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Introduction to ESD and modeling approaches
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Overview of electrostatic discharge (ESD) events

• Two-differently charged objects brought close together
• Resulting electric field 𝐸 strong enough to cause breakdown of air gap
• With sufficient stored charge, ionized gas filament (spark channel) forms
• Rapid transient current pulse 𝐼 = 𝐼(𝑡) neutralizes charge difference
• Portion of stored energy goes toward resistive (Joule) heating of channel

*Typically charged via 
triboelectric effect

Approach Breakdown Current pulse

Focus of 
this work
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Economic

Categories of ESD hazard consequences

Safety

• Semiconductor devices
− Damage during assembly & handling
− Industry implements controls to reduce loss fraction
− Cost/benefit analysis for device production

• Medical devices
− Loss of function, subsequent injury or loss of life

• Flammable vapors and powders
− Spark channel is ignition source for deflagration events

• Explosive/pyrotechnic devices
− Unintended initiation of device

Focus of 
this work

ℰ! =
1
2𝐶𝜑!

"

ℰ# = 𝑅#-
!

$
𝐼" 𝜏 𝑑𝜏

RLC circuit model 
of ESD between 
conducting objects

Initial stored energy:

Energy dissipated in victim  or 
current viewing resistor (CVR): 



5

Nonlinear resistance (lumped model)

Modeling approaches for spark discharges

Hydrodynamic (thermal equilibrium)
• Based on limiting cases for spark 

channel energy balance
• Lowest computational cost (ODE only)
• No radial structure for thermal variables

− Only indirect comparison to experiment 
(measured circuit variables)

• Mass, momentum, energy conservation 
in 1-D radial/2-D axisymmetric geometry

• Local Thermodynamic Equilibrium (LTE)
− Common temperature 𝑇 for all species
− Valid for fast electron-ion relaxation times
− Equation of state (EOS) for air properties

Kinetic (thermal non-equilibrium)
• Species populations found through rate 

equation system (highest comp. cost)
• Reaction rates (e.g. ionization) 

determined through cross sections
− Data for air species active research area

Two-temperature hydrodynamic
• Similar to LTE models, but electrons are 

out of equilibrium with ions and neutrals 
("heavy species”)

• Need to have EOS and transport 
properties for both 𝑇! and 𝑇

Used by this work

Possible future workNot currently feasible
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Geometrical assumptions for modeling spark channel

• Experimental imaging (CSM and others) 
shows spark channels for short gaps have 
high degrees of cylindrical symmetry

• Modeling assumes cylindrical symmetry is 
established during first nanoseconds and 
maintained up to a few microseconds

Photo by C. A. M. Schrama

Schlieren images by C. A. M. Schrama

• Approximate gap near 
spark as having 
uniform electric field 𝐸

• Locally flat electrodes
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Numerical scheme and verification
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Inviscid Euler equations with heat sources and thermal 
conduction (hydrodynamic conservation laws)
• For general coordinate systems,

𝜕
𝜕𝑡

𝜌
𝜌𝑢
𝜌𝜀

+ ∇ ⋅
𝜌𝑢

𝜌𝑢 ⊗ 𝑢
𝜌𝜀 + 𝑝 𝑢 + 𝑞⃗

=
0

−∇𝑝
𝑊% +𝑊&'(

• Specific total energy (J/kg) in terms of kinetic and specific internal energy 𝑒:

𝜀 = 𝑒 +
1
2
𝑢 ⋅ 𝑢 = 𝑒 +

1
2
𝑢"

• Close with equation of state: 𝑝 = 𝑝 𝜌, 𝑒 , 𝑇 = 𝑇 𝜌, 𝑒
• Heat conduction flux:  𝑞⃗ = −𝜅∇𝑇

• Joule heating term:  𝑊% = 𝐽 ⋅ 𝐸 = 𝜎𝐸"

• Radiative transfer term 𝑊&'( discussed later



9

Inviscid Euler equations with heat sources and thermal 
conduction (1-D symmetry)
• For 1-D symmetry (𝛼 = 0, 1, 2 for planar, cylindrical, and spherical),

𝜕
𝜕𝑡

𝜌
𝜌𝑢
𝜌𝜀

+
1
𝑟)

𝜕
𝜕𝑟

𝑟) 𝜌𝑢
𝑟) 𝜌𝑢" + 𝑝

𝑟) 𝜌𝜀 + 𝑝 𝑢 + 𝑞
=

0
𝛼
𝑟 𝑝

𝑊% +𝑊&'(

• Specific total energy (J/kg) in terms of kinetic and specific internal energy 𝑒:

𝜀 = 𝑒 +
1
2𝑢

"

• Close with equation of state: 𝑝 = 𝑝 𝜌, 𝑒 , 𝑇 = 𝑇 𝜌, 𝑒

• Heat conduction flux:  𝑞 = −𝜅 *+
*,

• Joule heating term:  𝑊% = 𝜎𝐸" = 𝜎 -.!
ℓ

"



10

Discretizing 1-D hydrodynamic equations

• Rewrite Euler equations in two forms suitable for finite volume method (FVM)

• Geometric source term form,
𝜕
𝜕𝑡

𝜌
𝜌𝑢
𝜌𝜀

+
𝜕
𝜕𝑟

𝜌𝑢
𝜌𝑢" + 𝑝

𝜌𝜀 + 𝑝 𝑢 + 𝑞
= −

𝛼
𝑟

𝜌𝑢
𝜌𝑢"

𝜌𝜀 + 𝑝 𝑢 + 𝑞
+

0
0

𝑊% +𝑊&'(

• Geometric flux form,

𝜕
𝜕𝑡

𝑟)𝜌
𝑟)𝜌𝑢
𝑟)𝜌𝜀

+
𝜕
𝜕𝑟

𝑟) 𝜌𝑢
𝑟) 𝜌𝑢" + 𝑝

𝑟) 𝜌𝜀 + 𝑝 𝑢 + 𝑞
=

0
𝛼𝑟)01𝑝

𝑟) 𝑊% +𝑊&'(

Non-conserving when discretized

Conserving when discretized
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Finite volume 1-D cell definitions
• Finite volume cell 

definitions for 1-D
− 𝛼 = 0, 1, 2 for planar, 

cylindrical, and spherical
− Cell index 𝑗 = 1, 2, … , 𝑗"#$

• Cell midpoint

𝑟2 =
𝑟
231"

+ 𝑟
201"

2
• Cell width

∆𝑟2= 𝑟
231"

− 𝑟
201"

• Finite volume cell average quantities (e.g. mass 
density 𝜌2)

 𝜌2 =
1
𝒱"
∫,
"#$%

,
"&$% 𝜌𝑟)𝑑𝑟,  𝒱2 = 𝑟

23$%

)31 − 𝑟
20$%

)31 Average momentum: 𝜌𝑢 2
Average total energy: 𝜌𝜀 2

Spark models
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Lagrangian reference frame and flux transformation

• Lagrangian reference frame
− Cell edges move with material velocity 𝑢 

evaluated at cell edges
− Obtain interfacial quantities using “star 

region” (⋆) part of Riemann problem solution
𝑑
𝑑𝑡 𝑟231"

= 𝑢
231"

⋆

• Flux terms for conserved variables 
vanish, leaving only acoustic wave terms

1
𝑟)

𝜕
𝜕𝑟

I
𝑟) 𝜌𝑢

𝑟) 𝜌𝑢" + 𝑝
𝑟) 𝜌𝜀 + 𝑝 𝑢 + 𝑞

,6,
"&$%

→
1
𝑟)

𝜕
𝜕𝑟

K
0

𝑟)𝑝⋆
𝑟) 𝑝⋆𝑢⋆ + 𝑞⋆

,6,
"&$%

Schematic of Lagrangian mesh 
moving over one time step
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Semi-discrete 1-D hydrodynamic equations
• By integrating equations over a cell, ∫,

"#$%

,
"&$%…𝑑𝑟, obtain the semi-discretization,

• Geometric source term form,

𝜕
𝜕𝑡

𝜌%∆𝑟%
𝜌𝑢 %∆𝑟%
𝜌𝜀 %∆𝑟%

+ 3
0
𝑝⋆

𝑝⋆𝑢⋆ + 𝑞⋆
'('

!"#$

'('
!%#$

= −
𝛼∆𝑟%
𝑟%

𝜌𝑢 %
𝜌𝑢 %𝑢%

𝜌𝜀 % + 𝑝% 𝑢% + 𝑞%
+ ∆𝑟%

0
0

𝑊),% +𝑊+#,,%

• Geometric flux form,

𝜕
𝜕𝑡

𝜌%𝒱%
𝜌𝑢 %𝒱%
𝜌𝜀 %𝒱%

+ 3
0

𝑟-𝑝⋆
𝑟- 𝑝⋆𝑢⋆ + 𝑞⋆

'('
!"#$

'('
!%#$

=
0
Π%

𝒱% 𝑊),% +𝑊+#,,%

Non-conserving (“NC”) form

Conserving (“C”) form

Π2 = 𝛼-
,
"#$%

,
"&$% 𝑝𝑟)01𝑑𝑟Evaluate analytically 

given 𝑝 = 𝑝(𝑟) over cell
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Lagrangian mesh update and time discretization

• Consider time step from 𝑡7 → 𝑡731 with 
∆𝑡7 = 𝑡731 − 𝑡7 and 𝑛 = 0, 1, … , 𝑛8'9

• For hydrodynamic equations, discretize 
in time with forward (explicit) Euler

• Lagrangian mesh update step
𝑟
231",731

= 𝑟
231",7

+ 𝑢
231",7
⋆ ∆𝑡7

• Ex: time derivative terms in conservation 
equations,

𝜕
𝜕𝑡

𝜌%𝒱%
𝜌𝑢 %𝒱%
𝜌𝜀 %𝒱%

→
1
∆𝑡.

𝜌%,./0𝒱%,./0 − 𝜌%,.𝒱%,.
𝜌𝑢 %,./0𝒱%,./0 − 𝜌𝑢 %,. 𝒱%,.
𝜌𝜀 %,./0𝒱%,./0 − 𝜌𝜀 %,.𝒱%,.

Schematic of Lagrangian mesh 
moving over one time step

Stable for CFL criterion, 

∆𝑡& < min
'

∆)!,#
*!,#+,!,#

𝑐: sound speed
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Riemann solver and piecewise-linear spatial 
reconstruction of variables

• Find cell edge velocity and pressure 
with Primitive Variable Riemann Solver 
(Toro, 1999)

§ 𝑢⋆ = .$*$,$+.%*%,%+ /%0/$
.$,$+.%,%

§ 𝑝⋆ = .$,$/%+.%,%/$+.$.%,$,% *%0*$
.$,$+.%,%

• Piecewise-linear reconstruction for 
primitive variables 𝜌, 𝑢, 𝑝, 𝑐

§ 𝜌1 = 𝜌' +
∆)!
2
𝛿𝜌'

§ 𝜌3 = 𝜌'+4 −
∆)!&'
2

𝛿𝜌'+4

• Slopes 𝛿𝜌2 monotonically-limited using 
van Albada limiter function

Heat conduction flux, 
𝑞%/#$
⋆ = −𝜅%/#$

⋆ 1!%#21!
'!%#2'!

Cell average value
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Eddington (P1) moment approximation to the radiative 
transfer equation
• General form of radiative transfer equation:

• 1
;'

*ℐ(
*$
+ Ω R ∇ℐ= =

1
>(

ℐ=,? − ℐ=
§ ℐ5 is the spectral intensity, a function ℐ5 = ℐ5 Ω, 𝑟, 𝑡  of direction 𝜴, position 𝒓, and time 𝒕, 

while ℐ5,/ =
275(

,)*
4

8+,/./04
 is the Planckian (equilibrium) spectral intensity

• Expand in spherical harmonics, integrate over all directions and frequencies 
(moment expansion), apply “gray-body” assumption for freq. dependence

• Obtain for first moment the Eddington/P1 approximation (similar to two-term 
Boltzmann approximation):

• *
*$

𝜌𝜀&'( + 1
,)

*
*,

𝑟)𝑞&'( = −𝑊&'(

𝑞&'( = −𝜆&'(
𝑐!
3
𝜕
𝜕𝑟 𝜌𝜀&'(

𝑊&'( =
𝑐!
𝜆&'(

𝜌𝜀&'( − 𝜌𝜀@@

Blackbody energy density

𝜌𝜀99 =
4𝜍𝑇:

𝑐;
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Eddington (P1) moment approximation to the radiative 
transfer equation, time-implicit discretization
• Obtain semi-discrete form similar to conservative “C” form of hydrodynamic 

equations,
1
𝑐!
𝜕
𝜕𝑡 𝜌𝜀&'( 2𝒱2 + V𝑟)

𝑞&'(⋆

𝑐! ,6,
"#$%

,6,
"&$%

=
𝒱2

𝜆&'(,2
𝜌𝜀@@ 2 − 𝜌𝜀&'( 2

• Discretize in time with backward (implicit) Euler to avoid stability restrictions on 
time step (i.e. speed of light 𝑐! is large compared to other speeds of interest)

• Radiation energy flux at cell edges,

𝑞
&'(,231"

⋆ = −𝜆
&'(,231"

⋆ 𝑐!
3
𝜌𝜀&'( 231 − 𝜌𝜀&'( 2

𝑟231 − 𝑟2
• 𝜆

&'(,23$%

⋆  found using harmonic mean of cell center values

Tridiagonal linear system
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Circuit equations and discretization

• Joule heating term: 𝑊% = 𝜎𝐸" where 𝐸 = -.!
ℓ

• Spark resistance: 𝑅A =
ℓ

"B ∫'
* D	,	F,

• Circuit equations: FG
F$
= −𝐼, F-

F$
= − .!3.+ -

H
+ G

HI

• Numerical integration for spark resistance (couples 
hydrodynamic and circuit models):

𝑅A,7 =
ℓ

2𝜋∑261
2,-. 𝜎2,7𝑟2,7∆𝑟2,7

• Circuit ODE system discretized using classical Crank-
Nicolson (implicit) scheme

Series RLC model of ESD 
between conductors
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Verification of hydrodynamics with Sedov blast wave 
self-similar solution
• Instantaneous deposition of energy 

in infinitesimal volume
− Strong shock wave propagates in 

medium of uniform density, zero 
ambient pressure

− Ideal gas 𝑝 = 𝛾 − 1 𝜌𝑒
− 𝛾 = 3

4 = 1.4 for ideal diatomics
− Cylindrical case relevant to sparks

• Self-similar profiles for density, 
velocity, and pressure

• Verifies implementation of inviscid, 
non-conducting hydrodynamics

α = 0

α = 1

α = 2

0.0 0.2 0.4 0.6 0.8 1.0
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0.2

0.4

0.6

0.8

1.0

ξ = r/R

ρ/
ρ 1

γ = 1.4

α = 0

α = 1

α = 2

0.0 0.2 0.4 0.6 0.8 1.0

10-13

10-8

0.001

ξ = r/R

ρ/
ρ 1

γ = 1.4

α = 0

α = 1

α = 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
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γ = 1.4

α = 0
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α = 2

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

ξ = r/R

p/
p 1

γ = 1.4
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Density (linear)

Density (log)

Velocity

Pressure

Shock front
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Sedov blast wave verification results (cylindrical)

• “C” scheme converges about 1st order as initial mesh size decreased
• “NC” converges to wrong shock position
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NCmethod
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Sedov blast wave verification results (cylindrical)

• ℒ1 norm used for estimate of 1st 
order convergence

• Total mass and energy conservation 
errors shows “C” scheme conserves 
within machine precision, “NC” 
scheme has several percent error
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Heat conduction verification, nonlinear diffusion 
similarity solution

• Temperature-dependent thermal 
conductivity, 𝜅 = 2𝜒!𝑇

• Constant thermal diffusivity, 𝛽 = J'
K𝒞/

• In absence of flow (𝑢 = 0, 𝑝 = 0), energy 
conservation equation becomes nonlinear 
diffusion equation,

𝜕𝑇
𝜕𝑡 = 2𝛽

1
𝑟)

𝜕
𝜕𝑟 𝑟)𝑇

𝜕𝑇
𝜕𝑟

• Solution (Barenblatt and others) is a 
parabolic self-similar profile in 
dimensionless coordinate 𝜉 = 𝑟/𝑟M
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highest mesh resolution

Parabolic self-similar profile

Zero for analytic
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Heat conduction verification, cylindrical results

• “C” and “NC” schemes identical 
to machine precision for the 
cylindrical case

• 2nd order convergence in ℒ0 norm 
for temperature

• Verifies heat conduction 
independently of hydrodynamics
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Verification of Eddington/P1 approximation for radiative 
transfer (steady-state)
• Because speed of light 𝑐5 ≫ 𝑐 

(sound speed), parabolic P1 
approximation behaves like elliptic 
equation for spark timescales
− Hence implicit time-discretization

• Steady-state gives ODE, 
6
67

𝑥- 68
67

= a𝑥- 𝑢 − 𝑏

• With mappings 𝑟 → 𝑥, 𝜌𝜀+#, → 𝑢, 
9

:<=>
$ → a, and 𝜌𝜀;; → 𝑏

• Analytical solutions for source 

𝑏 𝑥 = F𝑏5, 𝑥 ≤ 1
0, 𝑥 > 0
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Verification of Eddington/P1 approximation for radiative 
transfer, results

• 2nd order convergence in ℒ1 norm 
for radiation energy density (a = 10)

• Also verified with non-uniform grid 
spacing (for use with Lagrangian 
moving mesh)
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Air Equation of State (EOS)
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Analytic fit for air EOS

• Fit to existing tabular 
data generated by 
Magpie thermodynamic 
composition code

• EOS form of 𝑝 = Γ𝜌𝑒, 
where Γ = Γ 𝜌, 𝑒  is a 
simple analytic function 
of 𝜌 and 𝑒
− Think ideal gas law where 
𝛾 − 1 = Γ is not constant

− Less computational effort 
than interpolating tabular 
data directly

− Well-behaved asymptotes
− Analytic sound speed 𝑐
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Analytic fit for air EOS, temperature

• Temperature fit of the 
form 𝑇 = ⁄𝑒 𝒞 with 
𝒞 = 𝒞 𝜌, 𝑒 , not to be 
confused with sound 
speed 𝑐

• Fit form and 
coefficients chosen 
for best fit to 
temperatures above 
𝑇 ≈ 20,000	K
− Important for radiative 

transfer accuracy (𝑇= 
dependence)
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Analytic fit for air EOS, relative error

• Relative error for temperature 
and pressure generally within 
10-15 %, with exception of 
extreme isochore (density) 
values.

• Very low error for lower 
energies (correct asymptote 
to ideal gas)
− Temperature has very low 

error for high int. energy
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Air EOS isentropic sound speeds and shock Hugoniot

• Sound speed correctly 
asymptotes to ideal gas 
value (𝛾 = 1.4) at low 
energies/temperatures
− Mild density-dependence 

at higher energies
• Air EOS fit validated for 

intermediate-strength 
shock data of Deal 
(1957, at LANL)
− Shock propagates with 

correct speed and jump 
values for variables
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Seed conductivity, transport properties, and parameter 
sensitivity studies
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Transport properties for spark discharge model
• Mean free path (MFP) for radiative transport, gray-body approximation

− At temperatures 𝑘>𝑇 ≈ 5	eV, peak of Planck spectral intensity in photoionizing region
− Constant cross section approximation, 𝜆+#, =

:Q?Q
?

− Atmospheric air (𝜌5 = 1.2 @A
"R) values, 𝜆5 ≈ 10 − 20	µm

• Thermal conductivity found via Wiedemann-Franz relation (for Maxwell-

Boltzmann distribution for electrons), 𝜅 = 2 N0
O

"
𝜎PQ𝑇

• Equilibrium electrical conductivity 𝜎PQ found from approximate mixing rule for 
electron-neutral and electron-ion collision frequencies

• 𝜎PQ =
O%71
R1=1

≈ O%

R1ST1

U234
10U234 V'3U234V234

  g𝑢O =
WN0+
BR1

, ΞXYZ =
B['ℰ234,6
"N0+

"
ln Λ

*Ionization fraction ΥBCD ∈ 0,1  found from simplified Saha equation
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Seed conductivity for finite initial conductivity
• Problem: 𝜎PQ negligible at room temperature
• Solution: conductivity accounting for non-

equilibrium “seed” electrons produced by initial 
breakdown process: 𝜎 = 𝜎PQ + 𝜎A

• Treat 𝜎A as conserved scalar: 
𝜕
𝜕𝑡 𝜎A +

1
𝑟)

𝜕
𝜕𝑟 𝑟)𝜎A𝑢 = 0

• Solve with rest of hydrodynamic equations
− 𝜎E = 𝑒𝑛!,E𝜇! where 𝜇! is a constant
− 𝜎 ≈ 𝜎!F after spark reaches temperatures 

associated with peak current

• “C” scheme discretization: 𝜎A,2,731 = 𝜎A,2,7
𝒱",7
𝒱",7&$
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Seed conductivity initial condition study, results for 
circuit variables

• Minor differences in current and 
spark resistance between IC’s
− IC2 time-shifted earlier since higher 

value of 𝜎E on axis initially lead to 
initially faster heating

• (In)sensitive to small perturbations in 
seed conductivity initial condition

•  Validates use of seed conductivity to 
initiate Joule heating

• Reference values for this and other 
sensitivity studies presented:
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Seed conductivity initial condition study, results for 
hydrodynamic variables

• Effects of initial conditions disappear at later 
times, as expected for same energy deposition
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Conductivity study, effect of varying Coulomb log 
parameter on circuit variables
• ln Λ treated as constant in electron-ion cross section ΞXYZ =

B['ℰ234,6
"N0+

"
ln Λ

• Range of approximately 5 ≤ lnΛ ≤ 15 for most plasma conditions
• Idea: treat ln Λ as parameter to study sensitivity of model to conductivity
• Result: minimum value of spark resistance 𝑅A,8XZ strongly affected, but rate of 

recovery from 𝑅A,8XZ only weakly affected
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Conductivity study, effect of varying Coulomb log 
parameter on density and pressure

• Higher 𝑅E,"BD due to higher ln Λ leads to 
more energy deposition in spark

• Faster shock propagation
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Conductivity study, effect of varying Coulomb log 
parameter on temperature

• Higher 𝑅A,8XZ due to higher ln Λ 
leads to more energy deposition 
in spark

• Higher peak temperatures near 
axis of symmetry
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Radiative MFP study, effects on circuit variables

• Vary radiative MFP for ambient atmospheric conditions, 𝜆!
• Vary over range 5µm ≤ 𝜆! ≤ 20µm
• Weakly affects minimum spark resistance
• Longer 𝜆! increases rate at which 𝑅A recovers from 𝑅A,8XZ

− Faster cooling during later stages of discharge
− More complex behavior than other parameters varied in these studies
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Radiative MFP study, effects on density

• Density on axis lower for larger 𝜆! at 
earlier times, but reversed trend at 
later times

• Analogous trends observed for 
temperature
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Radiative MFP study, effects on pressure

• Longer 𝜆! leads to radiative 
precursor (heating ahead of shock)
− Occurs only around peak current

• Pressure otherwise independent of 
varying 𝜆! 
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Radiative MFP study, effects on temperature
• Temperature on axis higher for larger 
𝜆! at earlier times, but reversed trend 
at later times
− More effective cooling during later 

stages of discharge
− Opposite behavior to density (consistent 

with pressure mostly independent of 𝜆5)
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Radiative MFP study, effects on temperature (on axis)

• Temperature on axis higher for larger 𝜆! at earlier times, but reversed trend at 
later times
− More effect cooling during later stages of discharge
− Opposite behavior to density (consistent with pressure mostly independent of 𝜆5)

• Variation in peak temperature (on axis) of about 80,000 to 100,000 K.
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Model validation against CSM experiments
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Model comparison with circuit measurements of CSM 
spark gap experiments
• All data compared with here used atmospheric (low-humidity) 

air with rounded (spherical) electrodes
− Taken by C. A. M. Schrama (2022-2023)

• Data from two types of apparatus:
− Enclosed (gas-tight chamber) spark gap with 𝐶 = 100	pF, 
𝐿 ≈ 150	nH

− Open air spark gap with 𝐶 = 700	pF, 𝐿 ≈ 1170	nH
• Current measurements used CVR with 𝑅G = 0.0983	Ω unless 

noted otherwise
• Density from model compared with 2-color interferometry data 

for enclosed spark gap (100 pF)
• Transport parameters used as listed here:
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100 pF enclosed spark gap with air

• Model peak current slightly higher
• Model 𝑅A,8XZ lower by factor of 2-3
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100 pF enclosed spark gap with air

• Experimental data had 𝑅A,8XZ ≈ 40	Ω, 
independent of gap length ℓ 

• Model had 𝑅A,8XZ ≈ 10 − 20	Ω, 
increasing with gap length

• Note: model and experimental data on 
previous slide both time-shifted to have 
current start at 𝑡 ≈ 0
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700 pF open air spark gap (no additional resistance)

• Model 𝑅V,WXY ≈ 1 − 2	Ω, while experiment had 𝑅V,WXY ≈ 2 − 3	Ω

• Model takes longer to reach 𝑅V,WXY, but recovers at similar rate
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700 pF open air spark gap, additional series resistance

• Adding series resistance slightly changed 
inductance (experiment), strongest for 𝑅Z[[ = 5	Ω

• Better agreement for 𝑅V as 𝑅Z[[ increased
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100 pF enclosed spark gap, interferometry setup

• 𝐶 = 100	pF, 𝐿 ≈ 150	nH
• Similar trend for current as 

other 100 pF data
• ~3 kW max power to CVR, 

~28 µJ energy dissipation
• Note experimental data not 

time-shifted, model shifted 
to match experiment’s scope 
trigger timing
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Density of heavy species

• Note: interferometry measures number density of heavy species normalized to 
ambient value

• Modeled ⁄𝜌 𝜌! matches well especially at later times and for rarefied region 
near axis of channel

• Resolution limits of interferometry setup seem to smear shock front
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Ionization fraction and density of electrons

• Ionization fraction ΥXYZ not directly comparable to measured ⁄𝑛O 𝑛! (Note: 𝑛! is 
ambient density of particles (i.e. neutrals))
− Still working out correct corresponding model variables, but all attempts so far still 

show similar trends to ΥBCD
• Model ionization decays faster than data (but note noise floor on experiment)
• However, modeled ionized region has a similar size and profile to the data
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Summary, conclusions, and future work
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Summary, conclusions, and future work
• To model spark discharges, this work implemented, verified, and validated:

− 1-D radial conservative Lagrangian hydrodynamic scheme (with heat conduction)
− Eddington/P1 radiative transfer approximation, time-implicit scheme
− RLC circuit solver, time-implicit scheme (adaptable to other circuit types)

• Novel analytic EOS fit for air up to temperatures of ~150,000 K
• Novel “seed” electron concept to initialize finite conductivity in spark without pre-heating 

the air in the channel, as typically used in spark modeling literature
• Reasonable, if conservative (from engineering viewpoint), agreement with experimental 

data for indirect (circuit) and direct (interferometry) measurements of spark
• Many potential avenues of future work:

− Two-temperature hydrodynamics (requires two-temperature EOS development)
− 2-D axisymmetric geometry for axial (z) variation, modeling dielectric electrodes
− Kinetic equations for time-dependent charged species populations
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Noh shock reflection problem (cylindrical results)

• Verified with ideal gas, 𝛾 = 5/3
• Much more difficult for Lagrangian methods than Sedov
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Noh shock reflection problem (cylindrical results)

• ℒ1 norm much below first order 
convergence

• “C” scheme still outperforms 
“NC” scheme, but both struggle 
with this particular problem
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100 pF enclosed spark gap interferometry (model vs 
experiment at individual times)
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Density, model (solid) vs experiment (dashed) Temperature, model
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100 pF enclosed spark gap interferometry (model vs 
experiment at individual times)
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Density, model (solid) vs experiment (dashed) Temperature, model
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100 pF enclosed spark gap interferometry (modeled 
temperature and energy density on axis of symmetry)

• Temperature only exceeds 
50,000 K for a duration of 
~20 ns

• Fluid energy density 4 
orders of magnitude 
greater than radiation 
energy density (at peak 
values)
− Necessary condition for 

weakly-coupled P1 
approximation to radiative 
transport
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Another way of comparing model versus experimental 
interferometry data for electron population

• Still decays much faster for 
model than experiment

• Noise floor for interferometry 
comes into play around 300—
400 ns (overall density on axis 
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