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Proton radius puzzle

2010-2023



Tool to explore the proton structure

u( k. };) @( ];/7 B! ) photon—proton vertex
"
Y TH(Q%) = "Fp(Q?) + WQMQV Fp(Q?)
N(p, A) N(p', \) Dirac and Pauli form factors
= =
lepton energy W
momentum transfer Q2 — _(k — k/)Q

1¥ amplitude

CT = Ga (@K 1)y (k. 1) - (N (0 X) T Q)N (p ”D
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Form factors measurement

Sachs electric and magnetic form factors

GE:FD—TFP GM:FD+FP

Rosenbluth separation

do_unpol

01 S6%07) [ QF = 2.64 GeV?
d? T i
B Q2 do.unpolE 5 5
Ve 40 ;GE(Q ) -
7 & kinematical variables h
2 9 CaARSESS———— ;I
e ban  Gul@7) g5 0.2 0.4 0.6 0.8 1.0

Qattan et al. (2005)

(- Rosenbluth slope is sensitive to corrections beyond 1){]
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Proton radius

electric charge radius

dGE(Q?)

<7’% = —6

dQ?2

- ep elastic scattering

rg = 0.879 £ 0.008 fm

Q2=0

Gstd,.dipole

C7YE/CTYS‘cd.dipole
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A1@MAMI: J. C. Bernauer et al. (2014)

0.003 GeV? < Q? < 1 GeV?




Proton radius

electric charge radius
dG 2 .EL
< 7’% >= —6 dEcgg ) ;2
Q2=0 o
~
8
S

- ep elastic scattering
rg = 0.879 £ 0.008 fm

- atomic spectroscopy

H, D spectroscopy

rg = 0.8758 4+ 0.0077 tm
CODATA 2010
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1
0.99
0.98
0.97
0.96
0.95

0 0.05
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Q?, GeV*?

) A1@MAMI: J. C. Bernauer et al. (2014)

R n crmy < rg >

O

Proton

Hydrogen

- Electron

@ Muon

Proton

Muonic
Hydrogen

wH Lamb shift

rg = 0.8409 £+ 0.0004 fm
CREMA (2010, 2013)



Proton radius puzzle

: . 1.03
electric charge radius | 09
2 1.01
dG 2 B 1
<12 >=—6 E(§ ) = 0.99
dQ Q2_0 %
= T 0.98
~
2 0.97
: : S 0.96
- ep elastic scattering -
0.95 |
0 0.05 0.1 0.15 0.2
'y — 0.879 £ 0.008 fm 02, GeV?

A1@MAMI: J. C. Bernauer et al. (2014)
. R crmi < 7% >
- atomic Sp@CtI'OSCOpy Ups = — +

"2 n3
y Electron
H, D spectroscopy O @ Muon — WH Lamb shift
Proton Proton T g = 0.8409 £ 0.0004 fm
rrp = 0.8758 £ 0.0077 fm | CREMA (2010, 2013)
CODATA 2010 Hydrogen H';":g;:n

( 5.60 difference ! )
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Proton radius puzzle

: . 1.03
electric charge radius | 09
2 1.01
dG 2 B 1
<12 >=—6 E(§ ) = 0.99
dQ Q2_0 %
= T 0.98
~
2 0.97
: : S 0.96
- ep elastic scattering -
0.95 |
0 0.05 0.1 0.15 0.2
'y — 0.879 £ 0.008 fm ? 02, GeV?

A1@MAMI: J. C. Bernauer et al. (2014)
. R crmi < 7% >
- atomic Sp@CtI'OSCOpy Ups = — +

"2 n3
y Electron
H, D spectroscopy O @ Muon — WH Lamb shift
Proton Proton T g = 0.8409 £ 0.0004 fm
rrp = 0.8758 £ 0.0077 fm | CREMA (2010, 2013)
CODATA 2010 Hydrogen H';":g;:n

( 5.60 difference ! )
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Proton radius puzzle

: . 1.03
electric charge radius | 09
2 1.01
dG 2 B 1
< ?"% >= —06 E(? ) E 0.99
dQ Q2_0 %
= O 0.98
~
2 0.97
: : S 0.96
- ep elastic scattering -
0.95 |
0 0.05 0.1 0.15 0.2
'y — 0.879 £ 0.008 fm ? 02, GeV?

A1@MAMI: J. C. Bernauer et al. (2014)
R n crmi < 7% >

- alomicC Spectroscopy wns = — 2 n3

- Electron

H, D spectroscopy @ 9 Muon — WH Lamb shift
Proton | Proton T g = 0.8409 £ 0.0004 fm
rrp = 0.8758 £ 0.0077 fm CREMA (2010, 2013)
CODATA 2010 .

Hydrogen Hydrogen

eH 2S5-4P (Garching, 2017)

( 5.60 difference ! )
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Proton radius puzzle

: . 1.03
electric charge radius | 09
2 1.01
dG 2 B 1
< ’I"% >= —06 E(? ) E 0.99
dQ Q2_0 %
= O 0.98
~
2 0.97
: : S 0.96
- ep elastic scattering -
0.95 |
0 0.05 0.1 0.15 0.2
'y — 0.879 £ 0.008 fm ? 02, GeV?

A1@MAMI: J. C. Bernauer et al. (2014)
R n crmi < 7% >

- alomicC Spectroscopy wns = — 2 n3

- Electron

H, D spectroscopy @ @ Muon — WH Lamb shift
Proton Proton T g = 0.8409 £ 0.0004 fm
rg = 0.8758 & 0.0077 tfm | CREMA (2010, 2013)
COI?ATA 2010 Hydrogen Hv:;r;:n
eH 1S-3S (LKB, Paris, 2018) eH 2S-4P (Garching, 2017)

( 5.60 difference ! )
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Proton radius puzzle

. . 1.000 —— PRad fit r, = 0.831(7) (12)y,5 fm
electric charge radius ol e =084 i
) - dGE(QQ) 0.950 -
<Trp >= —06 5
dQ Q2=0 aw 0.9251
0.900 -
- ep elastic scattering 08751

r = 0.879 + 0.008 fm  ©

0.61
atomic spectrosco oo 1 crmy < T > n i
) V - = )
p py noS n2 n3 PRad GLab, 2019)

/Proton
rp = 0.8758 £ 0.0077 fm

Muonic
CODATA 2010 Hydrogen Hydrogen

eH 1S-3S (LKB, Paris, 2018) eH 2S-4P (Garching, 2017)
(data prefers smaller radius) eH 25-2P (York U., 2010)
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- Electron

W Muon — yH, uD Lamb shift

Proton 7T = 0.8409 + 0.0004 fm
CREMA (2010, 2013)

H, D spectroscopy

-




Proton radius puzzle

H Lamb shift = ®
Ref. 7, uH spectroscopy ! . . . Ref. ©, e-p scattering
Ref. 1, uH spectroscopy " Ref. ©, H spect
Ref. 3, H spectroscopy
® . Ref. 4, H spectroscopy
. Ref. °, e—p scattering
This work, e—p scattering
| L
1 1 1 I 1 1 1 I | | 1 | | 1 | I 1 1 1 | | | 1 I 1 1 1 I 1 1
0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92

Proton charge radius, r,, (fm) PRAD (2019)

- no puzzle in atomic spectroscopy !!!

- scattering data is not completely understood
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Possible solutions ?

- drawback in experiment: not a single one !

- drawback in theory: many groups reevaluated rad. corrections, 2)
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Possible solutions ?

- drawback in experiment: not a single one !

- drawback in theory: many groups reevaluated rad. corrections, 2)

BSM explanation ?

- lepton universality violating ~MeV muonic forces  ~
M — e
: Tucker-Smith Yavin (2010)
: X Barger et al. (2011)

fl u

A g

0.01

- vector particle: constraints from decay of W

8v, 8A

- embedding in renormalizable theo
Carlson and Friéd (2015) 2
1074 1/

- scalar particle: 200 keV - 3 MeV
Liu, Cloet and Miller (2018) .
14



pH Lamb shift and 2y

2012 MAMI scatt - .
Bornauer of al 2P-2S transition in uH
JLAB scatt
Zhan et al .
H&D spectr - discrepancy: 310 peV
CODATA 2010
LS5 H tainty: 2.5 peV
H Antognini et al. - pHuncertainty: 9 H
I | | |
0.84 0.86 0.88 0.90 0.92
\/<r]23>, fm
1-loop eVP
proton size
2% hadronic correction 2-1o0p eVP (Kilen-Sabry)
USE and uVP
discrepancy
1-loop eVP in 2 Coulomb lines
recoil
TPE
()
(pol) J
hadronic VP
proton SE MH (ZP_zs)
3-loop eVP
2 Y - light-by-light scattering
AEZP—QS =33+ 2 peV 0.001 001 01 1 10 100 1000

C. Carlson, M. Vanderhaeghen (2011) + M. Birse, J. McGovern (2012)

[meV]

( - important to reduce ambiguities of 2x)

A. Antognini et al. (2013)
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Elastic electron-proton scattering

and two-photon exchange

16



Scattering experiments and 2}

- 2% is not among standard radiative corrections
oP = 0'17(1 + Orad + Osoft + 52’)/)

- soft-photon contribution is included

L.C. Maximon and J. A. Tjon (2000)

- hard-photon contribution modelled by Feshbach correction

- charge radius insensitive to 2y model

(- magnetic radius depends on 2y model)
A1@MAMI: J. C. Bernauer et al. (2014)
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Elastic lepton-proton scattering and 2%

momentum transfer

2 N2 g > photon polarization
Q= _(k —k ) l(k) l(k/) parameter
crossing-symmetric &
variable /
forward scatterin
(k,p+p') P P 5

2

- leading 2¥ contribution: interference term

2

2 Y TYWRT?

5 o spin
—> = P

spin

( - 2§ correction to cross section is given by amplitudes real parts j
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non-forward scattering
at low momentum transfer

v VvV

photoproduction vertex or Compton tensor

box diagram

assumption about the vertex

19



non-forward scattering
proton state

2

Dirac and Pauli form factors

1ot qy

2
Wi Fp(Q7)

Q%) =+"Fp(Q°) +

box diagram

ep scattering: P. G. Blunden, W. Melnitchouk and J. A. Tjon (2003)
assumption about the vertex violation of unitarity for resonances !
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non-forward scattering
inelastic states

works at small

scattering angles

v VvV

forward doubly-virtual Compton tensor

box diagram unpolarized proton structure

M. E. Christy, P. E. Bosted (2010)
proton + inelastic = total

21



non-forward scattering
at low momentum transfer

photoproduction vertex or Compton tensor

box diagram dispersion relations

assumption about the vertex based on on-shell information
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Fixed-Q?2 dispersion relation framework

on-shell 1y amplitudes

600 —

500 |

0.2 0.4 0.6 0.8 1.0 1 14
v [GeV]

2 prediction

0.02 | | | |

-0.02
-0.04
-0.06
-0.08

-0.1
-0.12
-0.14
-0.16
-0.18

drre(Q%,€ = 0)

T T T 1T 1

o

Q? [GeV?]

[ experimental data ) elastic and niN (cross section correction)

unitarity

( 2¥ 1lmaginary parts j

T V’2 _ V2

00 I
RF(v) = 2P / SFW +40) 4,

min

disp. rel.

—_—P 2% real parts j
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Fixed-Q?2 dispersion relation framework

on-shell 1y amplitudes 2¥ prediction

600 T T T T T T T 0‘02 | [ | [
A\

500 - -0.02
-0.04
-0.06
-0.08

-0.1
-0.12
-0.14
-0.16

-0.18

drre(Q%,€ = 0)

1T T T T

o

0 i e I = ]
0.2 0.4 0.6 0.8 1.0 1.2 1.4 2 2
v [GeV] Q" [GeVT]

[ experimental data ) elastic and niN (cross section correction)

U 2V >~ SFW 4 10)
unitarity RF () = P /V I Py
disp. rel.
( 2¥ imaginary parts j —_—P 2% real parts j
Dm. Borisyuk and A. Kobushkin (2008-15) O.T. and M. Vanderhaeghen (2014-17)
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niN in dispersive framework (ep)

00294 ... - 7N, unsubtracted dispersion relations
| — 1N, near-forward from structure functions p ~
ro 0017 - dispersion relations
s 1 == == agree with near-forward
© 0 == T at large E
s \ J
17 2 2
/ Q" = 0.005 GeV
-0014 ¢
/
'. L] L] L] L] I L] L] L] L]
0 0.5 1.0
€
1.5
Q? = 0.05 GeV?
X 1.0+
?\
N
S .
Al@MAMI = ~
059 ——— elastic \\Q .
1l = — elastic + N
—— total 2+, near-forward
° . . . O T I 1 I 1 I 1 I I |
[ - N is dominant inelastic 2% ) 02 04 06 0.8 1.0

25 O.T, B. Pasquini and M8 Vanderhaeghen (2017)



Our best 2y knowledge

2.0 I I
: | | —  Al@MAMI
\ I | — elastic + N
L= \, : : — total 2 v, near-forward
. \°-\ | | ——=—interpolation
| |
10471 N | 2 9
' I Q° = 0.1 GeV
=
0.5- |
I
1 dispersion
relations near-forward
0 . . , | . |
0 0.2 04 0.6 0.8
€

\

g
- small Q2 near-forward at large €, all inelastic states

- Q=1 GeV2: elastic+nN within dispersion relations
- intermediate range: interpolation

N
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Gm/(Lp Gaip)

Applications to nucleon form factors

1.08 1

1.04 -

1.00

0.96

~

~

HE——

_—

Rl

—_—

Al@MAMI + rg (UH)
all scattering data
BBBA2005 fit

—

—
—

—
—

—
-—
==

—
—_— = —_—
— —_—
—_—

. —
—_——— — —

Q2, GeV?2

PRad data or uH charge radius °

K. Borah, G. Lee, R. J. Hill and O. T. (2020)

0.98

z expansion fit

_ \/tcut + Q2 o \/tcut _ tO
\/tcut + Q2 + \/tcut _ tO

Q%)

with 4-5 independent coetficients

kmaw

GQ) =Y arz(QY)!

Al@MAMI + rg (WH)
Al@MAMI + PRad

1 1
0.04 0.06

Q?%, GeV?

0.10

~

- first model-independent fits presenting covariance matrix
- 2¥ provides nontrivial hadronic radiative correction

_ - proton charge radius as a constraint

~
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Elastic muon-proton scattering

and two-photon exchange

28



Elastic muon-proton scattering

- charge radius extractions:

eH, eD spectroscopy ep scattering

wH, uD spectroscopy Up scattering °rer

- up elastic scattering is planned by MUSE@PSI(2018-19)

measure with both electron/muon charges

- three nominal beam energies: 115, 153, 210 MeV, Q2< 0.1 GeV?

(- 2¥ correction in MUSE ° )

29



MUSE@PSI (2018-19) estimates (1 p)

- proton box diagram model + inelastic 2)

od T box diagram model, wp -
total, wp /‘/‘/-’
————— total, e’p _,./"/
S T S
S - S
S 0.5 Pl S
./'/ T e
17/
f/k = 115 MeV
0 T T
0 0.(;05 O.(;IO O.()IlS ().OI2O 0.025
Q?, GeV?
- expected muon over electron ratio
S 1
: i o
small inelastic 2¥% =
=1.05
;
small 2y uncertainty ‘
0.95

( )

- MUSE can test rgin
one charge channel

_J

.

30

0.9

1.0
05-
k =210 MeV
0 ' l ; l ; l
0 0.02 0.04 0.06 0.08
Q?, GeV?

O. T. and M. Vanderhaeghen (2014, 2016)
j ] 15 MeV/é S S-S
| ® 153 MeV/c
B - 210MeV/c ........................................................................................................
[ 3384888853454 f}.w.w .
SEE N é ‘T EEENEN
: (poihts offset fdr plotting)
A A B A N N I S [
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

K. Mesick talk (PAVI 2014), MUSE TDR (2016)



COMPASS proton radius experiment

- elastic pp scattering at SPS with 100 GeV beam

- measure G, + 7Gy; at forward angles

2% corrections?

- Feshbach correction (+ recoil)

0y = % (1 + %) ,...> 2-3 orders below MUSE

- Inelastic states: kinematically enhanced

[ - sub per mille level of 2y in COMPASS kinematics )

31



1S-2S transition in hydrogen and 2

- measurements of 1S-2S transition in eH with 4x1075 accuracy:

s_og(H) = 2466061413187018(11) Hz  2010th

A. Matveev et al. (2013)
- more precise than recent Lamb shift measurement (error: 3.2 kHz)

N. Bezginov et al. (2019)
R  Lis(rg)

|
n? ns

Uns =

- main input to determine Rydberg constant
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Lamb shift and hyperfine splitting in H

eH 2sy2

2P fine structure

\ Electron

Lamb shift

N

2512 E\

charge radius

2P fine structure

2P?)/Z _ E %

Vtriplet

Vsinglet

E

I 2S hyperfine
splitting I'e, I'\M

F=0

[ - 1S HFS in yH with 1 ppm accuracy at PSI, J-PARC, RIKEN-RAL |

R. Pohl et al. (2016)



pH 1S HFES from eH 15 HFS

- measurements of 1S HFS in eH (21 cm line):

vies (H) = 1420.4057517667(9) MHz 1970th

o S

- relation between eH and yH through g1 and g2 in 2y
O. T, EurPhysJ.A 55 (2019) 5, 64
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Conclusions

- proton charge radius puzzle dissolves with new measurements

- tensions In scattering data are not resolved

- forthcorning muon scattering data will shed new light

Y ~y » largest theoretical uncertainty

in low-energy proton structure
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n D D n
O. T, Qing Chen, Richard J. Hill and Kevin S. McFarland, Nature Commun. 13 (2022), 1, 5286

Radiative corrections in charged-current
elastic scattering on free nucleons

O. T, Qing Chen, Richard J. Hill, Kevin S. McFarland and Clarence Wret
editors suggestion in Phys. Rev. D (2022)

Uy I
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Neutrino experiments

- DUNE and Hyper-K: leading-edge v science experiments

Sanford Underground
Research Facility

Fermilab

—— -
o - -

- origin of matter-antimatter asymmetry Ocp

- mass hierarchy and oscillation parameters PMNS matrix, Ams,?
- Grand Unified Theories proton decay

- dynamics of supernova explosion wait for one;)

37 DUNE, CDR (2016), TDR (2020)



Neutrino experiments

- DUNE and Hyper-K: leading-edge v science experiments

Sanford Underground
Research Facility

Fermilab

———
- - P
--

’ L,,Lﬂ-‘?:“‘ﬂu 800 miles »rgi“’” "
" < qao0kilomete™ ooooo=c

e

et G e
g ,,tf'VVY.V 7v, i
AR L y--

=4 T -

" _v- =N

- measurement of v,(v,) disappearance and v.(v.) appearance

N, ~ /dE,,CID,, (E,) x o (E,) x R(E,, E**°)

( - near detector: determine flux and cross sections J
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Neutrino interactions

39



QED corrections

( - all charged particles couple to real and virtual photons )

40



QED corrections

( - all charged particles couple to real and virtual photons )
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QED corrections

(

Qi
Qj
vV
>
-2 ~02% suppression by electromagnetic coupling constant }
(0

42



QED corrections

V
E, E,
%~ 0.2 % multiplied by In —~ ~ 6 — 10 or In> —% ~ 36 — 100
s Me Me

( - scale separation introduces large flavor-dependent QED logarithms )

43



n D D n
O. T, Qing Chen, Richard J. Hill and Kevin S. McFarland, Nature Commun. 13 (2022), 1, 5286

Radiative corrections in charged-current
elastic scattering on free nucleons

O. T, Qing Chen, Richard J. Hill, Kevin S. McFarland and Clarence Wret
editors suggestion in Phys. Rev. D (2022)

Uy I
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CCQE. Why should we care?

- neutrino-nucleus cross sections and future accelerator-based fluxes

- - I% "
(o)
llllllI'lllIIIIIIIIIIIIIIIIII

Formaggio

d 11 o R T MR . - ! P
) 10" 1 10 102

E, (GeV)
- basic process: bulk of events at Hyper-K and DUNE \

Y1 |

- channel for reconstruction of neutrino energy
45
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CCQE scattering on free nucleon

v (F) (k') tri
=k ¥ neutrino energy E,

momentum transfer Q2 _ _q2

contact interaction at GeV energies

- assuming isospin symmetry, nucleon current:
T (Q%) =< pla (v — y"s) din >

D4(Q%) = 1 FE Q) + T Y (Q?) +4#95Fa(@) + Trs Fr(Q?)

form factors: isovector Dirac and Pauli axial and pseudoscalar

V . 1p n
FD,P_FD,P_FD,P

tree-level amplitude

= (C(K )y (L = 5) Ve(k))(p(p’)r“(QQ)n(p)))

46




-CCQE scattering on free nucleon

(k) v =B,/M—1—1
_ M _ @
"Tom T A
p(p’) unpolarized cross section
do M? 5 5 5 v o
0~ B ((T+7“ ) A(Q7) —vB(Q7) + ¢ ))

Llewellyn Smith (1972)

- structure-dependent functions

A=

(GY1)" = (GB)" + (L + )L -()(GXp) + F3 — 47F3 + 4FaFp)

B = +47FAGy, C=r7 (G]\V4)2 + (GE)Q +(1+7)F3

~

\—

- pseudoscalar form factor contribution is suppressed by lepton mass

- Cross section 1s sensitive to both vector and axial contributions

N

47



Elastic scattering on free nucleon

- only 3 experiments performed with deuterium bubble chamber

direct access to form-factor shape

ANL 1982: 1737 events

—

Byl

BNL 1981: 1138 events

FNAL 1983: 362 events

world data: ~3200 events

TELNR ST AT AN

Fermilab bubble chamber, Richard Drew

( - axial form factor extracted based on electromagnetic structure )
A.S. Meyer, M. Betancourt, R. Gran and R]. Hill (2016)
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MINERVA result with free protons

- 1dea of scattering on molecular hydrogen realized !
— Hydrogen fit — Deuterium fit — BBBA2007 fit — LQCD fit

vup — ,u+n

muon kinematic selection

40 v ';i' )50 0 5 <'——~— Non-QE and mesons
""'V"-"'V'--CCE
o e e W% QELike CCQE
- QELike non-CCQE
| : : e e t ¥ -NoniQErllil:]e
< I b D DD '® _
2 0t - CCE signal
N ‘_. * ' '}‘J’ h ‘, QE fit
-20 -‘_. R et e tﬁ QE validation
LA B
‘ N '® < Non-QE validation
-40 .
\ A |

‘_~— Non-QE fit
0

-40 =20 0 2
00

5580 events over
12500 background

background nuclear events

constrained by scattering of v

0.01 0.05 0.1

05 1 5

10

4

~

NN W
mTmirnm

15

1.014 Gev/c?)

1.0

Ratio to dipole F, (M,

0.3

0.01 0.05 0.1

05 1 5
Q? (GeV/c)?
QE

10

11.0

10.5

0.3

( - 1st measurement of axial form factor on “free” protons v,p — ,u*n)

T. Cai et al., MINERVA Collaboration, Nature (2023), 614, 48-53
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Static nucleon limit

- formal limit of infinitely heavy nucleus my << Ep K< M
- provides correct soft and collinear logarithms

- soft-photon energy < 20 MeV, jet size: 10° for electron and 2° for muon

L static limit, e flavor
1.0
soft photon only
DS 0.9- — — = soft or collinear photon, AO6=10° DS
B N inclusive cross section B soft photon only
— — = soft or collinear photon, AO=20
------- inclusive cross section
0.8 0.8
AE = 20 MeV AE = 20 MeV
; I T I I [ T | T T | T | T | T | T
0 > 4 6 8 10 0 2 4 6 8 10
E,, GeV E,, GeV

- flavor-dependent effect, same for vyn — ¢~ p vs vyp — (tn
- collinear observable: cancellation of virtual vs real logs
- inclusive observables (+y): few % level, flavor independent

. J
50




Electron vs muon jets

- factorization for radiation of collinear photons
- cone angle is defined to lepton direction

- photons of energy > 20 MeV, fixed energy in the cone

0.5 :
—— E+E,=6GeV § © flavor 000g] —— EttEy=6GeV u flavor
04 ——= E¢+E,=2GeV - == E(+E,=2GeV
B B I E¢+E, =0.6 GeV 1 e E¢+Ey, =0.6 GeV
Q : Q
5 ) : 5
= 0.3 .
) 3 &)
=t 3
= 024 P =
= mtegratgd S
~ iCross section ~
0.1 i 150 0
NN AE = 20 MeV 1.5<0<15
0 | I——I— ...... |
0 0.5 1.0 1.5 15

- flavor-dependent effect, same for vyn — ¢~ p vs vyp — (tn
- forward-peaked radiation for electron flavor

- negligible radiation for muons with shifted peak position
51
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Factorization approach

- Cross section is given by factorization formula

o5 (50) () ()

- determine hard function at hard scale by matching

experiment or hadronic model to the theory with heavy nucleon

- soft and collinear functions are evaluated perturbatively
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Hadronic model at GeV scale

Uy 0~ >

n p n p
- exchange of photon between the charged lepton and nucleons
- assume onshell form for each interaction with dipole form factors
discussed for neutrino-nucleon scattering: Graczyk (2013)

- add self energy for charged particles

- reproduce soft and collinear regions of SCET

( - best determination of hard function J
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Factorization approach

- Cross section is given by factorization formula

o5 (50) () ()

- determine hard function at hard scale by matching

experiment or hadronic model to the theory with heavy nucleon

my, - RGE evolution of the hard function to scales AF, my

- soft and collinear functions are evaluated perturbatively

- calculate cross section at low energies accounting for all large logs
ep scattering with soft radiation only: Richard J. Hill (2016)

\

[ soft and collinear functions determined analytically

- hard function describes physics at GeV energies
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1.00

Exclusive observables

- cancellation of uncertainties from hard function for e/ and ratio to LO

0954 -

0.90

dO'/dO'LO

0.85 -

0.80

e,
"
L.
.....
LT
.....
e,
L
"

]
"
" a
" .
]
-

soft photons only
soft and collinear photons, A9 = 10° .
leading-order uncertainty

| |
0.5 1.0
Q?, GeV?

1.1

vgnl—di'p
E, =2 GeV, AE = 10 MeV

leading order
soft photons only
— == soft and collinear photons, AO = 100

0.5 1.0 1.5

Q?, GeV?

( - ratios: cancellation of uncertainty from hard function }
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Inclusive observables
W><§i sw ié
n D n p

- the same gauge-invariant model for the real radiation

- arbitrary hard photons are part of the observable

Uy I Uy I
., 0y
*>é““
n p n P
v 56




Inclusive observables

- kinematics Q° = 2M (F, — Ex)is reconstructed with 3 different 'y

I I I I I I I I I I
5 Vel - € P ven - £ p
' Ex=E, 1.1- E,=2GeV e
IR = Ex: energy in cone et e
AE =10 MCV, AO = 100 e P |
o 119 -—- Ex=E(+E RO 1 5 Pt
g - S | 3 ‘
B . - —n—n-u-usiaﬁiigﬂg b; \““‘ leading order
o 1.0 ——::_—,,.—_‘i—‘_-ui‘"":-“"':—————————————: o ““ g
- “‘\“ . "“ """" Ex =E; .
- o - N = Ex: energy in cone
s
094 _ 0.9 - AE =10 MeV, A = 10° —
: K E, =2 GeV -—-— Ex=E(+E,
I I I I I I I I I I
0 0.5 1.0 1.5 0 0.5 1.0 1.5
Q?, GeV? Q% GeV?

( . . .
- dependence on reconstruction of kinematics and cuts

- predict 6, from 0, measurements with neutrino beam
_ e U
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Electron/muon ratio

B, Gev | (55 -1) 0 %] -1
2.47 £ 0.06 2.84 4+ 0.06 = 0.37
2.04 4 0.08 1.84 = 0.08 £ 0.20

0.322 £ 0.006 | 0.54 £ 0.01 £ 0.22

0.394 £0.003 | 0.20 =0.01 &= 0.19

R

T2K /HyperK 0.6

R X

NOvA/DUNE| 2.0

R

TABLE II: Inclusive electron-to-muon cross-section ratios for
neutrinos and antineutrinos without kinematic cuts. Uncer-
tainties at leading order are from vector and axial nucleon
form factors. For the final result, we include an additional
hadronic uncertainty from the one-loop correction to the first
uncertainty, and provide a second uncertainty as the magni-
tude of the radiative correction.

O'(mg — O)

~1+ Am? Bm? 1
o (g = 0) + Amy + abmy Inmy

(

. . . . . )
- inclusive cross sections and flavor ratios determined by KILN

- nuclear effects: suppressed by expansion parameters squared
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39 do. cm?
dpt GeV nucleon

10

dcs/dcsLO

N

w
o

w

N
o

N

—
(6]

—

0.5

1.2
1.1

0.9
0.8

Comparison to data

- medium-energy flux data from MINERvVA@FERMILAB

T ' | ' 4 ' T | '
B p,=550-6.00 GeV | a5 | p,=550-6.00Gev  _|
:_ #—Fﬁq__l Al Iccjez[:ing order _: 5 ° :_ 44 Al :la::ing order _:
| F"—I | — - rad. corrected | oS 25 | —— — -rad. corrected
i | I il 85 -+ i
I '=+=| 1) _ 3 L — — _
B N > [ F= 1/ N
- JI_._ | 'u . T |'—"-|r = H -
— Do ¢ — 05 |— | —
I;DJ ~ 0 F.J | | - _ll——.—:
12 : , , :
— % o 11 #‘ - ] =
‘——-#** q#_ r ok — =
—= L wk - ; .
p, GeV p, GeV
O. T, Qing Chen, Richard J. Hill, Kevin S. McFarland and Clarence Wret
editors suggestion, Phys. Rev. D 106, 093006 (2022)
r X D
- electron flavor: measurements are uncertain
- muon flavor: comparable to experimental precision
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Conclusions

radiative corrections

—

in EFT framework

radiative corrections to neutrino-nucleon cross sections

formulated in factorization framework

charged-current elastic electron vs muon cross-section ratios

evaluated from theory with sub-percent uncertainty

ongoing work on applications
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Thanks for your attention !!!
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