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Abstract

A general formalism is developed to construct and solve a system of linearized moment equations

for parallel and perpendicular closures in high-collisionality plasmas. It is applicable for multiple

ion species with arbitrary masses, temperatures, charges, and densities. The convergence of closure

coefficients is evaluated by increasing the number of moments from 2 to 32 for scalar, vector, and

rank-2 tensor moments. As an example, the complete set of closure coefficients for a deuterium-

carbon plasma over the entire Hall parameter range is presented. The closure coefficients at various

temperature ratios show that one-temperature closure coefficients can differ significantly from two-

temperature coefficients.
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I. INTRODUCTION

Due to its low dimensionality, a fluid model of a plasma has a significant advantage over a

kinetic model, especially as the number of plasma species increases. A fluid model consists of

fluid variables and the governing equations that describe their behavior. Since the governing

equations involve additional moments referred to as closures, a fluid model requires closure

relations that connect the additional moments to the fluid variables.

A straightforward closure scheme is to expand the fluid system by including the evolution

equations of the closure moments (See Refs. [1–6] and references therein). Explicit formulas

of writing an infinite hierarchy of moment equations are developed in Refs. [7, 8]. The fluid

system can be further expanded if it is computationally feasible, however, the computational

effort increases as the number of moments increases and the advantage of low dimensionality

may be lost when the number of fluid moments becomes comparable to the number of

velocity space grid points required to solve the kinetic equation. On the other hand, the

asymptotic closure scheme (see p. 216, [9]) allows for the approximate solution of the added

moment equations for closures instead of numerically advancing the full equations. This

closure scheme provides analytic quantitative closures that are rigorously accurate up to the

expansion order of a small parameter, if such a parameter exists.

In the five-moment fluid model, closure quantities: the heat flux density ha, viscosity πa,

friction force density Ra, and collisional heating Qa, are expressed in terms of fluid quan-

tities: density na, temperature Ta, and flow velocity Va, where the subscript a denotes a

plasma species. The closure calculations are based on a linear response theory, where closure

relations are determined by closure coefficients that connect the closures to drives: the tem-

perature gradient ∇Ta, temperature difference Tab = Ta − Tb, velocity gradient ∇Va, and

flow-velocity difference Vab = Va −Vb. For high collisionality [Knudsen number ǫ ∼ (mean

free path)/(macroscopic scale length) ≪ 1], closure relations for the two-fluid (electrons and

ions) five-moment system are developed in Refs. [10, 11] and improved in Refs. [12, 13]. For

multiple ion species, additional moment equations are added to the fluid system to con-

struct systems with up to 29 moments [3–6]. Braginskii type of closures for two or several

ion species with disparate masses are obtained in Refs. [14–16] when one ion mass is much

larger than the others. Parallel closure coefficients are obtained for multiple ion species with

general masses in Refs. [17, 18].
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Due to its simplicity, the calculation of collisional moments is often performed assuming a

single temperature for multiple ion species [5, 17, 19]. The choice of one single equilibrium

temperature seems acceptable because the system approaches thermal equilibrium at that

temperature. However, when the equilibration time is much larger than the time scale of

interest, or when different temperatures are maintained by external heating sources, the

closure coefficients calculated from one-temperature collision coefficients can be significantly

different from those calculated from two-temperature collision coefficients. Additionally, the

temperature used for normalizing the velocity variable in the moment expansion should be

appropriate. The moment expansion will not converge if the temperature used, say T0, is less

than half the species temperature, say Tb/2. This can be understood from exp(−mv2/2Tb) =

wχ. With the weight function w = exp(−mv2/2T0), the function χ = exp(−mv2/2Tb +

mv2/2T0) is not square-integrable if T0 < Tb/2, and the polynomial expansion of χ fails to

converge. As a result, using the equilibrium temperature T0 = (naTa + nbTb)/(na + nb) in

the moment expansion of species b is acceptable only if T0 > Tb/2. This condition can be

easily violated, for example, when dealing with a minor species b (nb ≪ na) if Tb > 2Ta,

as Tb/2 > Ta ≈ T0. The 21-moment multi-temperature closure coefficients are calculated in

Ref. [18, 20], albeit for parallel closures only.

In this work, we develop a general formulation to derive closures for high-collisionality

electron-multi-ion plasmas. We provide a general method for calculating parallel and per-

pendicular closures that are valid for arbitrary masses, temperatures, charges, and densities

in a general magnetic field. Additionally, we verify the convergence of the closure coefficients

by increasing the number of moments up to 32 scalars (1 independent variable), 32 vectors

(3), and 32 rank-2 tensors (5), which corresponds to the 293 [= 5+32× (1+3+5)] moment

system for each species.

The general moment equations for closures are constructed in Sec. II. The formulation to

derive closures for multi-ion plasmas is developed for electrons in Sec. III and for ions in

Sec. IV. In Sec. V, we apply the formulation to a two-ion plasma and present the complete

set of closure coefficients for a deuterium-carbon plasma. Sec. VI is devoted to discussion.
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II. FLUID AND CLOSURE MOMENT EQUATIONS

For a plasma with multiple ion species, a distribution function fa with a = e (electrons), 1

(first ion species), 2 (second ion species), etc. is governed by the kinetic equation

∂fa
∂t

+ v · ∇fa +
qa
ma

(E+ v ×B) · ∂fa
∂v

=
∑

b

C(fa, fb), (1)

where C(fa, fb) is the Landau collision operator. In the five-moment model, the density

na, flow velocity Va, and temperature Ta are defined from the distribution function fa as:

na =
∫

dvfa, Va = n−1
a

∫

dvvfa, and Ta = n−1
a

∫

dv(maw
2
a/3)fa, where wa = v − Va,

the random velocity. Their evolution equations are obtained by taking the corresponding

moments of the kinetic equation (1):

dana + na∇ ·Va = 0, (2)

manadaVa − naqa(E+Va ×B) +∇pa +∇ · πa = Ra, (3)

3

2
nadaTa + naTa∇ ·Va +∇ · ha +∇Va : πa = Qa, (4)

where da = ∂/∂t + Va · ∇. The system of fluid equations (2)–(4) needs to be closed by

expressing the heat flux density ha, viscosity πa, collisional heating Qa, and friction force

density Ra in terms of na, Va, and Ta. Here the closure quantities are defined as

ha =

∫

dv 1
2
maw

2
awafa, (5)

πa =

∫

dvma(wawa − 1
3
w2

aI)fa, (6)

Qa =

∫

dv 1
2
maw

2
a

∑

b

C(fa, fb), (7)

and

Ra =

∫

dvmawa

∑

b

C(fa, fb). (8)

In order to obtain the closure relations for the system of fluid equations (2)–(4), we con-

struct and solve a system of moment equations for higher order (non-Maxwellian) moments

where Maxwellian moments appear as source (drive) terms of the system. For the moment

equations we expand a distribution function as

fa = fM
a

∑

lq

p̂lqa ·mlq
a , (9)
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where fM
a =

(

na/π
3/2v3Ta

)

e−c2
a (a Maxwellian distribution), vTa =

√

2Ta/ma, ca = (v −
Va)/vTa, and

p̂lqa =
1

√
σlq

Pl(ca)L
(l+1/2)
q (c2a). (10)

Here Pl is a symmetric traceless rank-l tensor, L
(l+1/2)
q is an associated Laguerre polynomial,

and the normalization constants are

σlq = σlλlq, σl =
l!

(2l + 1)!!
, λlq =

(l + q + 1/2)!

q!(1/2)!
. (11)

The moments are the expansion coefficients in Eq. (9),

mlq
a = n−1

a

∫

dvp̂lqa fa. (12)

The closure calculations in this work are based on a linear response theory that closure

quantities are linearly connected to drive terms ∇Ta, ∇Va, Tab = Ta−Tb, and Vab = Va−Vb,

which are assumed to be order of ǫ [O(ǫ)]. The exact collisional moments are calculated in

Ref. [21]. Noting that mlq
a ∼ O(ǫ), the collisional moments up to O(ǫ) can be written as

∫

dvp̂lpa C
(

fM
a p̂lqa ·mlq

a , f
M
b

)

=
na

τab
alpqab m

lq
a ,

∫

dvp̂lpa C
(

fM
a , fM

b p̂
lq
b ·mlq

b

)

=
na

τab
blpqab m

lq
b , (13)

where alpqab and blpqab are related to Alpq
ab and Blpq

ab of Ref. [7]: alpqab = Alpq
ab τab/na

√

λlpλlq and blpqab =

Blpq
ab τab/na

√

λlpλlq. Here the collision time is defined as τab = 6π3/2ε20maTavTa/nbq
2
aq

2
b ln Λab,

and the Coulomb logarithm, lnΛab, is defined by Λab = 12πε0(maTb +mbTa)λD/|qaqb|(ma +

mb) with λD = (
∑

a naq
2
a/ε0Ta)

−1/2
being the Debye length. Several lowest order coefficients

alpqab and blpqab necessary for closure calculations are given in Appendix A. The collisional

heating (7) and friction (8) up to O(ǫ) are

Qa =
∑

b

(

QM
ab +QN

ab

)

, QM
ab =

na

τab

3X
3/2
ab

µab
Tba, (14)

Ra =
∑

b

(

R
M
ab +R

N
ab

)

, RM
ab =

mana

τab
X

3/2
ab

1 + µab

µab
Vba, (15)

where Xab = (1 + θab/µab)
−1, µab = mb/ma, θab = Tb/Ta. Here the non-Maxwellian contri-

butions, QN
ab and R

N
ab, can be written as

QN
ab = −

√

3

2

naTa

τab

∑

q=2

(a01qab m0q
a + b01qab m

0q
b ), (16)

R
N
ab =

manavTa√
2τab

∑

q=1

(a10qab m1q
a + b10qab m

1q
b ). (17)
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Here the coefficients can be explicitly written as

a01qab =

√

3 (q − 1/2)!

(q + 1/2)q!(−1/2)!
X

q+3/2
ab

µab − (2q + 1)θabµab − 2qθab
µ2
ab

, (18)

b01qab =

√

3 (q − 1/2)!

(q + 1/2)q!(−1/2)!
X

q+3/2
ab

(

θab
µab

)q
2qµab − θab + 2q + 1

µab
, (19)

a10qab = −
√

3 (q + 1/2)!

(q + 3/2)q!(−1/2)!
X

q+3/2
ab

1 + µab

µab
, (20)

b10qab =

√

3 (q + 1/2)!

(q + 3/2)q!(−1/2)!
X

q+3/2
ab

1 + µab

µab

(

θab
µab

)q+1/2

. (21)

For high collisionality, the ∂fN
a /∂t, v · ∇fN

a , and (qa/ma)E · ∂
v
fN
a terms may be assumed to

be O(ǫ2) and ignored, where fN
a = fa − fM

a is the non-Maxwellian part of a distribution fa.

Then the equations for non-Maxwellian moments (l, p) /∈ M = {(0, 0), (0, 1), (1, 0)} can be

written as

naΩab×̆mlp
a =

∑

b,q

na

τab

(

alpqab m
lq
a + blpqab m

lq
b

)

+ Glp
a . (22)

Here Ωa = qaB/ma is the cyclotron frequency, and ×̆ denotes the generalized cross product

defined for a rank-l tensor ml: b×̆m0 = 0 for a scalar m0, b×̆m1 = b× m1 for a vector m1,

and

(b×̆ml)αβ···γ = ǫαµνbµm
l
νβ···γ + ǫβµνbµm

l
αν···γ + · · ·+ ǫγµνbµm

l
αβ···ν (23)

for a rank l ≥ 2 tensor, where the summation convention is understood for repeated indices.

The drive terms are defined by

Glp
a =

∫

dvp̂lpa [−v · ∇fM
a +

∑

b

C(fM
a , fM

b )]. (24)

The nonvanishing drive terms are

G0p
a = na

∑

b6=a

a0p0ab

τab
= na

∑

b6=a

αp
ab

τab

Tab

Ta

, (25)

G1p
a = δp1

√
5

2
navTa∇ lnTa +

√
2na

∑

b6=a

b1p0ab

τab

Vba

vTb

, (26)

G20
a = − 1√

2
naWa, (27)
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where (W)αβ = ∂Vβ/∂xα + ∂Vα/∂xβ − (2/3)δαβ∇ ·V.

The collision coefficients in the G0p
a drive are written as

a0p0ab = αp
ab

Tab

Ta

, αp
ab =

√

p
(

p− 1
2

)

!

(p+ 1/2) (p− 1)!(1/2)!

3X
p+1/2
ab

µab

. (28)

As the G0p
a drives are proportional to Tab, the temperature relaxation rate in Eq. (14) will

be modified by QN
ab. This modification is negligible in electron-ion plasmas due to the small

mass-ratio of electrons to ions. The coefficients of the linearized collisional moments in the

G1p
a drive can be written as

b1p0ab =

√

3(p+ 1/2)!

(2p+ 3)p!(1/2)!
X

p+ 3

2

ab

vTb

vTa

(µab − 2pθab + 2p+ 1)

µab
. (29)

Once Eq. (32) has been solved for the moments, the closure quantities can be obtained from

the relations to the moments:

ha = −
√
5

2
naTavTam

11
a , (30)

πa =
√
2naTam

20
a , (31)

Eq. (16), and Eq. (17).

When solving Eq. (22) for each l, we consider a truncated system of equations for K mo-

ments,

m0
a =

















m02
a

m03
a

...

m0,K+1
a

















, m1
a =

















m11
a

m12
a

...

m1K
a

















, ml≥2
a =

















ml0
a

ml1
a

...

ml,K−1
a

















.

Multiplying τaan
−1
a and defining ra = Ωaτaa, c

l
aa = alaa+blaa, zab = τaa/τab, and gla = τaan

−1
a Gl

a,

we rewrite Eq. (22) in matrix form,

rab×̆ml
a =

(

claa +
∑

b6=a

zaba
l
ab

)

ml
a +

∑

b6=a

zabb
l
abm

l
b + gla, (32)

where gla is a K-dimensional column vector, and alab, b
l
ab, and claa are K×K matrices whose

elements are alpqab , blpqab , and clpqaa , respectively. The moment indices for the matrix elements
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are

p, q =























2, 3, · · · , K + 1, l = 0,

1, 2, · · · , K, l = 1,

0, 1, · · · , K − 1, l ≥ 2.

Since gla = 0 for l ≥ 3, the solutions are trivial

ml
a = 0 for l ≥ 3. (33)

For l = 0, we can solve Eq. (32) inverting the collision matrix. For l = 1 and 2, we

solve Eq. (32) adopting the geometric method developed in [13, 22]. We define operators

bA (A = ‖, ×, ⊥) acting on a vector V to define

V‖ = b‖V = bb ·V,

V⊥ = b⊥V = −b× (b×V),

V× = b×V = b×V.

Similarly, we define bAB (A, B = ‖, ×, ⊥) acting on a rank 2 tensor W to define

WAB = bABW =
1

2
(bA ⊗ bB + bB ⊗ bA)W.

We further define

W± =
1

2
(W⊥⊥ ±W××) (34)

for a rank-2 tensor W. Then Braginskii’s Wi (i = 0, 1, 2, 3, 4) [10, 11] can be written as

W0 = W‖‖ +
1

2
(W×× +W⊥⊥),

W1 =
1

2
(W⊥⊥ −W××),

W2 = 2W‖⊥, (35)

W3 = W×⊥,

W4 = 2W‖×,

and any rank-2 tensor can be decomposed as

W = W‖‖ + 2W‖⊥ +W⊥⊥ = W0 +W1 +W2. (36)
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III. ELECTRON CLOSURES FOR A PLASMA WITH MULTIPLE ION SPECIES

For a = e (electrons) and b = j (an ion species), the small-mass-ratio approximation is

adopted for collision coefficients [8]. Then blej can be ignored and Eq. (32) is written as

reb×̆ml
e = clem

l
e + gle, (37)

where

cle = clee +
∑

j

zeja
l
ei, (38)

and drive terms are

g1pe =δp1

√
5

2

τeevT e

Te
∇Te +

√
2
∑

j

zeja
1p0
ei

Vej

vT e
, (39)

g2pe =− δp0
1√
2
τeeWe, (40)

with
∑

j denoting a sum over ion species j (here and hereafter the subscript i, j, k, and

l = 1, 2, · · · , S will be used for ion species). The collision matrices cl=1,2
ee and al=1,2

ei for

K = 3 are listed in Eqs. (28) of Ref. [13].

The G0p
e drive, Eq. (25), is not considered because the collision coefficients a01qej ∼ O(µje),

b01qej ∼ O(µq
je), and a0p0ej ∼ O(µje) where µje = me/mj [see Eqs. (18), (19), and (28) with

a = e and b = j (an ion species)] . Therefore QN
ej ∼ O(µ2

je) is negligible compared to

QM
ej ∼ O(µje) in Eq. (14) (see also Fig. 1 and related remarks). Then the collisional heating

of electrons are written as

Qe =
∑

j

Qej , Qej =
ne

τej

3

µej
Tje. (41)

Defining an effective ion mass mi, temperature Ti, and collision time τei by

m−1
i =

∑

j τ
−1
ej m−1

j
∑

j τ
−1
ej

, (42)

Ti =

∑

j τ
−1
ej m−1

j Tj
∑

j τ
−1
ej m−1

j

, (43)

and

τ−1
ei =

∑

j

τ−1
ej = Zτ−1

ee , (44)
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the collisional heating of electrons becomes that of a single ion species

Qe = 3
ne

τei

me

mi

(Ti − Te). (45)

Note that alei in Eq. (38) is independent of ion species j as a consequence of the small-mass-

ratio approximation. Defining an effective ion charge number Z for multiple ion species,

Z =
∑

j

zej =
∑

j

τee
τej

=
∑

j

Z2
j

nj ln Λej

ne ln Λee

, (46)

and an effective ion flow velocity (the collision-frequency weighted average of ion flow veloc-

ities) Vi,

Vi =

∑

j τ
−1
ej Vj

∑

j τ
−1
ej

=
∑

j

zej
Z

Vj = τei
∑

j

τ−1
ej Vj , (47)

Eqs. (38) and (39) become the collision matrix and the drive of a single ion species Z,

cle = clee + Zalei, (48)

g1pe = δp1

√
5

2

τeevT e

Te
∇Te +

√
2Za1p0ei

Vei

vT e
, (49)

the same as Eqs. (32a) and (31a) of Ref. [13] (up to the density factor). Therefore the

electron closure relations become those of a single ion species:

Re =
mene

τei
(−α̂‖Vei‖ − α̂⊥Vei⊥ + α̂×Vei×) + ne(−β̂‖∇‖Te − β̂⊥∇⊥Te − β̂×∇×Te),

(50)

he = neTe(β̂‖Vei‖ + β̂⊥Vei⊥ + β̂×Vei×) +
neTeτee
me

(−κ̂e
‖∇‖Te − κ̂e

⊥∇⊥Te − κ̂e
×∇×Te).

(51)

The closure coefficients can be obtained from Eq. (83) with Table III in Ref. [13]. The

electron friction due to ion species j, Rej , can be calculated as

Rej =
zej
Z

Re. (52)

For l = 2, the moment equation (37) with Eqs. (38) and (40) is exactly the same as that of

an electron-ion plasma for a single ion species Z and so are the electron closure relations:

πe = −η0eW
0
e − η1eW

1
e − η2eW

2
e − η3eW

3
e − η4eW

4
e . (53)

The closure coefficients can be obtained from Eq. (84) with Table IV in Ref. [13]. Therein

the superscript and subscript appear switched.
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IV. ION CLOSURES FOR MULTIPLE ION SPECIES

For an ion species i, the ion-electron collision coefficients bie can be ignored by the small-

mass-ratio approximation based on µ = me/mi ≪ 1, but bij for another ion species j should

be kept, which makes the ion equations coupled to each other. For clarity, the moment index

will be denoted by a superscript, and the species index by a subscript when they appear

together. A system of coupled equations for S ion species, i, j = 1, 2, · · · , S, can be written

in matrix form:

Rb×̆M
l = C

l
M
l + G

l, (54)

where M
l and G

l are KS dimensional column vectors, Cl is a KS ×KS dimensional matrix:

M
l =

















ml
1

ml
2

...

ml
S

















, Cl =

















C
l
11 C

l
12 · · · C

l
1S

C
l
21 C

l
22 · · · C

l
2S

...
...

. . .
...

C
l
S1 C

l
S2

... C
l
SS

















, (55)

G
l is defined in a similar manner to M

l, and R = diag. (r11K , r21K , r31K , · · · , rS1K) with 1K

being a K-dimensional identity matrix. Here the K ×K block matrices are defined as

C
l
ij =











clii + ziea
l
ie +

∑

k 6=i zika
l
ik, i = j

zijb
l
ij , i 6= j.

(56)

The elements of column vector Gl are, for l = 0 and p = 2, 3, · · · , K + 1,

G
0
(i−1)∗K+p−1 = g

0p
i =

S
∑

b=0

zibα
p
ib

Tib

Ti

, (57)

for l = 1 and p = 1, 2, · · · , K,

G
1
(i−1)∗K+p = g

1p
i = δp1

√
5

2

τiivT i

Ti
∇Ti +

√
2

S
∑

b=0

zibb
1p0
ib

Vbi

vTb
, (58)

for l = 2 and p = 0, 1, · · · , K − 1,

G
2
(i−1)∗K+p+1 = g

2p
i = −δp0

τii√
2
Wi, (59)

where the subscript A in G
l
A denotes the row number of a column vector Gl.
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A. l = 0 scalar moments

For l = 0, solving

0 = C
0
M
0 + G

0, (60)

we have the solution

M
0 = X

0
G
0, X0 = −

(

C
0
)−1

. (61)

Using Eq. (57), the moment element can be written as

m
0p
i =

∑

j

∑

q=2

X
0pq
ij g

0q
j =

∑

j

∑

q=2

X
0pq
ij

∑

k 6=j

zjkα
q
jk

Tjk

Tj

, (62)

where the electron term has been ignored because αq
je = O(µ

q−1/2
je ) with q ≥ 2.

The collisional heating is decomposed into Qie due to electrons and Qij due to ions j,

Qi = Qie +
∑

j

Qij , (63)

where Qie = −Qei can be obtained from Eq. (41) and Qij can be written from Eqs. (14),

(16), (62), and (57) as

Qij = − ni

τij

∑

k<l

γ̂ijklTkl, (64)

with the dimensionless coefficients

γ̂ijkl =

√

3

2
(δikδjl − δilδjk)α

1
kl + γN

ijkl, (65)

where

γN
ijkl =

∑

p,q=2

[

√

3

2
(a01pij X

0pq
ik + b01pij X

0pq
jk )zklα

q
kl

Ti

Tk

− (k ↔ l)

]

(66)

and the symbol (k ↔ l) denotes a repetition of the previous term with k and l interchanged.

Note that (i) the replacement of
∑

k<l with (1/2)
∑

k,l or
∑

k>l in Eq. (64) yields the same

results because γ̂ijkl = −γ̂ijlk, and Tkl = −Tlk (ii) Qij +Qji = 0, the energy conservation, is

verified by γ̂ijkl + γ̂jiklmiTivT i/mjTjvTj = 0, and mjnjTjvTj/τji = miniTivT i/τij . It may be

convenient to express

Qi = Qie −
ni

τii

∑

j

γ̂ijTj , (67)
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γ̂1212 vs. µ
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Figure 1. Collisional heating coefficients of ion species 1 (m1 = 1u, T1 = Te, Z1 = 1, and

n1 = 0.5ne) due to ion species 2 (m2 = µm1, T2 = 2T1, Z2 = 1, and n2 = n1). The coefficients

γ̂1212 vs. mass ratio µ are depicted for various numbers of moments: K = 0 (Maxwellian only,

green, dash-dotted), 2 (red, solid), 4 (blue, dashed), and 32 (cyan, dotted).

where γ̂ij =
∑

k,l zikγ̂ikjl. For S > 3, this expression reduces S(S − 1)/2 temperature

difference terms to S temperature terms.

Figure 1 shows that the modification of QM
ij (K = 0) by QN

ij is substantial for comparable

masses (µ ≈ 1). The deviation of QM
ij from the K = 32 calculation of Qij is about 40% at

µ = 1. The deviations are ignorable for µ ≫ 1 and µ ≪ 1. This explains that QN
ei and QN

ie

are ignorable in electron-ion plasmas. Figure 1 also displays the convergence behavior as

the number of moments increases. The K = 2 calculation is already a good approximation

compared to the K = 32 calculation. The deviations of K = 2 and K = 4 calculations,

respectively, from K = 32 are at most 8.5% at µ ≈ 0.08 and 4.8% at µ ≈ 0.04 and only

0.1% and 0.01% at µ = 1.

B. l = 1 vector moments

For l = 1, we solve

Rb× M
1 = C

1
M
1 + G

1. (68)

Applying b‖ yields

C
1
M
1
‖ = −G

1
‖ (69)

13



and the solution is

M
1
‖ = −

(

C
1
)−1

G
1
‖. (70)

Applying b⊥ and b× yields





C
1 −R

R C
1









M
1
⊥

M
1
×



 = −





G
1
⊥

G
1
×



 , (71)

and the solution is




M
1
⊥

M
1
×



 = −
(

D
1,1
)−1





RC
1
R
−1

R

−R RC
1
R
−1









G
1
⊥

G
1
×



 . (72)

From Eqs. (70) and (72), the solution M
1 = M

1
‖ + M

1
⊥ is

M
1 = −

(

C
1
)−1

G
1
‖ −

(

D
1,1
)−1 (

RC
1
R
−1
G
1
⊥ + RG

1
×

)

, (73)

where

D
l,m = RC

l
R
−1
C
l + (mR)2. (74)

Then the m
1p
i moment can be read from Eq. (73),

m
1p
i =

∑

j,q

(

X
1pq
‖ij g

1q
j‖ + X

1pq
⊥ijg

1q
j⊥ − X

1pq
×ijg

1q
j×

)

, (75)

where

X
1
‖ = −

(

C
1
)−1

,

X
1
⊥ = −

(

D
1,1
)−1

RC
1
R
−1, (76)

X
1
× =

(

D
1,1
)−1

R,

and X
1pq
Aij is the [(i− 1)K + p]th row and [(j − 1)K + q]th column of matrix X

1
A.

The ion heat flux density can be obtained from Eqs. (30), (75), and (58):

hi =
∑

j

niTiτjj
mj

(

−κ̂‖ij∇‖Tj − κ̂⊥ij∇⊥Tj + κ̂×ij∇×Tj

)

+ niTi

∑

j<k

(

β̂TV
‖ijkVjk‖ + β̂TV

⊥ijkVjk⊥ − β̂TV
×ijkVjk×

)

, (77)

14



where

κ̂Aij =
5

2

vT i

vTj

X
111
Aij , (78)

β̂TV
Aijk =

√

5

2

∑

q

[

vT i

vTk

X
11q
Aijzjkb

1q0
jk − (j ↔ k)

]

. (79)

The friction force density is decomposed into Rie due to electrons and Rij due to ions j:

Ri = Rie +
∑

j

Rij, (80)

where Rie = −Rei can be obtained from Eq. (52), and Rij can be obtained from Eqs. (15),

(17), (75), and (58):

Rij =
∑

k

nk

(

−β̂V T
‖ijk∇‖Tk − β̂V T

⊥ijk∇⊥Tk + β̂V T
×ijk∇×Tk

)

−
∑

k<l

mini

τij

(

α̂‖ijklVkl‖ + α̂⊥ijklVkl⊥ + α̂×ijklVkl×

)

, (81)

with the dimensionless coefficients

β̂V T
Aijk = −

∑

p=1

√

5

2

zki
zik

Tk

Ti
zij(a

10p
ij X

1p1
Aik + b10pij X

1p1
Ajk), (82)

α̂Aijkl = −δAa
100
ij (δikδjl − δilδjk) + (2δA − 1)αN

Aijkl, (83)

where δ‖ = δ⊥ = 1, δ× = 0, and

αN
Aijkl =

∑

p,q=1

[

(

a10pij X
1pq
Aik + b10pij X

1pq
Ajk

)

zklb
1q0
kl

vT i

vT l
− (k ↔ l)

]

. (84)

Note that (i) the replacement of
∑

k<l with (1/2)
∑

k,l or
∑

k>l yields the same results since

α̂Aijkl = −α̂Aijlk, and VklA = −VlkA (ii) Rij+Rji = 0, the momentum conservation, is veri-

fied by β̂V T
Aijk + β̂V T

Ajik = 0, α̂Aijkl+ α̂AjiklTivT i/TjvTj = 0, and mjnjTjvTj/τji = miniTivT i/τij.

It may be convenient to write

hi =
∑

j

niTiτjj
mj

(

−κ̂‖ij∇‖Tj − κ̂⊥ij∇⊥Tj + κ̂×ij∇×Tj

)

+ niTi

∑

j

(

β̂TV
‖ij Vj‖ + β̂TV

⊥ijVj⊥ − β̂TV
×ijVj×

)

, (85)

Ri =Rie +
∑

j

nj

(

−β̂V T
‖ij ∇‖Tj − β̂V T

⊥ij∇⊥Tj + β̂V T
×ij∇×Tj

)

− mini

τii

∑

j

(

α̂‖ijVj‖ + α̂⊥ijVj⊥ + α̂×ijVj×

)

, (86)
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where β̂TV
Aij =

∑

k β̂
TV
Aijk, β̂

V T
Aij =

∑

k β̂
V T
Aikj, and α̂Aij =

∑

k,l zikα̂Aikjl. Particularly for more

than three ion species (S > 3), these equations reduce S(S − 1)/2 terms of relative flow

velocities to S terms of flow velocities.

C. l = 2 tensor moments

The moment equation (54) for l = 2 becomes

R

(

b× M
2 − M

2 × b
)

= C
2
M
2 + G

2. (87)

Applying b‖⊥and b‖× on Eq. (87) yields [the same form as Eq. (71)]




C
2 −R

R C
2









M
2
‖⊥

M
2
‖×



 = −





G
2
‖⊥

G
2
‖×



 , (88)

which is solved for

M
2
‖⊥ = −(D2,1)−1

(

RC
2
R
−1
G
2
‖⊥ + RG

2
‖×

)

. (89)

Applying b⊥⊥, b×⊥, and b×× on Eq. (87) yields

2RM2×⊥ = C
2
M
2
⊥⊥ + G

2
⊥⊥, (90)

R(−M
2
⊥⊥ + M

2
××) = C

2
M
2
×⊥ + G

2
×⊥, (91)

−2RM2×⊥ = C
2
M
2
×× + G

2
××. (92)

Applying b‖‖ yields

0 = C
2
M
2
‖‖ + G

2
‖‖,

and its solution is

M
2
‖‖ = −(C2)−1

G
2
‖‖. (93)

With the definitions (34), the system of equations (90)-(92) can be reduced to

C
2
M
2
+ = −G

2
+ (94)

and




C
2 −2R

2R C
2









M
2
−

M
2
×⊥



 = −





G
2
−

G
2
×⊥



 . (95)
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The solutions are

M
2
+ = −(C2)−1

G
2
+, (96)

M
2
− = −(D2,2)−1(RC2R−1

G
2
− + 2RG2×⊥), (97)

and, from Eq. (34), M2⊥⊥ = M+ + M− becomes

M
2
⊥⊥ = −(C2)−1

G
2
+ − (D2,2)−1(RC2R−1

G
2
− + 2RG2×⊥). (98)

Using the definitions (35), we can write M
2 = M

2
‖‖ + 2M2‖⊥ + M

2
⊥⊥ with the help of Eqs. (93),

(89), and (98):

M
2 = X

2
0G

2
0 + X

2
1G

2
1 + X

2
2G

2
2 − X

2
3G

2
3 − X

2
4G

2
4,

where

X
2
0 = −(C2)−1,

X
2
1 = −(D2,2)−1

RC
2
R
−1,

X
2
2 = −(D2,1)−1

RC
2
R
−1,

X
2
3 = 2(D2,2)−1

R,

X
2
4 = (D2,1)−1

R.

Now we use Eq. (59) and Eq. (31) to write the viscosity tensor

πi = −pi
∑

j

τjj(η̂
0
ijW

0
j + η̂1ijW

1
j + η̂2ijW

2
j − η̂3ijW

3
j − η̂4ijW

4
j ), (99)

where

η̂Aij = X
200
A,ij, for A = 0, 1, 2, 3, 4, (100)

and X
200
Aij is the [(i − 1)K + 1]st row and [(j − 1)K + 1]st column of matrix X

2
A. Note that

η̂0ij = η̂2ij(ri = 0), η̂1ij(ri) = η̂2ij(2ri), and η̂3ij(ri) = η̂4ij(2ri).

V. EXAMPLE STUDY FOR A PLASMA WITH TWO ION SPECIES

In this section we apply the formulation developed in the previous section to a two-ion

system. For the collisional heating, from Eq. (63),

Q1 = Q1e +Q12, (101)
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Q2 = Q2e −Q12, (102)

where Q1e = −Qe1 and Q2e = −Qe2 can be obtained from Eq. (41), and from Eq. (64),

Q12 = − n1

τ12
γ̂1212T12. (103)

For the heat flux density, it follows from Eq. (77) with i, j, k = 1, 2 that

h1 =
n1T1τ11
m1

(

−κ̂‖11∇‖T1 − κ̂⊥11∇⊥T1 + κ̂×11∇×T1

)

+
n1T1τ22
m2

(

−κ̂‖12∇‖T2 − κ̂⊥12∇⊥T2 + κ̂×12∇×T2

)

+ n1T1

(

β̂TV
‖112V12‖ + β̂TV

⊥112V12⊥ − β̂TV
×112V12×

)

(104)

and

h2 =
n2T2τ11
m2

(

−κ̂‖21∇‖T1 − κ̂⊥21∇⊥T1 + κ̂×21∇×T1

)

+
n2T2τ22
m2

(

−κ̂‖22∇‖T2 − κ̂⊥22∇⊥T2 + κ̂×22∇×T2

)

+ n2T2

(

β̂TV
‖221V21‖ + β̂TV

⊥221V21⊥ − β̂TV
×221V21×

)

, (105)

where we have used β̂TV
A221 = −β̂TV

A212 and V21A = −V12A. For the friction force density, from

Eq. (80),

R1 = R1e +R12 (106)

and

R2 = R2e −R12, (107)

where R1e = −Re1 and R2e = −Re2 can be obtained from Eqs. (50) and (52), and from

Eq. (81),

R12 =n1

(

−β̂V T
‖121∇‖T1 − β̂V T

⊥121∇⊥T1 + β̂V T
×121∇×T1

)

+ n2

(

−β̂V T
‖122∇‖T2 − β̂V T

⊥122∇⊥T2 + β̂V T
×122∇×T2

)

− m1n1

τ12

(

α̂‖1212V12‖ + α̂⊥1212V12⊥ + α̂×1212V12×

)

. (108)

Finally, for the viscosity, it follows from Eq. (99) that

π1 =p1τ11(−η̂011W
0
1 − η̂111W

1
1 − η̂211W

2
1 + η̂311W

3
1 + η̂411W

4
1)

+ p1τ22(−η̂012W
0
2 − η̂112W

1
2 − η̂212W

2
2 + η̂312W

3
2 + η̂412W

4
2),
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and

π2 =p2τ11(−η̂021W
0
1 − η̂121W

1
1 − η̂221W

2
1 + η̂321W

3
1 + η̂421W

4
1)

+ p2τ22(−η̂022W
0
2 − η̂122W

1
2 − η̂222W

2
2 + η̂322W

3
2 + η̂422W

4
2).

For a deuterium-carbon (D-C) plasma with mD = 2.014u, mC = 12.00u, nC = 0.06ne,

nD = 0.64ne, TD = 1.5Te, TC = 1.8Te, and ln Λee = 17, the closure coefficients are calculated

for K = 2, 4, 8, 16, and 32. Ion involving Coulomb logarithms are calculated from ln Λei =

lnΛee − lnZi = lnΛie, ln Λii = lnΛee + ln (Ti/TeZ
2
i ), and ln Λij = lnΛii + ln[Zi(mj/mi +

Tj/Ti)/Zj(mj/mi + 1)]. The parameter zab can be calculated from the collision time τab =

6π3/2ε20maTavTa/nbq
2
aq

2
b ln Λab: zab = nbZ

2
b ln Λab/naZ

2
a ln Λaa.

For l = 0, the collisional heating coefficient γ̂1212 = 0.213551 and γ̂2121 = 0.685228 which are

substantially reduced by the non-Maxwellian contribution from the Maxwellian contribution

γ̂K=0
1212 = 0.382356 and γ̂K=0

2121 = 1.22688, respectively. The coefficients quickly converge as the

number of moments increases: γ̂K=2
1212 = 0.213475, γ̂K=4

1212 = 0.213582, γ̂K=8
1212 = 0.213562,

γ̂K=16
1212 = 0.213551, and γ̂K=32

1212 = 0.213551; γ̂K=2
2121 = 0.684982, γ̂K=4

2121 = 0.685327, γ̂K=8
2121 =

0.685263, γ̂K=16
2121 = 0.685228, and γ̂K=32

2121 = 0.685228.

For l = 1, the dimensionless closure coefficients are depicted in Figs. 2-3. As shown in

Eqs. (104), (105), and (108), the heat flux and friction of ion species 1 and 2 are determined

by temperature gradients of the ion species 1 and 2 and the relative flow velocity. Figure

2 shows the coefficients for the heat flux and friction of ion species 1 due to ∇T1 and V12.

Figure 3 shows the coefficients due to ∇T2. Figure 4 shows the coefficients of the ion species

2 due to ∇T1, ∇T2, and V21. Note that the closure coefficients of ion species 2 are plotted

against r1 which can be converted to r2 by r2/r1 = Ω2τ22/Ω1τ11 = 0.05803 for the given

parameters.

For l = 2, we may introduce the geometric notation η̂‖, η̂⊥, and η̂× for the viscosity coeffi-

cients: η̂0 = η̂‖ = η̂⊥(r1 = 0), η̂1 = η̂⊥(2r1), η̂
2 = η̂⊥, η̂

3 = η̂×(2r1), and η̂4 = η̂×. As shown

in Eq. (99), the viscosity closures of ion species 1 and 2 are determined by the gradients of

flow velocity of the ion species 1 and 2. Figures 5 and 6 show the dimensionless viscosity

closure coefficients of the ion species 1 and 2, respectively.

The convergence study is performed by increasing the number of moments, K = 2, 4, 8, 16,

and 32. The K = 4 calculations are good approximations and large percentage errors appear
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(a) κ̂⊥11 vs. r1 (b) κ̂×11 vs. r1
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(c) β̂TV
⊥112 vs. r1 (d) β̂TV

×112 vs. r1
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(e) β̂V T
⊥121 vs. r1 (f) β̂V T

×121 vs. r1
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(g) α̂⊥1212 vs. r1 (h) α̂×1212 vs. r1
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Figure 2. Heat flux and friction closure coefficients of ion species 1 due to ∇T1 and V12. The

coefficients are presented for various number of moments: K = 2 (green, dash-dotted), 3 (red,

solid), 8 (magenta, long-dashed), 16 (blue, dashed), and 32 (cyan, dotted) throughout figures 2-6.
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(a) κ̂⊥12 vs. r1 (b) κ̂×12 vs. r1
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(c) β̂V T
⊥122 vs. r1 (d) β̂V T

×122 vs. r1
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Figure 3. Heat flux and friction closure coefficients of ion species 1 due to ∇T2.

when the coefficient values cross the zero line where the coefficient values are small enough

not to affect the physical results. The change of coefficients from K = 16 to 32 calculations

is at most 0.29% for β̂TV
×22 and much smaller for other coefficients when the absolute value of

coefficient is greater than 0.01. For the example parameters, the K = 16 coefficients can be

considered as practically exact ones.

Finally, we discuss the importance of the two-temperature formulation of calculating closure

coefficients. Figures 7 and 8 display the thermal conductivity and viscosity coefficients

for various temperature ratios. As evident from these figures, the closure coefficients for

different temperatures can differ significantly from those for T2/T1 = 1, one-temperature

calculation. For instance, when T2/T1 = 0.8 (a difference of only 20%), κ̂⊥12 obtained from

T2/T1 = 1 is overestimated by a factor of 2. The errors of one-temperature calculation can

be attributed to the temperature-ratio dependence of collision coefficients, combined with

the collision-time ratio zab = τaa/τab, which is sensitive to the density ratio.
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Figure 4. Heat flux and friction closure coefficients of ion species 2.

VI. DISCUSSION

A general method for calculating closure coefficients for high-collisionality multi-ion plasmas

has been presented. The necessary collision coefficients for K = 4 (corresponding to the 41

moment model) calculations are presented in the appendix. Even higher order collision

coefficients necessary for more accurate closure coefficients can be calculated from explicit

formulas derived in Ref. [7]. Note that the collision coefficients obtained from the Landau
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Figure 5. Viscosity closure coefficients of ion species 1 due to ion species 1 and 2 (η̂⊥ = η̂2 and

η̂× = η̂4).

collision operator in this work are slightly different from those obtained from the Boltzmann

operator [23]. The formulation developed here is useful for a wide range of weakly coupled

plasmas where the Landau operator is valid. Although the formulation may produce analytic

results for the closure relations of plasmas with given parameters, explicit expressions of

K = 4 calculations are too complex to be written out. For practical applications one may

use collision coefficients of Appendix A to calculate the collision coefficients as described in

this work.

The convergence analysis in Sec. V for the example calculations shows that K = 8 calcu-

lations produce nearly converged closure coefficients. However, in some parameter ranges,

convergence is slow and requires K = 16 or K = 32 calculations for accurate results.

Although high K calculations are useful for theoretical analyses, performing those calcula-

tions at every time step can be computationally inefficient in numerical simulations of fluid

equations. To overcome this, it is necessary to investigate the convergence behavior of the
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Figure 6. Viscosity closure coefficients of ion species 2.

coefficients across the desired parameter range and develop fitting functions for the conver-

gent closure coefficients. These fitting formulas can then be conveniently used in numerical

simulations, avoiding the need for time-consuming closure coefficient calculations at every

time step. The development of fitting formulas for convergent closures is ongoing and will

be presented in the near future.
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Figure 7. Perpendicular thermal conductivity closure coefficients of two ion species. The coefficients

are presented for various temperature ratios: T2/T1 = 0.8 (green, dash-dotted), 0.9 (red, dashed),

1 (blue, solid), 1.1 (magenta, long-dashed), and 1.2 (cyan, dotted) in figures 7 and 8.
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Appendix A: Collision coefficients

The collision coefficients can be calculated from formulas presented in Ref. [7]. Define a
lpq

and b
lpq by

alpqab =
3X

l+p+q+1/2
ab
√

λlpλlq

a
lpq, (A1)

blpqab =
3X

l+p+q+1/2
ab
√

λlpλlq

(

θ

µ

)l/2+q

b
lpq, (A2)
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Figure 8. Perpendicular viscosity closure coefficients (η̂⊥ij = η̂2ij) of two ion species for various

temperature ratios.

where Xab = (1 + θ/µ)−1, θ = Tb/Ta, and µ = mb/ma. The necessary coefficients for K = 4

closure calculations are as follows:

a
010 =

1

µ
− θ

µ
,

a
011 =− θ

µ2
− 3θ

2µ
+

1

2µ
,

a
012 =− 3θ

2µ2
− 15θ

8µ
+

3

8µ
,

a
013 =− 15θ

8µ2
− 35θ

16µ
+

5

16µ
,

a
014 =− 35θ

16µ2
− 315θ

128µ
+

35

128µ
,

a
015 =− 315θ

128µ2
− 693θ

256µ
+

63

256µ
,
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