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Public Executive Summary

To meet the grand challenge of a sustainable energy future, there has been a surge of interest in renewable
energy. Today, the uncertainty associated with renewable resources is handled by using operating reserves.
The high penetration of renewable resources, however, introduces difficult-to-control dynamics and
challenges for power system operation. Decision support tools are necessary at the bulk system operational
level to recognize and efficiently utilize renewable resources and distributed demand response products in



concert with traditional grid resources. It is envisaged that responsive load can potentially have very
significant cost advantages over either spinning or non-spinning ramping reserve. Critical decisions are
made during hour(s)-ahead and real-time power system operation regarding the commitment and dispatch
of generators to ensure power delivery is both reliable and economic. These decisions are typically made
by a security constrained optimal flow, which determines future generator commitments, dispatches, and
ensures adequate reserves are available in the event of a contingency (unexpected outage) or if future system
conditions deviate from forecasts. However, security has been always based on a pre-specified subset of
contingency constraints whose enforcement does not guarantee security under all possible future
possibilities while also giving little or no weight to the likelihood of each contingent event or the severity
of its consequences. Existing tools, which are based exclusively on deterministic optimization models, do
not yield optimal operational decisions to address these new challenges, in terms of both reliability and
cost-effectiveness.

This project has focused on developing a stochastic optimal power flow (SOPF) framework, which
integrates renewable resource uncertainty, load uncertainty, distributed storage (DS), demand response
(DR) products, in a holistic manner to address the uncertainty associated with ever-increasing renewable
resources, along with the inclusion of distributed demand response products in future power systems. A
proof-of-concept problem was created using the Pennsylvania-Jersey-Maryland (PJM) power system
network. Synthetic wind generation was added to the system to simulate 50% wind penetration. A 1-hour
test of SOPF operation indicated more than 6% operational cost savings. The project continued by adding
the Midwestern Independent System Operator (MISO) as a partner, with focus shifting from SOPF to
Stochastic Look-Ahead Unit Commitment (SLAC). Unlike PJM, MISO is faced with significant renewable
energy resources within its footprint and is challenged with substantial uncertainty in its operations. The
SLAC distinguishes itself from existing tools that operators use. At best, today’s tools solve two to three
cases independently, where one or two system parameters, such as forecasted load level (e.g., a low, base,
and high forecast), are varied and the resulting scenarios are analyzed independently. The stochastic-based
optimization of SLAC leverages statistical information from an ensemble of potential operational scenarios
and their respective likelihood. The SLAC output can be translated into valuable information to the operator
such as suggested commitments, optimal scheduling and dispatch of resources, reserve requirements at both
locational and zonal resolutions, ramping availability and requirements, availability of demand response
including operational guidance concerning the near-term and real-time coordination between distributed
energy resources, and utilization of distributed storage resources.

The developed SOPF/SLAC tool, a stand-alone tool compatible with existing EMSs, will provide system
operators with unprecedented visibility, flexibility and predictability to these resources and operational
guidance concerning the real-time coordination between DERs and DR/DS products. The game changing
and practical impact of this disruptive technology will be dramatic, and will usher in a new era in the electric
power industry, wherein green energy concepts are fully embraced and electric power costs are lowered
throughout the nation.
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Accomplishments and Objectives

The objective of this project was to develop a stochastic optimal power flow (SOPF) framework,
which integrates renewable resource uncertainty, load uncertainty, distributed storage,
demand response products, in a holistic manner to address the uncertainty associated with
ever-increasing renewable resources, along with the inclusion of distributed demand response
products in future power systems.

A number of tasks and milestones were laid out at the beginning of the project. The
performance against the stated milestones is summarized here:

Table 1. Key Milestones and Deliverable.

Tasks Milestones and Deliverables
Task 1: Short term Develop stochastic models and forecast algorithms for
forecast algorithms of wind/solar generation
wind/solar
Task 1.1: Formulate and The objective is to develop stochastic models for wind/solar
develop data analytics generation, by using spatio-temporal analysis of the historic
based stochastic models data to extract the statistical characteristics therein. The

for wind/solar generation | desired result is a suite of Markov models, each for an epoch of
3-hour time horizon, where the state space and transition
probability matrix are designed based on the statistical
distribution and temporal dynamics of wind/solar power
learned from historical data.

Milestone 1.1.1: Process Finish data collection and processing of wind/solar generation
historical data to extract and extract statistical distribution for different epochs
statistical characteristics. accordingly. Determine stationarity, seasonality and diurnal

characteristics and adjust epoch intervals to satisfy stationarity
requirement that the variation of the empirical distribution is
less than 10%.




Actual Performance: (Completed 10/10/2016) A variety of historical
data from several wind farms and solar farms was used in this project.
The wind generation data sets include one 300 MW plant in Colorado
with data resolution of 10 minutes. In addition to the Colorado plant,
four wind generation sites in the PJM system were available. All PJM
generation sites have a data resolution of 5 minutes. Lastly, a large
number of wind generation sites are available from the Australian
Energy Market Operator (AEMO) in Australia. These generation sites
also have a data resolution of 5 minutes. The solar generation data
sets include three First Solar sites located in California. However, their
exact locations are unknown. These data sets have a data resolution
of 5 minutes. In addition to the First Solar plants, a distributed solar
dataset is available from the state of California. This is a public
dataset that consists of 504 distributed small-scale solar sites. These
datasets have a data resolution of 15 minutes.

Milestone 1.1.2: Establish
state space model

Build the state space of the Markov models, and quantify the
transition probability matrix accordingly. Adjust the average
duration of the state to represent the translational behaviors of
the wind farm or solar farm real power outputs. The average
duration will be determined, by a recursive algorithm, as a
solution to an optimization problem.

Actual Performance: (Completed 4/10/2017) Several innovations
were developed regarding the state space of the Markov models. The
new Markov model is referred to as the induced Markov chain and
has improved state definitions.

Task 1.2: Devise finite-
state Markov-chain based
forecast algorithms for
bulk wind/solar generation

Formulate and develop Markov-model based algorithms for
distributional forecast and point forecast of bulk wind/solar
generation

Milestone 1.2.1: Work out
forecast algorithms for
bulk wind farm generation

Devise algorithms for distributional forecast and point forecast,
by optimizing finite-state Markov chain models for aggregate
wind generation forecast, and test the accuracy using real data
traces. For point forecasts, the mean absolute error should be
within 5% and the root mean square error to be limited to 7%.

Actual Performance: (Completed 7/09/2017) Induced Markov chain
(IMC) models were developed for bulk wind farm generation
forecasting. The IMC was applied to the 300 MW Colorado wind farm
for testing. This data has a resolution of 10 minutes. The model was
trained with data from all of 2009 and tested on all of 2010. The IMC
achieved errors of 4.79% mean absolute percentage error (MAPE)
and 8.50% root mean squared percentage error (RMSPE). This
performance met the MAPE milestone target but missed the RMSPE




target. The IMC was then applied to the PJM wind farm data sets. The
Colorado wind farm was measured at 10-minute resolution, but the
PJM farms were measured at 5-minute resolution. The IMC
performed better on the farms with higher data resolution. The IMC
achieved errors between 2.81-3.93% MAPE and 6.39-6.96% RMSPE.
The IMC met all performance targets when higher resolution data
was available.

Milestone 1.2.2: Work out
forecast algorithms for a
large number of
distributed PV solar
generation

Devise forecast algorithms based on optimized finite-state
Markov chain models for a large number of distributed PV solar
generation sites, and quantify the accuracy in terms of mean
absolute error using real data traces We will tune the interval of
the epoch needed to obtain the desired accuracy and the mean
absolute error should be within 5%.

Actual Performance: (Completed 4/10/2018) Induced Markov chain

(IMC) models were developed for PV solar generation sites. The IMC

was applied to the 139 MW First Solar (solar PV) site for testing. This
data has a resolution of 5 minutes. The model was trained with data

from all of 2014 and tested on 2015 data. The IMC achieved errors of
3.87% MAPE. This performance met the milestone target.

Task 1.3: Devise Vector AR
based forecast algorithms
for bulk wind/solar
generation

Leverage VAR model to develop joint forecast algorithms for
multiple wind/solar generation in the proximity

Milestone 1.3.1: Devise
VAR based forecast
algorithms

Develop joint forecast algorithms for multiple wind/solar
generation in the proximity by leveraging vector autoregressive
(VAR) model to capture spatio-temporal correlation, and test
the accuracy. For point forecasts, the mean absolute error
should be within 5% and the root mean square error to be
limited to 7%.

Actual Performance: (Completed 4/10/2018) Methods based on
vector autoregression (VAR) were explored using the available wind
data sets. A vector autoregressive (VAR) model was applied to the
individual wind turbines of the Colorado wind farm. The VAR model
achieved performance of 4.95% MAPE and 8.757% RMSPE. This met
the MAPE milestone target but missed the RMSPE target. The VAR
model was also applied to the PJM wind farms. The Colorado wind
farm was measured at 10-minute resolution, but the PJM farm was
measured at 5-minute resolution. The VAR model performed better
on the farm with higher data resolution. The VAR model achieved
errors of 4.20% MAPE and 6.937% RMSPE. The VAR model met all
performance targets when higher resolution data was available.




VAR methods were also developed for distributed PV solar
distribution sites using data from the California Solar Initiative. In the
power system rooftop PV systems are connected to transmission
networks through distribution substations. Therefore, it is the sum of
solar generation from PV systems connected to each distribution
substation that needs to be forecasted. PV systems in California were
located using ZIP code location information. The VAR model achieved
performance between 3.28 to 3.86% MAPE and 5.65 to 6.35% RMSPE,
meeting all milestone targets.

Milestone 1.3.2: Improve
forecast accuracy for ramp
events

Enhance the forecast accuracy in the presence of ramp events
by using support vector machine (SVM) to model ramp patterns
and refine the Markov models to obtains mean absolute errors
within 3% and root mean square errors within 5%.

Actual Performance: (Completed 7/9/2018) The IMC model
developed for Milestone 1.2.1 was enhanced here with the use of a
support vector machine (SVM). The SVM enhanced IMC (SVM-IMC)
was applied to the 300 MW Colorado wind farm data. For this
milestone, the model was only applied to periods of wind ramping. A
downward wind ramp occurs only if the power change in 1 hour is at
least 15% of the total capacity. An upward wind ramp occurs only if
the power change in 1 hour is at least 20% of the total capacity. The
SVM-IMC was able to achieve performance of 2.82% MAPE and 4.20%
RMSPE. This performance met both targets set in this milestone.

Task 2: Stochastic SCED
algorithms for real- time
management of DERs and
DR

Formulate and design of stochastic SCED algorithms for real-
time management of DERs and DR

Task 2.1: Develop
Deterministic SCED

Develop market based deterministic SCED model and algorithm
to be used as a baseline for validating and evaluating the
performance of Stochastic SCED algorithms. Validation based
on collaboration with PJM, validated against PJM’s commercial
SCED via an internship at PJM and validated PJM.

Milestone 2.1.1:
Deterministic SCED

Market based deterministic SCED solving <3 min on large-scale
system with >10K bus network like PJM system data (without
DER and DR); standard desktop computer — specifications of 12-
core processor with 512GB RAM and 1TB hard disk (details to
be used going forward); optimality gap: 0.5%

Actual Performance: (Completed 1/08/2017) The deterministic SCED
developed was based on MISQO’s real-time SCED model, which is
available in their business manual, and was modified to satisfy PJM’s
real-time market clearing procedures. The SCED was tested on a
single period using PJM’s system data. The test system consisted of




1,664 generators, 10,188 buses. The total solution time was 20
seconds on a standard desktop computer with Intel® Core® 2.60 GHz
CPU and 16 GB memory. The performance of the deterministic SCED
meets the milestone target.

Task 2.2: Module 2: Two-
stage stochastic SCED
model specifications

Two-stage stochastic security constrained economic dispatch tool
solved via progressive hedging

Milestone 2.2.1: Module 2
performance

Performance benchmarking of core stochastic SCED: <5 min solve
time, standard desktop computer (defined in M2.1.1), medium to
large-scale system with >2K bus network (e.g., Polish system);
renewable penetration level: >20%.

Actual Performance: (Completed 7/09/2018) The stochastic SCED
optimization problem is solved using a progressive hedging (PH)
decomposition algorithm. The PH algorithm was implemented in
python/PYOMO. The stochastic SCED was tested using the PJM
system data (>10k buses) and solved in under 5 minutes.

Task 2.3: Integration of DR
to module 2

Design and classification of distributed demand response
products; integration within stochastic SCED model

Milestone 2.3.1:
Deterministic SCED with
DER and DR

Market based deterministic SCED solving <3 min on large-scale
system with >10K bus network like PJM system data (with DER
and DR); standard desktop computer (defined in M2.1.1);
optimality gap: <0.5%. Specification of DER and DR products to
be defined by Task 3.

Actual Performance: (Completed 10/08/2017) Demand response (DR)
has been modeled and integrated into the SCED model as generator
resources similar to contemporary industry practices. Since DR
corresponds to the same modeling as generators, computational
performance does not significantly change (the impact in
performance is mild comparatively to other features e.g., the
inclusion of uncertainty). The SCED model achieves a solution time of
approximately 57 seconds (less than 3 minute, which is the stated
target in the milestone).

Task 2.4: PH Algorithm
refinement

Refinement to progressive hedging algorithm for stochastic
SCED with DER, DR, and storage

Milestone 2.4.1: Module 2
performance

Performance of refined stochastic SCED: <3 min solve time,
standard desktop computer (defined in M2.1.1); optimality gap:
<2%; large-scale system (PJM); renewable penetration level:
>20%.




Actual Performance: (Completed 7/09/2018) DER, DR, and storage
were integrated into the stochastic SCED problem. The PH algorithm
was utilized to meet the solution time and optimality gap milestone
requirements. Tests were conducted using the PJM system data.
DR/DER capacity was determined for 23 buses corresponding to
metropolitan areas in the system. Scenarios for renewables were
generated using the algorithms from Task 1 with a penetration level
of 20.1%. All milestone targets were met.

Task 2.5: Module 3:
operator advisory tool
specifications

Model specifications for the advisory tool that communicates to
the operators and market based SCED

Milestone 2.5.1: Module 3:

operator advisory tool
specifications

Develop operator advisory tool (Module 3) specifications.
Requirements should be reviewed with project’s industry
advisory board (IAB). Delivery of requirements document to
ARPA-E for review and approval by program director.

Actual Performance: (Completed 12/08/2017) The stochastic SCED
tool will provide a spectrum of potential solutions or actions. That
output, representing the range of operating cases. The advisory tool
then uses the outputs from the stochastic SCED tool to produce
various different indicators, e.g., confidence intervals, expectations,
etc. that are further leveraged to generate the outputs from the
advisory tool for the operator to use as inputs directly to the market
SCED or as discretionary advice for out-of-market corrections initiated
by the operator (outside the market). The advisory tool will also take
inputs from the operator to adjust the means by which the outputs
are determined (for instance, choose a different confidence interval
when determining the quantity of reserve needed for a particular
reserve product). These specifications of the advisory tool have been
discussed and reviewed by the industry advisory board and during all
of the prior in-person technology-to-market interactions that the
team has had with many entities including, but not limited to, PG&E,
CAISO, ERCOT, SPP, MISO, PJM, and ISONE. Milestone targets were
met.

Task 2.6: Proxy reserve
inputs for market SCED

Module 3: advisory tool: inputs for deterministic market SCED:
determination of reserve product requirements, ramping
requirements, and demand response utilization.

Milestone 2.6.1: Proxy
reserve inputs for market
SCED

Define input requirements of the Proxy server for market SCED.
Requirements should be reviewed with project’s industry
advisory board (IAB). Delivery of requirements document to
ARPA-E for review and approval by program director.

Actual Performance: (Completed 4/08/2018) In this task, we engaged
with the industry to identify the best way to leverage the information
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from the stochastic optimization engine to be of benefit directly for a
market based SCED tool. The stochastic optimization engine has more
applications than just for the market based real-time SCED tool. In
this situation, we focus on the proxy reserve inputs that are there for
only the real-time market SCED. This starts with the procurement
requirements of all of the typical reserve products: regulation
up/down, spin reserve, non- spin reserve, and replacement reserve.
These reserve requirements vary throughout industry regarding how
they are modeled. The advisory tool was designed to accommodate
any of these traditional reserve policies that are commonly used
today. Milestone targets were met.

Task 2.7: Rolling Horizon
DR model

Rolling horizon testing of stochastic SCED (5 min interval based
SCED with look- ahead up to 1 hour, over multiple days) and
adaptive flexible (net) load management of DR (i.e., SCED
includes DR model and manages its flexibility)

Milestone 2.7.1: Integrated
modules

Integrated module testing on large-scale system with >10K bus
network like PJM data or similar: <5 min solution time; 3% cost
savings; standard desktop computer (defined in M2.1.1);
optimality gap: <2%; modules 1-3

Actual Performance: (Completed 7/09/2018) A comparison between
the deterministic SCED and stochastic SCED was conducted using the
PJM system data (>10k buses). A total of 12 subproblems were
considered in the stochastic SCED. The test consisted of a single 1-
hour period. The stochastic SCED resulted in 3.6% cost savings,
solving in 178 seconds with <2% optimality gap. A second test was
conducted using 144 subproblems (more renewable scenarios and
generator outages considered). Results then increased to 6.2%
savings.

Milestone 2.7.2: DR
product quality of service
testing

Performance testing of flexible load management of DR (large-
scale system with >10K bus network like PJM system data);
assess the performance relative to the FOA requirements
(requirements for: a) Spinning Reserve Products (not Regulation
Reserve Products) under Category 2; b) Category 3: Synthetic
Ramping Reserves).

Actual Performance: (Completed 1/18/2019) The stochastic SCED
was implemented in a rolling-horizon fashion using the PJM system
data (>10k buses). The solution for every interval determines the
generator’s dispatch setpoints and reserve products for the next 5-
minute and second stage decision variables. Once the wind
uncertainty is realized, the SCED model is solved again to obtain the
generator and DR set-points, using the first stage variables of the
stochastic program. This solution is fed back to the DR model which
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generates a new set of the DER capacities and bids that are then used
as input to the consecutive SCED solver. The milestone targets were
met. A DR (TCLs and batteries) system capacity of 900 MW (<1%
system load) yielded a reduction in objective value of 14%.

Task 3: Adaptive flexible
load management of DR

Modeling, design and integration of DR products

Task 3.1: Aggregate
decision and control model
of DR capacity from
Thermostatically

Control Loads (TCL) and
Deferrable Loads

The goal of this activity is to build low order stochastic dynamic
models that would allow to control the aggregate response of
large population of heterogeneous Thermostatically Controlled
Loads and Deferrable Loads

Performance simulations will show

e MSE error in reproducing the aggregate time response and
forecast of future state of the population for a given order of
the model and for a given size of the population.

Milestone 3.1.1: Module 1
— Aggregate model of TCL
and Deferrable Loads

Simulation program reproducing realistically the dynamic
behavior and control of populations of Thermostatically
Controlled Loads and Deferrable Loads.

Performance targets for both categories that we plan to match
or exceed:

* MISE <1% representation error compared to detailed model
for a population of 1000 loads.

Actual Performance: (Completed 01/10/2017) Individual
thermostatically controlled loads were modeled as thermal circuits.
Devices with similar dynamic parameters were then grouped together
into clusters to reduce overall problem complexity. The control
strategy to shape the aggregate load can be mapped to instructions
that are issued to the clusters on how the heat pump should be
operated to move between states to obtain the desired load pattern.
The disaggregation control is accomplished by sending a message to
each cluster that allows each device to determine the probability that
it should move to another state. The aggregated control of 10000
individual loads was simulated over the course of 3 hours. The error
between the actual load and estimation using the aggregate model
was typically below 0.5% with only 759 data points or 0.3% of data
violating the 1% threshold.

Modeling deferrable loads requires knowing critical information
about each load arrival: energy requirements and desired load shape,
departure time, and whether the appliance can be interrupted or not.
The deferrable load is controlled by modeling the path taken through
the deferrable state-space. A simulation of 10,000 homogeneous
electric vehicles (EVs) were simulated over a 3-hour period. The
aggregate model achieved the 1% MSE target. The simulation of
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10,000 homogeneous washer-dryers also achieved the milestone
target.

Task 3.2: Aggregate
decision and control model
of distributed storage

with stochastic in- feed

The goal of this activity is to design aggregate models that
would allow to control the aggregate response of distributed
storage. The analysis will also explore a randomly changing
state of charge due to stochastic in-feed from renewables or
local random demand.

Performance simulations will show

e MSE error in reproducing the aggregate

time response of the population for a given order of the model
and for a given size of the population.

e MSE in the ex-ante forecast of future state from the aggregate
model

Milestone 3.2.1: Module
2— Aggregate model
storage with

stochastic in-feed

Simulation program reproducing realistically the dynamic
behavior and control of populations the dynamic behavior and
control of DS in a given state at the beginning of the control
period for an ideal homogeneous sample population and a
given deterministic DS initial charge state with constant, zero
in- feed, Gaussian random in-feed

Performance targets
® MISE <1% error compared to detailed model for a population
of 1000 DS.

Actual Performance: (Completed 07/09/2017) The charge of an
individual storage device is assumed to be dependent on a
combination of renewable infeed with local inflexible consumption (k)
and infeed directly from the distribution grid (p). It was assumed that
the aggregator knows the distribution of k. Simulations of a 2-hour
period containing 24 time steps was conducted controlling 10,000
households. It was assumed that no households arrive or depart once
the simulation begins and the initial state of charge is known. The
distribution k was assumed to be Gaussian. The objective of the
aggregation controller was to minimize the cost of energy over the
simulation. A cost curve with sinusoidal noise was used to represent
the cost of energy. The simulation was performed with different
standard deviations of infeed (k). The control model was able to meet
the 1% MSE error set by this milestone with standard deviations up to
1000 kW.

Task 3.3: Classification and
aggregate modeling
of DR resources

The goal of this task is the classification of distributed load
resources with a random non-stationary Poisson number of
Thermostatically Controlled and Deferrable Loads with mean
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(and variance) from 1000 to 10000 and heterogeneity in the
population in order to assess the possible DR and DS services
and capacity they can realistically offer to the market; it will
also include the analysis of resource deterioration and rebound
peaks phenomena for TCL and DL. Interaction with Task 2.4

Performance simulations will determine the following
guantities versus population size

* Reserve Magnitude (RM) and Duration

* Response Time (ResT) average and standard deviation

* Ramp Time (RampT) average and standard deviation to 50%
and 90% of capacity/max. reserve target possible. ® Duration
average and STD versus population size

Milestone 3.3.1: Numerical
methods to establish DR
and DS capacity

Numerical evaluation of the different classes of DR and DS
resources performance limits due to their inter- temporal
dynamics, heterogeneous physical constraints, response delays
and imperfect telemetry

Performance targets for TCL and Deferrable Loads

* RM >4% of total load for TCL, RM ~50% of Deferrable Load

e Tolerance <1% of the RM for populations >=1000

* Average ResT <10 sec, STD ResT < 10 sec for population of
1000 loads and for a population size offering max RM =100MW
e Average RampT <10 sec STD <10 sec

e Duration average >30 min for TCL and 3 h DL offering 100MW
of RM. Performance targets for DS that we plan to match or
exceed:

1. Tolerance <1% of the RM for populations >=1000

2. Average ResT <10 sec, STD ResT < 10 sec for population of
1000 storage units and for a population size offering max RM
=100MW

3. Average RampT <10 sec STD <10 sec

4. Duration average >4 h for offering 100MW of RM.

Actual Performance: (Completed 7/10/2017) For the simulation of
TCLs a RM > 4% was easily achieved for durations of at least 30
minutes. Average response and ramp times of under 10 seconds were
achieved by the proposed aggregation/disaggregation approach. For
the simulation of deferrable loads, a RM of 50% was attainable for
between 2 and 3 hours. Response and ramp times for deferrable
loads were found to be much better than the target of 10 seconds.
The target RM (100 MW for 4 hours) was found to be reached at
30,000 batteries, with response and ramp times much better than the
target. DR limits were determined for each load type that allow target
error tolerances to be met.
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Task 3.4: Evaluation of DR
dynamics beyond the
control period in
preparation for Rolling
Horizon DR model (in
preparation for Task 2.7)

Evaluation of DR dynamics during and beyond the control
period

* RM characterization for rolling horizon ¢ Rebound peaks % of
the peak of

reserve capacity used and energy in the rebound peak

* MSE in the prediction of the rebound peak

Milestone 3.4.1: Software
analysis of DR load trends
beyond a performance
period of 3h supported
with 1000 to 10000

Software analysis of DR load trends beyond a performance
period of 3h supported with 1000 to 10000 average number of
Thermostatically Controlled Loads and Deferrable Loads
Performance targets

* Rebound peaks energy neutral, and
with peak rebound power 10% of the peak reserve used
e MSE in the prediction of the rebound peak < 10%

Actual Performance: (Completed 1/8/2018) A 60-minute 3.3 GW
reserve event was simulated using estimated CAISO controllable load.
The rebound peak was not necessarily energy neutral but was far less
than the conventional curtailment event. Peak rebound power met
the target and further could be controlled (magnitude vs time) by the
operator to get the most favorable solution. The modeling error was
far less than 10%.

Task 3.5: Algorithm design
and stochastic OPF
integration OPF (see also
Task 2.7)

Design algorithms to select the do-not- exceed (DNE) limits that
are inputs to the stochastic SCED, from the aggregate DR and
DS model

Performance simulations will determine the following
guantities versus population size and RM:
* DNE calculation

Milestone 3.5.1:
Integration with OPF (see
also M 2.7.2)

Software tool to numerically select DNE performance limits and
analysis of the benefits that can be accrued using Stochastic
OPF leveraging DR and DS

Performance targets
* DNE <%5 for all the relevant
performance metrics (RM,ResT,RamT, Duration)

Actual Performance: (Completed 7/9/2018) The feasible dispatch
region (MW with respect to time) is computed for all available
resources. This feasible region is then provided to the OPF in the form
of a generator being dispatched over the coming horizon. All
performance targets were met.
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Task 3.6: Validation

Validation the DR and DS aggregation and disaggregation
(online-control) via numerical simulation and based on real data
and interface to Stochastic OPF program

Demonstration of ability of Stochastic OPF to exploit DR and DS
resources reliably

e Priority 1 (Critical) — Test functionality and robustness of the
software performance under batch data (no real time)

e Priority 2 (High/Medium) -- Analyze options for real time
solution

Milestone 3.6.1: Validation
of software and DR
product quality of service
testing

Test of compliance with Performance Targets

Performance testing of flexible load management of DR (large-
scale system with >10K bus network like PJM system data);
assess the performance relative to the FOA requirements
(requirements for: a) Spinning Reserve Products (not Regulation
Reserve Products) under Category 2; b) Category 3: Synthetic
Ramping Reserves).

Same as 2.7.2, meeting or exceeding FOA requirements

Actual Performance: (Completed 10/1/2018) The DR models were
incorporated in a programming bundle that can offer DR capacity bids
to the SCED formulation and react to a dispatch decision given by the
SCED result. Simulations were done using PJM system data and DR
aggregates were added to 60 buses within the system. The simulated
response of DR individuals in a rolling horizon fashion was within the
1% performance target and can be maintained by periodically
resyncing the state of individuals.

Task 4: Integration and
Software development of
Stochastic OPF

Define, design, develop and test the Stochastic OPF software.

Task 4.1: SOPF software
requirements

Gather minimum functional requirements for the software
development phase and required data. This task will be initiated
with PJM as the primary source.

Milestone 4.1.1: Functional
Requirements Document

Functional requirements document for the Stochastic OPF
software. Delivery of requirements document to ARPA-E for
review and approval by program director.

Actual Performance: (Completed 1/08/2017) The functional
requirements document for the stochastic OPF software was
delivered to ARPA-E on 1/08/2017.

16




Task 4.2: SOPF software
design

Design the necessary functional modules of the SOPF software
and create a high level software design document.

Prototype development for module 1: deterministic market
based SCED for testing.

Milestone 4.2.1: SOPF
Design Document

Create a high level software design document that meets the
functional requirements gathered in Task 4.1. Delivery of design
document to ARPA-E for review and approval by program
director.

Actual Performance: (Completed 4/08/2018) The high level software
design document was developed by Nexant and delivered to ARPA-E.
The document was continuously updated throughout the project as
changes to formulation or model were made.

Milestone 4.2.2: SOPF
Performance evaluation

Market based SCED solving in <1 minute on large-scale system
with >10K bus network, PJM system size, on a standard desktop
computer (defined in M2.1.1)

Actual Performance: (Completed 1/08/2017) The deterministic SCED
developed was based on MISQ’s real-time SCED model, which is
available in their business manual, and was modified to satisfy PJM’s
real-time market clearing procedures. The SCED was tested on a
single period using PJM’s system data. The test system consisted of
1,664 generators, 10,188 buses. The total solution time was 20
seconds on a standard desktop computer with Intel® Core® 2.60 GHz
CPU and 16 GB memory. The performance of the deterministic SCED
meets the milestone target.

Task 4.3: SOPF software
development

Develop the prototype version of the SOPF software per the
algorithms developed in Tasks 1, 2 and 3 that meet the
functional requirements established in Task 4.1. Stochastic
SCED refinement; Refinement for PJM specifications;
specification for other potential customers engaged via T2M

Milestone 4.3.1: Report on
the status of the software
development process

Create a high level report outlining the software modules that
were developed and a checklist of the functional requirements
that were met by these modules. Create a test plan for Task 4.4.
Delivery of development and test plan documents to ARPA-E for
review and approval by program director.

Prototype testing of stochastic SCED (with limited functionality,
without DER and DR integrated) on PJM system.

Actual Performance: (Completed 10/8/2018) Nexant completed this
milestone in the 3rd week of July 2018 and a detailed report was
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provided to ARPA-E. Each component of the optimization formulation
programmed in Python was tested and all parts passed validation.

Milestone 4.3.2: Report on
the status of the software
development process

Status update on the software development. Demonstrate
system functionality and success metrics of task 2.6

Actual Performance: (Completed 10/8/2018) Nexant completed this
milestone in the 3rd week of July 2018 and a detailed report was
provided to ARPA-E.

Milestone 4.3.3: Report on
the status of the software
development process

Status update on the software development. Demonstrate
system functionality and success metrics of task 2.7.

Actual Performance: (Completed 7/9/2018) Demand response
modeling was implemented into the stochastic SCED for M2.4.1.
Demand response capacity was determined for 23 buses, across 5
major metropolitan areas of the PJM system. The capacity was
determined for air conditioners (TCLs), following methodology
described in past milestones. Within the stochastic SCED the demand
response was modeled as a generator. The DR was implemented and
was included in the DVP results provided in M5.2.2. In that execution
of the stochastic SCED, the general level of LMPs is below the value of
S45/MWh and thus the DR consumed more power from the grid. The
system functionality and success metrics were demonstrated.

Task 4.4: Initial SOPF
software testing

Conduct tests of the prototype software on small test systems
(>300 buses) and large-scale system with >10K bus network like
PJM system size while ensuring that all functional requirements
are correctly addressed.

Milestone 4.4.1: Initial
SOPF testing report

Using the prototype software created in Task 4.3, test the
software on small systems and PJM system using the following
defect priority scale:

e Priority 1 (Critical) - Data Loss/Critical Error/ Loss of
functionality w/o workaround: Defects that render unavailable
the critical functions or partial functionality of the software
(with no work-around available) of the software under test.
These include errors such as application failures, loss of data,
incorrect calculations and missing output files.

e Priority 2 (High) - Loss of functionality with workaround:
Defects that render unavailable partial functionality of the
software under test with a workaround available. These include
errors such as incorrect message displayed, optional
information missing or not displayed correctly and incorrect
defaults.
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e Priority 3 (Medium) - Partial loss of a feature set: Defects that
affect a feature that is not executed on a frequent basis and
there is not a significant impact on the software.

e Priority 4 - Cosmetic/Documentation Error: Defects that are
cosmetic and need to be resolved, but are not a factor in the

functionality or stability of the software. These include errors
such as field alignment and report formatting.

Create a report on the tests conducted and assign a pass or fail
grade to each test. For each failed test, assign a defect priority
as defined above. Allowances will be made for failed software
components to be corrected and retested as needed.

The exit criteria for this task is zero (0) Priority 1 defects and
zero (0) Priority 2 defects. The team (including ARPA/E) will
evaluate Priority 3 defects to determine those that will be
required to be corrected to advance to Task 4.5.

This testing report will be available to APRA/E.

Actual Performance: (Completed 7/9/2018) The testing was in two
forms:

1. Reviewing the code. The code is written in Python using the
PYOMO library with PySP extensions.

2. Reviewing the results data. The majority of the results data are
associated with constraints (e.g., reserve and flow) and objective
function values.

Testing found 5 priority 1 defects, 3 priority 2 defects, and 3 priority 3
defects. All of these defects were corrected. Testing found 2 priority 4
defects, of which, 1 was corrected. The testing report was made
available to ARPA-E.

Task 4.5: SOPF software
testing with PJM data

Continue tests of the prototype software on PJM data and other
test systems (obtained through outreach). Refine the software
implementation based on the feedback obtained and improve
performance.

Milestone 4.5.1: Final SOPF
testing report

Create a report on the tests conducted and assign a pass or fail
grade to each test. For each failed test, assign a defect priority
as defined above.

The exit criteria for this task is zero (0) Priority 1 defects and
zero (0) Priority 2 defects. Allowances will be made for failed
software components to be corrected and retested as needed.
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This testing report will be delivered to APRA-E for review and
approval by program director.

Actual Performance: (Completed 1/18/2019) All software
components were thoroughly tested through Q8 using PJM data.
Using PJM data is a requirement in this milestone. A report was
provided to ARPA-E on the results of this testing in that Q8 report.

Milestone 4.5.2: SOPF
software performance
evaluation

Evaluate the performance of the SOPF software with large-scale
test system and assess performance relative to FOA
performance requirements (requirements for: a) Spinning
Reserve Products (not Regulation Reserve Products) under
Category 2; b) Category 3: Synthetic Ramping Reserves). Utilize
test scenarios with various renewable penetration levels
including a high- penetration level greater than 50%.

Actual Performance: (Completed 4/10/2019) Nexant worked with
ASU and Sandia to review the results of the tests with the 50%
penetration. There were no defects encountered. All software defects
that were encountered were documented and subsequently
corrected.

Task 5: Program Element
5: Technology Transition

Execute the 'Technology to Market' activities for the project.

Task 5.1: Technology to
Market plan development
and updates

Development and updates of technology to market plan.

Milestone 5.1.1:
Technology to Market
plan: (1) T2M plan (2)
Qualified T2M contact, (3)
Industrial advisory board

Presentation of high-level Technology to Market plan:

a) High-level view of the team's plans for technology
dissemination and commercialization.

b) Appoint a qualified tech-to-market contact person from
Nexant to represent and conduct the team's commercialization
activities with industry and ARPA-E.

c) Invite and select personnel to become members of the
Industrial Advisory Board (IAB)

d) Select and commit industry advisors to participate in the
activities of the project e) Define IAB engagement plan and
schedule

f) Get IAB commitment to the planned meetings and reviews
schedule

Actual Performance: (Completed 12/08/2017)

1) The revised T2M plan was submitted to ARPA-E on September 27,
2017.

2) The qualified T2M contact has been provided.

20




3) The team developed a list of potential IAB members and sent out
e-mails in the March 2017 timeframe to these potential members
that included the 2-page flyer describing the proposed stochastic
SCED process. Upon feedback, an initial set of IAB members were
established.

Milestone 5.1.2:
Technology to Market
plan: (1) Novel
Capabilities, (2) Pathways
to adoption

Revised Technology to Market Plan, based on discussion with
IAB members, is submitted to ARPA-E, presented, and approved
by Program Director:

a) Inform industry of project — news releases, blogs

b) Inform industry of novel capabilities to be provided by the
new technology

c) Define at least two (2) potential pathways for technology
adoption by the power industry.

Actual Performance: (Completed 10/08/2017) A revised Technology
to Market Plan has been submitted to APRA-E on September 27,
2017. Many members of industry were contacted including PJM,
MISO, ERCOT, PG&E, CAISO, SPP, and Dominion Energy. The most
likely adopters of the proposed technology were CAISO and MISO.

Milestone 5.1.3:
Technology to Market
plan: Stakeholder and
Competitive analysis

Revised Technology to Market Plan:

a) Identify early adopters for SOPF

b) Identify current/emerging offerings that meet the same
needs as technology being developed

c) Establish differentiated value proposition (e.g. quantify
benefits/costs vs. alternatives/inaction)

Actual Performance: (Completed 4/08/2018)

a) The team identified PJM, MISO, and CAISO as potential early
stochastic SCED adopters.

b) There are currently no emerging offerings in the industry that are
applying this type of stochastic optimization technology. Without this
technology, the ISOs will continue to operate conservatively with
larger reserve requirements and in potentially the incorrect locations.

Milestone 5.1.4:
Technology to Market
plan: Post ARPA-E funding

Revised Technology to Market Plan:

a) Develop financial model with realistic assumptions,
uncertainties, and product development costs

b) Develop plans for channel partner development

a. EMS vendors

b. Integrators
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Actual Performance: (Completed 3/31/2021) Milestones M5.1.4,
M6.4.2 and M6.4.3 were all fully completed and all addressed in the
Business Plan that was sent to ARPA-E in quarter 19 of this project.

Task 5.2: Technology to
Market progress update

Presentation of the team's progress against the Technology to
Market plan and objectives.

Milestone 5.2.1:
Technology to Market
update: (1) Novel
capabilities, (2) IP
arrangement

Presentation on T2M progress based on discussion with |AB
members:

a) Highlight novel capabilities to be provided by the new SOPF
technology.

b) Establish IP agreement among parties

Actual Performance: (Completed 12/8/2017)

a) The team provided the IAB with the novel capabilities that the
stochastic SCED tool can provide to the industry in the kick-off Webex
presentation on March 31, 2017. This material was provided to ARPA-
E on September 27, 2017.

b) Nexant has finalized the IP agreement among the parties.

Milestone 5.2.2:
Technology to Market
update: (1) Stakeholder
Analysis (2) Competitive
Analysis

Presentation on T2M progress:
a) Review of early adopters for SOPF with IAB.
b) Differentiated value proposition of SOPF

Actual Performance: (Completed 7/09/2018) Nexant has reported on
the review of early adopters for SOPF with IAB in the Q7 report. The
team developed a Differentiated Value Proposition (DVP) framework
and provided this in the Q7 report. The team was able to apply the
framework to a case that included 9 generator contingencies and 16
wind scenarios. The DVP is based on the cost difference between the
costs associated with the stochastic SCED and those of the
deterministic SCED (from M2.1.1) when a deliverability approach,
through a real-time contingency analysis (for generation) and a
simultaneous feasibility test, is applied. The stochastic SCED provided
a 6.2% reduction in operating costs.

Milestone 5.2.3:
Technology to Market
update: Year-end review

Presentation on T2M progress:
a) Review of activities to date
b) Review of plans for second year

Actual Performance: (Completed 10/08/2017)

a) The team of Nexant, ASU, and Sandia discussed the T2M efforts
and progress over the first year.

b) The team planned to provide another IAB webinar and hold a
general industry webinar. For the general industry webinar, the
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invitees were from Nexant’s compiled list of utilities, other ISOs and
market participants all of which may benefit from the use of the SLAC
tool.

Milestone 5.2.4:
Technology to Market
update: Update on early
adopters

Presentation on T2M progress:
a) Update on potential early adopters for SOPF

Actual Performance: (Completed 12/8/2017)

a) Nexant along with ASU and Sandia National Laboratories continue
to work with PJM and are also in the process of developing an active
partnership with MISO as an early adopter of the SOPF technology.

Milestone 5.2.5:
Technology to Market
update: Outreach to early
adopters

Presentation on T2M progress:
a) Discussion of initial tests with PJM data
b) Scheduling demonstrations with potential early adopters

Actual Performance: (Completed 4/08/2018) The team has engaged
various potential early adopters over the course of this project. The
list below shows these engagements.

¢ PJM: site visit on April 11, 2016

¢ MISO: site visit on November 21, 2016

e ERCOT: site visit on January 30, 2017

¢ |AB kickoff meeting on March 31, 2017

e Pacific Gas and Electric: site visit on May 4, 2017

e CAISO: e-mail exchanges in April 2017 — September 2017
e SPP: site visit on May 31, 2017

e Dominion Energy: June 19, 2017

e MISO: Fall 2017 and 2018, MISO has indicated they want to
become a Partner in this project

¢ |AB meeting on March 20, 2018

As a result of this outreach, MISO joined the project as a partner.

Milestone 5.2.6:
Technology to Market
update: Demonstration to
potential early adopters

Presentation on T2M progress:
a) Execution of demonstration to potential early adopters

Actual Performance: (Completed 7/9/2018) As part of the T2M
effort, the team presented the stochastic SCED project at the FERC
Technical Conference in Washington, DC on June 27, 2018 to a
diverse audience that included: MISO, SPP, ERCOT, ISO- NE and
Hydro-Québec. The Technical Conference is entitled: “Increasing Real-
Time and Day-Ahead Market Efficiency and Enhancing Resilience
though Improved Software.” The attendees of MISO, SPP, ERCOT,
ISO-NE and Hydro-Québec provided thoughtful questions and a
robust Q/A session was held. All feedback was positive.
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Milestone 5.2.7:
Technology to Market
update: Final assessment

Presentation on T2M progress:

a) Assessment of T2M progress and opportunities

b) Customer interview report to Program Director for approval
(sales opportunities and product feedback)

Actual Performance: (Completed 3/31/2021) This milestone has been
completed and a description was provided in the Q18 report. Nexant
feels that there are many opportunities in industry for this technology
and the work and compiled results from MISO will help reduce
barriers.

Task 5.3: Technology
Dissemination and
Demonstration

Development of technology demonstrations and prototype
software release

Milestone 5.3.1:
Technology Dissemination
and Demonstration:
Develop the
Demonstration Scenarios

Presentation of progress in developing technology
demonstration:

a) Develop suitable demonstration scenarios focused on initial
capabilities

b) Review demonstration scenarios with IAB and update the
scenarios accordingly

Actual Performance: (Completed 10/08/2017) The demonstration
scenarios are effectively the business cases for the technology.

a) The demonstration scenarios document was submitted along with
the Q5 status report.

b) The kick-off IAB Webex presentation provided an overview of the
potential demonstration scenarios. Several questions were asked by
participants and answered by the team. APRA-E was provided the
presentation along with the questions and answers on September 27,
2017.

In addition, all of the presentations supporting the technology to
market effort that were provided to the ISOs and utilities were
provided to ARPA-E on September 27, 2017.

Milestone 5.3.2:
Technology Dissemination
and Demonstration:
Develop Demonstration
Scenarios

Presentation of progress in developing technology
demonstration:

a) Develop and implement suitable demonstration scenarios
focused on initial capabilities

b) Review demonstration scenarios with IAB and industry
audience

Actual Performance: (Completed 4/08/2018) This milestone is a
follow-up to M 5.3.1. The team identified demonstration scenarios
for the stochastic SCED. The team held a two-hour IAB review Webex
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on March 20, 2018. The IAB Webex provided fruitful discussion about
the project and overall, the IAB provided positive feedback.

Milestone 5.3.3:
Technology Dissemination
and Demonstration:
Publications and planning
for workshop
demonstrations

Presentation on T2M progress:

a) Promoting technology through publications

b) Marketing collateral

c) Plans for workshop/conference sessions for technology
presentation and demonstration to industry

Actual Performance: (Completed 10/08/2017)

a) Nexant along with ASU and Sandia developed 2-page flyers and
sent to several ISO, IAB members and handed out at the ARPA-E
conference in Colorado in April 2017.

b) Nexant along with ASU and Sandia developed 2-page flyers and
sent to several ISO, IAB members and handed out at the ARPA-E
conference in Colorado in April 2017.

c) Nexant held a general industry Webinar in the early part of 2018
that discussed the SLAC technology and gained additional general
industry feedback.

Milestone 5.3.4:
Technology Dissemination
and Demonstration:
Publications and planning
for workshop
demonstrations

Presentation of T2M progress:

a) Technology publications

b) Featured articles in trade magazines

c) Update to plans for workshop/conference sessions for
technology presentation and demonstration to industry

Actual Performance: (Completed 12/8/2017)

a) Nexant along with ASU and Sandia National Laboratories
developed 2-page flyers and sent to several ISO, IAB members and
handed out at the ARPA-E conference in Colorado in April 2017.

b) Nexant along with ASU and Sandia National Laboratories
developed 2-page flyers and sent to several ISO, IAB members and
handed out at the ARPA-E conference in Colorado in April 2017.

c) Nexant held a Webinar in the early part of 2018 to discuss the
stochastic SCED technology and gained additional general industry
feedback.

Milestone 5.3.5:
Technology Dissemination
and Demonstration:
Workshops

Presentation on T2M progress:
a) Workshops to publicize the technology and results of initial
tests

Actual Performance: (Completed 4/08/2018) The team pursued the
T2M effort at the ARPA-E Innovation Summit. The team met with
members from CAISO and Lartra Inc and discussed the project and
facilitated future discussions.
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Milestone 5.3.6:
Technology Dissemination
and Demonstration: (1)
Marketing Collateral and
(2) Review of results

Presentation of progress in developing technology
demonstration:

a) Update on technology publications a. Marketing collateral

b. Featured articles in trade magazines b) Demonstration results
- review, analysis, and conclusions

c) Customer report to Program Director for approval (feedback
from demonstrations to potential early adopters)

Actual Performance: (Completed 4/10/2019) Nexant, ASU and Sandia
National Laboratories developed the slide deck for the industry wide
webinar and presented it on February 27, 2019. Nexant originally
developed a list of 2,700 potential invitees from its inventory from
customer contacts in all corners of the electric industry. Based on the
likelihood of success, this list was pruned, and invitations were sent
to approximately 1,900 people. 82 people registered and 40 people
attended the webinar (excluding Nexant, ASU and Sandia staff
members). We received positive feedback from the webinar
attendees and several excellent questions were asked.

Milestone 5.3.7:
Technology Dissemination
and Demonstration: (1)
industry engagement (2)
Technology Publications

Presentation of progress in developing technology
demonstration:

a) Updates on industry engagement and future plans

a) Product realization strategy & roadmap

b) Update on technology publications

b) Case studies

c) Journal articles

c) Updated plans for converting industry engagement to
industry adoption

Actual Performance: (Completed 3/31/2021) This milestone has been
completed. We gave a webinar on March 31 and it was well received.
There were more than 140 attendees from industry and academia.
We answered 24 questions.

Specifically, the team presented an Industry Wide Webinar (IWW) on
March 31, 2021 that was attended by several dozen industry
participants. The product roadmap is contained in the Business Plan
that was provided as part of the quarter 19 report. Nexant believes
that the stochastic optimization is a valid technology to pursue. The
team is working on an industry paper for the forecasting and scenario
development associated with load, wind production and net
scheduled interchange levels. The team is also work on an industry
paper for the application of the stochastic optimization including
progressive hedging to MISO’s look ahead commitment process.
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Task 6: Joint Industry Jointly identify data, case studies, use cases, purpose for SLAC
Partnership: Midcontinent | tool; validation of tools; jointly conduct case studies and

ISO process results; prepare final report with business plan and
value proposition

Task 6.1: Scoping analysis Mutually agreed upon (MISO, ASU, Nexant, Sandia National
Laboratories) scope of work, use cases, study design, and
performance metrics.

Milestone 6.1.1: Targeted | A report describing targeted use cases (example: normal

use cases, tool operational cases with extreme events (extreme renewable
performance and ramps)), and selection justification based on SLAC functionality
uncertainty modeling delivered to ARPA- E for approval. The following required
metrics are defined performance metrics for all tools (SCED, LAC, SLAC): computer

specifications (including number of cores), computational
performance, type of uncertain events modeled, number of
uncertain events modeled for each category, and optimality
gap, are defined.

In addition, required performance metrics for all uncertainty
modeling (“Interchange and loop flow” and “extreme weather”
may not be explicitly considered.): a) renewable resources; b)
interchange and loop flow; c) extreme weather; d) demand
response; e) generator non-compliance; f) contingencies, are
defined.

Actual Performance: (Completed 03/31/2021) The main
purpose of the SLAC tool is to make better commitment
decisions under uncertainty and serve as a better advisory tool
for operators. In this project, three main sources of uncertainty
were modeled; namely, uncertainty from wind generation, load,
and net scheduled interchange. In addition, uncertainty from
generator startup and shutdown MWs was modeled and
incorporated into the SLAC using historical data and machine
learning techniques.

In the deterministic LAC, it was expected that on days with
more uncertainty, operators would tend to act conservatively
and commit more units to better deal with uncertainty in order
to maintain system reliability. In such days in particular,
modeling uncertainty coming from different sources into the
optimization processes is shown to be beneficial in terms of
production costs savings and improving system reliability.

MISO selected a set of 15 “stressed” days from different
seasons in 2018 and 2019 to evaluate the performance of SLAC
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against deterministic LACs under MISO and ASU point forecasts.
These days included operation days with higher number of real-
time unit commitments, extreme hot weather and severe cold
weather events that impacted renewable generation, load, and
net scheduled interchange. Our goal was to see if SLAC can
perform better in terms of cost savings and reliability metrics by
taking uncertainties from wind generation, load, and net
scheduled interchange into account.

MISO generated around 1440 deterministic LACs (96 LACs/day)
from production cases and benchmarked it using EGRET
developed by the team in a laptop PC with typical specifications
and availed it as base cases for the SLAC tool simulations. To
speed up the computation time, parallel optimization
techniques was used within the SLAC tool to solve the problems
decoupled by scenario in parallel. The SLAC tool was utilized to
study the 15 days (as well as many other small and large cases)
in a rolling-horizon fashion on a Linux server at MISO with 32
cores and 256 GB of RAM. Considering MISO’s operational
practices, a maximum of 15-minute solve time under 40 joint
scenarios from wind, load, and net scheduled interchange and a
0.1% relative optimality gap was considered for SLAC
performance evaluation.

In addition to the above considerations, the following
performance evaluation on uncertainty modeling was
conducted by MISO and the team:

a) The scenario generation approach was applied to a test
case from September 2018, for a period when extreme
weather resulted in emergency event in MISO. Scenarios
were generated for 152 wind farms and performance
metrics were evaluated using Energy, Integrated
distance and Variogram scores.

b) Scenarios were generated for the MISO aggregate Net
Scheduled Interchange (NSI) with all its neighbors. Loop
flows were not considered.

c) Extreme hot weather and severe cold weather days with
impacts on wind, load, and net scheduled interchange
captured through a set of scenarios were evaluated and
analyzed to see under which days SLAC performs better;
either in terms of production cost savings or reliability
improvements, e.g., avoiding reserve shortfalls or
transmission flow violations.

28




d)

Instead of demand response, we generated scenarios
for load for each control area in MISO. Scenarios for
wind and load were applied to the stranded capacity use
case.

For generator non-compliance, we identified generators
while they are in startup or shutdown process as
uncontrollable units. They pose another source of
uncertainties in the SLAC problem since they are not
considered as variables in the optimization. We propose
using machine learning techniques to capture the non-
compliance generators’ uncertainties and applying them
to the SLAC as fixed predicted values. The timeseries
prediction of the startup or shutdown curves is different
with the wind forecast. It has its unique obstacles such
as the uncertain length of horizon, uncertain state
estimation starting point, noise-dominant raw data, and
generator-specific feature selections.

We first query and export 6-year generator market data
from the MISO database. The raw data is highly polluted
by estimation errors and noises, which means it cannot
be directly used for prediction analyses. Hence, we
conduct data preprocessing before loading them to the
machine learning module. Since the generator data
patterns vary greatly, we have to perform the
preprocessing for each individual unit. There are
generally three steps for a typical data preprocessing:
Identify whether the curve is longer than 15 minutes (for
startup/shutdown curve eligibility), check the curve
gradient direction (confirm the curve classification), and
remove outliers (reduce the data noises and marginal
cases).

After the data preprocessing, we conduct the prediction
analyses using machine learning techniques. Due to the
different timeframes of LAC and UDS, we use a static
method for 15-minute LAC curves and a dynamic
method for 5-minute real time dispatch (UDS) curves.
The LAC curve method is built upon the Gradient
Boosting Tree (GBT), which is the state-of-the-art
regression method with one-hot encoding. GBT predicts
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values with index labels and feature labels created from
the data preprocessing stage. The UDS curve method is
built upon the Long Short Term Memory network, which
uses the last-interval realization data to guide the
current prediction and thus achieves real-time error
correction. Theoretically, the dynamic method should be
more useful and accurate than the static method
because we could use the latest information to support
our prediction.

Regarding the results and performance, we mainly focus
on the static method because both the SLAC and UDS in
the simulations are with a 15-minute resolution. We
conduct our analyses for 840 generators in the
database. After preprocessing, for startup curve, 90.78%
eligible generators can achieve with the prediction
performance of MAPE < 10%, while for shutdown curve,
87.41% eligible generators can achieve with the same
performance. Then these curves are produced as fixed
timeseries values and prepared for being loaded into the
SLAC or UDS module. Though we do not apply the real-
time error correction-based prediction in SLAC, we also
test the performance of the dynamic method, which
could reduce the general prediction error to 3% in real
time.

Lastly, we apply the predicted startup and shutdown
curves to the SLAC and UDS coordination. These curves
are used as fixed timeseries values and we slightly
modify the generator power output constraints to adopt
the curves for future awareness of startup/shutdown in
the upcoming intervals. In the whole-day run of SLAC
simulations for Sept. 15-20 cases, when applying the
curves, the average daily cost saving of the production
cost is around $60,000. We also observe that SLAC could
better utilize the curves (achieve a higher cost saving)
than deterministic LAC, which proves the cost-
effectiveness of the predicted curves in the 15-minute
scheduling and its synergy with the stochastic
optimization.
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f) To ensure post-contingency reserve deployment while
accounting for loss of generator events, MISO
implements post-zonal reserve deployment constraints
in production. These constraints ensure different
reserves (e.g., regulation, contingency reserve, short-
term reserve) can be delivered to meet zonal reserve
requirements under import transmission limitation in
case of contingencies. MISO and the SLAC team
implemented these constraints into the EGRET tool and
benchmarked a few deterministic LAC cases. However,
these constraints were not included in the deterministic
LAC and SLAC simulations.

Milestone 6.1.2: SLAC
features to address
identified use cases

MISO identified SLAC tool features: a) defined time stage and
time intervals; b) composition of the subproblems; c) input data
requirements; d) utilization of SLAC outputs in MISO operations
(generation loss distribution factors, ancillary services products,
critical contingency selection) and interaction with existing tools
and personnel.

A subsection of the design specification report from Task 4 is
dedicated to describe the SLAC features identified by MISO.

Actual Performance: (Completed 03/31/2020). With the team,
MISO identified the SLAC tool features as follows:

a) As with regular LAC run, the SLAC would have a three-
hour look-ahead with fifteen-minute time-intervals.

b) The stochastic subproblems determined by MISO are
equivalent to MISQO’s existing deterministic LAC, which
was validated under Milestone 6.2.1.

c) The input data requirements determined by MISO are:
(1) state information (current and future generator
commitments, current generator production levels), (2)
information equivalent between LAC and SLAC (reserve
requirements, monitored transmission constraints pre-
and post-contingency), and (3) scenarios generated by
ASU which set load, available wind power, and net-
scheduled interchange on a per-scenario basis.
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d) Two major outputs identified by MISO (1) the
recommended SLAC generator commitments, which can
be evaluated against the existing LAC tool solution and
(2) critical scenarios, e.g., those with reserve or
transmission violations, which could warn operators well
in advance about a potentially critical event. These
scenarios could be identified either as part of the SLAC
solution process or as a post-analysis of a given (S)LAC
commitment.

Milestone 6.1.3:
Specialized SLAC:
refinement of functionality
and associated metrics

MISO, ASU, Nexant and Sandia National Laboratories identified
required refinements to enhance value proposition of general
SLAC based on performance from M6.4.1.

This includes new performance metrics to be met, including the
metrics for the rolling horizon testing. Metrics to be approved
by ARPA-E PD.

Actual Performance: (Completed 12/30/2020) The
performance metrics of the specialized SLAC with MISO-
customized features on a rolling-horizon basis were defined as
the computation time (e.g. ability to solve under 15 minutes for
operational purposes), solution quality (ability to achieve a
reasonable and acceptable optimality gap), production cost
savings over the entire study period, and reliability
improvements (e.g., transmission flow violation or reserve
shortfall reduction). With MISQ’s input, the SLAC solution time
was set to 15 minutes and the relative optimality gap was set to
0.1%.

For each studied period (e.g., an entire day), the measuring
stick in terms of cost and reliability improvements were defined
as the total production cost of the underlying SCEDs for the
entire study period. For example, for September 15, 2018, the
total production cost of 96 SCEDS under the commitments from
SLAC with 40 scenarios from wind, load, and net scheduled
interchange, deterministic LAC with MISO point forecast, and
deterministic LAC with ASU point forecasts were computed and
compared. The results showed that in general SLAC performs
better and appropriately trades off between cost and reliability
by prepositioning the system for uncertainties stemming from
wind generation, load, and net scheduled interchange.
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Quantitative performance of these results are given elsewhere
in this report.

Task 6.2: Validation of
Deterministic Tool

MISO to work with ASU, Nexant, Sandia National Laboratories
to validate deterministic tools used for confirmation of SLAC
benefit and also validate SLAC input and modeling information
related to uncertain events.

Milestone 6.2.1:
Deterministic tool
validation

MISO, ASU, Nexant, Sandia National Laboratories to benchmark
SLAC with MISO production look-ahead commitment (LAC) and
security- constrained economic dispatch (SCED) based on MISO
data and systems.

Qualitative performance evaluation: MISO review and approval
with report to ARPA-E.

Quantitative performance evaluation: Satisfied performance
metrics stated in M6.1.1.

6.2.1a: Implement specialized features of MISO’s deterministic
LAC into EGRET

6.2.1b: Implement specialized features of MISO’s deterministic
SCED into EGRET

6.2.1c: Develop a method to simulate MISO’s current response
to a given scenario using the specialized deterministic LAC and
SCED consecutively in a rolling horizon fashion

Actual Performance: (Completed 12/30/2020)

MISO worked with the SLAC team to produce deterministic LAC
cases from production and benchmark it using the EGRET tool.
MISO took a bottom-up approach and started the
benchmarking process from a simple energy-only small test
case of 5-generator system. This was followed by including
more MISO-customized features (e.g., different reserve types
such as regulation, spin, and, flexible ramp, and supplemental
reserves) and scaling the test system to tens and hundreds of
generators all the way to the full-size MISO system with around
1200 generators, all reserve types, and around 40 production
watchlist transmission constraints.

The benchmarking criteria were to obtain the same (or close
enough) objective value and the same or equivalent unit
commitments, energy/reserve schedules, and transmission
flow/violations results for all units and lines in both MISO LAC
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and EGRET tools. Further benchmarking details can be found in
prior quarterly reports.

MISO then selected 15-days from different seasons and
benchmarked 96 consecutive deterministic LAC cases per day
with specialized features as the base cases for rolling-window
SLAC simulations.

For milestone 6.2.1a, Sandia National Laboratories
implemented the features utilized in MISO’s current
implementation of LAC into EGRET’s version of LAC including
reserve requirements for each reserve type, transmission
constraints, post contingency reserve deployment constraints,
future/past on/off time constraints, etc. The EGRET
implementation was validated against MISO’s LAC using test
cases developed by MISO. By the completion date the team
had scaled up validation to full-sized MISO cases that
represented the actual data used in practice and included over
one thousand generators. The EGRET and MISO LACs resulted
in the same solutions or solutions that matched very closely.

For milestone 6.2.1b, Sandia National Laboratories executed a
straightforward extension of 6.2.1a. This extension was straight
forward because the SCED uses many of the same specialized
features as the LAC. The specialized SCED in EGRET represents
the specialized LAC in EGRET restricted to a single time interval,
with a 15-minute time interval length, and with different
violation penalties for reserve constraints. Validation was not
needed because the specialized features were already validated
through the LAC.

For milestone 6.2.1c, Sandia National Laboratories connected
EGRETs specialized LAC and SCED using a rolling horizon
simulation framework. Using 15-minute intervals, the LAC
passed generator commitment statuses to the SCED during
each interval and the SCED passed the generator output levels
to initialize the LAC in the next interval. The input data was
updated in each interval, which includes parameters for each
available generator, transmission line parameters, demand
trajectories, reserve requirements, etc. This input data
matched the input data used in practice for the 15 days studied
in 2018-2019.

34




Milestone 6.2.2:
Uncertainty modeling
validation

MISO, ASU, Nexant, Sandia National Laboratories to validate
uncertainty modeling approaches.

Qualitative performance evaluation: MISO review and approval
with report to ARPA-E.

Quantitative performance evaluation: Satisfy performance
metrics stated in M6.1.1.

Actual Performance: (Completed 06/30/2020) The point
forecast generated by the model was compared to the existing
MISO point forecast using the root-mean-squared error (RMSE)
metric, and showed forecast improvement over all intervals of
the look-ahead commitment horizon. The spatial and temporal
correlations between wind farms estimated by the model were
compared to the real data, and were found to be consistent.

Actual Performance: (Completed 03/30/2021) The
startup/shutdown curve predictions were evaluated using the
mean average percentage error (MAPE) metric in both the
training and testing stages. The predictions of curve-eligible
generators are further validated by inducing the curves into LAC
and UDS operation pipelines. The result validates that using the
startup/shutdown curves leads to more cost-savings and
reliability improvements.

Task 6.3: SLAC
implementation and
performance evaluation

Implementation of SLAC tool based on MISO data; identified
use cases, modeling of uncertain events; initial testing of the
generic SLAC followed by a specialized, enhanced SLAC.

Milestone 6.3.1: Generic
SLAC implementation and
evaluation for single
snapshot studies

SLAC tool implemented on identified use cases and MISO data
(single snapshot results and comparison).

Qualitative performance evaluation: MISO review and approval
with report to ARPA-E.

Quantitative performance evaluation: Satisfied performance
metrics stated in M6.1.1.

6.3.1a: Establish a precise stochastic optimization formulation
for this application

6.3.1b: Implement the generic SLAC on simple small test cases
by embedding the generic deterministic LAC and SCED into the
inner stage of the stochastic framework

Actual Performance: (Completed 03/31/2021) Under 6.3.1a,
MISO, NREL, and the project team developed a detailed
mathematical SLAC formulation; the first and second stage
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variables, parameters, and constraints were clearly defined
over the appropriate sets. The SLAC tool precisely implements
this mathematical formulation and has the capability to
implement and simulate single snapshot and rolling-horizon
SLAC and SCED on small as well as large full-day cases.

The SLAC tool is also generic in nature in the sense that,
depending on whether or not the inputs to the tool include
specialized LAC features, the underlying stochastic optimization
framework can implement the two-stage SLAC/SCED problem.

Under 6.3.1b, NREL and the team implemented the SLAC tool to
simulate single snapshot, partial day (consecutive cases, e.g.,
11:00 AM to 3:00 PM), and full-day specialized LAC and SCED
cases on a rolling-window basis. In each study, the generated
scenario data from stochastic variables (e.g., wind units’
generation, load, and net scheduled interchange) was
appropriately embedded into the stochastic optimization
framework. The benefits of SLAC over deterministic LACs were
more tangible in rolling-horizon simulations that had longer
time horizon (e.g., an entire day).

Milestone 6.3.2:
Specialized SLAC
implementation and
evaluation for single
snapshot studies

SLAC tool implemented on identified use cases and MISO data
(single snapshot results and comparison).

Qualitative performance evaluation: MISO review and approval
with report to ARPA-E.

Quantitative performance evaluation: Satisfied performance
metrics stated in M6.1.3.

6.3.2a: Implement the specialized SLAC on simple small test
cases

6.3.2b: Evaluate performance of the SLAC from Tasks M6.3.2.a
and M6.3.2.c using the simulation techniques from Task
M6.2.1.c as a benchmark

6.3.2c: Implement the specialized SLAC on large test cases and
validate using deterministic rolling horizon methods

Actual Performance: (Completed 03/31/2021) For milestone
6.3.2a and 6.3.2c, NREL implemented the stochastic
programming techniques and specialization using a parallelized
progressive hedging algorithm to solve the specialized SLAC
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problems. NREL tuned the performance of the SLAC solution
algorithm to both MISO data and the Linux workstation
provided by MISO, utilizing 20-way parallelism to solve the 40-
scenario SLAC instances detailed below. The exact customized
algorithmic approach is detailed in the Q19 Quarterly Progress
Report.

The specialized SLAC with MISO-customized features were
simulated on a rolling-horizon basis for 15 operation days
selected by MISO. MISO provided an entire year of historical
wind generation, load, and net scheduled interchange data
from 2018 to 2019 to generate scenarios for the 15 days using
the scenario generation tool developed under this project. For
each simulated day, around 96 SLACs (a total of 1436 cases)
plus two deterministic LACs each followed by a SCED were run
and the total production cost, transmission violation cost, and
reserve shortfall violation costs were reported and compared.

For each specialized SLAC solve, MISO defined the following
performance evaluation metrics under 40 scenarios for wind
generation, load, and net scheduled interchange:

e Each SLAC needed to run under 15-minute time limit

e Each SLAC solve needed to reach a relative optimality
gap of 0.1%

As detailed elsewhere, the team found that in the 1436 cases,
the above metrics were met 99.7% of the time (all but four
cases) for these 40-scenario specialized SLAC problems. In those
four cases, the established time limit of 15-minutes was met,
but the optimality gap was over 0.1%. In all cases, the
optimality gap was within 0.5%.

For milestone 6.3.2b, Sandia National Laboratories simulated
the LAC and the SLAC using the rolling horizon framework from
Task 6.2.1c using 15 days from 2018-2019. The performance of
the SLAC was analyzed in the context of reducing reserve
constraint violations, reducing transmission constraint
violations, and reducing production costs as compared to the
LAC. In these results we only see improvements by the SLAC
during days where the system is particularly stressed, otherwise
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the SLAC performs very similar to the LAC model. During non-
stressful days we see a very small increase in production cost
when using the SLAC of approximately 0.01% of the total
production costs in the system. During the stressful days, the
most common observed improvement increases reliability by
reducing either reserve constraint violations or transmission
constraint violations. The alternative improvement that we
occasionally observe decreases productions costs as compared
to the LAC model. We observe production cost reductions of up
to 5% of the total productions costs in the system.

Task 6.4: Final reporting

Final reporting on MISO partnership and future business path.

Milestone 6.4.1: SLAC
broader impacts

Documentation on MISO partnership, main findings, benefits,
and conclusions. Documentation of general SLAC applications
outside of MISO and identification of other market targets.

Actual Performance: (Completed 03/31/2021) The SLAC project
team believes MISO partnership has been a success. The main
findings are noted below:

e Overall, SLAC provides a net benefit and robustness for
managing uncertainty.

e SLAC exhibits economic benefit over the deterministic
LAC variants with decreased costs and little or no change
in reserve or transmission flow violations under certain
full-day cases simulation.

e SLAC also exhibits a reliability benefit, i.e., decreased
reserve or transmission flow violations, over the
deterministic LAC, with increased production costs in
certain other full-day case simulations.

e Atall other times, SLAC has similar performance to
deterministic LAC.

In summary, SLAC provides reliability (the ability to meet
operational standards) and/or economic (the ability to avoid
over-commitment of units and over-procurement of reserves)
benefits.

Outside of MISO, the prime targets are SPP, ERCOT and CAISO
(all rich in terms of wind generation) as well as utilities who
need to make day-to-day operational decisions based on
uncertainties (e.g., weather-based uncertainty) in the system.
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Milestone 6.4.2:
Documentation of
remaining T2M barriers
and risks

Documentation in final report on remaining practical barriers,
SWOT/NABC analysis; team to collect industry feedback.

Actual Performance: (Completed 03/31/2021) SLAC is an intra-
day advisory tool. All ISOs have some type of deterministic
advisory based tool today. The main barrier we see is to
convince I1SOs that this technology is sound, validated and
workable, and that the results can be translated for practical
use for system operators. For example, SPP seemed very
interested, but needed to prioritize various projects and stated
they could not take on a partnership at that time. The MISO
partnership was a great opportunity because they do have a
focus on R&D that are willing to go outside of traditional vendor
relationships to research new technology. This successful
partnership with MISO, which yielded positive results, will lower
the barriers going forward.

Milestones M5.1.4, M6.4.2 and M6.4.3 were all addressed in
the Business Plan (that includes a section on the remaining
practical barriers) that was submitted in the quarter 19 report.

The SWOT analysis was submitted in the quarter 19 report.

As part of the T2M process the team has met with many
industry members. All feedback has been positive as reported in
previous reports. Our current partner MISO states that this
project has been successful and they will continue to
investigate the SLAC technology

Milestone 6.4.3: Business
plan

Documentation of future business plan and value proposition.

Actual Performance: (Completed 03/31/2021) Nexant will
continue to evaluate the SLAC prototype as a promising
technology and pursue it for commercial use. Nexant realizes
that more R&D work is needed for this purpose including
conducting pilot as well as commercial projects with target
market participants.

Nexant provided a business plan and value proposition as part
of the quarter 19 report.
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MISO plans to pursue this technology and leverage the tools
developed in this project with potential near-term applications
including:

e Scenario generation and its application on different
operational tools

e Generate startup and shutdown curves and include
them in operational tools

e Further develop EGRET for real time simulation. Define
dynamic reserve requirements and uncertainty events in
a better way based on simulations on meaningful
scenarios.

MISO will continue research and development on market
simulation tools and plans to conduct research on longer
horizon uncertainty quantification (e.g., 7-day) as well as other
uncertain factors (e.g., generation outage) and evaluate viable
stochastic optimization approaches in terms of computation
time and applicability on market processes and clearing
engines.
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