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Abstract. A generalized formula for wave instability is developed for an anisotropic non-
uniform plasma with finite flows and temperatures. Six-moment fluid equations are solved
to give the analytic expression for wave instability in arbitrarily non-uniform plasmas. The
analytic formula explicitly states the dependence of wave instability on non-uniformities
of number density, flow velocity, and anisotropic or isotropic pressure. The accuracy of
formalism is verified by a numerical calculation of implicit dispersion relations in complex
Fourier space. The analysis shows that non-uniformity plays a critical role in plasma
instability, while the flow velocity and anisotropic pressures determine the growth rate of the
instability. The instability diagram and associated instability criterion for anisotropy-driven
instability are introduced as applications of the formalism.

Keywords: plasma instability, instability criteria, fluid wave, plasma flow, anisotropic pressure

Submitted to: Plasma Phys. Control. Fusion

1. Introduction

Plasma waves have been investigated to understand the dynamical behavior of plasma. Fourier
analysis of Boltzmann equation or fluid equations shows that most fundamental plasma waves,
such as Bernstein and cold waves, are stable in a uniform plasma. [1] However, the waves in a
non-uniform plasma can be unstable, [2-5] and the stability can be modified by a finite flow or
an anisotropic pressure. [6—8] An anisotropy effect should be taken into account for a strongly
magnetized plasma. [9-11]

Plasma instability has been studied for several decades in order to control and understand
plasmas. [12—14] If a perturbation in a plasma exponentially grows due to instability, the
perturbation can trigger the disruption of the plasma. In order to achieve a stable plasma in
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a nuclear fusion device, the stability criterion should be understood. Since electromagnetic
fields can be enhanced by an instability, the instability analysis can be used to interpret the
signals from plasmas. Diagnostics for fusion devices have been developed to examine plasma
instability via electromagnetic waves. [15-17] The waves from space have been measured to
investigate the space or astrophysical plasmas. [18-21]

By analyzing the Vlasov equation, the effects of non-uniform flow and temperature on
wave properties have been studied for a specific plasma flow, wave mode, and frequency
regime. [22-25] On the other hand, a generalized dielectric tensor and a dispersion
relation have been derived for plasmas with non-uniform densities, time-varying flows, and
anisotropic temperatures. [8, 26] In the kinetic analysis, an adequate distribution function
should be adopted to satisfy the Vlasov equation. For example, a ring-beam distribution
[27, 28] was adopted for fusion-born ions in large tokamak plasmas [29], and a shifted
Maxwellian distribution with the guiding center coordinate was adopted for a sheared flow
[24]. The Maxwellian distribution function can be a valid solution for a specific situation
where plasma is uniform. However, a non-Maxwellian distribution function should be
considered for a general situation where plasma is non-uniform with an arbitrary flow and
anisotropic temperature. As a result, a dispersion relation becomes more complicated and
impractical to implement for arbitrarily non-uniform plasmas.

One simpler way of analyzing the wave is to solve fluid equations with appropriate
closures, such as adiabatic equations of state [30,31]. In order to develop a comprehensive and
practical formalism for wave dispersion relation and instability, we solve the fluid equations
for collisionless plasmas with a non-uniform flow and an anisotropic non-uniform pressure.
Instead of using the adiabatic equations of state restricted to an E x B flow [30, 32] and
Poisson’s equation for electrostatic approximation, we fully solve the continuity, momentum,
pressure, and Maxwell’s equations for arbitrary density, flow, pressure, and electromagnetic
fields with a six-moment fluid approach.

The formalism presented in this work can be applied to general fluid plasmas with
arbitrary non-uniformity. Classical instabilities in fluid plasmas were studied separately with
ad hoc closures and restrictions such as ideal MHD approximation, E x B flow only, isotropic
condition, and electrostatic approximation [33]. However, these restrictions are too strong for
practical applications. The exact E x B drift of each species without any other flow motions
is valid for the idealized MHD approximation, not for the real plasmas. Many plasmas in
nature and experiments flow non-uniformly, and there are different types of flows, such as
diamagnetic drift, polarization drift, and parallel flows along a magnetic field line. Pressure
can be anisotropic in a magnetized plasma. Furthermore, the electrostatic approximation
cannot describe actual electromagnetic phenomena in plasmas. The explicit formula in this
work can accurately describe the instability of general fluid waves in non-uniform plasmas
without any spatial constraints on density, flow, pressure, and electromagnetic fields.

In section 2, a generalized dielectric tensor and a dispersion relation are obtained from
the fluid equations. Since the dispersion relation is written in implicit form, the Fourier mode
must be found numerically by scanning the complex Fourier space. In section 3, we derive the
explicit functions of non-uniform fluid variables for the complex Fourier modes. The result
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obtained using the formula is in good agreement with the numerical results obtained from the
implicit dispersion relation. It is shown that the formula is valid even for the extremely non-
uniform supersonic plasma. The explicit forms make it feasible to directly evaluate the effects
of fluid quantities on plasma instability. Section 4 summarizes the formalism and discusses
future work to improve the instability analysis of fluid waves in more general situations.

2. Dispersion relation and Fluid equations

A plasma dispersion relation is derived from fluid equations, Faraday’s law, and Ampere’s
law as
D (w,k) = det (nn—n*1 +K) =0, (1)

where o is the wave frequency, k is the wavenumber, n = ck/ is the refractive index, ¢
is the speed of light, K = | — o/igyw is the dielectric tensor, | is the identity tensor, ¢ is
the conductivity, and & is the vacuum permittivity. The conductivity is defined by J; =
Y qa (naoUa1 +ng1u,0) = o - Eq, where J is the current density, g, is the charge, n, = f Sfadv
is the number density (f, = f, (¢,X,v) is the distribution function), u, = [ vf,dv/n, is the flow
velocity, E is the electric field, and the subscript a denotes a species. The subscript O denotes
an equilibrium quantity and the subscript 1 denotes a Fourier mode exp (ik - x — iot). For the
Fourier analysis, we consider a situation where |k- V| /k|V@| < 1 for any fluid quantity ¢,
so that the wave propagation parallel to the non-uniform direction is ignored. The dielectric
tensor K in equation (1) can be obtained from fluid equations.

We solve the six-moment fluid equations for n,, u,, and the anisotropic pressures
pe =ma [w? fudv/2 and p(! = mafwzufadv, where m, is the mass, w, = v —u, is the
random velocity, w,| = w, — Wa|» Wa|| = Wa -2%, and Z = Bg/By is the unit vector in the
direction of the magnetic field By. The equilibrium continuity equation V - (n,0u,0) = 0 gives
the relation

Kna *Ua0 = V. Uq0, (2)
where K, = —(Vngg) /nq0. Using equation 2, the linearized continuity equation can be written
in the form K

Nal + 1K,
= = = U, (3)

na0 - Opg + 1Kpg - Ug .
where wp, = @ — k- u,g is the Doppler-shifted frequency. When the perturbed flow velocity
u, 1s expressed by a mobility tensor 1, as

u, = U, E, 4)

the combination of equations (3) and (4) with K=1—0/iggw and 6 -E; = ¥, q4(nsous1 +
Na1Ug40) gives the general form for the dielectric tensor

K—]— 1 annao (I n U,0 (k+iKna) ) Uy, (5)

i‘C:Oa) a Wpg + iKna “Ug0
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The mobility tensor in equation (5) is determined by the momentum equation. The
equilibrium momentum equation is

V-
Pa0 = —uyo- Vuy + da (EO + g0 X BO) ’ ©
mgngQ Ma

where p, = ps (1 —22) + pa 22 is the pressure tensor. In this work, we ignore the off-diagonal
elements of the pressure tensor and the geometric effects associated with the unit vector
By/By (for example, V(By/By) = 0). The off-diagonal elements can be ignored when a
plasma is not too far from bi-Maxwellian or Maxwellian. The anisotropic diagonal pressure
can be established by the background magnetic or electric field [11, 30, 34], anisotropic
heating [35, 36], and expansion or compression of a plasma [37,38]. When the distribution
function is far from the bi-Maxwellian so that the off-diagonal elements are non-negligible
compared to the diagonal elements, one has to take into account the viscosity tensor 7, =
ma [ (WaWa —w2l/3) fadv.

Using equations (3), (6), and the Faraday’s law B; = k x E| /@, the linearized equation
of motion is written as

. Wcq
{|—|—1 “rx|
Opg

{(Vuao)T -

o1
+1
Opq

k 1 k +k
=i qa <|—|— uaO) E1+ J-pal Hp
m, Opg MaNa(

V. Pa0 k+ iKna
. “Ugl
MaNg) Opg +1Knq - Wa0

(7N
®pq
where @., = q,Bo/m, is the cyclotron frequency and the superscript T means a transpose.
Please note that the detailed derivations of equations (7), (10)-(14) in this paragraph are
provided in the appendix. In the Cartesian coordinate, £ x | = £ — £ and [(Vug)T] af =

dgUta0e, Where dg = d/df and &, = x,y,z. Equation (7) gives the mobility when the
I

anisotropic pressure elements p=- 21 and p,, are closed. The anisotropic pressure is determined

by the pressure equations,

d
(lj)a +2pa Veou,— Py a”uaH +V- qa =0, ()
H

d + PaV g+ 2ph )y +V - qh =0, ©)

where d/dt =9d/dt+u, -V, du =2-Vu-2 and q; = my [w’ Waf,dv/2 and q =

My f wana fadv are the heat fluxes. Note that equations (8) and (9) reduce to the double
adiabatic equations [30] for only E x B drift with or without a uniform parallel flow
(E+u, x B =0). This limitation is too severe for real plasmas of interest. For a general

flow u,, equations (8) and (9) should be fully solved for p;- and pH In this work, we consider
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a general flow and linearize equations (8) and (9) to write

L 2k — Kk +1K 1
Pl — e, (10)
Pxo Wpg +12V -u,y — 18Hua0H
| k+ 2k +iK
L LY (1)
pﬂo Opg +1V - ug0 + 128||”‘aO||
where k1, = —(Vpk)/pk Kplg = —(Vpﬂo)/pgo, and we use the 6-moment (n,, U,

Pr, pﬂ,) approximation . This approximation can be valid when the phase speed w/k is
much faster than the thermal speeds vy, = (2T,5/m,)"/? and v, = (ZTQHO/ma)l/z, [23,39]
where T;" = p/n, and TaH = p‘c‘, /ng are the anisotropic temperatures (KpLy = Kna+ Krig
K,lq = Kna+ K7| o). With equations (10) and (11), equation (7) can be rearranged to give the

mobility
-1
0 r k
u, =it (|+i <4 s I +i ) -(|+ ““0). (12)
mg @ Wpg Wpq Wpq

The effects of non-uniform density, flow, and anisotropic pressure are involved in the
coefficient I', as

V- Pa0 K+iKuq

MaNa) Opg +1Knq - Ugo

iky (2K~ +ik,, ) v2,,/2
Wpy +12V -u,y — iaHua()H

ikH <k+ 2k” +iKpHa> v?"“a/z
Wpg +1V -uy0 + izaﬂuaOH

Iy = (Vug)' —

(13)

The coefficient for an isotropic pressure p, = pyl (pa = my f wZ fadv/3) is

V. Pa0 K+iKuq
MaNg) Opg +1Knq - Ugo
ik (5k/3+iKkpq) V3, /2

Wpg +15V -uy0/3

Iy = (Vug)' —

(14)

where Kpq, = —(Vpao)/pao- This is because 3du = V -u, is the necessary condition for

the isotropic condition (see equations (8) and (9) with pj = pa = Pa)- Substitution for
U, (equations (12)-(14)) into equation (5) gives the dielectric tensor K and the associated
dispersion relation (1) for the fluid wave. If the terms I'; and u, are ignored, equation
(1) becomes the dispersion relation D (w;,k;) = 0 for the cold wave without damping or
instability (@; = 0, k; = 0), where the subscripts r and i denote the real and imaginary parts.
This indicates that the non-uniformity involved in I', plays a key role in wave dynamics with
finite @; and k;. Since the fluid wave in a non-uniform plasma has an implicit dispersion
relation such as D (o, +i@;, k; +ik;) = 0, the dispersion relation can be obtained numerically
in complex Fourier space.
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Figure 1. Comparison of whistler wave frequencies for kry; = 0.577 (rpy =
(Ta%) / ma)l/ 2 /|q| is the Larmor radius): (a) uniform plasma, (b) non-uniform plasma with
(Vugo)/w, = 0.19(£—9) for a = e,i. The equilibrium parameters are n,0 = 10'° m=3,
Tall) = 0.8 keV, Ta%) = 1.2 keV, and By = 2 T, where i denotes the deuterium ion (g; = —¢.).
The convergence of the numerical calculation for D — 0 is verified by reducing the grid sizes
(A®;, A®;) in the frequency domain.

Figure 1 shows an example of investigating the dispersion relation D (@; +iw;,k;) = 0.
By scanning the complex frequency space for a given wavenumber, the whistler wave [40,41]
frequencies are found for a uniform and non-uniform plasma. It is seen that the change in
the real frequency due to the non-uniformity is insignificant compared to the change in the
imaginary frequency. The wave frequency for the uniform plasma is pure real, whereas
the frequency for the non-uniform plasma is complex with a positive imaginary part. The
frequency shift from @; = 0 to ®; > 0 indicates that the non-uniform plasma flow drives
instability. By investigating broader frequency ranges, we can find the other waves having
different complex frequencies even for the same wavenumber. The whole dispersion relation
can be found by scanning a wide range of complex Fourier space. However, the broader
scanning range induces a more computational load. The following section introduces an
explicit formalism that can directly yield the dispersion relation.

3. Generalized formula for fluid instability

By expanding the implicit dielectric tensor in equation (5) for @; < @, we derive an explicit
dispersion relation providing an imaginary frequency for given plasma parameters. This
method has the virtue that the quantitative estimate of plasma instability can be made with
less computational effort. We expand the dielectric tensor K about I'; = 0 and u,g = 0 as
K = K(p) + K(1), where the terms denoted by the subscripts (0) and (1) are, respectively,
zeroth- and first-orders in T'yqp or u,op for arbitrary o, . The dielectric tensor Koo
corresponds to the dielectric tensor for the cold wave, as discussed in the previous section.
This approach is effectively equivalent to the expansion of K about real frequency @, when
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Laaps Knaaltaop, and the resulting @; are much smaller than @y, since ®; is a linear function
of Faaﬁ and Knaola0B (this will be shown in equations (25)-(38)). The dielectric tensor for
the cold wave is, [1]

S —iD 0
K(o) =|iD S 0|, (15)
o o0 P
where,
2 2 2
(D Wcqy wpa
SZI_sz 02’ _mez wz,le— w2’ (16)

a

and @y, = (n40q>/ gomg)'/? is the plasma frequency. The remaining part K(1) consists of the
coefficients proportional to I8, Knaataop, and kglsop as

2
— (Dpa

Kiap =L 57— g2

k lla()

(nau)+-nam)' p

u, (k+ik,
‘I‘ a ( na) na(O))7 (17)
w
where ) i
o,
1 i ca O
w
.
Mao) = | —i= 1 0 , (18)
2 2
0 — 0,
i 0 0 pe |
Fayy +Aa Wcq k-ua() _ Faxy —|—iwcaAa _Faxz _1%ﬁ
0} O o 0} 0] w O O
na(l):i _%M_M_I%A Daxx A _rayz i%Faxz
0 © ® o ) “ ® 0 o
_FLIZX a)ca Fazy _Fazy N wLa FaZ)C _wz—wga FaZZ
L 0} 0 o 0} 0 o w? 0}
(19)
and
A, = (02 |:Faxx 1—‘ayy
a— " 2 2
0 —-02,| o ®
2
+iwca <rayx . l_‘axy) 1 (chk-llao:| ’ 20)
0} 0} w 0] 0]

2 , since the dielectric tensor

Note that this method is less accurate near the resonance ®” = @72,

is expanded for |A,| < 1. As a consequence of the expanded dielectric tensor, the dispersion
relation can be written as D(w,k) = D)+ D) = 0. The first term D(q) depends only on
Koy and is written in the form

D(O) ((D,k) :a2n4+aln2+ao, 2D
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where
ag= ($*—D*)P,
aj = (D* —§?)sin* @ — SP (1 +cos*0),, (22)
a, = Ssin® 6 + Pcos’ 0,
and the x axis is chosen to be in the k| direction so that k = ksin0xX + kcos 07 with

6 = cos~! (k- 2/k). In this formalism we consider a real k. The K(1)-dependent part of the
dispersion relation is

Dy (0,k) = (1 = 8) (15 = P) K(1)xe

— (Sn3 + Pn? = SP) K (1), +iD (1 = P) (K(1)y — K(1)y2)
+[(n2 =) (n* = 8) = D*] K.

+ nyn, [(’12 = 8) (K(1)xe + K(1)zx) +1D (K(1)y = K(1)y2) ] -

The full dispersion relation can be decomposed as D(w, k) = D;(w,k) +iD;(®,k), where
Dy is the part that does not contain i and D; is the part that contains i (for example,
D) (@, k) = D(g);(®,k) in equation (21). The real part of the Taylor expansion for D(w, k)
at ®; becomes the relations D) (®r, k) =~ 0 giving

2 —ay) £ la? — darag
w
2~ O : (24)

2as ’

(23)

_c2

where the right-hand side is a function of @, only. The imaginary part of the expansion for

D(w,k) gives the imaginary frequency

_ Dpi(ank)
87)(0) / eX0) }

; ~ : (25)
W=0r
The imaginary frequency w; can be directly evaluated by using equation (25), where @, and

k are obtained using equation (24). For the denominator 82?(0) /dm associated with equation

(2D,
82)(0) aaz a 8611 ag 861()
= 4= 0t == 22— | P+ == 26
I0) <8a) w)n+(8w w)n TS (26)
where the derivatives of S, D, and P with respect to m are given as
IP 207,
2T _ Ny I pa 27
=2 Z o 27)
oS 20032
_ Z __—pa 55 (28)
o a (wZ - 0Ocza)

D O 0% (307 — @2,)
o~ Lo

pa
a o (02— 02,)?

(29)

For the numerator D(); associated with equation (23), we use the coefficients K., K(1)iyy»

K(l)izz’ K(l)rxy - K(l)ryx’ K(l)ixz + K(l)izx’ and K(l)ryz - K(l)rzy as follows:

2
o KnaxUa0x + 8yl/‘aOy
Ky = — pe ( +F, ), (30)
(Dixx Za: w? — wcza o ¢




Dispersion relation and instability for an anisotropic non-uniform flowing plasma 9

2
() Knavlaoy + Oxlta0
o pa nayUaQy xUaOx
e ¥ S o

2
K _K . Z wpu Wca Kna - Ua0 1
(e =K = Lo 5

Kng X K V4 (32)
n Lo o,
+ - 2 p2 - +2 CaFa) P
20% /v, ®
2
Dpa (Kna = 9)) tao)
K1) =— ), = : (33)
(Dizz —~ ()2 »
@, Ocq
K + K ==L~ o (Gt = Ha)
> (34)
% K-naHMaO)c
- > O
W Ocq
K1)y = K1)y = _Z o — @2 (H + G ) ) (35)
ca
where
2 A
() V-u, @,y Kna X K 1,2
F, = 3 Zabl _ Bea 1 5 —pzla ) (36)
0* — 07, [0} 0 20 /vTL
o (Knax — k) Uqo|| — a||uan
L=
0]
kXKpLa')/; k x Kp”a.)/; (37)
- -
2w2/v2TLa 2602/\/TH
Kna| K K; H
Hy =l oy 2%y af (38)

2
202 /vy, 20)2/VT”

and Kpqq = Kgq - @ for ¢ = n, pt, pl (e.g., Kpllal| = Kpla -Z). Note that the same coefficients
are derived from the isotropic condition (14), so equations (16), (21)-(38) can be used for the
isotropic plasma with Kpq = K1, = Kplar The coefficients show that the effects of finite flow
and anisotropic temperature on plasma instability are negligible if the parameters are uniform,
i.e., the non-uniformity is the critical factor for the instability of fluid waves.

We can verify the instability formalism of equations (24)-(38) by comparing the analytic
result from the explicit formalism to the numerical result from the implicit relation (1). In
order to show the validity of the formalism, examples of the dispersion relations for the
extremely non-uniform supersonic plasma are shown in figures 2-4. The species, density,
temperature, and magnetic field are the same as in figure 1. The other parameters are
U, = vy (X49) + Vol (Vuyg) /@i = %%+ 299 — 22 + 0.5 (X9 + 98 + X2+ 92 — 28 — 29),
KnalLi = X+V+72, KplalLi = 2X+6y+2Z, and K,lalLi = X+ V427 for a = e,i. Note that the
parameters are specified arbitrarily to demonstrate the accuracy of the formalism even in the
extreme conditions. In a real situation, the parameters are determined by the fluid equations
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we/|wee
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Wi / | Wee ‘

05+ ,7 73X

Figure 2. Non-uniform plasma dispersion relation for 6 = 0: (a) dispersion relation in
complex Fourier space and its projection onto the k-®; and @:-®; spaces, (b) projection
of the dispersion relation onto the k-@; space. The solid, dashed, and dotted lines are
obtained from the dispersion formalism using equations (24)-(38), and the circle markers
are obtained from the numerical scan of the Fourier space as in figure 1. The black solid
lines and blue dashed lines correspond to the right-hand circularly polarized wave (R-wave,
Do) = n?> —S — D), and the red dotted lines correspond to the left-hand circularly polarized
wave (L-wave, D(g) = n?> — S+ D). The low-frequency R-wave dispersion (blue dashed line)
is plotted for ®?/k* > 10‘}%%'

in equations (2), (6), (8), and (9). Figures 2-4 demonstrate that the instability formalism is in
good agreement with the implicit dispersion relation found numerically as in figure 1.

The dispersion relations in figures 3 and 4 show that the sign of the imaginary frequency
depends on the wavenumber. For example, the instability criterion of the X-wave is k >
0.5/rg; in figure 4. The formalism also provides the instability diagram showing the relation
between the non-uniformity and the wave instability. Figure 5 shows an example of an
instability diagram for anisotropic non-uniform pressure. The instability diagram presents
the instability criterion for a given plasma condition. As long as the derivative of the
magnetic field line is ignored, the formalism provided in equations (21)-(38) corresponds
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(a)

W/ |weel

. ;
0 o5 kri 7]

wi/|weel -1 0

(b) x1073

Figure 3. Non-uniform plasma dispersion relation for & = /4. The plot configuration is the
same as figure 2. The low-frequency wave dispersion (green dash-dotted line) is plotted for
*/k* > 1002 .

to the generalization of the instability analysis for fluid waves. Furthermore, the closed-form
expression makes it practical to analyze the instability by showing the explicit dependence
of non-uniform plasma parameters on complex Fourier modes. In general, the onset criterion
(w; = 0) for the fluid instability is

D(yyi (@, k) =0, (39)
where D(l)i (o, k) is given by equations (23) and (30)-(38). Extended applications of the

general onset criterion (39) to different fluid modes can be subject of future work.

4. Summary and conclusions

We have investigated a dispersion relation and the associated instability of plasma waves
for an anisotropic non-uniform plasma with a finite flow. Plasma mobility and dielectric
tensor for the non-uniform plasma are derived from Fourier-transformed fluid equations. The
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(a)

we/|wee

2
N krp; |7
wllwel 0% 170 i [7]

(b) x1073

|— —— - X-wave O—wave|

wi/|weel

Figure 4. Non-uniform plasma dispersion relation for & = /2. The plot configuration is the
same as figure 2. The black solid lines and blue dashed lines correspond to the extraordinary
wave (X-wave, D) = n? — (52 — D2) /S), and the red dotted lines correspond to the ordinary
wave (O-wave, D(g) = n*—P).

linearized set of continuity, momentum, and pressure equations are solved with the 6-moment
approximation. The dielectric tensor is expressed in terms of the non-uniform density, flow
velocity, and anisotropic pressure (equations (5), (12)-(14)). The implicit dispersion relation
(1) can be solved numerically to give complex Fourier variables. The analysis shows that
non-uniformity is a critical parameter for plasma instability.

We have developed an explicit formalism for plasma instability. The dependence of
imaginary frequency on the non-uniformity of plasma parameters is written by expanding the
dispersion relation. The plasma instability can be directly evaluated using equations (16),
(22)-(38), where the coefficients demonstrate that the non-uniformity is the critical parameter
of the instability. The validity of formalism has been confirmed by comparing the explicit
dispersion relation (25) and the implicit dispersion relation (1). It is demonstrated that the
formalism can be used to develop the instability diagram and the instability criterion for a
non-uniform plasma.
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Wi/ |wee x107°

Figure 5. Instability diagram of the anisotropy-driven instability for 0 = m/4, kry; = w/2,
and @/ |@c| = 0.7. The non-uniform pressures are given as k,.,rz; = Y1 (—£+9+2) and
KlgLi = Y| (+9—2) for a = e, i, and the other plasma parameters are uniform as given in
figure 1(a). The dashed line is the contour of w; = 0, which gives the instability criterion

YL > —2’)/“/3.

The explicit expression provides an accurate and practical method for a general instability
analysis of fluid waves. The method has a great advantage for assessing the instability
in an arbitrarily non-uniform plasma without numerical computation. The formalism can
generally be used to analyze the density-gradient instability due to non-uniform density, the
temperature-gradient instability due to non-uniform temperature, and the zonal flow [42]
instability due to a non-uniform flow. For example, figures 2-5 show the application of
formalism to the instability analysis. The fluid instabilities driven by the comprehensive
effect of density, flow, and pressure (or temperature) gradients are described as functions
of non-uniform parameters and Fourier modes. The effects of the non-uniform parameters on
well-known waves (R-wave, L-wave, X-wave, O-wave) and arbitrary waves are demonstrated.
Figure 5 shows the instability diagram for the anisotropic-pressure-gradient instability. Using
the formalism, the generalized criterion for the onset of instability is presented by equation
(39). Itis seen that the accurate formula for general fluid waves cannot be derived by equations
of states and electrostatic approximation.

The explicit formula in this work does not include the effects of magnetic field geometry,
collisions, off-diagonal elements of a pressure tensor, and non-uniformity in the direction of
wave propagation. We will relax the restrictions in future work to develop a more practical and
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comprehensive formula. For example, equations (7)-(9) are obtained in slab geometry, where
any spatial derivative of the unit vector B/By is neglected. However, the magnetic field line
can be curved, for example, in a magnetic fusion plasma [43—46] or space plasma. [47—49]
In order to take into account the geometric effects, the dielectric tensor can be obtained in a
curvilinear geometry with a finite V (Bg/By) term. The geometric effects on the dispersion
relation and instability for a non-uniform plasma will be shown in future work.
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Appendix

This appendix provides the detailed derivations of equations (7), (10)-(14). Note that the
species subscript a will be omitted for simplicity.
Using the equilibrium momentum equation (6), the linearized momentum equation,

8u1
nom—— +nimugy - Vg

ot
+nomuy - Vug+ngmug - Vuy (A.1)
=noq(E; +ug X B +u; xBy)
+n1g(Eo+ug xBy) —V-py,

can be recast as

M| =M, + Mz, (A.2)
where 5
M, :% +u;-Vug+ug- Vuy
V.
— Ly xBy— LR

M :’% (El +ug X Bl),

V.
My=——PL

mny

The first term M| can be rearranged as

. .
M =—iap {I+i—‘2>< |+ ((Vuo)T
wp wp

V-Pp k+ik, u
mng Op+1K, - Uy b

(A.4)

where we have used the relations u; - Vug = (VuO)T-u1 ,ug-Vuy =ik-uguy, —qu; xBy/m=
@2 x| -uy, and the linearized continuity equation (3). The perturbed magnetic field B; can



Dispersion relation and instability for an anisotropic non-uniform flowing plasma 15

be replaced by k x E; /@ using the Faraday’s law to give

k
My = op-L (I + ﬂ) Ey. (A.5)
mao wp
Since we consider a diagonal pressure tensor (p = p= (1 —22) + pH ZZ) and neglect the geometric
effect (V- (BoBo/ B%) = 0), the last term M3 is written as
k, pi+kpl
M; = —i u (A.6)
nmn

Combining equations (A.2) and (A.4)-(A.6) gives the linearized momentum equation (7).

The linearized pressure equations are obtained from the pressure equations (8) and (9) as

Ipy
a1 +ugp- Vpl +uj- Vpo —|—2p0V u (A7)
+2p1 V-uo —Po 8H Ltl” — D1 aH MOH =0
|
9Pt 4wy Vpl - Vpl 4 plvew,
dt (A.8)

H 1V +2pH 8” up+ ZpH 8H up =0
where the divergence Of heat fluxes are neglected by the 6- moment approximation as
Ll =ik -ug p; Ll , V-u =ik-uj, and
BH uy| = ik - uy, equations (A.7) and (A.8) can be rearranged to give the linearized pressure
equations (10) and (11).
Since the perturbed pressures are expressed in terms of the perturbed flow velocity u; in
equations (10) and (11), equation (A.6) can be written as

ik (2K k) +ik, ) V2, /2
My = —

discussed in section 2. Using the relations ug - Vp;

wD+i2V-u0—i&Hu0H A9)

ik” (k—l—ZkH —I—iK'pH) v%H/Z .
wD+iV-uo+i28Hu0” a

Inserting equations (A.4),(A.5), and (A.9) into equation (A.2) yields

LW
| +i—2 x|
p

1 V-P k+ix
i ((VuO)T _ VP kA
®p mng Op +1K, - U

ik (2k— k) +ix,. )12, /2
wp +12V -uy —i8‘|u0”

ik (k20 +ik, ) v2, /2
+ . . ‘u
wp +1iV -ug + 128Hu0“

k
4 (.+ﬂ).E],
ma) p

(A.10)
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It is seen that the mobility i in equation (12) and the coefficient I" in equation (13) are obtained
by equation (A.10).
When the pressure is isotropic, the linearized pressure equation,

d
% +ug-Vpi+u;-Vpy
! (A.11)
5 5
+zpoV-ur+5p1V-ug =0,
3 3
gives the perturbed pressure
Sk/3+ik
Do (1)D—|—15V-ll()/3
Since equation (A.6) is written as
k
Ms = —i 2L (A.13)
mny

the coefficient I for an isotropic pressure becomes equation (14).
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