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Abstract

A general formalism is developed to construct and solve a system of linearized moment equations
for parallel and perpendicular closures in high-collisionality plasmas. It is applicable for multiple
ion species with arbitrary masses, temperatures, charges, and densities. The convergence of closure
coefficients is evaluated by increasing the number of moments from 2 to 32 for scalar, vector, and
rank-2 tensor moments. As an example, the complete set of closure coefficients for a deuterium-
carbon plasma over the entire Hall parameter range is presented. The closure coefficients at various
temperature ratios show that one-temperature closure coefficients can differ significantly from two-

temperature coefficients.
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I. INTRODUCTION

Due to its low dimensionality, a fluid model of a plasma has a significant advantage over a
kinetic model, especially as the number of plasma species increases. A fluid model consists of
fluid variables and the governing equations that describe their behavior. Since the governing
equations involve additional moments referred to as closures, a fluid model requires closure

relations that connect the additional moments to the fluid variables.

A straightforward closure scheme is to expand the fluid system by including the evolution
equations of the closure moments (See Refs. [1-6] and references therein). Explicit formulas
of writing an infinite hierarchy of moment equations are developed in Refs. |7, 8]. The fluid
system can be further expanded if it is computationally feasible, however, the computational
effort increases as the number of moments increases and the advantage of low dimensionality
may be lost when the number of fluid moments becomes comparable to the number of
velocity space grid points required to solve the kinetic equation. On the other hand, the
asymptotic closure scheme (see p. 216, [9]) allows for the approximate solution of the added
moment equations for closures instead of numerically advancing the full equations. This
closure scheme provides analytic quantitative closures that are rigorously accurate up to the

expansion order of a small parameter, if such a parameter exists.

In the five-moment fluid model, closure quantities: the heat flux density h,, viscosity 7,
friction force density R,, and collisional heating (),, are expressed in terms of fluid quan-
tities: density n,, temperature T,, and flow velocity V,, where the subscript a denotes a
plasma species. The closure calculations are based on a linear response theory, where closure
relations are determined by closure coefficients that connect the closures to drives: the tem-
perature gradient V7T,, temperature difference T, = T, — T}, velocity gradient VV,, and
flow-velocity difference V,, = V, — V. For high collisionality [Knudsen number € ~ (mean
free path)/(macroscopic scale length) < 1|, closure relations for the two-fluid (electrons and
ions) five-moment system are developed in Refs. [10, 11] and improved in Refs. [12, 13]. For
multiple ion species, additional moment equations are added to the fluid system to con-
struct systems with up to 29 moments [3-6|. Braginskii type of closures for two or several
ion species with disparate masses are obtained in Refs. [14-16] when one ion mass is much
larger than the others. Parallel closure coefficients are obtained for multiple ion species with

general masses in Refs. [17, 18].



Due to its simplicity, the calculation of collisional moments is often performed assuming a
single temperature for multiple ion species [5, 17, 19]. The choice of one single equilibrium
temperature seems acceptable because the system approaches thermal equilibrium at that
temperature. However, when the equilibration time is much larger than the time scale of
interest, or when different temperatures are maintained by external heating sources, the
closure coefficients calculated from one-temperature collision coefficients can be significantly
different from those calculated from two-temperature collision coefficients. Additionally, the
temperature used for normalizing the velocity variable in the moment expansion should be
appropriate. The moment expansion will not converge if the temperature used, say Ty, is less
than half the species temperature, say Tj/2. This can be understood from exp(—muv?/2T}) =
wy. With the weight function w = exp(—muv?/2T}), the function xy = exp(—muv?/2T}, +
mv?/2T,) is not square-integrable if Ty < T,/2, and the polynomial expansion of x fails to
converge. As a result, using the equilibrium temperature Ty = (n,7, + np13)/(ne + np) in
the moment expansion of species b is acceptable only if Ty > T},/2. This condition can be
easily violated, for example, when dealing with a minor species b (n, < n,) if T, > 27,
as T,/2 > T, =~ Ty. The 21-moment multi-temperature closure coefficients are calculated in

Ref. [18, 20], albeit for parallel closures only.

In this work, we develop a general formulation to derive closures for high-collisionality
electron-multi-ion plasmas. We provide a general method for calculating parallel and per-
pendicular closures that are valid for arbitrary masses, temperatures, charges, and densities
in a general magnetic field. Additionally, we verify the convergence of the closure coefficients
by increasing the number of moments up to 32 scalars (1 independent variable), 32 vectors
(3), and 32 rank-2 tensors (5), which corresponds to the 293 [= 5+ 32 x (143 +5)] moment

system for each species.

The general moment equations for closures are constructed in Sec. II. The formulation to
derive closures for multi-ion plasmas is developed for electrons in Sec. III and for ions in
Sec. IV. In Sec. V, we apply the formulation to a two-ion plasma and present the complete

set of closure coefficients for a deuterium-carbon plasma. Sec. VI is devoted to discussion.



II. FLUID AND CLOSURE MOMENT EQUATIONS

For a plasma with multiple ion species, a distribution function f, with a = e (electrons), 1

(first ion species), 2 (second ion species), etc. is governed by the kinetic equation

Oa a aa
Loy Vi 2@y ) =S i) M

where C(fq4, f») is the Landau collision operator. In the five-moment model, the density
nge, low velocity V,, and temperature T, are defined from the distribution function f, as:
ne = [dvf., Vo = n;t [dvvf,, and T, = n;' [ dv(m,w?/3)f., where w, = v — V,,
the random velocity. Their evolution equations are obtained by taking the corresponding

moments of the kinetic equation (1):

dgng +n,V -V, =0, (2)
MaNadeVa —neqa(E+V, xB)+Vp,+ V-7, =Ry, (3)
;nadaTa + nairaV : Va + v : ha + Vva Ty = Qaa (4)

where d, = 0/0t + V, - V. The system of fluid equations (2)-(4) needs to be closed by
expressing the heat flux density h,, viscosity 7., collisional heating (),, and friction force

density R, in terms of n,, V., and T,. Here the closure quantities are defined as

h, = /dv%mawgwafa, (5)
T, = /dvma(wawa — %wil)fa, (6)

Q= [ avimu 3" CUhu ), (7)
b

and
R, = / dvmawo Y C(fa, fi)- (8)
b

In order to obtain the closure relations for the system of fluid equations (2)—(4), we con-
struct and solve a system of moment equations for higher order (non-Maxwellian) moments
where Maxwellian moments appear as source (drive) terms of the system. For the moment

equations we expand a distribution function as

fa= "> plt-ml, (9)
lq



where fM = (n,/m%?v,) e % (a Maxwellian distribution), vy, = /2T, /M4, €o = (Vv —
V.)/vra, and

) 1
P’ = \/T_qul(ca)Lff“/ ?(c). (10)

)

. . 1+1/2) . . .
Here P! is a symmetric traceless rank-/ tensor, Lg ™1/2) is an associated Laguerre polynomial,

and the normalization constants are

il (l+q+1/2)
= o\ = — = 11
Tl = e OUT e M T T I(1/2)! (1
The moments are the expansion coefficients in Eq. (9),
mit =, [ dvplif (12)

The closure calculations in this work are based on a linear response theory that closure
quantities are linearly connected to drive terms VT,, VV,, T, = T,—1Ty,, and V4, = V,—Vy,
which are assumed to be order of € [O(¢)]. The exact collisional moments are calculated in
Ref. [21]. Noting that m!? ~ O(e), the collisional moments up to O(e) can be written as

n
Ip Mlq M\ _ "ta Ilpq __lq
/dVP C(f'pla - mig, b)—T—b%bm
a

/dvpl”C( 2B mit) = Zbhmis, (13)

ab
where afﬁf and bﬁq are related to Afﬁf and Bffzq of Ref. [7]: zan = AﬁqTab /Nar/NipAig and bﬁq =
Bffl’)qTab /Nar/Aiphig- Here the collision time is defined as 7., = 67%/2e2m, Tyvra /npq2qE In Ay,
and the Coulomb logarithm, In A, is defined by Ay, = 127e(ma Ty + mpTy) A /|qaqs| (ma +
my) with A\p = (32, nag2/e0Tn)” 2 being the Debye length. Several lowest order coefficients

I I . L : .
ab? and bh! necessary for closure calculations are given in Appendix A. The collisional

heating (7) and friction (8) up to O(e) are

M N 3X35{2
Qu =Z(Q +Qw), Q= =T, (14)
MaTg 3/21+Mab
R Z R Rab_ Tob Xab LLab Vba7 (15)

where X, = (1 + Oap/ ttap) "L, ey = Mp/Ma, Oay, = Ty/T,. Here the non-Maxwellian contri-

can be written as

butions, @Y, and RY,,
_ \[ Ml alt 'm0 + 2 7m?7) (16)
ab 2 Tab p— ab b /)
R%WZ( 9mle 4 L9 1). (17)

\/iTab

q=1



Here the coefficients can be explicitly written as

0lg _ 3(¢—1/2)! X +3/2 frab = (2q + 1)0apptar — 2q0ap (18)
=\ T /D 2, ,
0lg _ 3(q—1/2)! q+3/2 O \ ! 2qptay — Oup +2q + 1
ab T X - y (19)
(q + 1/2>ql(_1/2>' Hab Hab
3(q+1/2)! 3/2 1+ fap
10¢ q+3/
Qap =~ ; 20
o \/ (¢ +3/20 121" g (20)
1/2
bclzgq = 3(g+1/2)! X;]Z—?)/zl + Hab (@)q—i— / . (1)
(q + 3/2>ql(_1/2>' Hab Hab

For high collisionality, the OfN/0t, v - VN and (g,/ms)E - Oy f terms may be assumed to
be O(€?) and ignored, where fN = f, — fM is the non-Maxwellian part of a distribution f,.
Then the equations for non-Maxwellian moments (I,p) ¢ M = {(0,0),(0,1),(1,0)} can be

written as
RSl bxmy =3 2 : (i + i) + 1. (22)
b a

Here Q, = q,B/m, is the cyclotron frequency, and x denotes the generalized cross product
defined for a rank-/ tensor m*: bxm® = 0 for a scalar m®, bxm! = b x m'! for a vector m!,

and

(b><m Jagy = Eapuby m 5t Eﬁwbuml +-t ewubumfxﬁmu (23)

e

for a rank [ > 2 tensor, where the summation convention is understood for repeated indices.

The drive terms are defined by

0 = [ avpll—v Vi + SO ) 24
b
The nonvanishing drive terms are
0p0 P
a o, Top
ggp:naza—b:naz—ab—v (25>
bAa Tab bta Tab Ta
5 bV,
Glr — 5p1£namv InT, ++2n, y -2 -2 (26)
2 V7 Tab vy
1
ggo = _—nan 27
7 (27)



where (W),g = 0V;3/0x, + 0V, /0x5 — (2/3)005V - V.

The collision coefficients in the G% drive are written as

1/2

a0 — op Lab o :\/ . X (28)
@ e e (p+1/2)(p = DIA/2)! pas

As the G% drives are proportional to T, the temperature relaxation rate in Eq. (14) will

be modified by QY,. This modification is negligible in electron-ion plasmas due to the small

mass-ratio of electrons to ions. The coefficients of the linearized collisional moments in the

GI? drive can be written as

o _ \/( 3+ 1/ i ors (i — 200 + 2+ 1) (29)

2p + 3)])'(1/2)' ab VTa Mab

Once Eq. (32) has been solved for the moments, the closure quantities can be obtained from

the relations to the moments:

\/5 11

ha - - 9 naTa'UTama 5

(30)
T, = \/§naTam§0, (31)

Eq. (16), and Eq. (17).

When solving Eq. (22) for each [, we consider a truncated system of equations for K mo-

ments,
mo2 1 ml0
S L e T
mOK+ miK iK1
Multiplying 7,,n; ! and defining r, = Qu7aq, b, = al, +0.., 2ap = Tua/Tap, and g, = T0an;1G!

we rewrite Eq. (22) in matrix form,

rab>v<mfl = <cfw + Z zabaflb) mfl + Z zabbibmf, + gfl, (32)

b#a b#a

where g!, is a K-dimensional column vector, and a!,, b, and ¢!, are K x K matrices whose

! !
elements are a*?. b?9 and e

ab s Oap s P4 respectively. The moment indices for the matrix elements

7



are

2,3, K+1, 1=0,
Pg=1412- K, [=1,

0,1, -, K—1, 1>2
Since gﬁb = 0 for [ > 3, the solutions are trivial
m! =0 for [ > 3. (33)

For [ = 0, we can solve Eq. (32) inverting the collision matrix. For [ = 1 and 2, we
solve Eq. (32) adopting the geometric method developed in [13, 22]. We define operators
ba (A=, x, L) acting on a vector V to define

V.i=b,V=-bx(bxV),
V,=b,V=bxV.

Similarly, we define bag (A, B = ||, x, L) acting on a rank 2 tensor W to define
1
Wap = bapW = i(bA ®@bp +bp®bs)W.

We further define

1
Wi:§(Wle:WXX) (34)

for a rank-2 tensor W. Then Braginskii’s W’ (i = 0,1,2,3,4) [10, 11| can be written as

1
WO = W+ §(W><>< + W),

1
W' = (Wit = Wix),

W2 =2W, (35)
W3 = WXJ.v
W* = 2W,,,

and any rank-2 tensor can be decomposed as
W:W””+2W||J_+WJ_J_:WO+W1+W2. (36)

8



III. ELECTRON CLOSURES FOR A PLASMA WITH MULTIPLE ION SPECIES

For a = e (electrons) and b = j (an ion species), the small-mass-ratio approximation is

adopted for collision coefficients [8]. Then bl; can be ignored and Eq. (32) is written as

7“,3b>v<mlO = cflmlO + gi, (37)
where
ch=cho+ Y 2, (38)
J
and drive terms are
V5T, UT V;
1p eeUTe 1p0
87 =015 VT, + V2 Zj: e z, (39)
9 1
P = TCCWO7 <4O>

8 = poﬁ
with > ; denoting a sum over ion species j (here and hereafter the subscript i, j, k, and

[ =1,2,---,5 will be used for ion species). The collision matrices /12

K = 3 are listed in Eqgs. (28) of Ref. [13].

=12
and a, ° for

The G drive, Eq. (25), is not considered because the collision coefficients a ~ O(fe),
bg;q ~ O(uj,), and agfo ~ O(pje) where prjo = me/m; [see Egs. (18), (19), and (28) with
a = e and b = j (an ion species)| . Therefore Qg ~ O(,u?e) is negligible compared to

oi ~ O(pje) in Eq. (14) (see also Fig. 1 and related remarks). Then the collisional heating
of electrons are written as

ZQeJa Qe] = 'e~ (41)

e' ej

Defining an effective ion mass m;, temperature 7;, and collision time 7 by

m._l — Z] 0] , (42>

1 Z] o

ZJ CJ

Ti= —_
i Z] » 1a

(43)

and

=D T =2, (44)
J



the collisional heating of electrons becomes that of a single ion species

Qe =32"(1, - 1.). (45)

TCI ml
Note that a!; in Eq. (38) is independent of ion species j as a consequence of the small-mass-

ratio approximation. Defining an effective ion charge number Z for multiple ion species,
Tee n:ln A,
Z = Z Zej = Z Z ijn] In A ] (46)

and an effective ion flow velocity (the collision-frequency weighted average of ion flow veloc-
ities) Vi,
Z 7_0—1V Zej —
Vis L = OV = YV (7
iTej J J
Egs. (38) and (39) become the collision matrix and the drive of a single ion species Z,

cd=dc, +Zd,, (48)
\/STCC/UTCVT + \/_Z 1pOV
2 e 'UTe
the same as Eqgs. (32a) and (3la) of Ref. [13] (up to the density factor). Therefore the

gep = 6p1 (49)

electron closure relations become those of a single ion species:

MeTle A A A
Re = - (_a”VCIH - alVell + O4><\/vei><) + ne(_ﬁanTe - ﬁJ_VJ_Te - 6>< VXTe)a

€l

(50)

NeT e Tee

h, = nOTO(B”VOl” + BJ_VeiJ_ + BXVeiX) + ( KHVHT ’%j_VJ_Te - '%iVXTe>
(51)

The closure coefficients can be obtained from Eq. (83) with Table III in Ref. [13]. The

electron friction due to ion species j, Rej, can be calculated as

R, = %Re. (52)

For [ = 2, the moment equation (37) with Egs. (38) and (40) is exactly the same as that of

an electron-ion plasma for a single ion species Z and so are the electron closure relations:
= —oWQ — oW, — n2W2 — i2W¢ — niWo. (53)

The closure coefficients can be obtained from Eq. (84) with Table IV in Ref. [13]. Therein

the superscript and subscript appear switched.

10



IV. ION CLOSURES FOR MULTIPLE ION SPECIES

For an ion species i, the ion-electron collision coefficients b;, can be ignored by the small-
mass-ratio approximation based on p = m./m; < 1, but b;; for another ion species j should
be kept, which makes the ion equations coupled to each other. For clarity, the moment index
will be denoted by a superscript, and the species index by a subscript when they appear
together. A system of coupled equations for S ion species, i,j = 1,2,---,5, can be written

in matrix form:
RbxM = ¢'M + ¢, (54)

where M and G! are KS dimensional column vectors, C! is a KS x KS dimensional matrix:

mi Ciy Cly -+ Clg
m! Chy Chy --- C
M — ‘2 cl= ?1 ?2 29 ’ (55)
m Co1 Cso © Cis
G! is defined in a similar manner to M', and R = diag. (r11x, rolx, r3lk, -+ ,rgly) with 1g
being a K-dimensional identity matrix. Here the K x K block matrices are defined as
! l ! C_
Cii t Zielie + D _ppi Zik Qs 1 =]
¢, = Ral (56)
Zijbéja { 7é ]
The elements of column vector G are, for | =0 and p =2,3,--- , K + 1,
> T
0 ib
G?¢—1)*K+p—1 =g; = Z Zibafb?a (57)
b=0 ¢
forl=1andp=1,2,--- K,
S
1 V5 Tiivr 1p0 Vbi
G%i—l)*K—i—p = gip = pl? T VT, + \/52 Zibbig) UTb7 (58>
¢ b=0
forl=2andp=20,1,--- , K — 1,
o2 _ 52 _ Tid W 59
(i—1)«K+p+1 — & = — poﬁ i (59)

where the subscript A in GY; denotes the row number of a column vector G.

11



A. [ =0 scalar moments

For | = 0, solving

0=c™ +q°, (60)
we have the solution

M0 = x0¢% X0 = — (c”) ", (61)
Using Eq. (57), the moment element can be written as

=SS = DY el ©
' i g=2 k#j J

where the electron term has been ignored because of, = O(y, Y %) with ¢ > 2.

The collisional heating is decomposed into @, due to electrons and @);; due to ions 7,
Qi = Qic + Z Qi (63)
J

where ;e = —Qe; can be obtained from Eq. (41) and @;; can be written from Eqgs. (14),
(16), (62), and (57) as

Z Yijki L (64)

Tij k<l

with the dimensionless coeflicients

. 3
Vijkl = \/; (00 — Gadji) oy + ngz, (65)
where
3 T
ngz = Z [ §(a?j1px?]§q + b?jlpx?zq) zklazlﬁ — (k<) (66)
P,q=2

and the symbol (k <> 1) denotes a repetition of the previous term with &k and [ interchanged.
Note that (i) the replacement of », _, with (1/2) 37, or >, in Eq. (64) yields the same
results because 4;u = —ijik, and Ty = —Tj, (i) Qi + Qi = 0, the energy conservation, is
verified by i + YjimmuiTivr /miTivr; = 0, and myn;Tjvr; /15 = myn;Tyop; /7. It may be

convenient to express

n; “
( ) = ( ) - g T
7 ie T . YijLj, (67)

12
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Figure 1. Collisional heating coefficients of ion species 1 (my = 1lu, Ty = T,, Z; = 1, and
ny = 0.5n,) due to ion species 2 (mg = pmq, To = 217, Zs = 1, and ny = ny). The coefficients
1212 vs. mass ratio pu are depicted for various numbers of moments: K = 0 (Maxwellian only,

green, dash-dotted), 2 (red, solid), 4 (blue, dashed), and 32 (cyan, dotted).

where 7;; = Zk,l ZiYikji- For S > 3, this expression reduces S(S — 1)/2 temperature
difference terms to S temperature terms.

Figure 1 shows that the modification of Q%I (K =0) by Qg» is substantial for comparable
masses (1 =~ 1). The deviation of @} from the K = 32 calculation of Q;; is about 40% at
p = 1. The deviations are ignorable for ;> 1 and u < 1. This explains that QY and QX
are ignorable in electron-ion plasmas. Figure 1 also displays the convergence behavior as
the number of moments increases. The K = 2 calculation is already a good approximation
compared to the K = 32 calculation. The deviations of K = 2 and K = 4 calculations,
respectively, from K = 32 are at most 8.5% at u ~ 0.08 and 4.8% at p =~ 0.04 and only
0.1% and 0.01% at p = 1.

B. [ =1 vector moments

For [ =1, we solve

Rb x M' = ¢'M! + ' (68)
Applying by yields

c'Mj = —G| (69)

13



and the solution is
1 _ 1\ 1 A1
M =—(C") 6.
Applying b, and by yields

ct —r| [ M} G
R C! ML Gl

and the solution is

MY RC'R™! R G

- )"

MY —R RC'RT' | | G}
From Egs. (70) and (72), the solution M! = Mﬁ + M s
M= —(c') el — (o) (RC'R'GY +REL),
where
D™ = RC'R™'C’ + (mR)>.
Then the m” moment can be read from Eq. (73),

1p 1pg 1q 1pg J1¢ _ y1lpg lq
m’ = (Xnij 8 + X181 — Xij8jx ) »
Jq

where

(74)

and Xiﬁ‘; is the [(# — 1)K + p]th row and [(j — 1)K + ¢]th column of matrix X}.

The ion heat flux density can be obtained from Eqgs. (30), (75), and (58):

b, =3 T
m;

J

(=1 V) Ty = 1V L T) + iy V< T))

ATV ATV ATV
+n;T; Z (ﬁ“z’jkvjkll + BLijn VikL — 5xijkvij> g

j<k

14



where

9 Uri 111
X 78
2 vr; Aijs ( )

Ui .
Auk \/72 |: I X,lqlzg Zjk blqo (] Aad kf) . (79)

The friction force density is decomposed into R;e due to electrons and R;; due to ions j:

RAij =

R, =R+ Y Ry, (80)
J

where R;. = —R,; can be obtained from Eq. (52), and R;; can be obtained from Egs. (15),
(17), (75), and (58):

Ry = > m (~Alh VT - AUV AT + ALV T
k

m;n; . ~ ~
- Z — (Aiji Vi + G Lijra Vid + GxijinViix) (81)

k<t Y

with the dimensionless coefficients

D 2 Tk 10py1pl | 1 10pylpl
BAZ]]C p; §Z_zkfzw( pXAp;k b pXAI;k) (82>
Qi = =040l (6bj — 0ubjn) + (264 — D)ol n, (83)

where oy =6, =1, 0, = 0, and

N 10py1 10py1 1q0 VT

g = 3 |l 0g) sl (k)] en
p,q=1 n

Note that (i) the replacement of 3, _, with (1/2) >, ; or >, yields the same results since

Gaijkl = —Qaijik, and Viga = —Via (il) Rjj+ Ry = 0, the momentum conservation, is veri-

fied by ﬁAmk + 5A],k 0, &aijir + GajiTivr: /Tjvr; = 0, and mn;Tjvr; /75 = manTior: /7.

It may be convenient to write

n; 1;7;
b =) = (R VITy = ks VaT) o+ RV T))
J

+ n;T; Z (Bﬁ;jVan + Bﬂ;vﬂ - AZZ‘GX) ; (85)
J

R, =Ri + > ( BYTN T, — BYEY T + YV, T)
J

mg;n;

Z (a{||ijVj|| + a1 Vi + @xijij) ) (86)

Tii -
J

15



where BAU >k ﬁA,jka A,J =D BAZ,W-, and Ga;; = )y Zi@aikji- Particularly for more

than three ion species (S > 3), these equations reduce S(S — 1)/2 terms of relative flow

velocities to S terms of flow velocities.

C. [ =2 tensor moments

The moment equation (54) for I = 2 becomes
R(bxM —M xb) =M+
Applying by and by« on Eq. (87) yields [the same form as Eq. (71)]
c? —-R MﬁL _ Gﬁl

G2

[k

Y

2 2
R C? || M,
which is solved for

2 2,1\—1 (per2p—1n2 2
Applying by |, by, and by on Eq. (87) yields

2 2012
R(—M] | +M2,) =C"M2, + Gy,

—2RM2 | = C°M%, +G2,.
Applying by yields
0 = C*Mjj +Gfy,
and its solution is
My = —(C*) Gl

With the definitions (34), the system of equations (90)-(92) can be reduced to

MY = —G2

and
C? —2R VG G2
2R C? M2 o G2 |

16
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The solutions are
M2 = —(c?)12, (96)
M> = —(D**)"}(RC’R'G2 + 2RGZ ), (97)

and, from Eq. (34), M2 | =M, +M_ becomes

M: = —(¢*)7'62 — (D**)"'(RC*RT'G2 + 2RGY ). (98)
Using the definitions (35), we can write M = Mﬁll + 2MﬁL + M2 | with the help of Egs. (93),
(89), and (98):

M? = X3G2 + XJG? + X3G3 — X3G3 — X363,
where

= @)

X; = —(0**)7'RC’R ',

X5 = —(D*')"'RC’R Y,

X3 = 2(D*?) 'R,

xj = (D*")7'R.

Now we use Eq. (59) and Eq. (31) to write the viscosity tensor

™, = —P;i Z Tjj(ﬁ?ng + ﬁ}ngl' + ﬁzzjwaz - ﬁ%W? - ﬁfjw?)’ (99)
J
where
iy = X245, for A=0,1,2,3,4, (100)

and X35 is the [(i — 1)K + 1Jst row and [(j — 1)K + 1]st column of matrix X%. Note that
77@'03' = 77@'2;'(7”2‘ = 0)7 ﬁilj(ri) = 77@'23'(27%)7 and 775}(7”2) = ﬁ?j@ﬁ)-

V. EXAMPLE STUDY FOR A PLASMA WITH TWO ION SPECIES

In this section we apply the formulation developed in the previous section to a two-ion

system. For the collisional heating, from Eq. (63),

Q1 = Qe + Q12, (101)

17



Q2 = Q2c — Q12 (102)

where Q1o = —Qec1 and Qo = —Qe can be obtained from Eq. (41), and from Eq. (64),
n

Q12 = —— 1212 1o (103)
T12

For the heat flux density, it follows from Eq. (77) with 4, j, k = 1,2 that

h, anflllﬁl (—/%||11V||T1 — R VT + "%xllvle)
nl:;fz (—/%||12V||T2 — k112ViTo + /%x12v><T2)
+niTh <Bﬁ1‘{2vl2|| + BT Vsl — BZYMVHX) (104)
and
h, :nzﬁ:l (—%||21V||T1 — ki ViT) + f%levle)
nzfjfz (—%||22V||T2 — R12oV1TH + ’%x22v><T2)
oy (B35 Vauy + Bld Virs = B3 Var ) (105)
where we have used 34, = —3%Y., and V14 = —Vi54. For the friction force density, from
Eq. (80),
R; =Ric + Ry (106)
and
R2 = Rae — Rag, (107)

where R = —Re; and Ry, = —Res can be obtained from Egs. (50) and (52), and from
Eq. (81),
Rz = (=BG T = AT VLT + BT V.Th)
+ ny (—B”VSQV”D — BV LV Ts + B¥1T22V><T2>

miny

. (Qyp212 Vg + Q1212 Vo + @xa212Viax ) - (108)
12

Finally, for the viscosity, it follows from Eq. (99) that
™ :p17—11(_ﬁ?1w(1] - ﬁ%lwi - ﬁiwf + ﬁle? + 77;11\/\/‘11)

+ pr17oa (=11 W — A1y Wy — 175 W3 + 75, W3 + fiW3),
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and
7y =paTi1 (A WY — iy Wi — 73y W3 + 05, W3 + 5, W1)

+ paTaa(— i3 W9 — Ml W3 — 05, W3 + 713, W3 + 73, W3).

For a deuterium-carbon (D-C) plasma with mp = 2.014u, m¢ = 12.00u, nc = 0.06n,,
np = 0.64n., Tp = 1.5T,, Tc = 1.8T,, and In A,. = 17, the closure coefficients are calculated
for K = 2,4,8,16, and 32. Ion involving Coulomb logarithms are calculated from In Ay; =
InAee —InZ; = InAje, InAy; = InAee + In(T;/T.2Z7), and InA;; = InAy; + In[Z;(m;/m; +
T;/T3)/Z;j(m;/m; + 1)]. The parameter z, can be calculated from the collision time 7,, =
6% 222ma Tovra /@2 G2 0 Agy: 2ap = npZ2 I Ay /110 Z2 10 A gy

For [ = 0, the collisional heating coefficient 41212 = 0.213551 and 42121 = 0.685228 which are
substantially reduced by the non-Maxwellian contribution from the Maxwellian contribution
AED = 0.382356 and 4285 = 1.22688, respectively. The coefficients quickly converge as the
number of moments increases: {5 = 0.213475, 455 = 0.213582, 45575 = 0.213562,
AESS = 0.213551, and AE52 = 0.213551; 4852 = 0.684982, 4K = 0.685327, 4458 =
0.685263, 488516 = 0.685228, and AX53% = 0.685228.

For | = 1, the dimensionless closure coefficients are depicted in Figs. 2-3. As shown in
Egs. (104), (105), and (108), the heat flux and friction of ion species 1 and 2 are determined
by temperature gradients of the ion species 1 and 2 and the relative flow velocity. Figure
2 shows the coefficients for the heat flux and friction of ion species 1 due to VT and V.
Figure 3 shows the coefficients due to V715. Figure 4 shows the coefficients of the ion species
2 due to V17, VT3, and V. Note that the closure coefficients of ion species 2 are plotted
against r; which can be converted to o by ro/r1 = Qo79e/Q17111 = 0.05803 for the given
parameters.

For [ = 2, we may introduce the geometric notation 7, 7., and 7 for the viscosity coeffi-
cients: 7)° =i =N (r1 = 0), i =7.(2r1), 7* =701, 7° = 1x(2r1), and §* = 7. As shown
in Eq. (99), the viscosity closures of ion species 1 and 2 are determined by the gradients of
flow velocity of the ion species 1 and 2. Figures 5 and 6 show the dimensionless viscosity
closure coefficients of the ion species 1 and 2, respectively.

The convergence study is performed by increasing the number of moments, K = 2,4, 8, 16,

and 32. The K = 4 calculations are good approximations and large percentage errors appear
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Figure 2. Heat flux and friction closure coefficients of ion species 1 due to V17 and V5. The

coefficients are presented for various number of moments: K = 2 (green, dash-dotted), 3 (red,

20
solid), 8 (magenta, long-dashed), 16 (blue, dashed), and 32 (cyan, dotted) throughout figures 2-6.
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Figure 3. Heat flux and friction closure coefficients of ion species 1 due to V75.

when the coefficient values cross the zero line where the coefficient values are small enough
not to affect the physical results. The change of coefficients from K = 16 to 32 calculations
is at most 0.29% for ALY, and much smaller for other coefficients when the absolute value of
coefficient is greater than 0.01. For the example parameters, the K = 16 coefficients can be

considered as practically exact ones.

Finally, we discuss the importance of the two-temperature formulation of calculating closure
coefficients. Figures 7 and 8 display the thermal conductivity and viscosity coefficients
for various temperature ratios. As evident from these figures, the closure coefficients for
different temperatures can differ significantly from those for 75/7} = 1, one-temperature
calculation. For instance, when T5 /77 = 0.8 (a difference of only 20%), £, 12 obtained from
T5/T = 1 is overestimated by a factor of 2. The errors of one-temperature calculation can
be attributed to the temperature-ratio dependence of collision coefficients, combined with

the collision-time ratio z,, = T4a/Tap, Which is sensitive to the density ratio.
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Figure 4. Heat flux and friction closure coefficients of ion species 2.

VI. DISCUSSION

A general method for calculating closure coefficients for high-collisionality multi-ion plasmas
has been presented. The necessary collision coefficients for K = 4 (corresponding to the 41
moment model) calculations are presented in the appendix. Even higher order collision
coefficients necessary for more accurate closure coefficients can be calculated from explicit

formulas derived in Ref. [7]. Note that the collision coefficients obtained from the Landau
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Figure 5. Viscosity closure coefficients of ion species 1 due to ion species 1 and 2 (7, = 7? and

77>< = 774)

collision operator in this work are slightly different from those obtained from the Boltzmann
operator [23]. The formulation developed here is useful for a wide range of weakly coupled
plasmas where the Landau operator is valid. Although the formulation may produce analytic
results for the closure relations of plasmas with given parameters, explicit expressions of
K = 4 calculations are too complex to be written out. For practical applications one may
use collision coefficients of Appendix A to calculate the collision coefficients as described in

this work.

The convergence analysis in Sec. V for the example calculations shows that K = 8 calcu-
lations produce nearly converged closure coefficients. However, in some parameter ranges,

convergence is slow and requires K 16 or K = 32 calculations for accurate results.

Although high K calculations are useful for theoretical analyses, performing those calcula-
tions at every time step can be computationally inefficient in numerical simulations of fluid

equations. To overcome this, it is necessary to investigate the convergence behavior of the
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Figure 6. Viscosity closure coefficients of ion species 2.

coefficients across the desired parameter range and develop fitting functions for the conver-

gent closure coefficients. These fitting formulas can then be conveniently used in numerical

simulations, avoiding the need for time-consuming closure coefficient calculations at every

time step. The development of fitting formulas for convergent closures is ongoing and will

be presented in the near future.
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Appendix A: Collision coefficients

The collision coefficients can be calculated from formulas presented in Ref. |7]. Define a'??

and b7 by

I+p+q+1/2

dro — 3" (A1)
“ V AipAig

B 3X(ll‘li'p+q+1/2 (9)[/24‘(] blpq

ab /—)\lp)\lq -

1
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temperature ratios.

where Xop, = (14+60/p)7t, 0 = T,/T,, and p = my/m,. The necessary coefficients for K = 4

closure calculations are as follows:
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