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ABSTRACT

Causal discovery algorithms construct hypothesized causal graphs that depict causal dependencies among
variables in observational data. While powerful, the accuracy of these algorithms is highly sensitive to the
underlying dynamics of the system in ways that have not been fully characterized in the literature. In this
report, we benchmark the PCMCI causal discovery algorithm in its application to gridded spatiotemporal
systems. Effectively computing grid-level causal graphs on large grids will enable analysis of the causal
impacts of transient and mobile spatial phenomena in large systems, such as the Earth’s climate. We
evaluate the performance of PCMCI with a set of structural causal models, using simulated spatial vector
autoregressive processes in one- and two-dimensions. We develop computational and analytical tools for
characterizing these processes and their associated causal graphs.
Our findings suggest that direct application of PCMCI is not suitable for the analysis of dynamical
spatiotemporal gridded systems, such as climatological data, without significant preprocessing and down-
scaling of the data. PCMCI requires unrealistic sample sizes to achieve acceptable performance on even
modestly sized problems and suffers from a notable curse of dimensionality. This work suggests that,
even under generous structural assumptions, significant additional algorithmic improvements are needed
before causal discovery algorithms can be reliably applied to grid-level outputs of earth system models.
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1. INTRODUCTION

Automated causal structure discovery is an exciting frontier of data-driven science and domain-informed
machine learning, but techniques for causal discovery are still rather untested in complex domains. As
part of a larger investigation of causal discovery and attribution in climate systems, we investigate the
performance of a state-of-the-art algorithm for causal discovery from climate data. The algorithm returns
a causal graphical model of the given variables. Causal graphical models are usually directed acyclic graphs
(DAGs) that relate the causal dependence (graph edges) between variables (graph nodes). Due to the
scientific, computational, and statistical difficulties of characterizing climate systems, we instead draw
upon well-established techniques for the benchmarking of machine learning algorithms for the evaluation
of causal discovery. Our results highlight the limitations of modern causal discovery approaches and
demonstrate the unreliable performance of these algorithms, even in the most amenable scenarios.

To create the benchmark test cases and perform the various studies we show in this report, we rely on
the ideas of benchmarking. According to Olson et al. [1], “the term benchmarking is used in machine
learning to refer to the evaluation and comparison of ML methods regarding their ability to learn patterns
in ‘benchmark’ datasets that have been applied as ‘standards’. Benchmarking could be thought of simply
as a sanity check to confirm that a new method successfully runs as expected and can reliably find simple
patterns that existing methods are known to identify.” There are many benchmark datasets available:
readers may be familiar with the ImageNet database which is commonly used for image classification test
problems [2]. Recently, there has been a growth in scientific machine learning benchmarks as well, see
Thiyagalingam et al. [3, 4]. The benchmarking approach typically involves a few main steps: identification
of training datasets which provide the benchmark data or “gold standard” data, identification of the
algorithm or method being tested and associated algorithm choices that might be examined (e.g. number of
layers in a neural network, activation function used, optimization algorithm to determine hyperparameters,
etc.), and a set of performance metrics with which to evaluate the algorithm. Depending on the extent
and focus of the benchmark exercise, the ML algorithm can be run with many algorithm choices and the
“best” choices can be identified, according to the performance metrics which typically involve “goodness
of fit” with respect to predicting the benchmark data but which also may include time to train, time to
make a prediction or inference, amount of computing power needed, etc.

We note that causal discovery does not necessarily fall into the machine learning category: it involves aspects
of statistical modeling and network inference. However, we feel the benchmark terminology as defined
above represents the goal of our efforts well. We also have leveraged verification and validation concepts
from the computational science community which focuses on PDE solutions for physical systems, with
the goal of improving the credibility of computational models and assessing their predictive capability
[5–8]. There are some aspects of verification, specifically solution verification, in the work presented in
this report. In the subsequent sections, however, we use the benchmarking terminology.

Benchmarking becomes more challenging for structure-learning algorithms (such as causal discovery),
because they require a complete ground-truth graph to evaluate correctness, rather than additional obser-
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vations as traditional machine learning requires. This typically limits structure-learning benchmarking to
high-fidelity simulation output or hypothesized ground-truth, developed from randomized control trials.
While there are a number of metrics that measure the performance of a machine learning model (such as
cross-validation error, leave-one-out error, etc.), they typically only apply to models predicting additional
data points from observational probability distributions, rather than intervention distributions1, because
they capture the ability of the model to represent the training and/or testing data. They do not address
other questions such as the correct implementation of the algorithm or the properties and performance it
exhibits on various classes of problems. For causal modeling and causal discovery algorithms, there has
been limited work specifically seeking to address the issue of “is the inferred graph or causal structure that
the algorithm produces correct?” though the works of Runge [10], Runge et al. [11] provide limited, but
promising, initial results in this space. In this work, we seek to partially address this important lacuna.

In this work, we report the results of an extensive benchmarking exercise for the PCMCI algorithm of
Runge et al. [11]. We specifically focus on the performance of this algorithm as applied to data with spatial
and temporal dependence. Our results rely upon a simulation framework inspired by statistical models for
time series and by the spatial dynamics of cellular automata. While limited benchmarking of PCMCI has
previously been performed, ours is distinguished by a thorough analysis of the effect of spatial structure
on performance.

1.1. Background and Related Work

The philosophical and statistical aspects of causal inference and causal discovery are subtle but powerful
and our discussion here is necessarily informal. For a further discussion of these issues, we refer the reader
to the books by Peters et al. [9] and by Pearl and Mackenzie [12], as well as the many references therein.

1.1.1. Structural Causal Modelling

Causal network discovery, or causal structure learning, is the process of estimating a causal graph2 of an
underlying structural causal model (SCM) from observational data3 and subject matter expertise4. An
SCM is a semi-mechanistic model, which augments a classical statistical model with a notion of causal
structure.5 While exact estimation of the SCM is typically impossible, it is often possible to accurately
estimate the causal network associated with that SCM. A causal network is a DAG representation of the
SCM, where variables represent different aspects of the data and directed edges connect “cause” to “effect.”

1Intervention distributions are what causal graphs predict. We omit discussion of that topic and refer the reader to Peters et al.
[9, p. 120-121]

2Also known as a causal network.
3Observational data is characterized as non-experimental data; it contains no planned interventions or controls.
4Subject matter expertise is represented by critical causal assumptions, which causal discovery algorithms leverage to reason

about the statistical properties found in observational data.
5Classical probabilistic statistical models do not naturally incorporate causal structure, instead representing data as a simul-

taneous draw from an underlying probability distribution. Any temporal object, such as the sample path of Brownian
motion, is a draw of a single time-indexed object from an underlying space, rather than a system obeying causal laws.
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Many SCMs imply the same causal network, but, under reasonable assumptions,6 there is a unique DAG
for any SCM. When considering SCMs of temporal data, there exist multiple ways of depicting the causal
network; see the works by Eichler [13] and Peters et al. [9, p. 198] for details.

As a simple example, consider the following SCM:

Wt := 0.9Wt−1 +η
W
t

Xt := 0.8Xt−1 +0.4Wt−1 +0.2Zt−3 +η
X
t

Yt := 0.5Yt−1 +0.2Xt−2 +η
Y
t

Zt := 0.6Zt−1 +0.3Yt−1 +η
Z
t

(1.1)

where each η ∼ N (0,1) is iid Gaussian noise. These relations form a SCM for simulated realizations of
this process.

Figure 1-1 is a causal graph for the SCM in Equation (1.1). Specifically, it is a time series graph [10], which
captures the temporal dependencies of each node. Each node is a temporally lagged instantiation of each
variable. Notice that each variable is autocorrelated in Equation (1.1), with a link between itself and its past
self, over 1 lag. The 2 and 3 lag dependencies in X →Y and Z → X , respectively, are also depicted passing
over their respective lag lengths. Without the lagged representation, time-delayed feedbacks7 would be
illustrated as cycles, which violates an important assumption of causal graphs: acyclicity.

While an SCM maps to a DAG, causal network discovery algorithms often output partially-directed acyclic
graphs (PDAGs) [14], in which some edges are undirected. Undirected edges indicate a dependence was
identified, but not the direction of dependence. Edges sometimes fail to be oriented because of violated
assumptions or too little data, but most causal discovery algorithms can only estimate up to the correct
Markov equivalence class of graphs, even when assumptions are met and sampling is sufficient. See Peters
et al. [9, p. 102] for more on the Markov equivalence of graphs.

Estimated graphs can be annotated with more information indicating the strength of dependence between
nodes, causal effect size, causal susceptibility, etc. [15, 16], but in this work, we are only concerned with
estimating the topology (edge structure) of the time series causal network.

Algorithms for reconstructing causal networks from data generated by an SCM are discussed in the next
section.

1.1.2. Causal Discovery & the PCMCI Algorithm

Many algorithms for causal discovery have been proposed in the previous 30 years, most notably the
PC algorithm [17], named for its authors Peter Spirtes and Clark Glymour, the Fast Causal Inference
(FCI) [17], and the Linear Non-Gaussian Acyclic Model (LiNGAM) [18]. While these general-purpose

6These assumptions include causal faithfulness, the causal Markov condition, and causal sufficiency. Put simply, the faithful-
ness assumption states that separation of two nodes in the causal network is implied by independence, the causal Markov
condition states that separation in the graph implies independence in the data, and causal sufficiency states that we have
included all common causes of two or more variables in the analysis. Again, for a more detailed discussion, see the books of
Peters et al. [9] and Pearl and Mackenzie [12].

7Such as that from X → Y → Z → X over 2, 1, and 3 lags, respectively.
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Figure 1-1. A time series graph representation of the SCM in Equation (1.1). By associating each
variable with a node for each time lag, it is possible to fully capture relationship between variables
and their temporal ancestors.

algorithms are primarly designed for non-temporal data, temporally-aware variants of these algorithms
exist [16] as well as novel approaches specific to time series, such as the Optimal Causal Entropy (OCE)
algorithm [19, 20]. In this work, we consider the PC-Momentary Conditional Independence (PCMCI)
algorithm of Runge et al. [16]. We focus on PCMCI because it was specifically designed to deal with the
complex temporal structure of climate data and it has found wide use among the causal climate community
[15, 21–25].

PCMCI modifies the classical PC algorithm [17] by adding so-called “Momentary Conditional Indepen-
dence” tests. These tests take advantage of the temporal structure of the data to greatly reduce the number
of potential causal effects, thereby decreasing the space of possible causal networks and improving inferen-
tial performance. Like the PC algorithm, the output of PCMCI is a PDAG, however, the time-order of
lagged dependencies helps PCMCI orient more edges than it would without temporal information.

The standard variant of PCMCI assumes all causal relationships work on a lag and that there are no
contemporaneous dependencies in the data. While we focus on the standard PCMCI algorithm, our
simulation study could easily be applied to PCMCI variants, including the Latent-PCMCI of Gerhardus
and Runge [26], which allows for unobserved confounders, and PCMCI+ of Runge [27], which allows
for contemporaneous dependencies.

Runge et al. [11] detail PCMCI thoroughly and provide an open-source implementation of the approach8.
PCMCI is a two-phase algorithm: the first phase uses a modified version of the PC algorithm to construct a
sparse causal PDAG; this modified algorithm, which they call PC1, performs a series of iterative conditional

8https://jakobrunge.github.io/tigramite/
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independence (CI) tests in a search for the causal parents of each variable. PC1 modifies this search to only
condition on the potential confounders with the largest correlations to the variables in question. While
this significantly increases computational performance, the full impact of this heuristic modification has
not yet been fully characterized.

The second phase of the PCMCI algorithm uses MCI tests to prune this graph in an attempt to eliminate
temporally-induced spurious causality. MCI tests extend traditional conditional independence tests by
conditioning on lagged (time-shifted) observations of variables. In doing so, they specifically examine
whether apparent causal dependencies are artifacts of autocorrelation and prune these spurious graph
edges and reduce the false positive rate of PC1.

As with the original PC algorithm, both the PC1 and MCI steps of PCMCI can be used with arbitrary
conditional independence tests. Test with the conditional Pearson correlation, the partial correlation, are
easily implemented and widely used, but their performance is only guaranteed for (jointly) Gaussian data.
Peters et al. [9] discuss alternative independence tests; see also the discussion by Runge [10].

Finally, we note that while PCMCI is commonly used for climate data, it does not take advantage of
the spatial structure typically present in such data. Rather than dealing with spatial structure explicitly,
common practice is to summarize data into non-spatial components before applying PCMCI. This
summarization is typically done with a statistical technique such as Principal Components Analysis (PCA)
or variants thereof or by using external climate knowledge to divide spatial data into pre-defined regions or
modes, which are assumed to have no further spatial dependencies [15, 22, 25, 28, 29]. While powerful,
these approaches have several drawbacks: PCA-type approaches construct features that are composed
of all of the features of the underlying data, so the implied causal relationships are often of an “all-to-all”
nature; a priori knowledge is useful for well-studied climate phenomena but is difficult to apply to novel
studies. In this work, we consider working with unaggregated spatial data observed on a regular grid, such
as the output of a large-scale earth system model or geo-referenced observational data. As we will see below,
this approach poses novel difficulties in simulation and estimation.

1.2. Contributions

In this paper, we perform an extensive simulation study to benchmark the performance of PCMCI on a
set of spatially-inspired SCMs. By using data generated from a known SCM, we are able to accurately
quantify the performance of PCMCI on a variety of metrics. In addition to the analysis of PCMCI, our
data simulation procedures may be of independent interest. Our findings inform the feasibility of causal
discovery from real and simulated climate data and identify several challenges that must be addressed
before applying these algorithms at scale.

Section 2 introduces the mathematical framework used to generate spatiotemporal data generation studies,
while section 3 describes the specific parameter values used in our simulations. The results of our simulation
studies are shown in Section 4, along with a detailed discussion of their implications for causal discovery
practice. Finally, Section 5 summarizes our results and discusses potential directions of future research.
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2. METHODS

2.1. Spatiotemporal Data Generation Models

Causal dependencies in multivariate data are often expressed as SCMs, e.g., SCM (1.1). If there exists
a direct causal dependence from X to Y , which we denote X → Y , then we posit a relationship of the
form:

Y := fY (X)+ηY (ηY ⊥⊥ X) (2.1)

where fY is a (measurable) function relating the cause variable X to the effect variable Y and ηY is additive
noise. If X is random, then we assume X and η are independent (ηY ⊥⊥ X ), though this assumption may
be relaxed in some circumstances.1 In the common case where fY (·) is a linear function of X , we recover
the well studied class of linear structural equation models (SEM) [12]. As Peters et al. [9] discuss, the
assumption of additive noise in Equation (2.1) is not essential, but it is standard in the field and we will
use it throughout our analysis.

The SCM (2.1) is an additive noise model2 (ANM) [9, p. 50], a restriction on the class of SCMs that is
also useful for identifying variables which do not exhibit a causal effect on Y . Suppose that

Y = f (X ,Z)+ηY

for some function f . It can be shown that Z is not a parent of Y if there exists some function g(X) such
that f (X ,Z) = g(X) for all (X ,Z) or equivalently Y = g(X)+ηY .

When modeling temporal data, the ANM (2.1) must be modified to allow for a variable to depend on its
previous values. Let XXX t be the state of a system of interest at time t; we make two standard assumptions
on the behavior of XXX t :

T1) Lagged dependence: Xi,t ̸→ X j,t−τ
3 for any (i, j) and any τ ≥ 0.

T2) Temporal Causal Stationarity: the dynamics governing the evolution of XXX t do not change over
time.

These assumptions are essentially unavoidable in causal analysis of temporal data: Assumption T1 states
that causal dependencies follow the “arrow of time” while Assumption T2 implies that there is a fixed
causal structure that we are seeking to estimate. If T2 did not hold, then it is unclear what our target of

1We also assume that Y ⊈ X , i.e., that Y does not appear on both sides of equation (2.1): this is essentially equivalent to the
common assumption that the causal graph of the system is a DAG.

2Following the notation in Peters et al. [9], we will hereafter use assignment (:=) when describing SCM definitions, and
equivalence (=) when specifying ANMs and, later, autoregressive models. In this work, the ANMs and autoregressive
models are generative models, so they are no less causal.

3For our purposes, ̸→ indicates no direct dependence between variables.
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estimation actually is.4 Under these assumptions, the ANM for a system with only a single temporal lag5

becomes:
XXX t = f (XXX t−1)+ηηη (2.2)

where, as before, η is an independent noise variable. In the temporal context, where the effect of the
randomly sampled ηi,t terms persists over time, we will typically refer to the ηi,t terms as innovations rather
than error or noise to emphasize that they are not measurement error, but rather are the fundamental
driving element of the system.

In simulation settings, f (·) often represents one step of a (explicit) PDE solver [9]. If f (·) is a linear
function, then Equation (2.2) is a Vector Autoregressive (VAR) model [10, 11] and can be written as

XXX t = AAAXXX t−1 +ηηη

where AAA is a fixed matrix encoding the causal dynamics of the system. Specifically, we note that the sparsity
pattern of AAA exactly captures the causal structure of the system:

Xi,t−1 → X j,t ⇔ Ai j ̸= 0

As we will observe in the sequel, this property of VARs is particularly useful when simulating from and
estimating causal structure in temporal data.

So far, our development has not posited any spatial structure to XXX t , only the temporal lagged-dependence
structure of Equation (2.2). We next introduce two spatial causal assumptions that parallel our temporal
assumptions:

S1) Neighborhood dependence: if (i, j) are not neighbors (in a problem specific sense) then Xi ̸→ X j.

S2) Spatial Causal Stationarity: the dynamics governing the evolution of XXX t do not change over space.

Assumption S1 attempts to capture a sense of “locality” and to disallow “action at a distance.” When
applying this assumption to physical systems, this implies a certain relationship between the temporal
and spatial discretizations used: at sufficiently low observation rates, it is possible for a causal effect to
exist beyond immediate neighbors.6 We do not explore the details of that relationship here, but we do
note that similar concerns are well-studied in the design of numerical differential equation solvers where
spatial and temporal discretizations must be chosen in a suitably consistent manner. Like Assumption
T2, Assumption S2 ensures that PCMCI is learning the same causal structure throughout the space.
Assumption S2 is not essential in this application and can be easily relaxed. These dynamics are similar to
rule-based cellular automata (CA), where the state of each cell is dependent on its immediate neighbors
and the update rules are fixed across all cells and time steps.

Under these assumptions, we obtain the single-lag spatiotemporal ANM:

Xi,t = f
(
Xi,t−1,{X j,t−1} j∈N (i)

)
+ηi,t

4Assumption T2 can be weakened to only require the causal structure of the dynamics, and not the full dynamics, to remain
constant over time, but we do not pursue this relaxation.

5For higher order lags, we have XXX t = ∑
T
τ=1 fτ(XXX t−τ)+ηηη , but we omit higher lags for simplicity of exposition unless noted

otherwise. See Peters et al. [9, p. 208] for additional discussion.
6For example, consider a simple system in which Xi+1,t+1 = Xi,t +ηi,t for all (i, t). If i is interpreted as a spatial coordinate in a

single dimension, this system satisfies S1. If we reduce our sampling and can only observeYYY t =XXX t ,YYY t+1 =XXX t+2, . . . ,YYY t+τ =
XXX t+2τ , we instead have the causal relationship Yi+2,t = Yi,t which appears to violate S1.
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where N (i) denotes the neighborhood of i, . If f is further assumed to be linear, then we have

Xi,t = αXi,t−1 + ∑
j∈N (i)

β jX j,t−1 +ηi,t (2.3)

The sparsity of the α and β j coefficients dictates the causal structure of XXX t . We will occasionally refer to
α as a temporal autocorrelation coefficient and β j as a cross-dependence coefficient, though they are not
numerically equal to the actual autocorrelation function of the process XXX t .

It is clear that Equation (2.3) can be again expressed as a linear VAR system, with the spatial assumptions
S1 and S2 posing additional constraints on the structure of the dynamics (coefficient) matrix. In the
next two sections, we characterize these constraints for one- and two-dimensional systems, leaving higher-
dimensional systems to the reader.

Specifically, we consider two spatial cases to evaluate different kinds of spatiotemporal dynamics. In
Section 2.1.1, we consider a multivariate, multi-lagged model supported on a one-(spatial)-dimensional
array. In Section 2.1.2, we consider a univariate single-lag model supported on a two-(spatial)-dimensional
array. For both models, we assume the underlying space has a toroidal topology, with the leftmost and
rightmost elements of the one-dimensional space being neighbors, and similarly for the topmost and
bottommost elements in the the two-dimensional case.7 In one-dimension, the torus is a circle, while the
two-dimensional torus is a “donut” shape. We note that this topology differs from that of the surface of a
sphere, in that moving far north does not have the same effect as moving far to the west and that there is
no analogue of a pole where all cells coincide, but our results can be extended to that setting. Under these
two settings, we design an extensive simulation study to characterize the performance of causal discovery
algorithms on spatial data.

7More informally, we simulate dynamics in a world which “wraps” like the classic arcade game PacMan.
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2.1.1. Model Definition: One Spatial Dimension

We first consider simulating causal dynamics on a one-dimensional spatial lattice of size N. Under our
assumption S2, we note that each cell can only causally depend on itself and its immediate left and right
neighbors, suitably lagged. We further consider a “multivariate” setting in which multiple variables are
observed for each cell, and where the causal structure for different variables may not coincide.

We describe the structure of our one-dimensional model in some detail, noting that most of the intuition
transfers to the two-dimensional case we consider in the following section. On a lattice of size N = 4,
we observe three variables, X ,Y,Z. Within a single variable, only X exhibits spatial dependencies, such
that each cell depends on the neighbor to its left. The causal structure between variables is X → Y →
Z. This sort of model is suitable for simplified modeling of atmospheric aerosol advection and their
interaction with radiation and atmospheric temperatures: for some aerosol species, wind can advect
aerosols to spatially neighboring regions, while the causal structure X → Y → Z reflects the aerosol
particles’ radiation absorption and subsequent temperature impact, e.g., H2SO4 → radiative flux →
atmospheric temperature. See Figure 2-1a for a spatial illustration of this structure, and Figure 2-1b for a
time series graph of the same example. Figure 2-1a is an example of a summary graph [9, p. 199].

(a) Spatial representation of the SCM. Auto-
correlation orange links exist for all variables,
but most are omitted for readability.

XA
XB
XC
XD
YA
YB
YC
YD
ZA
ZB
ZC
ZD

tt 1

(b) The time series graph of the SCM.

Figure 2-1. Causal graphs of variables X ,Y,Z at grid cells A,B,C,D, for the SCM defined by Equation
(2.4). Here, each variable exhibits temporal autocorrelation at each grid cell (orange arrows), while we
observe spatial dependence among X and cross-variable dependence X → Y → Z. All dependencies
occur after a single lag.
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If we assume linear dynamics for this system, we obtain the SCM:

XA,t := αX ,AXA,t−1 +βX ,AXD,t−1 +ηX ,A,t

XB,t := αX ,BXB,t−1 +βX ,BXA,t−1 +ηX ,B,t

XC,t := αX ,CXC,t−1 +βX ,CXB,t−1 +ηX ,C,t

XD,t := αX ,DXD,t−1 +βX ,DXC,t−1 +ηX ,D,t

YA,t := αY,AYA,t−1 + γX→Y,AXA,t−1 +ηY,A,t

YB,t := αY,BYB,t−1 + γX→Y,BXB,t−1 +ηY,B,t

YC,t := αY,CYC,t−1 + γX→Y,CXC,t−1 +ηY,C,t

YD,t := αY,DYD,t−1 + γX→Y,DXD,t−1 +ηY,D,t

ZA,t := αZ,AZA,t−1 + γY→Z,AYA,t−1 +ηZ,A,t

ZB,t := αZ,BZB,t−1 + γY→Z,BYB,t−1 +ηZ,B,t

ZC,t := αZ,CZC,t−1 + γY→Z,CYC,t−1 +ηZ,C,t

ZD,t := αZ,DZD,t−1 + γY→Z,DYD,t−1 +ηZ,D,t

(2.4)

Because this system is linear, we have an equivalent vector autoregressive (VAR) process representation,
χχχ = ΓΓΓ+ηηη :

XA,t
XB,t
XC,t
XD,t
YA,t
YB,t
YC,t
YD,t
ZA,t
ZB,t
ZC,t
ZD,t



=



αX ,A 0 0 βX ,A 0 0 0 0 0 0 0 0
βX ,B αX ,B 0 0 0 0 0 0 0 0 0 0

0 βX ,C αX ,C 0 0 0 0 0 0 0 0 0
0 0 βX ,D αX ,D 0 0 0 0 0 0 0 0

γX→Y,A 0 0 0 αY,A 0 0 0 0 0 0 0
0 γX→Y,B 0 0 0 αY,B 0 0 0 0 0 0
0 0 γX→Y,C 0 0 0 αY,C 0 0 0 0 0
0 0 0 γX→Y,D 0 0 0 αY,D 0 0 0 0
0 0 0 0 γY→Z,A 0 0 0 αZ,A 0 0 0
0 0 0 0 0 γY→Z,B 0 0 0 αZ,B 0 0
0 0 0 0 0 0 γY→Z,C 0 0 0 αZ,C 0
0 0 0 0 0 0 0 γY→Z,D 0 0 0 0αZ,D





XA,t−1
XB,t−1
XC,t−1
XD,t−1
YA,t−1
YB,t−1
YC,t−1
YD,t−1
ZA,t−1
ZB,t−1
ZC,t−1
ZD,t−1



+



ηX ,A,t−1
ηX ,B,t−1
ηX ,C,t−1
ηX ,D,t−1
ηY,A,t−1
ηY,B,t−1
ηY,C,t−1
ηY,D,t−1
ηZ,A,t−1
ηZ,B,t−1
ηZ,C,t−1
ηZ,D,t−1



Here, the α parameters control the temporal autocorrelation of each cell-variable series with itself, the β

parameters control the spatial dependence within a variable, and the γ parameters capture cross-variable
dependencies. In this scenario, we assume only variable X has spatial dependencies within the same variable,
while variables Y and Z exhibit only autocorrelation and the cross-variable structure X → Y → Z. If we
further assume causal stationarity for this model (Assumption S2), these dynamics simplify further to
χ̃χχ = Γ̃ΓΓ+ηηη :

XA,t
XB,t
XC,t
XD,t
YA,t
YB,t
YC,t
YD,t
ZA,t
ZB,t
ZC,t
ZD,t



=



αX 0 0 β 0 0 0 0 0 0 0 0
β αX 0 0 0 0 0 0 0 0 0 0
0 β αX 0 0 0 0 0 0 0 0 0
0 0 β αX 0 0 0 0 0 0 0 0

γX→Y 0 0 0 αY 0 0 0 0 0 0 0
0 γX→Y 0 0 0 αY 0 0 0 0 0 0
0 0 γX→Y 0 0 0 αY 0 0 0 0 0
0 0 0 γX→Y 0 0 0 αY 0 0 0 0
0 0 0 0 γY→Z 0 0 0 αZ 0 0 0
0 0 0 0 0 γY→Z 0 0 0 αZ 0 0
0 0 0 0 0 0 γY→Z 0 0 0 αZ 0
0 0 0 0 0 0 0 γY→Z 0 0 0 αZ





XA,t−1
XB,t−1
XC,t−1
XD,t−1
YA,t−1
YB,t−1
YC,t−1
YD,t−1
ZA,t−1
ZB,t−1
ZC,t−1
ZD,t−1



+



ηX ,A,t−1
ηX ,B,t−1
ηX ,C,t−1
ηX ,D,t−1
ηY,A,t−1
ηY,B,t−1
ηY,C,t−1
ηY,D,t−1
ηZ,A,t−1
ηZ,B,t−1
ηZ,C,t−1
ηZ,D,t−1


That is:
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• αv = αv,ℓ for all variables v and spatial locations ℓ;

• β = βX ,ℓ for all spatial locations ℓ;

• γv→w = γv,w,ℓ for all variables v,w and all spatial locations ℓ

Further examination of this matrix reveals several sub-blocks with circulant structure, including an αX ,β
block, a γX→Y block, a γY→Z block, and αY and αZ blocks: we will return to this observation in the next
section.

The specific values of αv, β , and γv→w determine whether the resulting stochastic process has spatiotem-
poral statistical stationarity, which we will call "stability" for brevity. PCMCI assumes the given time series
are statistically stationary, so we need to filter the coefficients that constitute a stable process. To do that,
we constructed a companion matrix [30, p. 259], which is of the general form:

FFF =


Γ̃ΓΓt−1 Γ̃ΓΓt−2 . . . Γ̃ΓΓt−τ

I 000 . . . 000

000 . . . 000
...

000 000 I 000


for τ lags in the model. The companion matrix is a matrix composed of the Γ̃ coefficient matrices (defined
above), and the identity matrices and zero matrices that match the size of Γ̃. If all eigenvalues of the
companion matrix are less than one, then the chosen coefficients will constitute a stable system [30,
p. 259]. In Section 3.1, we describe a two-lag system used for experiments, and the companion matrix we
used for determining stability is given by:

FFF111 =

[
Γ̃ΓΓt−1 Γ̃ΓΓt−2
I 000

]

In Section 3.1 we give specifics of the various model parameters used in our simulations. Because our
spatiotemporal model thus reduces to a standard VAR process, for which the PCMCI causal discovery
algorithm has previously been found to be effective, we note that our results complement and extend what
has previously been shown for the PCMCI algorithm [11].

2.1.2. Model Definition: Two Spatial Dimensions

We next consider simulating causal dynamics on a two-dimensional finite lattice of dimension N. As
before, we require that the simulated system has VAR-type dynamics and satisfies assumptions S1-2 and
T1-2.

In two spatial dimensions, Assumption S2 implies that each cell has eight neighbors in its so-called “Moore
neighborhood”8, yielding a total of nine potential causal parents (eight neighboring cells and the dependent
cell’s own previous value). As such, the causal dynamics of the system are dictated by a 3-by-3 matrix,
which we term the neighborhood dependence matrix (NDM). To simulate dynamics from the NDM, we

8In the study of cellular automata, the Moore neighborhood of a cell includes both orthogonal and diagonal neighbors, while
the von Neumann neighborhood includes only orthogonal (up, down, left, right) neighbors.
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update each element of XXX t by taking the inner product of the NDM and the immediate neighborhood of
a grid cell: that is,

Xi j,t = ⟨XN (i j),t−1,NDM⟩+ηi j,t = Trace(X⊤
N (i j),t−1NDM)+ηi j,t

where XN (i j) is the submatrix of X consisting of the (i, j)th element and its immediate neighbors. The
NDM defines an invariant “update kernel” which is applied separately to each grid cell in order to simulate
its expected value at the next time step. As such, the NDM update dynamics are a sliding dot product9 of
the NDM and the spatial grid, defined by XXX t :

XXX t =NDM⋆XXX t−1 +ηηη t (2.5)

For two matrices A ∈ Rn×n and B ∈ RN×N , we define their sliding dot product C ∈ RN×N to be the
matrix with (k, l)th element given by

Ckl =
⌈n/2⌉

∑
i=−⌈n/2⌉

⌈n/2⌉

∑
j=−⌈n/2⌉

A(k+ imodN, l + j modN)B(2i+1,2 j+ j). (2.6)

where the mod operator is used to enforce wrapping at the boundaries of our lattice. In our context, the
dimension of the sliding dot product kernel AAA =NDM is fixed as n = 3, reflecting the size of the local
neighborhood of each cell; the dimension of the state variable B = XXX t varies with the size of the lattice.

While it is possible to simulate dynamics according to Equation (2.5) for any NDM, the resulting mul-
tivariate time series is not statistically stationary without additional assumptions on NDM. In order to
guarantee stationarity, we seek to represent Equation (2.5) as a (linear) VAR model and apply standard
stationarity requirements [30]. In particular, we know that if we have VAR dynamics of the form

YYY t = AAAYYY t−1 +ηηη t

the time series {YYY t} is stationary if ∥AAA∥op < 1, where ∥ · ∥op denotes the operator or spectral norm of
a matrix, i.e., the magnitude of its largest (possibly complex) eigenvalue. Hence, for a given NDM AAA, it
suffices to find a matrix ÃAA ∈ RN2×N2 such that

vec(XXX t) = ÃAAvec(XXX t−1)+ vec(ηt) (2.7)

Figure 2-2 demonstrates how the NDM, AAA, can be used to form an equivalent VAR coefficient matrix, ÃAA.
For each grid cell, a suitably padded and shifted version of the NDM is constructed and then multiplied
with the previous length N2 state vector, vec(XXX t−1). Repeating this process for all N2 grid cells creates the
N2-by-N2 coefficient matrix for the VAR representation. We do not seek to fully characterize the algebraic
properties of this matrix here, but we do note that it exhibits a block convolutional structure, as shown in
Figure 2-3; that is, it has the form of a N-by-N circulant matrix where each element is itself an N-by-N
(sub)block matrix. Because the sliding dot product is closely related to a convolution, this circulant block
structure is not unexpected.

9Denoted by ⋆; also known as a cross-correlation in signal processing, or a flipped convolution à la convolutional neural
networks.
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With this representation in hand, we are now able to characterize NDMs that give statistically stationary
spatiotemporal data (which for brevity we will call “stable NDMs”): a 3-by-3 NDM, AAA yields stable
dynamics if its equivalent N-by-N VAR coefficient matrix ÃAA satisfies ∥ÃAA∥op < 1.

In our simulations below, we leverage this characterization as the basis of an Accept-Reject sampling
scheme for statistically stationary NDM matrices from the asymmetric Gaussian ensemble. See Algorithm
1. While the efficiency of Algorithm 1 was more than sufficient for this study, more work is needed to
efficiently sample stationary NDMs on larger grids. We note that, though natural, this characterization
of stationary NDMs does not appear to have been previously considered in the literature and the VAR
representation appears to be novel. Previous simulation studies of PCMCI, such as that of Runge [10] and
Runge et al. [11], do not sample from the space of stable NDMs and instead explicitly construct a selection
of SCMs with small coefficients whose stationarity is then verified empirically through simulation.

Algorithm 1 Sampling Stable Gaussian NDMs: Accept/Reject Algorithm

• Output: AAA sampled from AAA ∼ N (R3×3)|AAA is stationary

• Repeat:
1. Sample AAA ∈ R3×3 from the 9-dimensional standard Gaussian distribution

2. Construct ÃAA according to the process of Figure 2-2

3. If ∥ÃAA∥op < 1 return AAA

In our two-dimensional simulation studies below, we only consider the single-lag single-variable VAR
defined by Equations (2.5) and (2.7). Extensions to more complex models are straight-forward. For our
model, the multilag extension of Equation 2.5 is given by

XXX ttt =
L

∑
ℓ=1

AAAℓ ⋆XXX t−ℓ+ηηη t (2.8)

for L lags, while the multilag, the multivariate extension of Equation 2.5 is given by

XXX (J)
ttt =

L

∑
ℓ=1

J

∑
j=1

AAA( j→J)
ℓℓℓ ⋆XXX ( j)

t−ℓ+ηηη t for J = 1, . . . ,J (2.9)

for L lags and J variables. Here AAAℓ denotes the lag-ℓ NDM while AAA( j→J)
ℓ denotes the multivariate depen-

dence NDM of J on j at lag ℓ.

Finally we note that the single variable VAR(1) here represents the easiest case for causal discovery algo-
rithms. The introduction of more lags, more variables, or non-linear dependencies would only increase
the difficulty of causal discovery. As such, the experiments we show below represent an upper bound on
the performance of PCMCI as applied in more realistic scenarios.
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

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dependence matrix

(NDM)

⋆
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5x5 spatial grid (XXX)

=

a b c
d e f
g h i

NDM superimposed
on the spatial grid

→

e f d
h i g

b c a

Dependence coefficients
wrapped on the grid

X11,t = vec(XXX t−1)
⊤ [

e f 0 0 d h i 0 0 g 0 0 0 0 0 0 0 0 0 0 b c 0 0 a
]

(a) Mapping the action of a neighborhood dependence matrix (NDM) on a single grid cell to a matrix
representation. As the NDM is applied to the top left grid cell of the 5× 5 spatial grid, the update
incorporates all 8 neighbors, which wrap both vertically and horizontally around the edge of our 2D
torus. The action of the NDM on a particular grid cell is represented by the top right matrix, which
can easily be seen to be equivalent to the vector-matrix product formulation shown below.
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


(b) Constructing the matrix representation of the NDM action for the entire grid. The process
described in Figure is repeated for each grid cell in the 5×5 lattice, which produces a 5×5 matrix,
each element of which is a 5× 5 matrix reflecting the NDM on a particular cell. Vectorizing these
matrices yields the full 25×25-update matrix shown in the final row.

Figure 2-2. Spatial Updates in the Two-Dimensional Model (Section 2.1.2). The 3×3 NDM is expanded
to a N2 ×N2 matrix which fully characterizes the action of the NDM and can be used to analyze the
behavior of the resulting system. The sparsity pattern of this matrix is reflected in the time series
causal network for this process.
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Figure 2-3. Dynamics matrix for the 3× 3 NDM

a b c
d e f
g h i

 as applied on a 4× 4 lattice. Note the

“nested circulant” structure of this matrix, where each colored block has a circulant structure, as well
as the block circulant structure of the dynamics matrix as a whole.

2.2. PCMCI Algorithm: Tuning Parameters

The PCMCI algorithm has two tuning parameters which must be set by the analyst:

• τmax, the maximum dependence lag

• αPC, the significance threshold used for each conditional independence test

τmax can be chosen based on expert knowledge of the system to determine the maximum hypothetical
time for causality to propagate. In general, setting τmax too low will significantly distort the estimated
causal structure, while setting τmax too high will slightly increase the runtime and the false positive rate of
PCMCI; as such, users should err on the high side of possible values of τmax when the optimal value is
unknown.

The PCMCI algorithm uses the αPC parameter for pruning links in the PC Condition Selection phase of
the algorithm. During this phase, the (classical) PC Condition Selection algorithm is used for Markov
blanket discovery, where it proceeds by running a series of conditional independence tests and removes
the link between two variables if the associated test has a p-value less than αPC. As Runge et al. [11] notes,
PCMCI does not account for dependencies among the various independence tests or for multiple testing
and αPC is better interpreted as a regularization parameter than a statistical significance level, as the false
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positive rate of the PCMCI algorithm is not controlled. Ceteris paribus, decreasing αPC will result in a
sparser estimated causal graph.

Other free parameters include a minimum lag τmin, autocorrelation control parameters pX and pY , and a
final threshold level αG which is applied as a heuristic multiplicity correction. The roles of these parameters
are described in more detail by Runge et al. [11] and we do not vary them in our analysis.
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3. SIMULATION DESIGN

3.1. Simulation Design: One Spatial Dimension

In order to assess the performance of PCMCI on our one-dimensional model, we fixed a grid size of
N = 10 and considered five variables observed at each grid cell, V,W,X ,Y,Z. Only variables V and Y
exhibited spatial dependence: with a left-to-right dependence at one lag and a right-to-left dependence at
two lags (Vi−1,t−1 →Vi,t and Vi+2,t−2 →Vi,t and similarly for Y ). Our simulation design is depicted in
Figure 3-1.

Runge et al. [16] note that temporal autocorrelation is typically a severe difficulty for causal discovery
algorithms. The PCMCI algorithm was developed specifically to abate these difficulties [16]. To assess
the performance of PCMCI, we sampled autocorrelation, which we call coefficient a, from the range
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}, with a common autocorrelation used for all variables and grid
cells. We consider many of these high degrees of autocorrelation, as autocorrelation is a notable aspect of
the climate science questions motivating this study.

We sampled both within-variable spatial and between-variable dependence coefficients, which we call
coefficient c, from {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}, to assess the performance of PCMCI under
a range of dependence structures. These dependence coefficients were held constant at all grid cells.
Innovations (ηi,t) were sampled from the standard normal distribution. We generated time series with T
time samples ranging from {50,150,250,350,475,575,675,775,900,1000}.

Parameter combinations that failed to exhibit stable dynamics were excluded from our analysis. We ran
30 replicate simulation runs for each stable parameter combination. The number of possible simulation
runs is 30,000, however, because most coefficient combinations were not stable, the number of runs
completed was 4,500. The specific coefficients used are detailed in Section 4.2.

3.2. Simulation Design: Two Spatial Dimensions

In order to characterize the performance of PCMCI in a variety of regimes, we considered the following
simulation parameters for our two-dimensional model:

• Number of Time Samples (T ): {50,150,250,350,475,575,675,775,900,1000}

• Grid Size (N): {4x4,5x5,6x6,7x7,8x8,9x9,10x10}

• Innovation Scale (σ = sd(ηi,t)): {0.1,0.5,1.0,2.0,4.0}

• Neighborhood Dependence Density (NDD): 1
9 ,

2
9 ,

3
9 ,

4
9 ,

5
9 ,

6
9 ,

7
9 ,

8
9 ,

9
9
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Figure 3-1. A causal graph for the one-dimensional simulation model. The five variables V,W,X ,Y,Z
are each observed on 10 grid cells. Each variable exhibits temporal autocorrelation (orange), while
only V and Y exhibit spatial (left/right) dependencies. Cross-variable dependencies exist at every
grid cell according to the causal structure V →W → X → Y → Z. Both the cross-variable and left-to-
right dependencies occur at one lag (red), while the right-to-left dependencies occur at two lags
(green). This graph has 50 = 5×10 nodes and 130 edges: the time series causal graph would have
100 = 50× (max lag = 2) nodes.

Here, σ controls the scale of Gaussian innovations added to each element of XXX t , and the NDD measures
the number of causal parents implied by the NDM. When NDD = 1

9 , there is only one dependence
between neighboring grid cells1; increasing NDD adds more dependencies; NDD = 1 = 9

9 implies a fully
connected (local) causal system. For each of these 3,150 parameter combinations, we generated 30 random
stationary NDMs, yielding a total of 94,500 NDMs, from which we generated 94,500 time series.

In order to simulate these dynamics, statistically stationary NDMs are sampled using Algorithm 1. In
order to avoid causal signals that are too small to be detected, we additionally only considered NDMs
whose non-zero elements had magnitude at least 0.1. Because the NDMs selected were guaranteed to be
stable, we encountered no numerical difficulties in our data generation process.

We generated the innovations ηi,t from a suitable mean-zero normal distribution and used a Gaussian
condition independence test in PCMCI. If a specific distribution for ηi,t is not assumed, non-parametric
independence tests can be used, though these have a higher sample complexity and require longer observa-
tional series (greater T ).

1Sometimes dependence is between a grid cell and itself, such that nodes are autocorrelated and there is no cross-dependence.
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4. RESULTS

4.1. Performance Measures

To compare the PCMCI-estimated causal graphs with the underlying SCM-implied causal graphs, we
report discovery performance using several measures of classification accuracy; in particular we show the
F1-score and the Matthews Correlation Coefficient. Additional accuracy measures appear in the Appendix
to this report.

The F1 score is a popular measure of classification accuracy, which attempts to balance the precision and
recall of a classifier. Specifically, the F1 score is defined as [31]:

F1 =
2×Precision×Recall

Precision+Recall
= Harmonic Mean(Precision,Recall) (4.1)

where precision and recall are defined as

Precision =
T P

T P+FP
(4.2)

Recall =
T P

T P+FN
(4.3)

and TP, FP, and FN are the counts of true positives, false positives, and false negatives, respectively.1
F1 ranges from 0.0 to 1.0, with 0.0 indicating perfect disagreement, that is the estimated graph is the
complement of the true graph, and 1.0 indicating exact graph recovery.

We note that the F1 score is undefined when T P = 0, as both Precision and Recall are 0, which would
occur if there are no links in the true graph (i.e. all varaibles are independent). We note that the F1 score
can equivalently be expressed as [32]:

F1 =
2×T P

2×T P+FP+FN
. (4.4)

As such we, define F1 to be 1.0 if FP,FN = 0 as the estimated graph is correctly fully sparse and 0.0 if
FP > 0 or FN > 0.

We additionally report the Matthews Correlation Coefficient (MCC), also called the φ coefficient. Unlike
F1, MCC depends on true negatives and is symmetric in the positive and negative labels: that is, if we

1In our context, positives refer to the existence of a link while negatives refer to absence of a causal link. In other contexts,
it may be more natural to refer to the absence of a causal link as a scientific finding, as the baseline assumption is that
dependencies exist among all measured variables. The MCC measurement we report is invariant to this switch of labels.
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compare the complements of the true graph and the estimated graph, representing causal independence,
we get the same MCC. Chicco [32] defined MCC as follows2:

MCC =
(T P×T N −FP×FN)√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(4.5)

which ranges from [−1,1]. MCC =−1 implies the model is perfectly incorrect, MCC = 0 indicates a
level of accuracy consistent with random guessing, and MCC = 1 indicates perfect graph recovery.

As before, we take care to define MCC for the case of sparse graphs (causal independence). MCC is
undefined in any of these four cases:

1. if T P = 0 AND FP = 0

2. if T P = 0 AND FN = 0

3. if T N = 0 AND FP = 0

4. if T N = 0 AND FN = 0

We handle these cases separately, assigning values of {−1,0,+1} as appropriate to the causal discovery
problem.

1. If T P = 0 AND FP = 0, then the estimated graph is fully sparse:

a) if FN = 0, then the true graph is also fully sparse and we take MCC = 1;

b) if FN ̸= 0 AND T N = 0, then the true graph is fully connected, the estimated graph missed
all causal relationships, and we take MCC =−1;

c) if FN ̸= 0 AND T N ̸= 0, then some, but not all, of the causal independence relationships of
the estimated graph are false and we take MCC = 0.

2. If T P = 0 AND FN = 0, then the true graph is fully sparse:

a) if FP = 0, then the estimated graph is also fully sparse and we take MCC = 1;

b) if FP ̸= 0AND T N = 0, then the estimated graph is fully connected, which is exactly wrong,
and we take MCC =−1;

c) if FP ̸= 0 AND T N ̸= 0, then the estimated graph has implies some spurious causal depen-
dencies and we take MCC = 0.

3. If T N = 0 AND FP = 0, then the true graph is fully connected:

a) if T P = 0, then the estimated graph is fully sparse, which is exactly wrong, and we take
MCC =−1;

b) if T P ̸= 0 AND FN = 0, then estimated graph is fully connected and we take MCC = 1;

c) if T P ̸= 0 AND FN ̸= 0, then the estimated graph omitted some, but not all, causal relation-
ships and we take MCC = 0.

2Derived from an earlier definition by Matthews [33].
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4. If T N = 0 AND FN = 0, then estimated graph is fully connected:

a) if T P = 0, then the true graph is fully sparse, so the algorithm is perfectly incorrect, and we
take MCC =−1;

b) if T P ̸= 0 AND FP = 0, then the true graph is also fully connected and we take MCC = 1.

c) if T P ̸= 0ANDFP ̸= 0, some, but not all, of the estimated causal dependencies are spurious
and we take MCC = 0.
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c
0.1 0.2 0.3 0.4

a

0.1 X X X X
0.2 X X X
0.3 X X X
0.4 X X
0.5 X X
0.6 X
0.7 X

Table 4-1. The stable autocorrelation (a) and cross-correlation (c) dependence coefficients identified
for the one-dimensional model.

4.2. One-dimensional model

The results of the simulation study described in Section 3.1 are shown in Figure 4-1. For each simulation,
we provided PCMCI with the correct maximum lag (τmax = 2) and set the threshold parameters to
relatively stringent values (αPC = 0.01, αG = 0.01). Internal to PCMCI, we used a Gaussian partial
correlation test for independence testing, as our data was generated from a linear-Gaussian VAR.

Recall from Section 3.1 that autocorrelated dependence is labeled coefficient a, and within-variable and
between-variable cross-correlation dependence is labeled coefficient c. As Figure 4-1 shows, only a minority
of a and c dependence coefficients were found to be stable. a was able to reach as high as 0.7, while c was
only able to reach as high as 0.4. Table 4-1 shows the specific a and c combinations that were identified
as stable in this model. The specific stable coefficient combinations would likely change with a different
model formulation, e.g., different spatial dependence structures.

Figure 4-1 shows that PCMCI performed better with more time samples, but performance was limited by
the particular a and c coefficients. The algorithm performed better where either coefficient was larger, but
particularly when c was larger. For example, when c = 0.1, more time samples made little to no difference
in performance beyond 250 samples.

In Figure 4-2, we show PCMCI performance as a function of autocorrelation. Figures 4-2a, 4-2b, and
4-2c depict this when c = 0.1, c = 0.2, and c = 0.3, respectively. Again we see that F1 score increases
as the a coefficient increases. Note the differently scaled Y-axes between the panels; the F1 score reaches
higher magnitudes when c is larger. This suggests that within the confines of a stable system, larger
autocorrelation increase the signal-to-noise ratio, making the dynamics more easily identifiable. It does
not appear that autocorrelation specifically is a detriment to structure identification.

In Figure 4-3, we show PCMCI performance as a function of cross-correlation. Figures 4-3a, 4-3b, and 4-
3c depict this when a = 0.1, a = 0.2, and a = 0.3, respectively. We more clearly see that F1 score increases
as the c coefficient increases. Note the differently scaled Y-axes between the panels; performance reaches
higher magnitudes when a is larger. Like autocorrelation, larger cross-correlation increases performance,
likely because of an improved signal-to-noise ratio. Larger autocorrelation and larger cross-correlation
combined results in the best performance.
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Finally, in Figure 4-4, we show PCMCI performance as a function of T time samples. Each data point
includes all a and c values. We observe a clear pattern that PCMCI performance increases as a function of
T , regardless of coefficient values.

4.3. Two-dimensional model

In this section, we present the results of the simulation study described in Sections 3.2. Recall that, for
the two-dimensional simulations, we had only a single variable and that the complexity of the problem
was controlled by the 3-by-3 neighborhood dynamics matrix, suitably expanded for the larger grid. For
each simulation, we provided PCMCI with the correct maximum lag (τmax = 1) and set the threshold
parameters to relatively stringent values (αPC = 0.01, αG = 0.01). Internal to PCMCI, we used a Gaussian
partial correlation test for independence testing, as our data was generated from a linear-Gaussian VAR.

In Figure 4-5, we examine the effect of grid size (N) on both the F1 and MCC scores, with other parameters
fixed to σ = 1.0, NDD = 3

9 , and T = 1000. While we observe a high degree of variance in this plot, it is
clear that performance degrades on larger grid sizes, though at a relatively slow rate if we recall that the
problem dimensionality increases quadratically in N. As F1 and MCC are highly correlated, we only
depict MCC in subsequent figures. Appendix A features alternate performance measures.

Figure 4-6 depicts the effect of varying the sample length (T ). We clearly observe a sub-linear growth in
accuracy, as would be expected from the decreasing marginal information of additional samples.3 Figure
4-7 further depicts the effect of T for various values of grid size, N, and connectivity (NDD). Here we
observe that neither grid size nor connectivity have significant impact on PCMCI performance, but that,
as expected, there is a small decrease in performance as the grid size increases.

Figure 4-8 highlights the effect of graph density on PCMCI performance. From this plot, it is clear that
PCMCI performance is marginally impacted by number of causal relationships increases, and increasing
T removes these minimal effects. Comparing results columnwise, we again observe a relatively limited
effect of grid size on our results. While Figure 4-8, clearly indicates that PCMCI is able to recover the true
graph in the large sample limit, this provides limited guidance for analysts considering the use of causal
discovery from data of limited sample size.

In Figure 4-9, we attempt to answer the question “how many samples will I need to expect success”? Because
the threshold for “success” is problem dependent, we instead estimate the probability of MCC > m for
various values of m. For moderately stringent thresholds (m ≈ 0.7), we see that T = 500 samples appear
sufficient for even large grid sizes, while even T = 1000 samples may be insufficient at highly stringent
thresholds (m = 0.9). From these plots it is clear that, while average MCC performance may not vary
significantly in grid size, the dependability of PCMCI clearly decreases rapidly in N.

Finally, Figure 4-10 investigates the effect of the innovation scale (σ = sd(ηi,t)) on PCMCI performance.
Empirically, we observe no systematic effect of σ on performance: we hypothesize that this is because σ

controls the magnitude of both the additive Gaussian innovations and the signal component ÃAAvec(XXX t),
leaving the effective signal-to-noise ratio of the problem unchanged. While we do not show this analytically

3Via general statistical principles, we expect MSE ∝ T−1/2, and note that MCC is a non-linear, but monotonic, function of
estimation accuracy.

33



for the causal discovery problem, we do note that a similar phenomenon occurs in the estimation of VAR
coefficients.4

Additional results, including analysis of the True Positive Rate (TPR), True Negative Rate (TNR), False
Positive Rate (FPR), and False Negative Rate (FNR) appear in Appendix A. Those plots indicate few
false positives across different simulation regimes and that decreases in MCC are primarily driven by false
negatives, indicating large numbers of samples are necessary to correctly identify causal effects. While
varying the PCMCI thresholding parameters αPC and αG may adjust the balance of false negatives and
false positives, we do not explore the effect of those parameters in this work.

4Briefly, let XXX t = AAAXXX t−1 +ηηη for ηηη ∼ N (0,σ2I). Then

Cov(XXX t) = Cov(AAAXXX t−1 +ηηη)

= AAACov(XXX t)AAAT +σ
2III

=⇒ vec(Cov(XXX t)) = σ
2(III −AAA⊗AAA)−1.

Additionally recalling that the variance of the OLS estimator is given by Cov(vec(β̂ )) = (vec(XXX)vec(XXX)T )−1 ⊗σ2III, we
have Cov(vec(β̂ ))≈ [σ2(III −AAA⊗AAA)−1]−1 ⊗σ2III = (III −AAA⊗AAA)−1 ⊗ III which does not depend on σ .
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Figure 4-1. F1 scores for the One-Dimensional model of Sections 3.1 and 3.1. Coefficients a and c
represent autocorrelation and cross-correlation dependence coefficients, respectively, where cross-
correlation relates to both variable-to-variable and cell-to-cell dependencies. Only stable coefficient
combinations are shown. PCMCI performs better with more time samples, larger a values, and larger
c values. When a or c are sufficiently large, the system becomes unstable.
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Figure 4-2. F1 score results from the one-dimensional spatial example with varying autocorrelation, a,
and constant cross-correlation, c. Each data point includes all possible T time samples. Note the
different Y axes.
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Figure 4-3. F1 score results from the one-dimensional spatial example with varying cross-correlation,
c, and constant autocorrelation, a. Each data point includes all possible T time samples. Note the
different Y axes.
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Figure 4-4. F1 score results from the one-dimensional spatial example with varying T time samples.
Each data point includes all possible a and c dependence coefficients.
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Figure 4-5. Effect of grid size (N) on PCMCI F1 and MCC scores. Both metrics decrease relatively
slowly in N. Other simulation parameters are fixed to σ = 1.0, NDD = 3

9 , and T = 1000.
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Figure 4-6. Effect of increasing sample size (T ) on PCMCI performance (MCC). Performance increases
sublinearly in T , with T > 575 being necessary to obtain acceptable performance (MCC > 0.7). Box
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Figure 4-8. Effect of sample size, (T ) grid size, (N), and neighborhood dependence density on PCMCI
performance (MCC). For sufficiently large sample sizes, PCMCI is able to consistently recover the
true graph structure; the effect of grid size and NDD are limited. Values shown are mean performance
over 30 replicates. σ = 1 for all simulations.
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Figure 4-10. Effect of Innovation Magnitude (σ ) on PCMCI performance (MCC). Changing σ appears
to have no systematic effect on PCMCI performance.
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5. DISCUSSION

In this work, we investigated the performance of the PCMCI causal network discovery algorithm for
linear-VAR systems in one- and two-dimensional space. We varied the length of the observed time series,
the size of the underlying grid, and the density of the underlying causal graph, and found significant effects
of each. Our results provide a robust characterization of PCMCI performance on spatiotemporal systems
and highlight several avenues of future inquiry.

Most notably, we found that T ≈ 1000 samples were necessary to for consistent high-accuracy causal
discovery across the various scenarios we considered (see Figure 4-4 and Figure 4-9). While this is consistent
with the asymptotic consistency of PCMCI, these extreme sample sizes are unrealistic for the climate data
analytics motivating this study. Note that we restricted our analysis to linear-Gaussian systems, which
enables PCMCI to reduce the difficult problem of testing conditional independence to the relatively
easier problem of estimating partial correlations. While it is possible to use PCMCI with more general
conditional independence tests, these tests have a far higher sample complexity, and would require a far
greater sample size to achieve consistent performance.

By contrast, the effect of the grid size was relatively minor, suggesting that performance gains may attainable
through clever use of this spatial structure. Changing the number of true causal effects had notable
impacts on certain performance measures, but further work is needed to determine whether this scenario
is inherently more difficult for causal discovery or whether it is an artifact of the specific accuracy measures
we used, e.g., the number of true positives for an empty graph.

We note that in our study of the one-dimensional model, we found that PCMCI tolerated high autocor-
relation well. This result is somewhat unexpected, given previous work showing that causal discovery
algorithms tend to handle autocorrelation poorly. However, PCMCI was developed to be robust to
autocorrelation [10]. The clearest conclusion, apart from the aforementioned benefits of more time
samples, was that larger causal dependence coefficients were beneficial, regardless of whether they were
autocorrelational or cross-correlational coefficients.

Finally, our study of the two-dimensional model also provided several computational advances that may
be of independent interest, including characterization of the sliding dot product and VAR representations
of our model, an easy-to-implement check for stability of the resulting VAR process, and an effective
algorithm for sampling from the space of stable dynamics.

As shown in Figure 4-9, the probability of “successful” graph recovery is highly sensitive to both the sample
size and the grid size. As the number of potential causal parents for a single grid cell increases quadratically
in N, this is perhaps unavoidable. More generally, causal discovery algorithms are known to suffer from
the curse of dimensionality, particularly when applied on the grid-level in spatiotemporal systems as the
both the potential causal parents and the number of grid cells studied increase rapidly in the grid size
[10, 15, 22, 25].
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In the climate context, the underlying grids are far larger than those considered in this study, necessitating
extremely large sample sizes. Unfortunately, our causal stationarity assumptions (Assumption T2 and S2)
are less likely to hold over these extended time frames. To avoid this problem, some works have artificially
reduced the problem dimensionality by replacing grid cells with pre-defined regions of climatological
interest [15, 21, 22, 25]. They made attempts to benchmark their results with either simulated or theoretical
expectations. However, their simulations were not of grid-cell-level causal dynamics, as ours are, and
their studies on natural climate data could not be benchmarked rigorously. Finally, we note that these
approaches are only appropriate for long-term climate analyses in which well-defined spatially-stable
statistically-regular modes are the objects of study. We do not expect these approaches to perform well
when studying “one-off” climate events, in which relevant regions are rarely known a priori, making
dimension reduction a far more challenging task.

Finally, we note that our study only considered samples from the stationary distribution of a linear system
driven by Gaussian innovations. As a result, our simulated data is itself Gaussian and does not reflect
structures that may be found in climate data, e.g., the El Niño Southern Oscillation (ENSO) or, on shorter
scales, major storms. It is unclear how PCMCI would perform when applied to these stable structures, as
they have complex spatiotemporal dynamics.

Causal discovery is an important aspect of modern climate research and there is a need for algorithms that
can scalably and accurately determine causal structure from grid-level data. While PCMCI is quite data-
hungry on large grids and observational climate data are quite limited, additional insights can be gleaned
from the analysis of large simulation ensembles. Currently, PC-family algorithms do not incorporate spatial
structure: in future work, we hope to investigate the use of spatial structure to reduce the dimensionality
of the causal discovery problem.

Causal discovery remains a challenging task, particularly in the climate domain. As simulation and
observational data continues to grow in size and scope, there is a pressing need for approaches that can
perform robustly at a range of time- and spatial-scales, ranging from storm tracking to diffusion of volcanic
aerosols to long-term natural and anthropogenic climate changes. The benchmarking techniques and
simulations of this paper give insight into the weaknesses of current approaches and suggest new avenues
of causal discovery research.

43



REFERENCES

[1] Randal S Olson, William La Cava, Patryk Orzechowski, Ryan J Urbanowicz, and Jason H Moore.
PMLB: a large benchmark suite for machine learning evaluation and comparison. BioData mining,
10:1–13, 2017.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255. IEEE, 2009.

[3] Jeyan Thiyagalingam, Mallikarjun Shankar, Geoffrey Fox, and Tony Hey. Scientific machine learning
benchmarks. Nature Reviews Physics, 4(6):413–420, 2022. doi:10.1038/s42254-022-00441-7.

[4] Jeyan Thiyagalingam, Kuangdai Leng, Samuel Jackson, Juri Papay, Mallikarjun Shankar, Geoffrey
Fox, and Tony Hey. Scimlbench: A benchmarking suite for ai for science, 2021. URL https:
//github.com/stfc-sciml/sciml-bench.

[5] Osman Balci. Verification, Validation, and Certification of Modeling and Simulation Ap-
plications. Proceedings of the 2003 Winter Simulation Conference, 2003, 1:150–158, 2003.
doi:10.1109/wsc.2003.1261418.

[6] William L. Oberkampf and Christopher J. Roy. Verification and Validation in Scientific Computing.
Cambridge University Press, 2010. ISBN 9780511760396. doi:10.1017/cbo9780511760396.016.

[7] National Research Council. Assessing the Reliability of Complex Models: Mathematical and Sta-
tistical Foundations of Verification, Validation, and Uncertainty Quantification. The National
Academies Press, Washington, DC, 2012. ISBN 978-0-309-25634-6. doi:10.17226/13395.

[8] R G Sargent. Verification and validation of simulation models. Journal of Simulation, 7(1):12–24,
2013. ISSN 1747-7778. doi:10.1057/jos.2012.20.

[9] Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. Elements of Causal Inference: Foundations
and Learning Algorithms. The MIT Press, 2017. ISBN 9780262037310.

[10] J. Runge. Causal network reconstruction from time series: From theoretical assumptions to practical
estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7):075310, 2018. ISSN
1054-1500. doi:10.1063/1.5025050.

[11] Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. Detecting
and quantifying causal associations in large nonlinear time series datasets. Science Advances, 5(11):
4996—5023, 2019. doi:https://doi.org/10.1126/sciadv.aau4996. URL http://advances.
sciencemag.org/.

[12] Judea Pearl and Dana Mackenzie. The Book of Why. Basic Books, New York, 2018. ISBN 978-0-
465-09760-9.

44

https://doi.org/10.1038/s42254-022-00441-7
https://github.com/stfc-sciml/sciml-bench
https://github.com/stfc-sciml/sciml-bench
https://doi.org/10.1109/wsc.2003.1261418
https://doi.org/10.1017/cbo9780511760396.016
https://doi.org/10.17226/13395
https://doi.org/10.1057/jos.2012.20
https://doi.org/10.1063/1.5025050
https://doi.org/https://doi.org/10.1126/sciadv.aau4996
http://advances.sciencemag.org/
http://advances.sciencemag.org/


[13] Michael Eichler. In AISTATS 2010: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pages 193–
200, 2010. URL https://proceedings.mlr.press/v9/eichler10a.html.

[14] Judea Pearl. Causal Diagrams for Empirical Research. Biometrika, 82(4):669–688, 1995. ISSN
0006-3444. doi:10.2307/2337329.

[15] Jakob Runge, Vladimir Petoukhov, Jonathan F. Donges, Jaroslav Hlinka, Nikola Jajcay, Martin
Vejmelka, David Hartman, Norbert Marwan, Milan Paluš, and Jürgen Kurths. Identifying causal
gateways and mediators in complex spatio-temporal systems. Nature Communications, 6(1):8502,
2015. doi:10.1038/ncomms9502.

[16] Jakob Runge, Sebastian Bathiany, Erik Bollt, Gustau Camps-Valls, Dim Coumou, Ethan Deyle,
Clark Glymour, Marlene Kretschmer, Miguel D. Mahecha, Jordi Munoz-Mari, Egbert H. van Nes,
Jonas Peters, Rick Quax, Markus Reichstein, Marten Scheffer, Bernhard Scholkopf, Peter Spirtes,
George Sugihara, Jie Sun, Kun Zhang, and Jakob Zscheischler. Inferring causation from time series
in Earth system sciences. Nature Communications, 10(1), 2019. ISSN 20411723. doi:10.1038/s41467-
019-10105-3.

[17] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search, volume 81
of Lecture Notes in Statistics. Springer, 1993. doi:10.1007/978-1-4612-2748-9.

[18] Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvarinen, and Antti Kerminen. A Linear Non-
Gaussian Acyclic Model for Causal Discovery. Journal of Machine Learning Research, 7(72):2003–
2030, 2006. URL https://www.jmlr.org/papers/volume7/shimizu06a/
shimizu06a.pdf.

[19] Jie Sun and Erik M. Bollt. Causation entropy identifies indirect influences, dominance of neighbors
and anticipatory couplings. Physica D: Nonlinear Phenomena, 267:49–57, 2014. ISSN 0167-2789.
doi:10.1016/j.physd.2013.07.001.

[20] Jie Sun, Dane Taylor, and Erik M Bollt. Causal Network Inference by Optimal Causation Entropy.
SIAM Journal on Applied Dynamical Systems, 14(1):73–106, 2015. doi:10.1137/140956166.

[21] Marlene Kretschmer, Dim Coumou, Jonathan F. Donges, and Jakob Runge. Using Causal Effect
Networks to Analyze Different Arctic Drivers of Midlatitude Winter Circulation. Journal of Climate,
29(11):4069–4081, 2016. ISSN 0894-8755. doi:10.1175/jcli-d-15-0654.1.

[22] Peer Nowack, Jakob Runge, Veronika Eyring, and Joanna D. Haigh. Causal networks for climate
model evaluation and constrained projections. Nature Communications 2020 11:1, 11(1):1—11,
2020. ISSN 2041-1723. doi:10.1038/s41467-020-15195-y. URLhttp://www.nature.com/
articles/s41467-020-15195-y.

[23] Zachary S. Kaufman, Nicole Feldl, Wilbert Weijer, and Milena Veneziani. Causal Interactions
Between Southern Ocean Polynyas and High-Latitude Atmosphere-Ocean Variability. Journal of
Climate, 33(11):4891–4905, 2020. ISSN 0894-8755. doi:10.1175/jcli-d-19-0525.1.

45

https://proceedings.mlr.press/v9/eichler10a.html
https://doi.org/10.2307/2337329
https://doi.org/10.1038/ncomms9502
https://doi.org/10.1038/s41467-019-10105-3
https://doi.org/10.1038/s41467-019-10105-3
https://doi.org/10.1007/978-1-4612-2748-9
https://www.jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf
https://www.jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf
https://doi.org/10.1016/j.physd.2013.07.001
https://doi.org/10.1137/140956166
https://doi.org/10.1175/jcli-d-15-0654.1
https://doi.org/10.1038/s41467-020-15195-y
http://www.nature.com/articles/s41467-020-15195-y
http://www.nature.com/articles/s41467-020-15195-y
https://doi.org/10.1175/jcli-d-19-0525.1


[24] Christopher Krich, Jakob Runge, Diego G. Miralles, Mirco Migliavacca, Oscar Perez-Priego,
Tarek El-Madany, Arnaud Carrara, and Miguel D. Mahecha. Estimating causal networks in bio-
sphere–atmosphere interaction with the PCMCI approach. Biogeosciences, 17(4):1033–1061, 2020.
doi:10.5194/bg-17-1033-2020.

[25] Xavier-Andoni Tibau, Christian Reimers, Andreas Gerhardus, Joachim Denzler, Veronika Eyring,
and Jakob Runge. A spatiotemporal stochastic climate model for benchmarking causal discovery
methods for teleconnections. Environmental Data Science, 1, 2022. doi:10.1017/eds.2022.11.

[26] Andreas Gerhardus and Jakob Runge. LPCMCI: Causal Discovery in Time Series
with Latent Confounders. In Advances in Neural Information Processing Systems, vol-
ume 33, pages 12615–12625. Curran Associates, Inc., 2020. doi:10.5194/egusphere-
egu21-8259. URL https://proceedings.neurips.cc/paper/2020/file/
94e70705efae423efda1088614128d0b-Paper.pdf.

[27] Jakob Runge. Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear
time series datasets. In Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence,
volume 124 of Proceedings of Machine Learning Research, pages 1388–1397. PMLR, 2020. URL
https://proceedings.mlr.press/v124/runge20a.html.

[28] Yi Deng and Imme Ebert-Uphoff. Weakening of atmospheric information flow in a warming climate
in the Community Climate System Model. Geophysical Research Letters, 41(1):193–200, 2014. ISSN
1944-8007. doi:10.1002/2013gl058646.

[29] Imme Ebert-Uphoff and Yi Deng. Causal Discovery from Spatio-Temporal Data with Applications
to Climate Science. 2014 13th International Conference on Machine Learning and Applications,
pages 606–613, 2014. doi:10.1109/icmla.2014.96.

[30] James D. Hamilton. Time Series Analysis. Princeton University Press, 1994. ISBN 9780691042893.

[31] Nancy Chinchor. MUC-4 Evaluation Metrics. In Proceedings of the 4th Conference on Message
Understanding, MUC4 ’92, page 22–29, USA, 1992. Association for Computational Linguistics.
ISBN 1558602739. doi:10.3115/1072064.1072067. URL https://doi.org/10.3115/
1072064.1072067.

[32] Davide Chicco. Ten quick tips for machine learning in computational biology. BioData Mining,
10(1):35, 2017. ISSN 1756-0381. doi:10.1186/s13040-017-0155-3.

[33] B.W. Matthews. Comparison of the predicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure, 405(2):442–451, 1975.
ISSN 0005-2795. doi:https://doi.org/10.1016/0005-2795(75)90109-9. URL https://www.
sciencedirect.com/science/article/pii/0005279575901099.

46

https://doi.org/10.5194/bg-17-1033-2020
https://doi.org/10.1017/eds.2022.11
https://doi.org/10.5194/egusphere-egu21-8259
https://doi.org/10.5194/egusphere-egu21-8259
https://proceedings.neurips.cc/paper/2020/file/94e70705efae423efda1088614128d0b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/94e70705efae423efda1088614128d0b-Paper.pdf
https://proceedings.mlr.press/v124/runge20a.html
https://doi.org/10.1002/2013gl058646
https://doi.org/10.1109/icmla.2014.96
https://doi.org/10.3115/1072064.1072067
https://doi.org/10.3115/1072064.1072067
https://doi.org/10.3115/1072064.1072067
https://doi.org/10.1186/s13040-017-0155-3
https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
https://www.sciencedirect.com/science/article/pii/0005279575901099
https://www.sciencedirect.com/science/article/pii/0005279575901099


APPENDIX A. Additional Simulation Results: Two-Dimensional Model

In this section, we depict various performance rates of PCMCI in our two-dimensional simulation study
(Section 3.2). Here we report:

FDR =
FP

T P+FP
(False Discovery Rate, Figure A-1)

T PR =
T P

T P+FN
=

T P
P

(True Positive Rate, Figure A-2)

FNR =
FN

T P+FN
=

FN
P

(False Negative Rate, A-3)

T NR =
T N

T N +FP
=

T N
N

(True Negative Rate, A-4)

FPR =
FP

T N +FP
=

FP
N

(False Positive Rate, A-5)

where FDR is the false discovery rate; T P,FP,T N,FN are the number of true positives, false positives,
true negatives, and false negatives, respectively; and P,N are the number of edges and non-edges in the
true graph.

As with the one-dimensional model, PCMCI exhibits a bias towards non-discovery, with low true and
false positive rates across scenarios. The FPR is almost always kept near 0, indicating that we can have
a high degree of confidence in the causal effects identified by PCMCI, but that it has limited statistical
power at moderate sample sizes.
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Figure A-1. False Discovery Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits low FDR for T > 50. FDR decreases with the number of causal effects (density)
and with increasing time samples.
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Figure A-2. True Positive Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits low true positive rates for T < 350. TPR decreases with the number of causal
effects and with increasing grid sizes.
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Figure A-3. False Negative Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits relatively high false negative rates in all scenarios, indicating low statistical
power. FNR generally increases with the number of causal effects and with increasing grid sizes.
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Figure A-4. True Negative Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits near perfect true negative rates in all scenarios. To the extent it varies, TNR
decreases with the number of causal effects and with decreasing grid sizes.
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Figure A-5. False Positive Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits near perfect false positive rates in all scenarios. To the extent it varies, FPR
increases with the number of causal effects and with decreasing grid sizes.
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