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Abstract—In recent years, solar power system installation
imposes several challenges on the operations of local and regional
power grids due to the inherent variability of ground-level solar
irradiance. This work proposes a novel real-time solar forecast
methodology for intra-hour solar irradiance based on deep trans-
fer learning from ground-based sky imager for time horizons
ranging from 5-15 min. There are three unique aspects of the
proposed methodology: (1) a Deep Learning based algorithm
development which is modeled as a classification approach rather
than a traditional regression approach; (2) the use of the Transfer
Learning technique to show generalization capability, robustness,
and portability of baseline model in the newly deployed location
where availability of enough data for training is typically scarce,
and (3) redefinition of point-based irradiation forecast error
estimation technique with a window-based one that is more
intuitive and user-friendly.

The system is developed using multiple years of irradiance
and sky image recording in New Jersey and one-year data
from Colorado, USA. The method is validated against ground
telemetry from these two locations of diverse geographic and
climatic conditions. Results show that the forecasting method
proposed in this work is robust and highly accurate (8% MAPE
error) for multiple locations deployment.

Index Terms—Deep Learning, Convolution Neural Networks,
transfer learning, irradiation forecast

I. INTRODUCTION

The spatial and temporal variability along with uncertainty
in ground-level solar irradiance directly affects the stability
and efficiency of a photovoltaic (PV) power generation station.
The combined effect of atmospheric constituents such as water
vapor, aerosols, and clouds causes such variability in solar
irradiance [10]. Significant solar ramps might happen in power
production due to the ground-level solar irradiation variation
that raises various issues in distribution system management.
Future irradiation drop event prediction is a cost-effective
technology to develop a smart, dynamic power grid for grid
regulation, load-following production, power scheduling, and
unit commitment [9]. The research avenue of solar forecasting
can be categorized into three types depending on the forecast
horizon: intra-hour, intra-day (1-24 hours ahead), and day-
ahead (1–3 days ahead).
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The proposed work focuses on intra-hour solar forecasting
that is crucial for real-time grid balancing, unit commitment,
storage system optimization, automatic generation control
(AGC), and operating regulation reserves [21]. In intra-hour
solar forecast, frequently happening solar ramp imposes a great
challenge. To handle this issue, high temporal and spatial
resolution hemispherical information of the cloud movement
collected from local telemetry and ground-based sky imagery
[19] are a popular choice [9]. Without cloud cover information,
prediction from any data-driven methods faces the challenge
of a time interval lag compared to ground truth ramps [5].
Since the accurate prediction of solar ramps is essential to
solar integration applications, local-sensing methods are used
to capture cloud cover information, to enhance the accuracy
in predicting solar ramps. From the time series sky images, it
is possible to obtain a good estimate of the cloud trajectory
and thus predict when and how much the sunlight would
be occluded by clouds advancing towards the sun [3], [25].
To obtain cloud trajectory, cloud segmentation, and motion
estimation has to be performed.

In this work, we propose a novel Deep Learning based
irradiation prediction algorithm that combines strong prior
knowledge, statistical features, and data-driven learning for
regression into a seamless framework. Given a sequence of
sky images, where we know where the sun is through the
calibration step, we first detect the presence of a cloud and
its velocity to define a prediction zone. This prediction zone
is where the clouds, if any, will likely move in to occlude
the sun. Features about pixel values from the prediction zone,
together with time stamps and cloud speed, are used to train
multiple binary classifiers that will predict irradiation drop in
the predefined interval. Results from multiple classifiers are
combined in a unique way using a hierarchical decision tree
to obtain the final prediction.

Our major achievement is in formulating the PV forecast
framework, which is usually tackled by regression approaches,
as a classification problem. The output of the model is the
decision of whether irradiation will be dropped by some pre-
defined amount in the pre-defined time horizon based on
whether the clouds are present or not in the prediction zone.
Moreover, we developed a Transfer Learning technique to
show the generalization of the proposed approach for new
location deployment when sufficient data from that location
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Fig. 1. The workflow of our classification-based solar prediction. Results of motion estimation (first image from left) and cloud detection (second image from
left), with the prediction zone shown in the purple region extending from the sun position in the right image. The color of the segmentation map indicates
the classification probability of the clouds, with dark red/blue being 1/0.

is not available to train any Deep Learning based PV forecast
algorithm.

We tested the model on historical Princeton data and
achieved an average accuracy of 92% for irradiation drop pre-
diction events within a 5-15 minute time horizon irrespective
of weather conditions. Next, we apply transfer learning on new
location data from the Crystal substation of Holy Cross Energy
(HCE) in Colorado, where the amount of training data was less
than ≈ 30% than that of the base location Princeton. Even with
considerably less training data, the proposed approach was
able to achieve the same level of forecasting accuracy. This
study shows that a convolutional neural network (CNN)-based
irradiation prediction algorithm with a classification approach
offers great potential. The portability of the approach in the
new locations using Transfer Learning with limited data also
offers the possibility of developing such a system that can be
used for new target regions in widely different climates.

II. RELATED WORK

As mentioned before, to estimate sun occlusion and corre-
sponding irradiation drop event, cloud trajectory estimation is
an essential step. Cloud segmentation and motion computation
are needed to predict cloud trajectories. Most earlier cloud
segmentation techniques were based on color features [5],
[11], [16]. Feature engineering is performed either by cloud
detection methods [6], [11], [19] or by statistical RGB analysis
methods [5]. For cloud detection, algorithms based on support
vector machine (SVM) and Random Forest were used in the
past [26]. Pedro et al. presented a detailed analysis of different
sky image feature engineering methods [16], [17]. For mo-
tion estimation, Kalman filtering and variational optical flow-
based methods were proposed in literature [4]. Most cloud-
to-irradiance models for sky imagers are based on similar
methods as satellite-based models, which are discussed in
detail by Inman et al [9]. However, these image feature ex-
traction methods are mostly manual in nature which increases
the deployment and transfer costs. Conventional approaches,
particularly for cloud detection, lack principled solutions to ro-
bustly adapt to the different sky (color) appearance from early
morning to late afternoon, lens glares, and camera-induced
small exposure change. To automatically and effectively obtain

useful features from sky images, convolutional neural network
(CNN)-based hybrid models are proposed in recent literature.

Deep learning-based models are commonly used nowadays
for intra-hour solar forecasts [2] due to their ability to produce
robust and generalizable irradiation prediction results [2], [20],
[23]. CNN is one of the most established Artificial Neural
Network structures [28], that surpassed the accuracy of classic
segmentation techniques relying on color space thresholding.
Other than CNNs, recurrent neural networks (RNNs), such
as long short-term memory (LSTM) and gated recurrent unit
(GRU) have been employed to predict irradiance as a time-
series [1], [8], [23], [27], [29]. LSTM has been used to
forecast short-term solar integrated load [18], [29], showing
better accuracy against traditional models such as ARIMA,
and multivariate linear regression. LSTM can “memorize” past
information and make classification or prediction from new
data that takes into account the intrinsic dynamics of the
data. Since LSTMs require long training time, GRU has been
applied for short-term PV forecasts [7], [8], [27].

The aforementioned approaches usually employ multiple
sub-models to perform feature extractions and time series pre-
dictions separately. End-to-end methods that integrate multiple
modules into a single framework have also been proposed
to perform inference [13]. However, the end-to-end approach
would have to incorporate motion estimation, cloud segmen-
tation, and irradiance learning into a single black box, which
could be risky to train without a careful design. So, we propose
a multi-step solution where after detecting the presence of the
cloud and its velocity separately, another module is used to
predict irradiation drop in the predefined interval.

III. METHODOLOGY

Figure 1 shows the proposed workflow for classification-
based solar irradiation prediction. Given 2 consecutive sky
images, the first step is to segment the cloud pixels and
estimate the cloud motion field using an optical flow tech-
nique. The yellow arrows in the left-most image show the
motion vectors at the cloud locations. From the average cloud
velocity, a prediction zone is defined and extracted as shown
in red in the second image (from the left) in Fig. 1. Next
features from the prediction zone are given as input to a Deep
Neural Network (DNN) for irradiation drop prediction in the



Fig. 2. Example results of motion estimation (left) and cloud detection (right),
with the prediction zone shown in the purple region extending from the sun
position in the right image. The color of the segmentation map indicates the
classification probability of the clouds, with dark red/blue being 1/0.

predefined time horizon. Each of the steps is described in detail
in the following subsections.

A. Cloud Analysis from Sky Images

To predict current to near-future sun occlusion, the presence
of a cloud along with its motion should be estimated from
the sky images. We model the first task as a binary pixel-
wise classification (identifying cloud and non-cloud pixels),
and the second task as an optical flow (i.e., 2D pixel motion
map) regression. For cloud detection, we employed a neural
network [15] which is trained using color and motion-based
features. For motion estimation, we adopted dense optical
flow implementation from OpenCV and found the results are
reasonably good. Example results for cloud detection and
motion estimation are shown in Fig. 2.

B. Prediction Zone Estimation from Global Cloud Motion

Next, we define a prediction zone in the sky images. If
this zone contains any clouds, then there is a high probability
that those clouds will move in to occlude the sun in the
considered time horizon. We define the prediction zone as a
2D band [24] starting from the sun position and extending
in the opposite direction of the global cloud motion (see a
purple rectangle in Fig. 2), which is computed by averaging
the motion orientations and speed.

First, the sun position si in 2D image space is ob-
tained by projecting the current sun position in 3D sky
coordinates obtained from “The Astronomical Almanac”
[14], using the camera’s extrinsic and intrinsic parameters.
The global cloud motion vector is computed as

−→
Vi =∑H,W

x,y=1 γi(x, y) · vi→i+1(x, y) where γi = h(mi) · f(∥di∥2) ·
g(vi→i+1, di), with di(x, y) = (si,x − x, si,y − y) and h, f ,
and g functions of choices (e.g., exponential or polynomial).
The length of the prediction zone Z is proportional to the
prediction time horizon and cloud speed. The orientation of
Z is aligned with the incoming direction of the cloud’s global
average motion.

C. Binary DNN Classifier-based Irradiance Drop Prediction

Once the prediction zone is estimated, next it is segmented
into multiple patches that correspond to different prediction
time horizons, as illustrated in the third picture in Fig. 1. To
make a prediction at the time horizon dT, a DNN takes as
inputs a pair of patches that corresponds to time horizons 0 and
dT. The output is a class label, which is encoded as an integer
based on the irradiance difference between the current and

Fig. 3. Proposed DNN architecture that takes a pair of patches and outputs a
class label. (b) One way to combine multiple binary classifiers for regression
purposes.

Fig. 4. Hierarchical Decision Tree to combine multiple binary classifiers.

future values. The right-hand side of Fig. 1 is further illustrated
in Fig. 3, where the two extracted patches, an example DNN
structure, and the output label are shown.

There can be two design choices for the DNN. The first
is to have a multi-class classifier, with each class label cor-
responding to a predetermined value of irradiance drop. The
second choice is to design multiple binary classifiers whose
class labels correspond to a decision on whether the irradiance
drop is larger than a predetermined threshold. The multiple
binary classifiers can then be combined to make a prediction of
different irradiance drops. We evaluated both approaches and
identified that the predictions based on binary classification
for a sequence of pairs provide better results.

Thus, to better approximate the amount of irradiance drop
ranging from 100-1000 W/m2, we developed multiple binary
classifiers each one having class labels corresponding to a
decision whether the irradiance drop is larger than a predeter-
mined threshold. In this approach, we train one binary classi-



Fig. 5. Steps for the transfer learning process.

fier each for thresholds 100, 200, 300, 400, and 500 W/m2,
with each classifier predicting a drop at the corresponding
threshold. Post training, we use a tree-based decision structure
as shown in Fig. 4 to classify under which range the irradiance
drop lies.

D. Transfer Learning Irradiation Prediction Network on New
Location Data

The DNN model is initially trained using historical Prince-
ton location data as sufficient multi-year data was available.
However, the model has to be deployed in the Crystal sub-
station of Holy Cross Energy (HCE) in Colorado location,
where sufficient data was not available. For training another
DNN model for the HCE location from scratch, it is not
possible to get enough samples for a strong performance on
the predictions. So, the trained model with Princeton data was
used to predict on HCE data. As expected, a significant drop
in the forecasting prediction accuracy (≈25% MAPE drop)
was observed when trained and tested on data from different
cameras and locations. Analysis of the results shows that the
color appearance difference between training Princeton sky
image data and test HCE sky image data played a major role in
the accuracy drop. Additionally, cloud dynamics and camera
field of view differences were other sources of errors. Such
difference indicates the major divergence in the data domain
that introduced bias in the model.

To address the above-mentioned issues of training with the
new data set, the most popular solution is to apply Transfer
Learning to “re-train” the DNN model with the new data
available. Transfer learning leverages feature representations
from a pre-trained model without requiring training a new
model from scratch. The weights obtained from the pre-
trained model are used to initialize the weights of the new
model while training on new data. Including the pre-trained
models in a new model leads to lower training time and
lower generalization error. However, using pre-trained models
for new tasks/domains is not that easy to apply as different
data domains may have different feature spaces or different
marginal distributions.

The steps followed for transfer learning are shown in Fig.
5. Once we get the Princeton pre-trained model, we instantiate
the base model. The new model is initialized using the pre-
trained weights. We kept the layers from the pre-trained model
frozen to retain all the learning that has already taken place.

However, the base model has more units in the final output
classification layer. When creating the base model, we ex-
plored both options of using the same classifier unit or adding
a new output layer after removing the old complex one to

Fig. 6. Network architecture modification during transfer learning.

suit our target problem. The second option worked best in
our case where we settled for a single fully connected layer.
Figure 6 demonstrates the modifications performed during
transfer learning. Finally, we trained the model and performed
finetuning to improve its performance. Fine-tuning is done by
unfreezing the base model and training the entire model again
on the whole new dataset at a very low learning rate. The low
learning rate increases the performance of the model on the
new HCE dataset while preventing over-fitting.

Different hyper-parameters were explored: (i) optimizers
(e.g., stochastic gradient descent with and without momentum,
ADAM, RMSprop), (ii) schedulers to adjust the learning rate
based on the number of epochs (StepLR is used), (iii) regu-
larization techniques to fight the overfitting problem. Further,
the training dataset size was increased by sampling more drop
events from the given time span raw data. Using this transfer
learning approach, one binary classifier each for thresholds
100, 200, 300, 400, and 500 W/m2 were trained. Post training,
the decision structure shown in Fig. 4 was used to combine
the decisions from multiple classifiers.

IV. EVALUATION

A. Dataset

Data was collected in two locations: Princeton New Jersey,
and Holy Cross Energy Crystal station (3.5MW) in Colorado,
USA. The hemispheric sky images (180◦/360◦) were captured
at an interval of 5 seconds spread over 12 hrs. per day
with Mobotix MX-Q24 (Princeton location) and Mobotix
Q26D (Colorado location) fish eye cameras. Corresponding
irradiance measurements were collected using Kipp&Zonen
SMP10 and SMP11 pyranometers in units of W/m2 during the
same time. The cameras were calibrated using the OcamCalib
Toolbox [22] to obtain fisheye camera intrinsic parameters that
are used for projecting the original image in Spherical coor-
dinate to Cartesian coordinate for further image processing.

B. Evaluation Metric

We used Mean Absolute Percentage Error (MAPE) to
measure prediction accuracy as used traditionally in statistics
for evaluating a forecasting method [2], [12]. MAPE is the
average of the absolute percentage errors of forecasts. Error
is defined as the actual or observed value (dt) minus the



Fig. 7. Irradiation Prediction Evaluation Conditions.

Fig. 8. Prediction for HCE data. Blue, yellow, and black curves are,
respectively, the ground truth irradiance, the predictions, and the base values
which we add the (predicted) differences to generate the final predictions.
The orange boxes in the sky image are the patches used for classification for
the 5-minute time horizon. Because the wind speed is high, not all prediction
horizons are available in the images which have a limited field of view.

forecasted value(ft). Percentage errors are summed without
regard to sign to compute MAPE over all the n forecasted
instances. It is defined as follows:

MAPE =
100%

n

n∑
t=1

|dt − ft
dt

| (1)

For several applications, it is noticed that it would be
sufficient if the predicted irradiation drop value is within ±σ
of the actual irradiation drop value, where the actual value
of σ is user-defined (refer Fig. 7). Moreover, if the predicted
drop event is within ±τ second of the actual drop event, then
it would not have a significant impact on the downstream
application (refer Fig. 7). Therefore, during the evaluation of
the proposed approaches, we computed MAPE for different
values of σ and τ that show the robustness of our approach
in varied conditions.

C. Results

As mentioned before in Section II.D, the proposed DNN
model was initially trained using historical Princeton data
captured during 2015 and 2017, which consist of 20,175 noise-
free samples. We evaluate the forecasting algorithm using
5,000 samples of 2016 Princeton data (i.e., unseen data during
training) on three different prediction horizons: 5, 10, and 15
minutes. Results of evaluation for different values of σ and
τ are shown in Table 1. It can be observed that during a
5-min ahead prediction horizon, if the predicted irradiation
drop value w.r.t the observed value is within ±50W/m2, the

classifier can predict the event within ±30sec time window
with an average 10% error. The accuracy increases if the
allowable drop value difference or the event detection window
is more relaxed. Our current results achieve an 8% average
MAPE for 15 minutes ahead prediction horizon on Princeton
test data. The proposed approach shows robustness against dif-
ferent parameter variations. Depending on user requirements,
it offers flexibility in choosing the right parameters best suited
for the application while performance is still guaranteed.

Next, we evaluated the performance of the model after
transfer learning on HCE data was performed. One example
prediction instance with frequent irradiance drop in a cloudy
sky scenario is shown in Figure 8. Fine-tuning was done with
6,214 samples of HCE data and then evaluation was performed
on 1584 samples of unseen data. Similar to Princeton data,
performance evaluation was done using MAPE when the
predicted irradiation drop value is within ±σ of the actual
irradiation drop value, and the predicted drop event is within
±τ second of the actual drop event (refer Fig. 7). Results of
evaluation for different values of σ and τ are shown in Table
2. It can be observed that fine-tuning significantly improved
overall performance. During the 5-min ahead prediction hori-
zon, if the predicted irradiation drop value w.r.t the observed
value is within ±150W/m2, the classifier can predict the event
within ±30sec time window with an average 11% error. The
accuracy increases if the allowable drop value difference or
the event detection window is more relaxed. We achieved an
average 8% MAPE within 1 minute of the actual drop event
(within a 5-minute time horizon) which is quite acceptable
considering the challenges, like, low training dataset size, and
task complexity under high environmental variation. Thus,
the proposed approach shows strong generalization capability,
robustness, and portability of the baseline model in a newly
deployed location where the availability of enough data for
training is typically scarce.

V. CONCLUSION

In this paper, we propose novel a Deep Learning-based
approach for short-term irradiation forecast based on a clas-
sification approach. This is a completely new direction to
handle this problem which is usually tackled by a regression
approach. Moreover, we developed a Transfer Learning tech-
nique to show the generalization capability of the proposed
approach for new location deployment when sufficient data is
not available to train any Deep Learning based PV forecast
algorithm. Further, we redefined the evaluation criteria for
irradiation time-series forecasting that is more intuitive and
usable by users offering greater flexibility and higher accuracy.

On historical Princeton data, we obtained 92% average
accuracy for irradiation drop prediction events within 1 minute
of the actual drop event. Even after applying Transfer Learning
on the Crystal substation of Holy Cross Energy data, we were
able to achieve the same level of average irradiation prediction
accuracy. This shows the robustness of the proposed approach
while deployed under different locations with geographical,
environmental, and sensor variations.



MAPE
Prediction Horizon τ = 30sec τ = 60sec

σ = 0 σ = 50 σ = 100 σ = 150 σ = 0 σ = 50 σ = 100 σ = 150
5 min ahead prediction 12% 10% 9% 7% 8% 6% 5% 4%
10 min ahead prediction 12% 11% 9% 8% 9% 7% 6% 5%
15 min ahead prediction 17% 15% 14% 13% 12% 11% 10% 9%

Average 11% 8%
TABLE I

PERFORMANCE OF THE PROPOSED DNN MODEL FOR MULTI-HORIZON IRRADIATION DROP PREDICTION TESTED ON 5K SAMPLES OF PRINCETON DATA.

MAPE
Prediction Horizon τ = 30sec τ = 60sec

σ = 0 σ = 50 σ = 100 σ = 150 σ = 0 σ = 50 σ = 100 σ = 150
5 min ahead prediction (before fine-tuning) 23% 21% 21% 18% 21% 19% 18% 15%
5 min ahead prediction (after fine-tuning) 18% 15% 12% 10% 11% 9% 7% 5%

Average after fine-tuning 14% 8%
TABLE II

PERFORMANCE OF DNN MODEL FOR 5-MINUTE AHEAD PREDICTION TESTED ON 1.5K HCE DATA SAMPLES.
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