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Public Executive Summary  

To meet the grand challenge of a sustainable energy future, there has been a surge of interest in renewable 
energy. Today, the uncertainty associated with renewable resources is handled by using operating reserves. 
The high penetration of renewable resources, however, introduces difficult-to-control dynamics and 
challenges for power system operation. Decision support tools are necessary at the bulk system operational 
level to recognize and efficiently utilize renewable resources and distributed demand response products in 
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concert with traditional grid resources. It is envisaged that responsive load can potentially have very 
significant cost advantages over either spinning or non-spinning ramping reserve.  Critical decisions are 
made during hour(s)-ahead and real-time power system operation regarding the commitment and dispatch 
of generators to ensure power delivery is both reliable and economic. These decisions are typically made 
by a security constrained optimal flow, which determines future generator commitments, dispatches, and 
ensures adequate reserves are available in the event of a contingency (unexpected outage) or if future system 
conditions deviate from forecasts. However, security has been always based on a pre-specified subset of 
contingency constraints whose enforcement does not guarantee security under all possible future 
possibilities while also giving little or no weight to the likelihood of each contingent event or the severity 
of its consequences.  Existing tools, which are based exclusively on deterministic optimization models, do 
not yield optimal operational decisions to address these new challenges, in terms of both reliability and 
cost-effectiveness. 

 This project has focused on developing a stochastic optimal power flow (SOPF) framework, which 
integrates renewable resource uncertainty, load uncertainty, distributed storage (DS), demand response 
(DR) products, in a holistic manner to address the uncertainty associated with ever-increasing renewable 
resources, along with the inclusion of distributed demand response products in future power systems. A 
proof-of-concept problem was created using the Pennsylvania-Jersey-Maryland (PJM) power system 
network. Synthetic wind generation was added to the system to simulate 50% wind penetration. A 1-hour 
test of SOPF operation indicated more than 6% operational cost savings. The project continued by adding 
the Midwestern Independent System Operator (MISO) as a partner, with focus shifting from SOPF to 
Stochastic Look-Ahead Unit Commitment (SLAC). Unlike PJM, MISO is faced with significant renewable 
energy resources within its footprint and is challenged with substantial uncertainty in its operations. The 
SLAC distinguishes itself from existing tools that operators use.  At best, today’s tools solve two to three 
cases independently, where one or two system parameters, such as forecasted load level (e.g., a low, base, 
and high forecast), are varied and the resulting scenarios are analyzed independently. The stochastic-based 
optimization of SLAC leverages statistical information from an ensemble of potential operational scenarios 
and their respective likelihood. The SLAC output can be translated into valuable information to the operator 
such as suggested commitments, optimal scheduling and dispatch of resources, reserve requirements at both 
locational and zonal resolutions, ramping availability and requirements, availability of demand response 
including operational guidance concerning the near-term and real-time coordination between distributed 
energy resources, and utilization of distributed storage resources.  

 The developed SOPF/SLAC tool, a stand-alone tool compatible with existing EMSs, will provide system 
operators with unprecedented visibility, flexibility and predictability to these resources and operational 
guidance concerning the real-time coordination between DERs and DR/DS products. The game changing 
and practical impact of this disruptive technology will be dramatic, and will usher in a new era in the electric 
power industry, wherein green energy concepts are fully embraced and electric power costs are lowered 
throughout the nation.  
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Accomplishments and Objectives  

The objective of this project was to develop a stochastic optimal power flow (SOPF) framework, 
which integrates renewable resource uncertainty, load uncertainty, distributed storage, 
demand response products, in a holistic manner to address the uncertainty associated with 
ever-increasing renewable resources, along with the inclusion of distributed demand response 
products in future power systems. 
 
A number of tasks and milestones were laid out at the beginning of the project. The 
performance against the stated milestones is summarized here: 
 
Table 1. Key Milestones and Deliverable. 
 

Tasks Milestones and Deliverables 
Task 1: Short term 
forecast algorithms of 
wind/solar 

Develop stochastic models and forecast algorithms for 
wind/solar generation 

Task 1.1: Formulate and 
develop data analytics 
based stochastic models 
for wind/solar generation 

The objective is to develop stochastic models for wind/solar 
generation, by using spatio-temporal analysis of the historic 
data to extract the statistical characteristics therein. The 
desired result is a suite of Markov models, each for an epoch of 
3-hour time horizon, where the state space and transition 
probability matrix are designed based on the statistical 
distribution and temporal dynamics of wind/solar power 
learned from historical data. 

Milestone 1.1.1: Process 
historical data to extract 
statistical characteristics. 

Finish data collection and processing of wind/solar generation 
and extract statistical distribution for different epochs 
accordingly. Determine stationarity, seasonality and diurnal 
characteristics and adjust epoch intervals to satisfy stationarity 
requirement that the variation of the empirical distribution is 
less than 10%. 
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Actual Performance: (Completed 10/10/2016) A variety of historical 
data from several wind farms and solar farms was used in this project. 
The wind generation data sets include one 300 MW plant in Colorado 
with data resolution of 10 minutes. In addition to the Colorado plant, 
four wind generation sites in the PJM system were available. All PJM 
generation sites have a data resolution of 5 minutes. Lastly, a large 
number of wind generation sites are available from the Australian 
Energy Market Operator (AEMO) in Australia. These generation sites 
also have a data resolution of 5 minutes. The solar generation data 
sets include three First Solar sites located in California. However, their 
exact locations are unknown. These data sets have a data resolution 
of 5 minutes. In addition to the First Solar plants, a distributed solar 
dataset is available from the state of California. This is a public 
dataset that consists of 504 distributed small-scale solar sites. These 
datasets have a data resolution of 15 minutes. 
 

Milestone 1.1.2: Establish 
state space model 

Build the state space of the Markov models, and quantify the 
transition probability matrix accordingly. Adjust the average 
duration of the state to represent the translational behaviors of 
the wind farm or solar farm real power outputs. The average 
duration will be determined, by a recursive algorithm, as a 
solution to an optimization problem. 
 
Actual Performance: (Completed 4/10/2017) Several innovations 
were developed regarding the state space of the Markov models. The 
new Markov model is referred to as the induced Markov chain and 
has improved state definitions. 
 

Task 1.2: Devise finite-
state Markov-chain based 
forecast algorithms for 
bulk wind/solar generation 

Formulate and develop Markov-model based algorithms for 
distributional forecast and point forecast of bulk wind/solar 
generation 

Milestone 1.2.1: Work out 
forecast algorithms for 
bulk wind farm generation 

Devise algorithms for distributional forecast and point forecast, 
by optimizing finite-state Markov chain models for aggregate 
wind generation forecast, and test the accuracy using real data 
traces. For point forecasts, the mean absolute error should be 
within 5% and the root mean square error to be limited to 7%. 
 
Actual Performance: (Completed 7/09/2017) Induced Markov chain 
(IMC) models were developed for bulk wind farm generation 
forecasting. The IMC was applied to the 300 MW Colorado wind farm 
for testing. This data has a resolution of 10 minutes. The model was 
trained with data from all of 2009 and tested on all of 2010. The IMC 
achieved errors of 4.79% mean absolute percentage error (MAPE) 
and 8.50% root mean squared percentage error (RMSPE). This 
performance met the MAPE milestone target but missed the RMSPE 
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target. The IMC was then applied to the PJM wind farm data sets. The 
Colorado wind farm was measured at 10-minute resolution, but the 
PJM farms were measured at 5-minute resolution. The IMC 
performed better on the farms with higher data resolution. The IMC 
achieved errors between 2.81-3.93% MAPE and 6.39-6.96% RMSPE. 
The IMC met all performance targets when higher resolution data 
was available. 
 

Milestone 1.2.2: Work out 
forecast algorithms for a 
large number of 
distributed PV solar 
generation 

Devise forecast algorithms based on optimized finite-state 
Markov chain models for a large number of distributed PV solar 
generation sites, and quantify the accuracy in terms of mean 
absolute error using real data traces We will tune the interval of 
the epoch needed to obtain the desired accuracy and the mean 
absolute error should be within 5%. 
 
Actual Performance: (Completed 4/10/2018) Induced Markov chain 
(IMC) models were developed for PV solar generation sites. The IMC 
was applied to the 139 MW First Solar (solar PV) site for testing. This 
data has a resolution of 5 minutes. The model was trained with data 
from all of 2014 and tested on 2015 data. The IMC achieved errors of 
3.87% MAPE. This performance met the milestone target. 
 

Task 1.3: Devise Vector AR 
based forecast algorithms 
for bulk wind/solar 
generation 

Leverage VAR model to develop joint forecast algorithms for 
multiple wind/solar generation in the proximity 

Milestone 1.3.1: Devise 
VAR based forecast 
algorithms 

Develop joint forecast algorithms for multiple wind/solar 
generation in the proximity by leveraging vector autoregressive 
(VAR) model to capture spatio-temporal correlation, and test 
the accuracy. For point forecasts, the mean absolute error 
should be within 5% and the root mean square error to be 
limited to 7%. 
 
Actual Performance: (Completed 4/10/2018) Methods based on 
vector autoregression (VAR) were explored using the available wind 
data sets. A vector autoregressive (VAR) model was applied to the 
individual wind turbines of the Colorado wind farm. The VAR model 
achieved performance of 4.95% MAPE and 8.757% RMSPE. This met 
the MAPE milestone target but missed the RMSPE target. The VAR 
model was also applied to the PJM wind farms. The Colorado wind 
farm was measured at 10-minute resolution, but the PJM farm was 
measured at 5-minute resolution. The VAR model performed better 
on the farm with higher data resolution. The VAR model achieved 
errors of 4.20% MAPE and 6.937% RMSPE. The VAR model met all 
performance targets when higher resolution data was available. 
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VAR methods were also developed for distributed PV solar 
distribution sites using data from the California Solar Initiative. In the 
power system rooftop PV systems are connected to transmission 
networks through distribution substations. Therefore, it is the sum of 
solar generation from PV systems connected to each distribution 
substation that needs to be forecasted. PV systems in California were 
located using ZIP code location information. The VAR model achieved 
performance between 3.28 to 3.86% MAPE and 5.65 to 6.35% RMSPE, 
meeting all milestone targets. 
 

Milestone 1.3.2: Improve 
forecast accuracy for ramp 
events 

Enhance the forecast accuracy in the presence of ramp events 
by using support vector machine (SVM) to model ramp patterns 
and refine the Markov models to obtains mean absolute errors 
within 3% and root mean square errors within 5%. 
 
Actual Performance: (Completed 7/9/2018) The IMC model 
developed for Milestone 1.2.1 was enhanced here with the use of a 
support vector machine (SVM). The SVM enhanced IMC (SVM-IMC) 
was applied to the 300 MW Colorado wind farm data. For this 
milestone, the model was only applied to periods of wind ramping. A 
downward wind ramp occurs only if the power change in 1 hour is at 
least 15% of the total capacity. An upward wind ramp occurs only if 
the power change in 1 hour is at least 20% of the total capacity. The 
SVM-IMC was able to achieve performance of 2.82% MAPE and 4.20% 
RMSPE. This performance met both targets set in this milestone. 
 

Task 2: Stochastic SCED 
algorithms for real- time 
management of DERs and 
DR 

Formulate and design of stochastic SCED algorithms for real-
time management of DERs and DR 

Task 2.1: Develop 
Deterministic SCED 

Develop market based deterministic SCED model and algorithm 
to be used as a baseline for validating and evaluating the 
performance of Stochastic SCED algorithms. Validation based 
on collaboration with PJM, validated against PJM’s commercial 
SCED via an internship at PJM and validated PJM. 

Milestone 2.1.1: 
Deterministic SCED 

Market based deterministic SCED solving <3 min on large-scale 
system with >10K bus network like PJM system data (without 
DER and DR); standard desktop computer – specifications of 12-
core processor with 512GB RAM and 1TB hard disk (details to 
be used going forward); optimality gap: 0.5% 
 
Actual Performance: (Completed 1/08/2017) The deterministic SCED 
developed was based on MISO’s real-time SCED model, which is 
available in their business manual, and was modified to satisfy PJM’s 
real-time market clearing procedures. The SCED was tested on a 
single period using PJM’s system data. The test system consisted of 
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1,664 generators, 10,188 buses. The total solution time was 20 
seconds on a standard desktop computer with Intel® Core® 2.60 GHz 
CPU and 16 GB memory. The performance of the deterministic SCED 
meets the milestone target. 
 

Task 2.2: Module 2: Two-
stage stochastic SCED 
model specifications 

Two-stage stochastic security constrained economic dispatch tool 
solved via progressive hedging  

 
Milestone 2.2.1: Module 2 
performance 

Performance benchmarking of core stochastic SCED: <5 min solve 
time, standard desktop computer (defined in M2.1.1), medium to 
large-scale system with >2K bus network (e.g., Polish system); 
renewable penetration level: >20%.  
 
Actual Performance: (Completed 7/09/2018) The stochastic SCED 
optimization problem is solved using a progressive hedging (PH) 
decomposition algorithm. The PH algorithm was implemented in 
python/PYOMO. The stochastic SCED was tested using the PJM 
system data (>10k buses) and solved in under 5 minutes. 
 

Task 2.3: Integration of DR 
to module 2 

Design and classification of distributed demand response 
products; integration within stochastic SCED model 

Milestone 2.3.1: 
Deterministic SCED with 
DER and DR 

Market based deterministic SCED solving <3 min on large-scale 
system with >10K bus network like PJM system data (with DER 
and DR); standard desktop computer (defined in M2.1.1); 
optimality gap: <0.5%. Specification of DER and DR products to 
be defined by Task 3. 
 
Actual Performance: (Completed 10/08/2017) Demand response (DR) 
has been modeled and integrated into the SCED model as generator 
resources similar to contemporary industry practices. Since DR 
corresponds to the same modeling as generators, computational 
performance does not significantly change (the impact in 
performance is mild comparatively to other features e.g., the 
inclusion of uncertainty). The SCED model achieves a solution time of 
approximately 57 seconds (less than 3 minute, which is the stated 
target in the milestone). 
 

Task 2.4: PH Algorithm 
refinement 

Refinement to progressive hedging algorithm for stochastic 
SCED with DER, DR, and storage 

Milestone 2.4.1: Module 2 
performance 

Performance of refined stochastic SCED: <3 min solve time, 
standard desktop computer (defined in M2.1.1); optimality gap: 
<2%; large-scale system (PJM); renewable penetration level: 
>20%. 
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Actual Performance: (Completed 7/09/2018) DER, DR, and storage 
were integrated into the stochastic SCED problem. The PH algorithm 
was utilized to meet the solution time and optimality gap milestone 
requirements. Tests were conducted using the PJM system data. 
DR/DER capacity was determined for 23 buses corresponding to 
metropolitan areas in the system. Scenarios for renewables were 
generated using the algorithms from Task 1 with a penetration level 
of 20.1%. All milestone targets were met. 
 

Task 2.5: Module 3: 
operator advisory tool 
specifications 

Model specifications for the advisory tool that communicates to 
the operators and market based SCED 

Milestone 2.5.1: Module 3: 
operator advisory tool 
specifications 

Develop operator advisory tool (Module 3) specifications. 
Requirements should be reviewed with project’s industry 
advisory board (IAB). Delivery of requirements document to 
ARPA-E for review and approval by program director. 
 
Actual Performance: (Completed 12/08/2017) The stochastic SCED 
tool will provide a spectrum of potential solutions or actions. That 
output, representing the range of operating cases. The advisory tool 
then uses the outputs from the stochastic SCED tool to produce 
various different indicators, e.g., confidence intervals, expectations, 
etc. that are further leveraged to generate the outputs from the 
advisory tool for the operator to use as inputs directly to the market 
SCED or as discretionary advice for out-of-market corrections initiated 
by the operator (outside the market). The advisory tool will also take 
inputs from the operator to adjust the means by which the outputs 
are determined (for instance, choose a different confidence interval 
when determining the quantity of reserve needed for a particular 
reserve product). These specifications of the advisory tool have been 
discussed and reviewed by the industry advisory board and during all 
of the prior in-person technology-to-market interactions that the 
team has had with many entities including, but not limited to, PG&E, 
CAISO, ERCOT, SPP, MISO, PJM, and ISONE. Milestone targets were 
met. 
 

Task 2.6: Proxy reserve 
inputs for market SCED 

Module 3: advisory tool: inputs for deterministic market SCED: 
determination of reserve product requirements, ramping 
requirements, and demand response utilization. 

Milestone 2.6.1: Proxy 
reserve inputs for market 
SCED 

Define input requirements of the Proxy server for market SCED. 
Requirements should be reviewed with project’s industry 
advisory board (IAB). Delivery of requirements document to 
ARPA-E for review and approval by program director. 
 
Actual Performance: (Completed 4/08/2018) In this task, we engaged 
with the industry to identify the best way to leverage the information 
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from the stochastic optimization engine to be of benefit directly for a 
market based SCED tool. The stochastic optimization engine has more 
applications than just for the market based real-time SCED tool. In 
this situation, we focus on the proxy reserve inputs that are there for 
only the real-time market SCED. This starts with the procurement 
requirements of all of the typical reserve products: regulation 
up/down, spin reserve, non- spin reserve, and replacement reserve. 
These reserve requirements vary throughout industry regarding how 
they are modeled. The advisory tool was designed to accommodate 
any of these traditional reserve policies that are commonly used 
today. Milestone targets were met. 
 

Task 2.7: Rolling Horizon 
DR model 

Rolling horizon testing of stochastic SCED (5 min interval based 
SCED with look- ahead up to 1 hour, over multiple days) and 
adaptive flexible (net) load management of DR (i.e., SCED 
includes DR model and manages its flexibility) 

Milestone 2.7.1: Integrated 
modules 

Integrated module testing on large-scale system with >10K bus 
network like PJM data or similar: <5 min solution time; 3% cost 
savings; standard desktop computer (defined in M2.1.1); 
optimality gap: <2%; modules 1-3 
 
Actual Performance: (Completed 7/09/2018) A comparison between 
the deterministic SCED and stochastic SCED was conducted using the 
PJM system data (>10k buses). A total of 12 subproblems were 
considered in the stochastic SCED. The test consisted of a single 1-
hour period. The stochastic SCED resulted in 3.6% cost savings, 
solving in 178 seconds with <2% optimality gap. A second test was 
conducted using 144 subproblems (more renewable scenarios and 
generator outages considered). Results then increased to 6.2% 
savings. 
 

Milestone 2.7.2: DR 
product quality of service 
testing 

Performance testing of flexible load management of DR (large-
scale system with >10K bus network like PJM system data); 
assess the performance relative to the FOA requirements 
(requirements for: a) Spinning Reserve Products (not Regulation 
Reserve Products) under Category 2; b) Category 3: Synthetic 
Ramping Reserves). 
 
Actual Performance: (Completed 1/18/2019) The stochastic SCED 
was implemented in a rolling-horizon fashion using the PJM system 
data (>10k buses). The solution for every interval determines the 
generator’s dispatch setpoints and reserve products for the next 5-
minute and second stage decision variables. Once the wind 
uncertainty is realized, the SCED model is solved again to obtain the 
generator and DR set-points, using the first stage variables of the 
stochastic program. This solution is fed back to the DR model which 
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generates a new set of the DER capacities and bids that are then used 
as input to the consecutive SCED solver. The milestone targets were 
met. A DR (TCLs and batteries) system capacity of 900 MW (<1% 
system load) yielded a reduction in objective value of 14%.  
 

Task 3: Adaptive flexible 
load management of DR 

Modeling, design and integration of DR products 

Task 3.1: Aggregate 
decision and control model 
of DR capacity from 
Thermostatically 
Control Loads (TCL) and 
Deferrable Loads 

The goal of this activity is to build low order stochastic dynamic 
models that would allow to control the aggregate response of 
large population of heterogeneous Thermostatically Controlled 
Loads and Deferrable Loads 
Performance simulations will show 
• MSE error in reproducing the aggregate time response and 
forecast of future state of the population for a given order of 
the model and for a given size of the population. 

Milestone 3.1.1: Module 1 
– Aggregate model of TCL 
and Deferrable Loads 

Simulation program reproducing realistically the dynamic 
behavior and control of populations of Thermostatically 
Controlled Loads and Deferrable Loads. 
 
Performance targets for both categories that we plan to match 
or exceed: 
• MSE <1% representation error compared to detailed model 
for a population of 1000 loads. 
 
Actual Performance: (Completed 01/10/2017) Individual 
thermostatically controlled loads were modeled as thermal circuits. 
Devices with similar dynamic parameters were then grouped together 
into clusters to reduce overall problem complexity. The control 
strategy to shape the aggregate load can be mapped to instructions 
that are issued to the clusters on how the heat pump should be 
operated to move between states to obtain the desired load pattern. 
The disaggregation control is accomplished by sending a message to 
each cluster that allows each device to determine the probability that 
it should move to another state. The aggregated control of 10000 
individual loads was simulated over the course of 3 hours. The error 
between the actual load and estimation using the aggregate model 
was typically below 0.5% with only 759 data points or 0.3% of data 
violating the 1% threshold. 
 
Modeling deferrable loads requires knowing critical information 
about each load arrival: energy requirements and desired load shape, 
departure time, and whether the appliance can be interrupted or not. 
The deferrable load is controlled by modeling the path taken through 
the deferrable state-space. A simulation of 10,000 homogeneous 
electric vehicles (EVs) were simulated over a 3-hour period. The 
aggregate model achieved the 1% MSE target. The simulation of 
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10,000 homogeneous washer-dryers also achieved the milestone 
target. 
 

Task 3.2: Aggregate 
decision and control model 
of distributed storage 
with stochastic in- feed 

The goal of this activity is to design aggregate models that 
would allow to control the aggregate response of distributed 
storage. The analysis will also explore a randomly changing 
state of charge due to stochastic in-feed from renewables or 
local random demand. 
 
Performance simulations will show 
• MSE error in reproducing the aggregate 
time response of the population for a given order of the model 
and for a given size of the population. 
• MSE in the ex-ante forecast of future state from the aggregate 
model 

Milestone 3.2.1: Module 
2– Aggregate model 
storage with 
stochastic in-feed 

Simulation program reproducing realistically the dynamic 
behavior and control of populations the dynamic behavior and 
control of DS in a given state at the beginning of the control 
period for an ideal homogeneous sample population and a 
given deterministic DS initial charge state with constant, zero 
in- feed, Gaussian random in-feed 
 
Performance targets 
• MSE <1% error compared to detailed model for a population 
of 1000 DS. 
 
Actual Performance: (Completed 07/09/2017) The charge of an 
individual storage device is assumed to be dependent on a 
combination of renewable infeed with local inflexible consumption (k) 
and infeed directly from the distribution grid (p). It was assumed that 
the aggregator knows the distribution of k. Simulations of a 2-hour 
period containing 24 time steps was conducted controlling 10,000 
households. It was assumed that no households arrive or depart once 
the simulation begins and the initial state of charge is known. The 
distribution k was assumed to be Gaussian. The objective of the 
aggregation controller was to minimize the cost of energy over the 
simulation. A cost curve with sinusoidal noise was used to represent 
the cost of energy. The simulation was performed with different 
standard deviations of infeed (k). The control model was able to meet 
the 1% MSE error set by this milestone with standard deviations up to 
1000 kW. 
 

Task 3.3: Classification and 
aggregate modeling 
of DR resources 

The goal of this task is the classification of distributed load 
resources with a random non-stationary Poisson number of 
Thermostatically Controlled and Deferrable Loads with mean 
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(and variance) from 1000 to 10000 and heterogeneity in the 
population in order to assess the possible DR and DS services 
and capacity they can realistically offer to the market; it will 
also include the analysis of resource deterioration and rebound 
peaks phenomena for TCL and DL. Interaction with Task 2.4 
 
Performance simulations will determine the following 
quantities versus population size 
• Reserve Magnitude (RM) and Duration 
• Response Time (ResT) average and standard deviation 
• Ramp Time (RampT) average and standard deviation to 50% 
and 90% of capacity/max. reserve target possible. • Duration 
average and STD versus population size 

Milestone 3.3.1: Numerical 
methods to establish DR 
and DS capacity 

Numerical evaluation of the different classes of DR and DS 
resources performance limits due to their inter- temporal 
dynamics, heterogeneous physical constraints, response delays 
and imperfect telemetry 
 
Performance targets for TCL and Deferrable Loads 
• RM >4% of total load for TCL, RM ~50% of Deferrable Load 
• Tolerance <1% of the RM for populations >=1000 
• Average ResT <10 sec , STD ResT < 10 sec for population of 
1000 loads and for a population size offering max RM =100MW 
• Average RampT <10 sec STD <10 sec 
• Duration average >30 min for TCL and 3 h DL offering 100MW 
of RM. Performance targets for DS that we plan to match or 
exceed: 
1. Tolerance <1% of the RM for populations >=1000 
2. Average ResT <10 sec , STD ResT < 10 sec for population of 
1000 storage units and for a population size offering max RM 
=100MW 
3. Average RampT <10 sec STD <10 sec 
4. Duration average >4 h for offering 100MW of RM. 
 
Actual Performance: (Completed 7/10/2017) For the simulation of 
TCLs a RM > 4% was easily achieved for durations of at least 30 
minutes. Average response and ramp times of under 10 seconds were 
achieved by the proposed aggregation/disaggregation approach. For 
the simulation of deferrable loads, a RM of 50% was attainable for 
between 2 and 3 hours. Response and ramp times for deferrable 
loads were found to be much better than the target of 10 seconds. 
The target RM (100 MW for 4 hours) was found to be reached at 
30,000 batteries, with response and ramp times much better than the 
target. DR limits were determined for each load type that allow target 
error tolerances to be met. 
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Task 3.4: Evaluation of DR 
dynamics beyond the 
control period in 
preparation for Rolling 
Horizon DR model (in 
preparation for Task 2.7) 

Evaluation of DR dynamics during and beyond the control 
period 
 
• RM characterization for rolling horizon • Rebound peaks % of 
the peak of 
reserve capacity used and energy in the rebound peak 
• MSE in the prediction of the rebound peak 

Milestone 3.4.1: Software 
analysis of DR load trends 
beyond a performance 
period of 3h supported 
with 1000 to 10000 

Software analysis of DR load trends beyond a performance 
period of 3h supported with 1000 to 10000 average number of 
Thermostatically Controlled Loads and Deferrable Loads 
Performance targets 
 
• Rebound peaks energy neutral, and 
with peak rebound power 10% of the peak reserve used 
• MSE in the prediction of the rebound peak < 10% 
 
Actual Performance: (Completed 1/8/2018) A 60-minute 3.3 GW 
reserve event was simulated using estimated CAISO controllable load. 
The rebound peak was not necessarily energy neutral but was far less 
than the conventional curtailment event. Peak rebound power met 
the target and further could be controlled (magnitude vs time) by the 
operator to get the most favorable solution. The modeling error was 
far less than 10%. 
 

Task 3.5: Algorithm design 
and stochastic OPF 
integration OPF (see also 
Task 2.7) 

Design algorithms to select the do-not- exceed (DNE) limits that 
are inputs to the stochastic SCED, from the aggregate DR and 
DS model 
 
Performance simulations will determine the following 
quantities versus population size and RM: 
• DNE calculation 

Milestone 3.5.1: 
Integration with OPF (see 
also M 2.7.2) 

Software tool to numerically select DNE performance limits and 
analysis of the benefits that can be accrued using Stochastic 
OPF leveraging DR and DS 
 
Performance targets 
• DNE <%5 for all the relevant 
performance metrics (RM,ResT,RamT, Duration) 
 
Actual Performance: (Completed 7/9/2018) The feasible dispatch 
region (MW with respect to time) is computed for all available 
resources. This feasible region is then provided to the OPF in the form 
of a generator being dispatched over the coming horizon. All 
performance targets were met. 
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Task 3.6: Validation Validation the DR and DS aggregation and disaggregation 

(online-control) via numerical simulation and based on real data 
and interface to Stochastic OPF program 
Demonstration of ability of Stochastic OPF to exploit DR and DS 
resources reliably 
 
• Priority 1 (Critical) – Test functionality and robustness of the 
software performance under batch data (no real time) 
• Priority 2 (High/Medium) -- Analyze options for real time 
solution 

Milestone 3.6.1: Validation 
of software and DR 
product quality of service 
testing 

Test of compliance with Performance Targets 
 
Performance testing of flexible load management of DR (large-
scale system with >10K bus network like PJM system data); 
assess the performance relative to the FOA requirements 
(requirements for: a) Spinning Reserve Products (not Regulation 
Reserve Products) under Category 2; b) Category 3: Synthetic 
Ramping Reserves). 
Same as 2.7.2, meeting or exceeding FOA requirements 
 
Actual Performance: (Completed 10/1/2018) The DR models were 
incorporated in a programming bundle that can offer DR capacity bids 
to the SCED formulation and react to a dispatch decision given by the 
SCED result. Simulations were done using PJM system data and DR 
aggregates were added to 60 buses within the system. The simulated 
response of DR individuals in a rolling horizon fashion was within the 
1% performance target and can be maintained by periodically 
resyncing the state of individuals. 
 

Task 4: Integration and 
Software development of 
Stochastic OPF 

Define, design, develop and test the Stochastic OPF software. 

Task 4.1: SOPF software 
requirements 

Gather minimum functional requirements for the software 
development phase and required data. This task will be initiated 
with PJM as the primary source. 

Milestone 4.1.1: Functional 
Requirements Document 

Functional requirements document for the Stochastic OPF 
software. Delivery of requirements document to ARPA-E for 
review and approval by program director. 
 
Actual Performance: (Completed 1/08/2017) The functional 
requirements document for the stochastic OPF software was 
delivered to ARPA-E on 1/08/2017.  
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Task 4.2: SOPF software 
design 

Design the necessary functional modules of the SOPF software 
and create a high level software design document. 
Prototype development for module 1: deterministic market 
based SCED for testing. 

Milestone 4.2.1: SOPF 
Design Document 

Create a high level software design document that meets the 
functional requirements gathered in Task 4.1. Delivery of design 
document to ARPA-E for review and approval by program 
director. 
 
Actual Performance: (Completed 4/08/2018) The high level software 
design document was developed by Nexant and delivered to ARPA-E. 
The document was continuously updated throughout the project as 
changes to formulation or model were made. 
 

Milestone 4.2.2: SOPF 
Performance evaluation 

Market based SCED solving in <1 minute on large-scale system 
with >10K bus network, PJM system size, on a standard desktop 
computer (defined in M2.1.1) 
 
Actual Performance: (Completed 1/08/2017) The deterministic SCED 
developed was based on MISO’s real-time SCED model, which is 
available in their business manual, and was modified to satisfy PJM’s 
real-time market clearing procedures. The SCED was tested on a 
single period using PJM’s system data. The test system consisted of 
1,664 generators, 10,188 buses. The total solution time was 20 
seconds on a standard desktop computer with Intel® Core® 2.60 GHz 
CPU and 16 GB memory. The performance of the deterministic SCED 
meets the milestone target. 
 

Task 4.3: SOPF software 
development 

Develop the prototype version of the SOPF software per the 
algorithms developed in Tasks 1, 2 and 3 that meet the 
functional requirements established in Task 4.1. Stochastic 
SCED refinement; Refinement for PJM specifications; 
specification for other potential customers engaged via T2M 

Milestone 4.3.1: Report on 
the status of the software 
development process 

Create a high level report outlining the software modules that 
were developed and a checklist of the functional requirements 
that were met by these modules. Create a test plan for Task 4.4. 
Delivery of development and test plan documents to ARPA-E for 
review and approval by program director. 
 
Prototype testing of stochastic SCED (with limited functionality, 
without DER and DR integrated) on PJM system. 
 
Actual Performance: (Completed 10/8/2018) Nexant completed this 
milestone in the 3rd week of July 2018 and a detailed report was 
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provided to ARPA-E. Each component of the optimization formulation 
programmed in Python was tested and all parts passed validation. 
 

Milestone 4.3.2: Report on 
the status of the software 
development process 

Status update on the software development. Demonstrate 
system functionality and success metrics of task 2.6 
 
Actual Performance: (Completed 10/8/2018) Nexant completed this 
milestone in the 3rd week of July 2018 and a detailed report was 
provided to ARPA-E. 
 

Milestone 4.3.3: Report on 
the status of the software 
development process 

Status update on the software development. Demonstrate 
system functionality and success metrics of task 2.7. 
 
Actual Performance: (Completed 7/9/2018) Demand response 
modeling was implemented into the stochastic SCED for M2.4.1. 
Demand response capacity was determined for 23 buses, across 5 
major metropolitan areas of the PJM system. The capacity was 
determined for air conditioners (TCLs), following methodology 
described in past milestones. Within the stochastic SCED the demand 
response was modeled as a generator. The DR was implemented and 
was included in the DVP results provided in M5.2.2. In that execution 
of the stochastic SCED, the general level of LMPs is below the value of 
$45/MWh and thus the DR consumed more power from the grid. The 
system functionality and success metrics were demonstrated. 
 

Task 4.4: Initial SOPF 
software testing 

Conduct tests of the prototype software on small test systems 
(>300 buses) and large-scale system with >10K bus network like 
PJM system size while ensuring that all functional requirements 
are correctly addressed. 

Milestone 4.4.1: Initial 
SOPF testing report 

Using the prototype software created in Task 4.3, test the 
software on small systems and PJM system using the following 
defect priority scale: 
• Priority 1 (Critical) - Data Loss/Critical Error/ Loss of 
functionality w/o workaround: Defects that render unavailable 
the critical functions or partial functionality of the software 
(with no work-around available) of the software under test. 
These include errors such as application failures, loss of data, 
incorrect calculations and missing output files. 
 
• Priority 2 (High) - Loss of functionality with workaround: 
Defects that render unavailable partial functionality of the 
software under test with a workaround available. These include 
errors such as incorrect message displayed, optional 
information missing or not displayed correctly and incorrect 
defaults. 
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• Priority 3 (Medium) - Partial loss of a feature set: Defects that 
affect a feature that is not executed on a frequent basis and 
there is not a significant impact on the software. 
 
• Priority 4 - Cosmetic/Documentation Error: Defects that are 
cosmetic and need to be resolved, but are not a factor in the 
functionality or stability of the software. These include errors 
such as field alignment and report formatting. 
 
Create a report on the tests conducted and assign a pass or fail 
grade to each test. For each failed test, assign a defect priority 
as defined above. Allowances will be made for failed software 
components to be corrected and retested as needed. 
The exit criteria for this task is zero (0) Priority 1 defects and 
zero (0) Priority 2 defects. The team (including ARPA/E) will 
evaluate Priority 3 defects to determine those that will be 
required to be corrected to advance to Task 4.5. 
This testing report will be available to APRA/E. 
 
Actual Performance: (Completed 7/9/2018) The testing was in two 
forms:  
1. Reviewing the code. The code is written in Python using the 
PYOMO library with PySP extensions. 
2. Reviewing the results data. The majority of the results data are 
associated with constraints (e.g., reserve and flow) and objective 
function values. 
Testing found 5 priority 1 defects, 3 priority 2 defects, and 3 priority 3 
defects. All of these defects were corrected. Testing found 2 priority 4 
defects, of which, 1 was corrected. The testing report was made 
available to ARPA-E.  
 

Task 4.5: SOPF software 
testing with PJM data 

Continue tests of the prototype software on PJM data and other 
test systems (obtained through outreach). Refine the software 
implementation based on the feedback obtained and improve 
performance. 

Milestone 4.5.1: Final SOPF 
testing report 

Create a report on the tests conducted and assign a pass or fail 
grade to each test. For each failed test, assign a defect priority 
as defined above. 
 
The exit criteria for this task is zero (0) Priority 1 defects and 
zero (0) Priority 2 defects. Allowances will be made for failed 
software components to be corrected and retested as needed. 
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This testing report will be delivered to APRA-E for review and 
approval by program director. 
 
Actual Performance: (Completed 1/18/2019) All software 
components were thoroughly tested through Q8 using PJM data. 
Using PJM data is a requirement in this milestone. A report was 
provided to ARPA-E on the results of this testing in that Q8 report. 
 

Milestone 4.5.2: SOPF 
software performance 
evaluation 

Evaluate the performance of the SOPF software with large-scale 
test system and assess performance relative to FOA 
performance requirements (requirements for: a) Spinning 
Reserve Products (not Regulation Reserve Products) under 
Category 2; b) Category 3: Synthetic Ramping Reserves). Utilize 
test scenarios with various renewable penetration levels 
including a high- penetration level greater than 50%. 
 
Actual Performance: (Completed 4/10/2019) Nexant worked with 
ASU and Sandia to review the results of the tests with the 50% 
penetration. There were no defects encountered. All software defects 
that were encountered were documented and subsequently 
corrected. 
 

Task 5: Program Element 
5: Technology Transition 

Execute the 'Technology to Market' activities for the project. 

Task 5.1: Technology to 
Market plan development 
and updates 

Development and updates of technology to market plan. 

Milestone 5.1.1: 
Technology to Market 
plan: (1) T2M plan (2) 
Qualified T2M contact, (3) 
Industrial advisory board 

Presentation of high-level Technology to Market plan: 
a) High-level view of the team's plans for technology 
dissemination and commercialization. 
b) Appoint a qualified tech-to-market contact person from 
Nexant to represent and conduct the team's commercialization 
activities with industry and ARPA-E. 
c) Invite and select personnel to become members of the 
Industrial Advisory Board (IAB) 
d) Select and commit industry advisors to participate in the 
activities of the project e) Define IAB engagement plan and 
schedule 
f) Get IAB commitment to the planned meetings and reviews 
schedule 
 
Actual Performance: (Completed 12/08/2017)  
1) The revised T2M plan was submitted to ARPA-E on September 27, 
2017. 
2) The qualified T2M contact has been provided. 
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3) The team developed a list of potential IAB members and sent out 
e-mails in the March 2017 timeframe to these potential members 
that included the 2-page flyer describing the proposed stochastic 
SCED process. Upon feedback, an initial set of IAB members were 
established. 
 

Milestone 5.1.2: 
Technology to Market 
plan: (1) Novel 
Capabilities, (2) Pathways 
to adoption 

Revised Technology to Market Plan, based on discussion with 
IAB members, is submitted to ARPA-E, presented, and approved 
by Program Director: 
a) Inform industry of project – news releases, blogs 
b) Inform industry of novel capabilities to be provided by the 
new technology 
c) Define at least two (2) potential pathways for technology 
adoption by the power industry. 
 
Actual Performance: (Completed 10/08/2017) A revised Technology 
to Market Plan has been submitted to APRA-E on September 27, 
2017. Many members of industry were contacted including PJM, 
MISO, ERCOT, PG&E, CAISO, SPP, and Dominion Energy. The most 
likely adopters of the proposed technology were CAISO and MISO. 
 

Milestone 5.1.3: 
Technology to Market 
plan: Stakeholder and 
Competitive analysis 

Revised Technology to Market Plan: 
a) Identify early adopters for SOPF 
b) Identify current/emerging offerings that meet the same 
needs as technology being developed 
c) Establish differentiated value proposition (e.g. quantify 
benefits/costs vs. alternatives/inaction) 
 
Actual Performance: (Completed 4/08/2018)  
a) The team identified PJM, MISO, and CAISO as potential early 
stochastic SCED adopters. 
b) There are currently no emerging offerings in the industry that are 
applying this type of stochastic optimization technology. Without this 
technology, the ISOs will continue to operate conservatively with 
larger reserve requirements and in potentially the incorrect locations. 
 

Milestone 5.1.4: 
Technology to Market 
plan: Post ARPA-E funding 

Revised Technology to Market Plan: 
a) Develop financial model with realistic assumptions, 
uncertainties, and product development costs 
b) Develop plans for channel partner development 
a. EMS vendors 
b. Integrators 
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Actual Performance: (Completed 3/31/2021) Milestones M5.1.4, 
M6.4.2 and M6.4.3 were all fully completed and all addressed in the 
Business Plan that was sent to ARPA-E in quarter 19 of this project. 
 
 

Task 5.2: Technology to 
Market progress update 

Presentation of the team's progress against the Technology to 
Market plan and objectives. 

Milestone 5.2.1: 
Technology to Market 
update: (1) Novel 
capabilities, (2) IP 
arrangement 

Presentation on T2M progress based on discussion with IAB 
members: 
a) Highlight novel capabilities to be provided by the new SOPF 
technology. 
b) Establish IP agreement among parties 
 
Actual Performance: (Completed 12/8/2017)  
a) The team provided the IAB with the novel capabilities that the 
stochastic SCED tool can provide to the industry in the kick-off Webex 
presentation on March 31, 2017. This material was provided to ARPA-
E on September 27, 2017. 
b) Nexant has finalized the IP agreement among the parties. 
 

Milestone 5.2.2: 
Technology to Market 
update: (1) Stakeholder 
Analysis (2) Competitive 
Analysis 

Presentation on T2M progress: 
a) Review of early adopters for SOPF with IAB. 
b) Differentiated value proposition of SOPF 
 
Actual Performance: (Completed 7/09/2018) Nexant has reported on 
the review of early adopters for SOPF with IAB in the Q7 report. The 
team developed a Differentiated Value Proposition (DVP) framework 
and provided this in the Q7 report. The team was able to apply the 
framework to a case that included 9 generator contingencies and 16 
wind scenarios. The DVP is based on the cost difference between the 
costs associated with the stochastic SCED and those of the 
deterministic SCED (from M2.1.1) when a deliverability approach, 
through a real-time contingency analysis (for generation) and a 
simultaneous feasibility test, is applied. The stochastic SCED provided 
a 6.2% reduction in operating costs. 
 

Milestone 5.2.3: 
Technology to Market 
update: Year-end review 

Presentation on T2M progress: 
a) Review of activities to date 
b) Review of plans for second year 
 
Actual Performance: (Completed 10/08/2017)  
 
a) The team of Nexant, ASU, and Sandia discussed the T2M efforts 
and progress over the first year. 
b) The team planned to provide another IAB webinar and hold a 
general industry webinar. For the general industry webinar, the 
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invitees were from Nexant’s compiled list of utilities, other ISOs and 
market participants all of which may benefit from the use of the SLAC 
tool. 
 

Milestone 5.2.4: 
Technology to Market 
update: Update on early 
adopters 

Presentation on T2M progress: 
a) Update on potential early adopters for SOPF 
 
Actual Performance: (Completed 12/8/2017) 
a) Nexant along with ASU and Sandia National Laboratories continue 
to work with PJM and are also in the process of developing an active 
partnership with MISO as an early adopter of the SOPF technology. 
 

Milestone 5.2.5: 
Technology to Market 
update: Outreach to early 
adopters 

Presentation on T2M progress: 
a) Discussion of initial tests with PJM data 
b) Scheduling demonstrations with potential early adopters 
 
Actual Performance: (Completed 4/08/2018) The team has engaged 
various potential early adopters over the course of this project. The 
list below shows these engagements.  
 
• PJM: site visit on April 11, 2016 
• MISO: site visit on November 21, 2016 
• ERCOT: site visit on January 30, 2017 
• IAB kickoff meeting on March 31, 2017 
• Pacific Gas and Electric: site visit on May 4, 2017 
• CAISO: e-mail exchanges in April 2017 – September 2017 
• SPP: site visit on May 31, 2017 
• Dominion Energy: June 19, 2017 
• MISO: Fall 2017 and 2018, MISO has indicated they want to 
become a Partner in this project 
• IAB meeting on March 20, 2018 
 
As a result of this outreach, MISO joined the project as a partner. 
 

Milestone 5.2.6: 
Technology to Market 
update: Demonstration to 
potential early adopters 

Presentation on T2M progress: 
a) Execution of demonstration to potential early adopters 
 
Actual Performance: (Completed 7/9/2018) As part of the T2M 
effort, the team presented the stochastic SCED project at the FERC 
Technical Conference in Washington, DC on June 27, 2018 to a 
diverse audience that included: MISO, SPP, ERCOT, ISO- NE and 
Hydro-Québec. The Technical Conference is entitled: “Increasing Real-
Time and Day-Ahead Market Efficiency and Enhancing Resilience 
though Improved Software.” The attendees of MISO, SPP, ERCOT, 
ISO-NE and Hydro-Québec provided thoughtful questions and a 
robust Q/A session was held. All feedback was positive. 
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Milestone 5.2.7: 
Technology to Market 
update: Final assessment 

Presentation on T2M progress: 
a) Assessment of T2M progress and opportunities 
b) Customer interview report to Program Director for approval 
(sales opportunities and product feedback) 
 
Actual Performance: (Completed 3/31/2021) This milestone has been 
completed and a description was provided in the Q18 report. Nexant 
feels that there are many opportunities in industry for this technology 
and the work and compiled results from MISO will help reduce 
barriers. 
 

Task 5.3: Technology 
Dissemination and 
Demonstration 

Development of technology demonstrations and prototype 
software release 

Milestone 5.3.1: 
Technology Dissemination 
and Demonstration: 
Develop the 
Demonstration Scenarios 

Presentation of progress in developing technology 
demonstration: 
a) Develop suitable demonstration scenarios focused on initial 
capabilities 
b) Review demonstration scenarios with IAB and update the 
scenarios accordingly 
 
Actual Performance: (Completed 10/08/2017) The demonstration 
scenarios are effectively the business cases for the technology. 
a) The demonstration scenarios document was submitted along with 
the Q5 status report.  
b) The kick-off IAB Webex presentation provided an overview of the 
potential demonstration scenarios. Several questions were asked by 
participants and answered by the team. APRA-E was provided the 
presentation along with the questions and answers on September 27, 
2017. 
In addition, all of the presentations supporting the technology to 
market effort that were provided to the ISOs and utilities were 
provided to ARPA-E on September 27, 2017. 
 

Milestone 5.3.2: 
Technology Dissemination 
and Demonstration: 
Develop Demonstration 
Scenarios 

Presentation of progress in developing technology 
demonstration: 
a) Develop and implement suitable demonstration scenarios 
focused on initial capabilities 
b) Review demonstration scenarios with IAB and industry 
audience 
 
Actual Performance: (Completed 4/08/2018) This milestone is a 
follow-up to M 5.3.1. The team identified demonstration scenarios 
for the stochastic SCED. The team held a two-hour IAB review Webex 
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on March 20, 2018. The IAB Webex provided fruitful discussion about 
the project and overall, the IAB provided positive feedback. 
 

Milestone 5.3.3: 
Technology Dissemination 
and Demonstration: 
Publications and planning 
for workshop 
demonstrations 

Presentation on T2M progress: 
a) Promoting technology through publications 
b) Marketing collateral 
c) Plans for workshop/conference sessions for technology 
presentation and demonstration to industry 
 
Actual Performance: (Completed 10/08/2017)  
a) Nexant along with ASU and Sandia developed 2-page flyers and 
sent to several ISO, IAB members and handed out at the ARPA-E 
conference in Colorado in April 2017. 
b) Nexant along with ASU and Sandia developed 2-page flyers and 
sent to several ISO, IAB members and handed out at the ARPA-E 
conference in Colorado in April 2017. 
c) Nexant held a general industry Webinar in the early part of 2018 
that discussed the SLAC technology and gained additional general 
industry feedback. 
 
 
 

Milestone 5.3.4: 
Technology Dissemination 
and Demonstration: 
Publications and planning 
for workshop 
demonstrations 

Presentation of T2M progress: 
a) Technology publications 
b) Featured articles in trade magazines 
c) Update to plans for workshop/conference sessions for 
technology presentation and demonstration to industry 
 
Actual Performance: (Completed 12/8/2017)  
a) Nexant along with ASU and Sandia National Laboratories 
developed 2-page flyers and sent to several ISO, IAB members and 
handed out at the ARPA-E conference in Colorado in April 2017. 
b) Nexant along with ASU and Sandia National Laboratories 
developed 2-page flyers and sent to several ISO, IAB members and 
handed out at the ARPA-E conference in Colorado in April 2017. 
c) Nexant held a Webinar in the early part of 2018 to discuss the 
stochastic SCED technology and gained additional general industry 
feedback. 

Milestone 5.3.5: 
Technology Dissemination 
and Demonstration: 
Workshops 

Presentation on T2M progress: 
a) Workshops to publicize the technology and results of initial 
tests 
 
Actual Performance: (Completed 4/08/2018) The team pursued the 
T2M effort at the ARPA-E Innovation Summit. The team met with 
members from CAISO and Lartra Inc and discussed the project and 
facilitated future discussions. 
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Milestone 5.3.6: 
Technology Dissemination 
and Demonstration: (1) 
Marketing Collateral and 
(2) Review of results 

Presentation of progress in developing technology 
demonstration: 
a) Update on technology publications a. Marketing collateral 
b. Featured articles in trade magazines b) Demonstration results 
- review, analysis, and conclusions 
c) Customer report to Program Director for approval (feedback 
from demonstrations to potential early adopters) 
 
Actual Performance: (Completed 4/10/2019) Nexant, ASU and Sandia 
National Laboratories developed the slide deck for the industry wide 
webinar and presented it on February 27, 2019. Nexant originally 
developed a list of 2,700 potential invitees from its inventory from 
customer contacts in all corners of the electric industry. Based on the 
likelihood of success, this list was pruned, and invitations were sent 
to approximately 1,900 people. 82 people registered and 40 people 
attended the webinar (excluding Nexant, ASU and Sandia staff 
members). We received positive feedback from the webinar 
attendees and several excellent questions were asked. 
 

Milestone 5.3.7: 
Technology Dissemination 
and Demonstration: (1) 
industry engagement (2) 
Technology Publications 

Presentation of progress in developing technology 
demonstration: 
a) Updates on industry engagement and future plans 
a) Product realization strategy & roadmap 
b) Update on technology publications 
b) Case studies 
c) Journal articles 
c) Updated plans for converting industry engagement to 
industry adoption 
 
Actual Performance: (Completed 3/31/2021) This milestone has been 
completed. We gave a webinar on March 31 and it was well received. 
There were more than 140 attendees from industry and academia. 
We answered 24 questions. 
 
 
Specifically, the team presented an Industry Wide Webinar (IWW) on 
March 31, 2021 that was attended by several dozen industry 
participants. The product roadmap is contained in the Business Plan 
that was provided as part of the quarter 19 report. Nexant believes 
that the stochastic optimization is a valid technology to pursue. The 
team is working on an industry paper for the forecasting and scenario 
development associated with load, wind production and net 
scheduled interchange levels. The team is also work on an industry 
paper for the application of the stochastic optimization including 
progressive hedging to MISO’s look ahead commitment process. 
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Task 6: Joint Industry 
Partnership: Midcontinent 
ISO 

Jointly identify data, case studies, use cases, purpose for SLAC 
tool; validation of tools; jointly conduct case studies and 
process results; prepare final report with business plan and 
value proposition 

Task 6.1: Scoping analysis Mutually agreed upon (MISO, ASU, Nexant, Sandia National 
Laboratories) scope of work, use cases, study design, and 
performance metrics. 

Milestone 6.1.1: Targeted 
use cases, tool 
performance and 
uncertainty modeling 
metrics are defined 

A report describing targeted use cases (example: normal 
operational cases with extreme events (extreme renewable 
ramps)), and selection justification based on SLAC functionality 
delivered to ARPA- E for approval. The following required 
performance metrics for all tools (SCED, LAC, SLAC): computer 
specifications (including number of cores), computational 
performance, type of uncertain events modeled, number of 
uncertain events modeled for each category, and optimality 
gap, are defined. 
In addition, required performance metrics for all uncertainty 
modeling (“Interchange and loop flow” and “extreme weather” 
may not be explicitly considered.): a) renewable resources; b) 
interchange and loop flow; c) extreme weather; d) demand 
response; e) generator non-compliance; f) contingencies, are 
defined. 
 
Actual Performance: (Completed 03/31/2021) The main 
purpose of the SLAC tool is to make better commitment 
decisions under uncertainty and serve as a better advisory tool 
for operators. In this project, three main sources of uncertainty 
were modeled; namely, uncertainty from wind generation, load, 
and net scheduled interchange. In addition, uncertainty from 
generator startup and shutdown MWs was modeled and 
incorporated into the SLAC using historical data and machine 
learning techniques.  
 
In the deterministic LAC, it was expected that on days with 
more uncertainty, operators would tend to act conservatively 
and commit more units to better deal with uncertainty in order 
to maintain system reliability. In such days in particular, 
modeling uncertainty coming from different sources into the 
optimization processes is shown to be beneficial in terms of 
production costs savings and improving system reliability.  
 
MISO selected a set of 15 “stressed” days from different 
seasons in 2018 and 2019 to evaluate the performance of SLAC 
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against deterministic LACs under MISO and ASU point forecasts. 
These days included operation days with higher number of real-
time unit commitments, extreme hot weather and severe cold 
weather events that impacted renewable generation, load, and 
net scheduled interchange. Our goal was to see if SLAC can 
perform better in terms of cost savings and reliability metrics by 
taking uncertainties from wind generation, load, and net 
scheduled interchange into account.  
 
MISO generated around 1440 deterministic LACs (96 LACs/day) 
from production cases and benchmarked it using EGRET 
developed by the team in a laptop PC with typical specifications 
and availed it as base cases for the SLAC tool simulations. To 
speed up the computation time, parallel optimization 
techniques was used within the SLAC tool to solve the problems 
decoupled by scenario in parallel. The SLAC tool was utilized to 
study the 15 days (as well as many other small and large cases) 
in a rolling-horizon fashion on a Linux server at MISO with 32 
cores and 256 GB of RAM. Considering MISO’s operational 
practices, a maximum of 15-minute solve time under 40 joint 
scenarios from wind, load, and net scheduled interchange and a 
0.1% relative optimality gap was considered for SLAC 
performance evaluation. 
 
In addition to the above considerations, the following 
performance evaluation on uncertainty modeling was 
conducted by MISO and the team: 
 

a) The scenario generation approach was applied to a test 
case from September 2018, for a period when extreme 
weather resulted in emergency event in MISO. Scenarios 
were generated for 152 wind farms and performance 
metrics were evaluated using Energy, Integrated 
distance and Variogram scores.  

b) Scenarios were generated for the MISO aggregate Net 
Scheduled Interchange (NSI) with all its neighbors. Loop 
flows were not considered. 

c) Extreme hot weather and severe cold weather days with 
impacts on wind, load, and net scheduled interchange 
captured through a set of scenarios were evaluated and 
analyzed to see under which days SLAC performs better; 
either in terms of production cost savings or reliability 
improvements, e.g., avoiding reserve shortfalls or 
transmission flow violations.  
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d) Instead of demand response, we generated scenarios 
for load for each control area in MISO. Scenarios for 
wind and load were applied to the stranded capacity use 
case. 

e) For generator non-compliance, we identified generators 
while they are in startup or shutdown process as 
uncontrollable units. They pose another source of 
uncertainties in the SLAC problem since they are not 
considered as variables in the optimization. We propose 
using machine learning techniques to capture the non-
compliance generators’ uncertainties and applying them 
to the SLAC as fixed predicted values. The timeseries 
prediction of the startup or shutdown curves is different 
with the wind forecast. It has its unique obstacles such 
as the uncertain length of horizon, uncertain state 
estimation starting point, noise-dominant raw data, and 
generator-specific feature selections. 

 
We first query and export 6-year generator market data 
from the MISO database. The raw data is highly polluted 
by estimation errors and noises, which means it cannot 
be directly used for prediction analyses. Hence, we 
conduct data preprocessing before loading them to the 
machine learning module. Since the generator data 
patterns vary greatly, we have to perform the 
preprocessing for each individual unit. There are 
generally three steps for a typical data preprocessing: 
Identify whether the curve is longer than 15 minutes (for 
startup/shutdown curve eligibility), check the curve 
gradient direction (confirm the curve classification), and 
remove outliers (reduce the data noises and marginal 
cases). 

 
After the data preprocessing, we conduct the prediction 
analyses using machine learning techniques. Due to the 
different timeframes of LAC and UDS, we use a static 
method for 15-minute LAC curves and a dynamic 
method for 5-minute real time dispatch (UDS) curves. 
The LAC curve method is built upon the Gradient 
Boosting Tree (GBT), which is the state-of-the-art 
regression method with one-hot encoding.  GBT predicts 
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values with index labels and feature labels created from 
the data preprocessing stage. The UDS curve method is 
built upon the Long Short Term Memory network, which 
uses the last-interval realization data to guide the 
current prediction and thus achieves real-time error 
correction. Theoretically, the dynamic method should be 
more useful and accurate than the static method 
because we could use the latest information to support 
our prediction. 

  
Regarding the results and performance, we mainly focus 
on the static method because both the SLAC and UDS in 
the simulations are with a 15-minute resolution. We 
conduct our analyses for 840 generators in the 
database. After preprocessing, for startup curve, 90.78% 
eligible generators can achieve with the prediction 
performance of MAPE < 10%, while for shutdown curve, 
87.41% eligible generators can achieve with the same 
performance. Then these curves are produced as fixed 
timeseries values and prepared for being loaded into the 
SLAC or UDS module. Though we do not apply the real-
time error correction-based prediction in SLAC, we also 
test the performance of the dynamic method, which 
could reduce the general prediction error to 3% in real 
time. 

 
Lastly, we apply the predicted startup and shutdown 
curves to the SLAC and UDS coordination. These curves 
are used as fixed timeseries values and we slightly 
modify the generator power output constraints to adopt 
the curves for future awareness of startup/shutdown in 
the upcoming intervals. In the whole-day run of SLAC 
simulations for Sept. 15-20 cases, when applying the 
curves, the average daily cost saving of the production 
cost is around $60,000. We also observe that SLAC could 
better utilize the curves (achieve a higher cost saving) 
than deterministic LAC, which proves the cost-
effectiveness of the predicted curves in the 15-minute 
scheduling and its synergy with the stochastic 
optimization. 
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f) To ensure post-contingency reserve deployment while 
accounting for loss of generator events, MISO 
implements post-zonal reserve deployment constraints 
in production. These constraints ensure different 
reserves (e.g., regulation, contingency reserve, short-
term reserve) can be delivered to meet zonal reserve 
requirements under import transmission limitation in 
case of contingencies. MISO and the SLAC team 
implemented these constraints into the EGRET tool and 
benchmarked a few deterministic LAC cases. However, 
these constraints were not included in the deterministic 
LAC and SLAC simulations. 

 
Milestone 6.1.2: SLAC 
features to address 
identified use cases  

MISO identified SLAC tool features: a) defined time stage and 
time intervals; b) composition of the subproblems; c) input data 
requirements; d) utilization of SLAC outputs in MISO operations 
(generation loss distribution factors, ancillary services products, 
critical contingency selection) and interaction with existing tools 
and personnel.  
 
A subsection of the design specification report from Task 4 is 
dedicated to describe the SLAC features identified by MISO. 
 
Actual Performance: (Completed 03/31/2020). With the team, 
MISO identified the SLAC tool features as follows: 
 

a) As with regular LAC run, the SLAC would have a three-
hour look-ahead with fifteen-minute time-intervals. 

 
b) The stochastic subproblems determined by MISO are 

equivalent to MISO’s existing deterministic LAC, which 
was validated under Milestone 6.2.1. 
 

c) The input data requirements determined by MISO are: 
(1) state information (current and future generator 
commitments, current generator production levels), (2) 
information equivalent between LAC and SLAC (reserve 
requirements, monitored transmission constraints pre- 
and post-contingency), and (3) scenarios generated by 
ASU which set load, available wind power, and net-
scheduled interchange on a per-scenario basis. 
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d) Two major outputs identified by MISO (1) the 
recommended SLAC generator commitments, which can 
be evaluated against the existing LAC tool solution and 
(2) critical scenarios, e.g., those with reserve or 
transmission violations, which could warn operators well 
in advance about a potentially critical event. These 
scenarios could be identified either as part of the SLAC 
solution process or as a post-analysis of a given (S)LAC 
commitment. 

 
Milestone 6.1.3: 
Specialized SLAC: 
refinement of functionality 
and associated metrics 

MISO, ASU, Nexant and Sandia National Laboratories identified 
required refinements to enhance value proposition of general 
SLAC based on performance from M6.4.1. 
This includes new performance metrics to be met, including the 
metrics for the rolling horizon testing. Metrics to be approved 
by ARPA-E PD. 
 
Actual Performance: (Completed 12/30/2020) The 
performance metrics of the specialized SLAC with MISO-
customized features on a rolling-horizon basis were defined as 
the computation time (e.g. ability to solve under 15 minutes for 
operational purposes), solution quality (ability to achieve a 
reasonable and acceptable optimality gap), production cost 
savings over the entire study period, and reliability 
improvements (e.g., transmission flow violation or reserve 
shortfall reduction). With MISO’s input, the SLAC solution time 
was set to 15 minutes and the relative optimality gap was set to 
0.1%.  
 
For each studied period (e.g., an entire day), the measuring 
stick in terms of cost and reliability improvements were defined 
as the total production cost of the underlying SCEDs for the 
entire study period. For example, for September 15, 2018, the 
total production cost of 96 SCEDS under the commitments from 
SLAC with 40 scenarios from wind, load, and net scheduled 
interchange, deterministic LAC with MISO point forecast, and 
deterministic LAC with ASU point forecasts were computed and 
compared. The results showed that in general SLAC performs 
better and appropriately trades off between cost and reliability 
by prepositioning the system for uncertainties stemming from 
wind generation, load, and net scheduled interchange. 



 

 33 

Quantitative performance of these results are given elsewhere 
in this report.  
 

Task 6.2: Validation of 
Deterministic Tool 

MISO to work with ASU, Nexant, Sandia National Laboratories 
to validate deterministic tools used for confirmation of SLAC 
benefit and also validate SLAC input and modeling information 
related to uncertain events. 
 
 

Milestone 6.2.1: 
Deterministic tool 
validation 

MISO, ASU, Nexant, Sandia National Laboratories to benchmark 
SLAC with MISO production look-ahead commitment (LAC) and 
security- constrained economic dispatch (SCED) based on MISO 
data and systems. 
Qualitative performance evaluation: MISO review and approval 
with report to ARPA-E. 
Quantitative performance evaluation: Satisfied performance 
metrics stated in M6.1.1. 
6.2.1a: Implement specialized features of MISO’s deterministic 
LAC into EGRET 
6.2.1b: Implement specialized features of MISO’s deterministic 
SCED into EGRET 
6.2.1c: Develop a method to simulate MISO’s current response 
to a given scenario using the specialized deterministic LAC and 
SCED consecutively in a rolling horizon fashion 
 
Actual Performance: (Completed 12/30/2020)  
 
MISO worked with the SLAC team to produce deterministic LAC 
cases from production and benchmark it using the EGRET tool. 
MISO took a bottom-up approach and started the 
benchmarking process from a simple energy-only small test 
case of 5-generator system. This was followed by including 
more MISO-customized features (e.g., different reserve types 
such as regulation, spin, and, flexible ramp, and supplemental 
reserves) and scaling the test system to tens and hundreds of 
generators all the way to the full-size MISO system with around 
1200 generators, all reserve types, and around 40 production 
watchlist transmission constraints.  
 
The benchmarking criteria were to obtain the same (or close 
enough) objective value and the same or equivalent unit 
commitments, energy/reserve schedules, and transmission 
flow/violations results for all units and lines in both MISO LAC 
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and EGRET tools. Further benchmarking details can be found in 
prior quarterly reports. 
 
MISO then selected 15-days from different seasons and 
benchmarked 96 consecutive deterministic LAC cases per day 
with specialized features as the base cases for rolling-window 
SLAC simulations.  
 
For milestone 6.2.1a, Sandia National Laboratories 
implemented the features utilized in MISO’s current 
implementation of LAC into EGRET’s version of LAC including 
reserve requirements for each reserve type, transmission 
constraints, post contingency reserve deployment constraints, 
future/past on/off time constraints, etc.  The EGRET 
implementation was validated against MISO’s LAC using test 
cases developed by MISO.  By the completion date the team 
had scaled up validation to full-sized MISO cases that 
represented the actual data used in practice and included over 
one thousand generators.  The EGRET and MISO LACs resulted 
in the same solutions or solutions that matched very closely.  
 
For milestone 6.2.1b, Sandia National Laboratories executed a 
straightforward extension of 6.2.1a.  This extension was straight 
forward because the SCED uses many of the same specialized 
features as the LAC.  The specialized SCED in EGRET represents 
the specialized LAC in EGRET restricted to a single time interval, 
with a 15-minute time interval length, and with different 
violation penalties for reserve constraints.  Validation was not 
needed because the specialized features were already validated 
through the LAC. 
 
For milestone 6.2.1c, Sandia National Laboratories connected 
EGRETs specialized LAC and SCED using a rolling horizon 
simulation framework.  Using 15-minute intervals, the LAC 
passed generator commitment statuses to the SCED during 
each interval and the SCED passed the generator output levels 
to initialize the LAC in the next interval.  The input data was 
updated in each interval, which includes parameters for each 
available generator, transmission line parameters, demand 
trajectories, reserve requirements, etc.  This input data 
matched the input data used in practice for the 15 days studied 
in 2018-2019. 
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Milestone 6.2.2: 
Uncertainty modeling 
validation 

MISO, ASU, Nexant, Sandia National Laboratories to validate 
uncertainty modeling approaches. 
Qualitative performance evaluation: MISO review and approval 
with report to ARPA-E. 
Quantitative performance evaluation: Satisfy performance 
metrics stated in M6.1.1. 
 
Actual Performance: (Completed 06/30/2020) The point 
forecast generated by the model was compared to the existing 
MISO point forecast using the root-mean-squared error (RMSE) 
metric, and showed forecast improvement over all intervals of 
the look-ahead commitment horizon. The spatial and temporal 
correlations between wind farms estimated by the model were 
compared to the real data, and were found to be consistent.  
 
Actual Performance: (Completed 03/30/2021) The 
startup/shutdown curve predictions were evaluated using the 
mean average percentage error (MAPE) metric in both the 
training and testing stages. The predictions of curve-eligible 
generators are further validated by inducing the curves into LAC 
and UDS operation pipelines. The result validates that using the 
startup/shutdown curves leads to more cost-savings and 
reliability improvements. 
 

Task 6.3: SLAC 
implementation and 
performance evaluation 

Implementation of SLAC tool based on MISO data; identified 
use cases, modeling of uncertain events; initial testing of the 
generic SLAC followed by a specialized, enhanced SLAC. 

Milestone 6.3.1: Generic 
SLAC implementation and 
evaluation for single 
snapshot studies 

SLAC tool implemented on identified use cases and MISO data 
(single snapshot results and comparison). 
Qualitative performance evaluation: MISO review and approval 
with report to ARPA-E. 
Quantitative performance evaluation: Satisfied performance 
metrics stated in M6.1.1. 
6.3.1a: Establish a precise stochastic optimization formulation 
for this application 
6.3.1b: Implement the generic SLAC on simple small test cases 
by embedding the generic deterministic LAC and SCED into the 
inner stage of the stochastic framework 
 
Actual Performance: (Completed 03/31/2021) Under 6.3.1a, 
MISO, NREL, and the project team developed a detailed 
mathematical SLAC formulation; the first and second stage 
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variables, parameters, and constraints were clearly defined 
over the appropriate sets. The SLAC tool precisely implements 
this mathematical formulation and has the capability to 
implement and simulate single snapshot and rolling-horizon 
SLAC and SCED on small as well as large full-day cases.  
 
The SLAC tool is also generic in nature in the sense that, 
depending on whether or not the inputs to the tool include 
specialized LAC features, the underlying stochastic optimization 
framework can implement the two-stage SLAC/SCED problem. 
 
Under 6.3.1b, NREL and the team implemented the SLAC tool to 
simulate single snapshot, partial day (consecutive cases, e.g., 
11:00 AM to 3:00 PM), and full-day specialized LAC and SCED 
cases on a rolling-window basis. In each study, the generated 
scenario data from stochastic variables (e.g., wind units’ 
generation, load, and net scheduled interchange) was 
appropriately embedded into the stochastic optimization 
framework. The benefits of SLAC over deterministic LACs were 
more tangible in rolling-horizon simulations that had longer 
time horizon (e.g., an entire day).  
 

Milestone 6.3.2: 
Specialized SLAC 
implementation and 
evaluation for single 
snapshot studies 

SLAC tool implemented on identified use cases and MISO data 
(single snapshot results and comparison). 
 
Qualitative performance evaluation: MISO review and approval 
with report to ARPA-E. 
Quantitative performance evaluation: Satisfied performance 
metrics stated in M6.1.3. 
6.3.2a: Implement the specialized SLAC on simple small test 
cases 
6.3.2b: Evaluate performance of the SLAC from Tasks M6.3.2.a 
and M6.3.2.c using the simulation techniques from Task 
M6.2.1.c as a benchmark 
6.3.2c: Implement the specialized SLAC on large test cases and 
validate using deterministic rolling horizon methods 
 
 
Actual Performance: (Completed 03/31/2021) For milestone 
6.3.2a and 6.3.2c, NREL implemented the stochastic 
programming techniques and specialization using a parallelized 
progressive hedging algorithm to solve the specialized SLAC 
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problems. NREL tuned the performance of the SLAC solution 
algorithm to both MISO data and the Linux workstation 
provided by MISO, utilizing 20-way parallelism to solve the 40-
scenario SLAC instances detailed below. The exact customized 
algorithmic approach is detailed in the Q19 Quarterly Progress 
Report.  
 
The specialized SLAC with MISO-customized features were 
simulated on a rolling-horizon basis for 15 operation days 
selected by MISO. MISO provided an entire year of historical 
wind generation, load, and net scheduled interchange data 
from 2018 to 2019 to generate scenarios for the 15 days using 
the scenario generation tool developed under this project. For 
each simulated day, around 96 SLACs (a total of 1436 cases) 
plus two deterministic LACs each followed by a SCED were run 
and the total production cost, transmission violation cost, and 
reserve shortfall violation costs were reported and compared. 
 
For each specialized SLAC solve, MISO defined the following 
performance evaluation metrics under 40 scenarios for wind 
generation, load, and net scheduled interchange: 
 

• Each SLAC needed to run under 15-minute time limit 
• Each SLAC solve needed to reach a relative optimality 

gap of 0.1% 
 
As detailed elsewhere, the team found that in the 1436 cases, 
the above metrics were met 99.7% of the time (all but four 
cases) for these 40-scenario specialized SLAC problems. In those 
four cases, the established time limit of 15-minutes was met, 
but the optimality gap was over 0.1%. In all cases, the 
optimality gap was within 0.5%. 
 
For milestone 6.3.2b, Sandia National Laboratories simulated 
the LAC and the SLAC using the rolling horizon framework from 
Task 6.2.1c using 15 days from 2018-2019.  The performance of 
the SLAC was analyzed in the context of reducing reserve 
constraint violations, reducing transmission constraint 
violations, and reducing production costs as compared to the 
LAC.  In these results we only see improvements by the SLAC 
during days where the system is particularly stressed, otherwise 
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the SLAC performs very similar to the LAC model.  During non-
stressful days we see a very small increase in production cost 
when using the SLAC of approximately 0.01% of the total 
production costs in the system.  During the stressful days, the 
most common observed improvement increases reliability by 
reducing either reserve constraint violations or transmission 
constraint violations.  The alternative improvement that we 
occasionally observe decreases productions costs as compared 
to the LAC model.  We observe production cost reductions of up 
to 5% of the total productions costs in the system. 
 

Task 6.4: Final reporting Final reporting on MISO partnership and future business path. 
Milestone 6.4.1: SLAC 
broader impacts 

Documentation on MISO partnership, main findings, benefits, 
and conclusions. Documentation of general SLAC applications 
outside of MISO and identification of other market targets. 
 
Actual Performance: (Completed 03/31/2021) The SLAC project 
team believes MISO partnership has been a success. The main 
findings are noted below: 
 

• Overall, SLAC provides a net benefit and robustness for 
managing uncertainty. 

• SLAC exhibits economic benefit over the deterministic 
LAC variants with decreased costs and little or no change 
in reserve or transmission flow violations under certain 
full-day cases simulation. 

• SLAC also exhibits a reliability benefit, i.e., decreased 
reserve or transmission flow violations, over the 
deterministic LAC, with increased production costs in 
certain other full-day case simulations.  

• At all other times, SLAC has similar performance to 
deterministic LAC. 

 
In summary, SLAC provides reliability (the ability to meet 
operational standards) and/or economic (the ability to avoid 
over-commitment of units and over-procurement of reserves) 
benefits. 
 
Outside of MISO, the prime targets are SPP, ERCOT and CAISO 
(all rich in terms of wind generation) as well as utilities who 
need to make day-to-day operational decisions based on 
uncertainties (e.g., weather-based uncertainty) in the system. 
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Milestone 6.4.2: 
Documentation of 
remaining T2M barriers 
and risks 

Documentation in final report on remaining practical barriers, 
SWOT/NABC analysis; team to collect industry feedback. 
 
Actual Performance: (Completed 03/31/2021) SLAC is an intra-
day advisory tool. All ISOs have some type of deterministic 
advisory based tool today. The main barrier we see is to 
convince ISOs that this technology is sound, validated and 
workable, and that the results can be translated for practical 
use for system operators. For example, SPP seemed very 
interested, but needed to prioritize various projects and stated 
they could not take on a partnership at that time. The MISO 
partnership was a great opportunity because they do have a 
focus on R&D that are willing to go outside of traditional vendor 
relationships to research new technology. This successful 
partnership with MISO, which yielded positive results, will lower 
the barriers going forward. 
 
Milestones M5.1.4, M6.4.2 and M6.4.3 were all addressed in 
the Business Plan (that includes a section on the remaining 
practical barriers) that was submitted in the quarter 19 report. 
 
The SWOT analysis was submitted in the quarter 19 report. 
 
As part of the T2M process the team has met with many 
industry members. All feedback has been positive as reported in 
previous reports. Our current partner MISO states that this 
project has been successful and they will continue to 
investigate the SLAC technology 
 

Milestone 6.4.3: Business 
plan 

Documentation of future business plan and value proposition. 
 
Actual Performance: (Completed 03/31/2021) Nexant will 
continue to evaluate the SLAC prototype as a promising 
technology and pursue it for commercial use. Nexant realizes 
that more R&D work is needed for this purpose including 
conducting pilot as well as commercial projects with target 
market participants.  
 
Nexant provided a business plan and value proposition as part 
of the quarter 19 report.  
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MISO plans to pursue this technology and leverage the tools 
developed in this project with potential near-term applications 
including: 
 

• Scenario generation and its application on different 
operational tools 

• Generate startup and shutdown curves and include 
them in operational tools 

• Further develop EGRET for real time simulation. Define 
dynamic reserve requirements and uncertainty events in 
a better way based on simulations on meaningful 
scenarios. 

 
MISO will continue research and development on market 
simulation tools and plans to conduct research on longer 
horizon uncertainty quantification (e.g., 7-day) as well as other 
uncertain factors (e.g., generation outage) and evaluate viable 
stochastic optimization approaches in terms of computation 
time and applicability on market processes and clearing 
engines. 
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