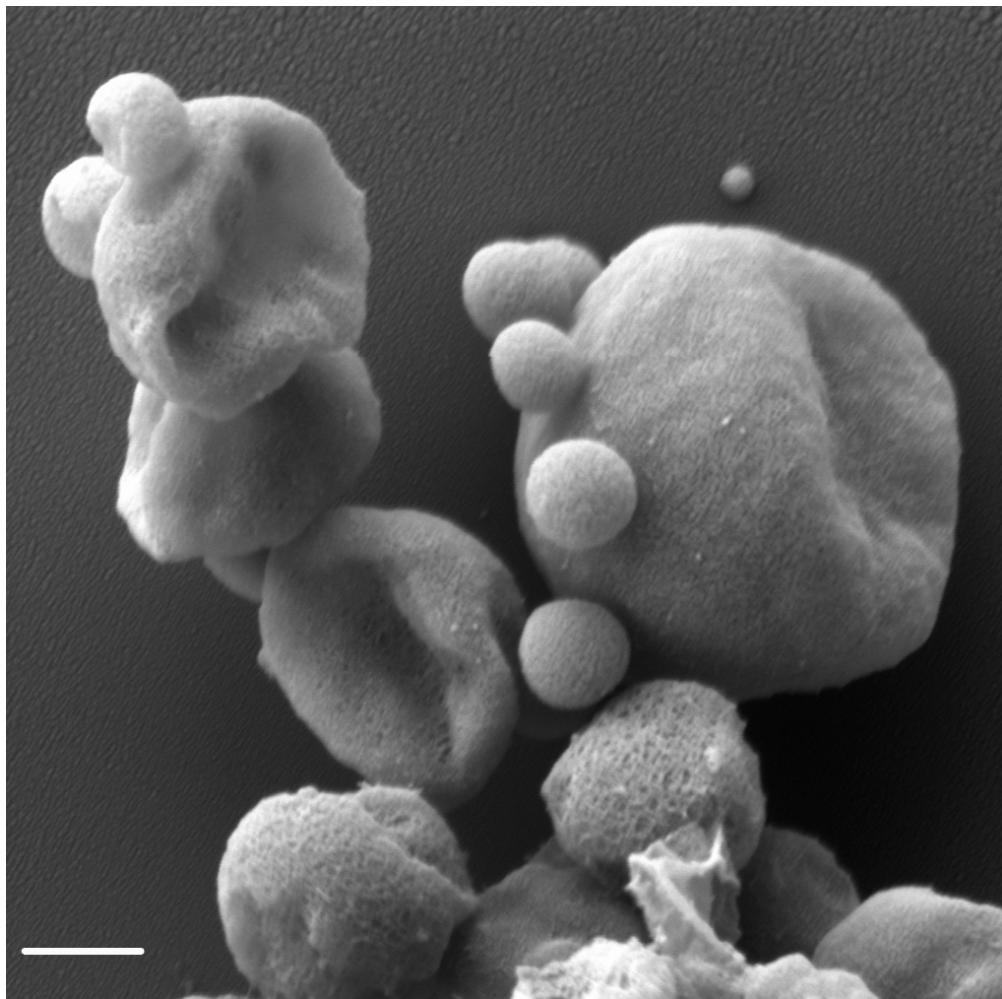
52

53

54

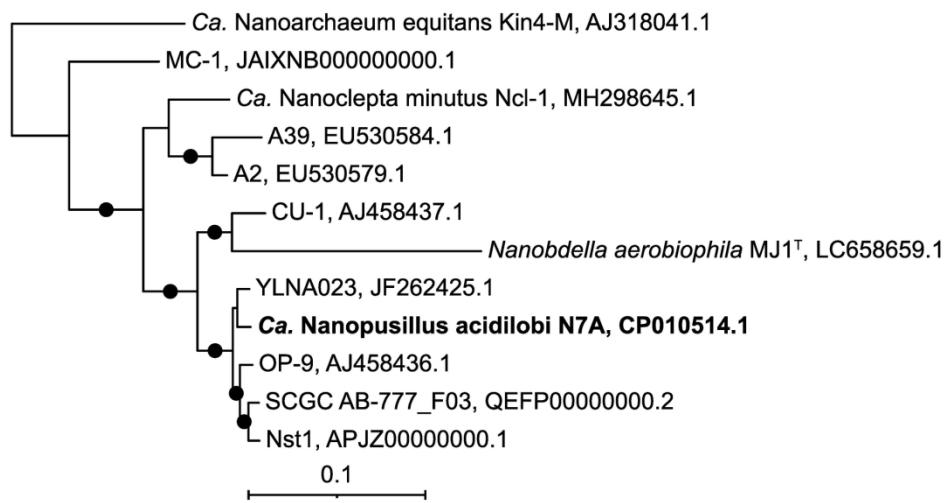
55

56

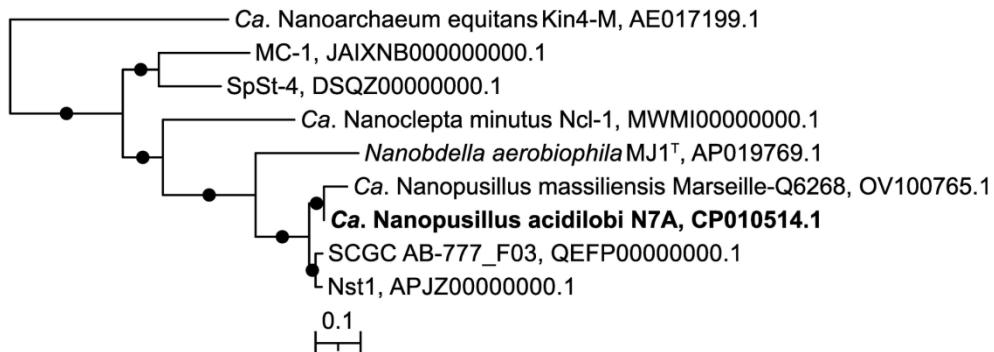

57

58

59


60

311 **Figure 3.** Unrooted concatenated protein phylogenetic tree based on 53 marker genes, showing
312 the relative position of *Ca. Nanopusillus* compared to closely related taxa. The tree was
313 constructed using the default GTDB Toolkit release 207_v2 database for archaeal tree building,
314 with the addition of *Ca. Nanopusillus massiliensis*, *Nanobdella aerobiophila* and MC-1. Taxa
315 assigned to *Nanobdellales* (GTDB order *Nanoarchaeales*) are shown. Filled circles indicate 80-
316 100% local support values calculated with the Shimodaira-Hasegawa test (Shimodaira and
317 Hasegawa, 1999). Scale bar, 0.1 substitutions per amino acid.


Figure 1. Scanning electron micrograph of *Ca. Nanopusillus acidilobi* N7A cells attached to the surface of *Acidilobus* sp. 7A cells. Scale bar, 300 nm.

86x85mm (300 x 300 DPI)

Figure 2. Phylogenetic reconstruction of 16S rRNA genes, showing the position of *Ca. Nanopusillus acidilobi* in relation to closely related genera *Ca. Nanoarchaeum*, *Nanobdella* and *Ca. Nanoclepta*, with additional clone, single-cell and metagenome derived sequences. The outgroup (not shown) consists of archaeon GW2011_AR15 (CP010425.1), archaeon GW2011_AR20 (CP010426.1), *Candidatus Tiddalikarchaeum anstoanum* LFW-252_1 (CABMEV000000000.1) and *Candidatus Parvarchaeum acidiphilum* ARMAN-4 (ADCE00000000.1). 80-100% bootstrap support based on 1000 rapid bootstraps is indicated with filled circles. Scale bar, 0.1 substitutions per nucleotide.

178x88mm (300 x 300 DPI)

Figure 3. Unrooted concatenated protein phylogenetic tree based on 53 marker genes, showing the relative position of *Ca. Nanopusillus* compared to closely related taxa. The tree was constructed using the default GTDB Toolkit release 207_v2 database for archaeal tree building, with the addition of *Ca. Nanopusillus massiliensis*, *Nanobdella aerobiophila* and MC-1. Taxa assigned to *Nanobdellales* (GTDB order *Nanoarchaeales*) are shown. Filled circles indicate 80-100% local support values calculated with the Shimodaira-Hasegawa test (Shimodaira and Hasegawa, 1999). Scale bar, 0.1 substitutions per amino acid.

178x66mm (300 x 300 DPI)