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Abstract

Optical spectroscopy-based on-line monitoring of Hanford processing streams can enable real-
time characterization of chemical composition of process streams and batches, ultimately
enabling and enhancing process control. It can provide immediate feedback on process
conditions and has the potential to reduce the needed number of grab sample collections, thereby
reducing times and costs associated with laboratory processing.

Here we discuss the utilization of Raman spectroscopy to quantify multiple target analytes that
are common within Hanford tanks and waste processing streams. Analytes include: nitrate, nitrite,
carbonate, chromate, sulfate, phosphate, hydroxide, oxalate, ammonia, and aluminate. Most
notably in this work, Raman applications to low-concentration streams are explored and
optimized. Raman instrument specifications are compared; specifically, the impact of utilizing
three different Raman excitation wavelengths, 405, 532, and 671 nm, is discussed. Also, Raman
data collection parameters such as collection time and spectral averaging are measured and
discussed.

Finally, optical libraries of chemical targets were collected using optimized collection parameters
and chemometric models were built to automate quantification of chemical targets. These models
were validated through application to simulants and real Hanford process samples. Chemometric
models performed well on both training and validation sets, suggesting these approaches can be
successfully applied to on-line and real-time monitoring of low concentration Hanford processing
streams.

The use of the combine Raman wave lengths with the enhanced chemometric models for the low

concentration streams significantly improved the chemical detection levels and significantly
reduced uncertainties of those measurements.
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Summary

Optical spectroscopy-based process monitoring approaches are powerful tools for gaining insight
into chemical composition information of a given process stream. Optical approaches can provide
a range of chemical information, a key example being Raman spectroscopy which was used in
this work to identify and quantify molecular species. Specifically, Raman spectroscopy was used
in conjunction with chemometric modeling to quantify nitrate, nitrite, carbonate, chromate, sulfate,
phosphate, hydroxide, oxalate, ammonia, and aluminate.

Previous demonstrations verify that Raman spectroscopy can be successfully applied to
characterization of real Hanford waste streams. However, questions were present regarding
whether Raman could be applied to low concentration streams created during the immobilization
of the waste. An example being the melter off-gas condensate, where on-line monitoring could
potentially help maintain accountancy as streams are recycled back into subsequent process
batches. This project sought primarily to address these concerns and enhance Raman limits of
detection by optimizing instrument specifications and collection parameters. This included
comparing Raman response from three different commercially available Raman systems using a
405 nm (blue), 532 nm (green), and 671 nm (red) laser excitation source. Signal intensity
increased with a decreasing excitation wavelength. Also, parameters such as collection time and
spectral averaging were optimized to improve system sensitivity. Overall, while the blue system
exhibited the highest sensitivity, the green system presented the best compromise between
increased sensitivity with limited introduction of the fluorescence background that interfered with
the blue measurements. Similarly, increased sensitivity was observed with longer collection times
and higher averaging rates but a comprise was required to increase sensitivity without requiring
excessive time periods between data outputs.

After identifying optimized collection parameters optical training sets were collected capturing the
fingerprints of the 10 target analytes across a concentration range of interest for process streams
such as the melter off-gas condensate. These data sets were used to build chemometric models
for quantifying targets in real-time. A variety of modeling approaches were explored to maximize
model accuracy and efficiency. Comparisons between models built to utilize only one Raman
system (red, green, or blue) and models that simultaneously used data from all three systems
(multiblock modeling) were completed. While both approaches performed well, the multiblock
approach produced the highest accuracy, lowest uncertainty, results.

Models were applied to spectra of simulants and real Hanford waste processing samples obtained
from the PNNL Radioactive Waste Test platform. Models performed well, accurately quantifying
key targets at low concentrations. Overall, this demonstrates Raman monitoring can be
successfully applied to low concentration Hanford streams. This report was completed under the
NQAP NQA-1 program at the basic research technology level.
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Acronyms and Abbreviations

cv Cross validation

HLW High level waste

LAW Low activity waste

LOD Limit of detection

LWR Locally weighted regression

PLS Partial least squares

PNNL Pacific Northwest National Laboratory
RMSEC Root mean square error of calibration
RMSECV Root mean square error of cross validation
RMSEP Root mean square error of prediction
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1.0 Introduction

On-line monitoring, or real-time and in situ process characterization, is the optimal route to provide
comprehensive characterization of process streams to reduce uncertainties surrounding stream
composition. Currently, on-line monitoring techniques are used in a variety of industries where
they have enabled significant improvements in process control and reductions in process costs,
particularly related to sampling(De Beer et al. 2011, De Leersnyder et al. 2018). Numerous tools
are available on the market to provide a robust range of process information. Characterization of
chemical composition is particularly valuable for chemical process control and verification.

Optical spectroscopy-based monitoring approaches are uniquely suited to providing detailed
chemical composition information on a process stream(Bryan et al. 2011, Casella et al. 2015,
Nelson et al. 2021, Tse et al. 2020). First and foremost, optical approaches can provide a range
of chemical information, enabling identification and quantification of elemental and molecular
species within the process stream. In addition to this, optical approaches are generally mature
and can be flexibly integrated into a variety of process types(Clifford et al. 2021, Felmy et al. 2021,
Schroll et al. 2016). As an example, optical spectroscopy probes can be plumbed into hazardous
environments and are robust enough to withstand radiation dose, corrosive media, high
temperatures, and wide ranges of pressures. Note, that while probes can be located in hazardous
environments, instrumentation and control equipment can be located in distant, safe locations
with only fiber optics traversing the space between detectors and probes.

These techniques are highly applicable to low activity waste (LAW) and high level waste (HLW)
process streams that need to be monitored within the tank farms to support compliance, corrosion
control, and process control. Of particular interest is Raman spectroscopy, which can be used to
uniquely identify and quantify numerous tank waste anions (Bryan et al. 2006, Lines et al. 2019,
Tse et al. 2020). Figure 1 presents a chart listing the top chemical contributors to Hanford waste
by mass, along with the Raman signatures of the nine Raman-active species from that list. Raman
spectroscopy methods and equipment are both mature and commercially available. Furthermore,
these systems have been assembled into continuous on-line monitoring systems by PNNL to
support Hanford single-shell tank retrievals, engineering-scaled tests at PNNL to support waste
pretreatment (Bryan et al. 2006), and, more recently, to support nuclear fuel reprocessing (Lines
et al. 2019). Raman technology is ideal for applications to on-line monitoring of tank materials
because of the simple yet powerful way this form of spectroscopy works. Raman is a fast (~1 to
5 second measurement), nondestructive technique that relies on interrogating a system with an
excitation laser and picking up the inelastically backscattered light. An optical window or
penetration port is all that is required to allow Raman interrogation of a stream. The Raman probe
itself contains only optics and no electronics, which enables it to maintain a long functional lifetime
in radiation and chemically harsh environments. All electronics including the laser excitation
source, field deployable detector, and computer for analysis can be located at the other end of
fiber optic cables, as far away from hazardous environments as needed.
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Figure 1-1. Estimate of the metric tons of the most common constituents of Hanford tanks

(left), spectral signatures of common Raman active species present in tanks
(right)

When combined with chemometric analysis, a form of machine learning, on-line monitoring
systems can be developed to analyze spectra and output results in real-time (Felmy et al. 2021,
Lines et al. 2020, Lines et al. 2019). This facilitates the transformation of raw data into refined
information that can be used by a process operator to easily understand process conditions
(Beebe, Pell, and Seasholtz 1998, Bro and Elden 2009, Gallagher et al. 2006). The project team
has experience not only in developing these systems, but also working with a small business
partner to commercialize the equipment and chemometric models into systems that can be
procured commercially and then maintained by the small business (Nelson et al. 2018, Nelson et
al. 2019).

The net benefits and alternative options for the proposed future operational sampling regime for
the Low-Activity Waste (LAW) Facility, were outlined in previous studies (PNNL-25835 and PNNL-
26996). Following issuance of these reports, the collective team agreed that significant potential
benefits could be achieved by focusing on process control through a material balance initiative
and extending the existing glass algorithms, which was not explicitly specified as part of the
original work scope. Targeting key analytes of concern emerged as a secondary area for
assessment as part of controlling critical operational parameters within the facility in real time.

Here we discuss efforts to expand applicability of the Raman technique to additional processing
streams. Previous demonstrations indicated successful application to real waste samples, e.g.
AP-105 solution after filtration and removal of Cs (Lines et al. 2019). However previous
demonstrations focused on process streams exhibiting relatively high concentrations of target
species. With the goal of applying this approach to low-concentration streams such as melter off-
gas condensates, current efforts have focused on optimizing techniques to reduce limits of
detection, improve accuracy for measuring low level concentrations, and to reduce measurement
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uncertianites. To overcome this challenge, two advancements have been pursued under current
work and will be discussed in subsequent sections:

1) Optimization of Raman specifications and data collection parameters

2) Building of chemometric models that apply multivariate analysis to complex Raman data
to extract key concentration information
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2.0 Experimental details

2.1 Instrument details

Raman spectrometers were procured from Spectral Solutions, Inc, and utilized thermoelectric-
cooled charge-coupled device detectors. Three Raman instruments were used here and equipped
with a 671 nm, 532 nm, and 405 nm diode laser respectively. The spectrophotometers’ spectral
ranges cover approximately 250 cm™ to 4000 cm™ with about 2 cm™ spectral resolution.
Integration times and averaging rates were varied and described below. Laser power settings
were also varied and described in the following sections.

2.2 Sample set preparation

Initial system optimization was performed on a subset of the full training set. This included the
nitrate samples which were expected to have one of the strongest Raman signals and the oxalate
samples which have the lowest intensity Raman signature. This subset was used to study the
effect of varying integration time, spectra averaging, and excitation laser power to determine the
optimal settings for the collection of the full training set.

The entire training set consisted of solutions prepared from the chemicals listed in Table 2-1. For
each set of samples in the training set, 10-12 solutions were prepared for each analyte spanning
the concentration ranges listed in Table 2-1. Al(NO3)s and NaAIO, solutions were prepared by
dissolving the solid in enough excess NaOH to dissolve the aluminum as Al(OH)4. All solutions
except the ammonium solutions were prepared with at least 0.1 M excess NaOH to maintain high
pH and better simulate the conditions of the actual tank waste samples. Validation set samples
included 10 solutions consisting of mixtures of 4 to 9 of the analytes in Table 2-1 in the lower
concentration ranges of the training set to test the chemometric model’s ability to quantify low
concentrations.

Table 2-1. Chemicals used for the training set including chemical origins, details, and
concentration ranges used

Analyte Chemical Details Concentration, M
NaOH Ricca, 10.0 N 0.05-8
AI(NO3)3(H20)e Sigma-Aldrich, 298% 0.001-1M
NaAlO, Sigma-Aldrich 0.001-1M
Na2COs Sigma-Aldrich, 299.5% 0.01-2M
NazCrO4(H20)4 Sigma-Aldrich, 99% 0.0005-1M
NaNO3 Sigma-Aldrich, 299.0% 0.01-3M
NaNO- Sigma-Aldrich, 299.0% 0.01-1M
NazPO4(H20)12 Acros Organics, 98+% 0.0005-0.5M
Na>S04 Sigma-Aldrich, 299% 0.0005-0.75 M
NazC204 Sigma-Aldrich, 299.5% 0.0005-0.15M
NHsNO3 Acros Organics, 99+% 0.005-5M
NH;OH J.T. Baker, 5N 05-5M

2.3 Chemometric modeling
Chemometric models were generated using the Eigenvector Research PLS toolbox (version
8.9) for MATLAB (version R2020b). Modeling approaches and details are covered in following
sections along with cross validation and figures of merit. Models can be loaded into Spectra
Solutions Inc. software SpectraChem to output real-time information in conjunction with spectral

collection.
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3.0 Optimization of instrument and collection parameters

As discussed in the Introduction, Raman spectroscopy is a particularly valuable optical approach
in Hanford processing because it can be used to identify and quantify a significant percentage of
tank components. However, given the variety of processing steps between removing liquid waste
from tanks and transferring material into its final waste form, a versatile technique that can follow
targets across a range of concentrations is needed.

A primary goal of current work is to expand applicability of Raman-based monitoring approaches
to waste processing streams exhibiting very low concentrations of target analytes. A key example
focused on here is the analysis of melter off-gas streams, particularly focusing on the off-gas
evaporate and condensate. Because these streams are recycled back into subsequent melter
runs, it is necessary to characterize the chemical constituents (even at their low concentrations)
to ensure conditions in the melter and composition of end product are controlled.

Previous demonstrations indicated Raman is a valuable technique for these streams (Lines et al.
2019), however the initial instrument specifications and collection parameters suggested limits of
detection (LOD) may not be ideal for analysis of low concentration condensate streams. Here
several optimization approaches are considered including utilizing different Raman excitation
lasers and modifying collection parameters such as integration time and spectral averaging.

3.1 Comparison of three Raman systems

Three separate Raman systems were evaluated to explore the ability to reduce LODs for key
targets of interest to Hanford waste processing schemes. These included Raman systems with
671 nm (red), 532 nm (green), and 405 nm (blue) excitation lasers. Figure 3-1 presents a picture
of the three flow cells being excited by the three differently colored laser systems. Previous
demonstrations on tank samples utilized a laser system with a 671 nm excitation, however Raman
signal is known to increase, thereby improving LODs, with lower wavelength excitation. There is
a tradeoff to be wary of in these systems, namely, signal strength may improve with lowering the
excitation wavelength but the likelihood of observing interfering florescence backgrounds also
increases.

Figure 3-1. Picture of samples within the red, green, and blue sample holders, illuminated by
the excitation lasers.
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A test set containing samples that could test a range of Raman response were utilized to
characterize and optimize instrument specifications and data collection parameters. This set is
outlined in the Experimental section (see Table 2-1) and contains samples with very strong (e.g.
nitrate) and very weak (e.g. oxalate) Raman fingerprints. An initial comparison of Raman
response across the three instruments, where all three lasers were set to ~100 mW power,
produced expected results. At similar laser powers, the signal from the blue system was higher
than that of the green system, which was higher than that of the red system. Figure 3-2 below
provides examples of spectra of a 3 M nitrate sample and demonstrates the significant
difference in signal response from the three systems.

4
45300 : : ; ;
x10 405 nm
4+ 2 532 nm |
671 nm
15
35 e
1
305 4
>
= 0 _
8 251 950 1000 1050 1100 1150
L, -
£
1.5 -
1 a
0.5 i
0

500 1000 1500 2000 2500 3000 3500 4000 4500
Wavenumber, cm'1

Figure 3-2. Raman spectra of 3 M nitrate on the red, green, and blue systems with 100 mW
laser power and 0.5 sec integration time. The inset shows the nitrate band.

Limits of detection followed expected trends, where up to a 15x improvement in LOD for nitrate
was observed between the red and blue systems when all systems were at the same ~100 mW
power and collection parameters were not further optimized. Table 3-1 lists the calculated limits
of detection from the various systems under various collection parameters and section 3.3
provides a collated overview of the best system specifications for analysis of low concentration
waste samples.

3.2 Optimizing collection parameters

In addition to varying excitation laser wavelength, varying collection parameters such as
integration time or spectral averaging can improve measured signal to noise. Collection time
describes the length of time the detector collects photons, where increasing collection time
correlates to collecting more photons, increasing observed signal. Spectral averaging describes
the number of spectra collected and averaged into a single spectrum before using the “final”
resulting spectra for analysis. Increasing the number of averaged spectra improves signal to noise
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PNNL-31681 Rev 0
ILM-RPT-005 Rev 0

ratio. From this it is clear that LODs can be improved by increasing either collection time or the
number of spectra averaged. However, similar to reducing excitation wavelength, there are
tradeoffs. Increasing collection time and spectral averaging increases the time it takes to gather
data, thereby forcing longer wait times between information (e.g. concentration measurement)
outputs.

To better compare the effects of changing collection time and spectral averaging, the laser power
for the red, green, and blue systems were set to different levels to maximize the signal of each
laser (220 mW, 20 mW, and 35 mW respectively). The nitrate and oxalate sample subset was
then measured on all three systems under variable collection times and number of spectra
averaged. Resulting LODs can be seen in Table 3-1 along with performance evaluation in section
3.3. As examples of the impacts of altering collection time and spectral averaging, Figure 3-3 and
Figure 3-4 present measured spectra under the varied conditions for all three Raman systems.

Nitrate 150 Oxalate
10000 F 4 cec : s
— e . —2sec
> —
"% —5sec -§ 1007 ?Osz:c
§ 5000 - 10 sec 4 [0)
E E 50 .
O 1 1 1 1 1
950 1000 1050 1100 1150 800 1000 1200 1400 1600 1800
x10*
—1sec 600 - 1sec
>al 2 sec ) - 2 sec
= = 5 sec
g 5 sec 2 400 10 sec
Q 10 sec Qo
c2r 7 £ 200 F g! g
0 0 i e
950 1000 1050 1100 1150 800 1000 1200 1400 1600 1800
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@ 4+ 5 sec | =
5 10 sec }1:3 500 |
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= | IS
0 0
950 1000 1050 1100 1150 800 1000 1200 1400 1600 1800

1
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Figure 3-3. Raman spectra of 3 M nitrate (left) and 0.15 M oxalate (right) measured on the
405 nm (top), 532 nm (middle), and 671 nm (bottom) systems as collection time
is varied from 1-10 seconds. On all three Raman systems spectral intensity
increases with collection time. Note, lasers were set to dissimilar power settings

Note, Figures 3-3 and 3-4 present fingerprints from common waste species (nitrate and oxalate)
that display strong and weak Raman fingerprints, respectively. Similar improvement of signal
intensity as Raman laser wavelength is decreased can be seen for either chemical target.
However, the impact is more notable in the weaker species, oxalate, because the ratio of signal
to noise is very clearly improved.
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Figure 3-4. Raman spectra of 3 M nitrate (left) and 0.15 M oxalate (right) measured on the
405 nm (top), 532 nm (middle), and 671 nm (bottom) systems as averaging rate
is varied from 1 to 100. On all three Raman systems the signal to noise ratio
improves as averaging rate increases

3.3 Final notes on optimized parameters and anticipated limits of
detection

Limits of detection were calculated using equation 3-1:
LOD = = Eq. 3-1
m

Where s is the noise of the blank and m is the slope of the line obtained by plotting the peak
intensity versus concentration (Harris 2007).

Table 3-1 below presents the calculated LODs for the chemical species of the nitrate and oxalate
subset as a function of laser system and collection parameters, as described in sections above.
Overall, general trends indicate LODs improve as excitation laser wavelength is reduced in
wavelength, from 671 to 532, and then 405 nm, under conditions of similar laser power for each.
Additionally, results improve as collection and averaging time increase, especially for the lower
signal oxalate spectra where the signal-to-noise is lower. There was up to a 12x observed
improvement in oxalate LOD increasing the integration time from 1 sec to 10 sec and up to a 72x
improvement by increasing the averaging from 1 to 10. Further increasing averaging from 1 to
100 improved the oxalate LOD by as much as 2000x.
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Table 3-1. LOD values for nitrate and oxalate varying laser power, integration time, and
spectral averaging for the 405, 532, and 671 nm excitation lasers. Spectral
preprocessing included a 1st derivative, normalizing to the water band, followed
by mean centering.

Analyte V\Ilz:\fietlae::gh, Pljvf/irr, Ir_}?;ger'azfcn Aveiage Avesrage Aveir;ge Ave;r(;age Av;:(r;?)ge
nm mwW

NOs’ 405 80 0.5 65.4-10* 22.2-10* 13.9-10* 2.88-10* 1.92-10*
405 35 1 703-10* 325-10* 187-10* 27.4-10* 6.38-10*
405 35 2 426-10* 157-10* 100-10* 10.1-10* 3.08-10*
405 35 5 129-10* 44.6:10* 34.7-10* 5.79-10* 0.90-10*
405 35 10 87.9-10* 33.0-10* 17.4-10* 2.11-10* 1.53-10*
532 100 0.5 63.7-10* 40.3-10* 19.3-10% 6.05-10* 2.13-10*
532 20 1 162-10* 82.1-10* 42.6-10* 6.62:10* 1.31-10*
532 20 90.9-10* 32.6-10* 27.2-10* 1.94-10% 1.22-10*
532 20 5 50.7-10* 12.7-10* 10.5-10* 1.04-10* 0.64-10*
532 20 10 19.1-10* 9.50-10* 7.22:10* 0.62-10* 0.28:10*
671 120 0.5 378-10* 194-10* 142-10* 42.0-10* 21.5-10*
671 220 1 124-10* 67.2:10* 36.6-10* 3.81-10* 1.67-10*
671 220 91.5-10* 25.4-10* 20.4-10* 1.85-10% 0.19-10*
671 220 5 20.8-10* 21.9-10* 7.32:10* 1.63-10% 0.25-10*
671 220 10 21.1-10* 5.68-:10* 4.35-10* 0.91-10* 0.31-10*

C,04* 405 80 0.5 392-10* 128-10* 132-10* 59.3-10* 8.79-10*
405 35 1 1960-10*  3020-10* 2670-10* 290-10* 124-10*
405 35 2 2170-10*  1940-10*  1210-10* 130-10* 25.8-10*
405 35 5 4570-10* 554-10* 242-10* 54.4-10* 22.5-10*
405 35 10 863-10* 312-10* 190-10* 23.0-10* 25.2-10*
532 100 0.5 610-10* 441-10* 213-10* 37.5-10* 16.8-10*
532 20 1 1780-10* 511-10* 368-10* 63.5-10* 9.68-10*
532 20 2 756-10* 237-10* 130-10* 19.5-10% 5.95-10*
532 20 5 187-10* 97.7-10* 49.2-10* 6.61-10* 3.32-10*
532 20 10 3670-10* 96.6-10* 50.6-10* 7.90-10* 1.82-10*
671 120 0.5 1600-10* 674-10* 618-10* 222-10* 37.0-10*
671 220 1 624-10* 163-10* 247-10* 64.9-10* 12.5-10*
671 220 2 523-10* 197-10* 114-10* 14.1-10% 4.96:10*
671 220 5 422-10* 113-10* 88.6:10* 18.2-10* 2.66-10*
671 220 10 135-10* 57.7-10* 36.6:10* 6.43-10* 1.56-10*

Initial analysis would suggest that collection parameters used for optical training set development
should focus on the blue system with the longest collection time and highest spectral averaging.
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However, there are key factors not emphasized by the nitrate and oxalate subset that need to be
highlighted before settling on collection parameters.

These can be highlighted with some initial spectra collected of real Hanford tank process samples,
which can be seen in Section 5.0. As an overview, the fluorescence background observed in
some oxalate samples can become a serious challenge for the blue system in some real waste
samples. With this in mind, it appears focusing on the green system may be the most beneficial.
Ultimately, complete training sets were collected on all three Raman systems. Benefits of this are
discussed in the modeling Section 4.0. Collection parameters were chosen based off results
presented in Table 3-1. All three systems were set to approximately 100 mW, spectral averaging
was set to 100, though collection time was reduced to 0.5 s to avoid saturation of detectors.
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4.0 Collection of training sets and building of chemometric
models

Following optimization of collection parameters, full training sets were collected on the red, green,
and blue Raman systems. Training sets were designed to focus heavily on low concentration
ranges, but included high data points to support efficient model training. Table 4-1 below lists the
target analytes and concentration ranges included in the training set. Note, the full training set
included 10 target analytes, all of which are common in tank waste and several of which pose
processing concerns in both low and high concentration stages of tank processing.

Table 4-1. Training set target analytes and concentration ranges
Analyte Concentration, M
NaOH 0.05-8
Al(OH)4 0.001-1M
COs* 0.01-2M
CrO4* 0.0005 -1 M
NOs 0.01-3M
NO2 0.01-1M
PO, 0.0005-0.5M
SO4* 0.0005-0.75M
C204% 0.0005-0.15M
NH4* 0.005-5M

The full training set included species that were not in the nitrate and oxalate subset. Figures
below present examples of optical fingerprints of targets, along with single variate calibration
curves used to calculate LODs of the targets. Table 4-2 then presents the LODs of all targets on
the red, green, and blue Raman systems under the collection parameters used for the training
set. Note, the single variate quantification approach is simplistic, and while it can provide some
powerful insight into system behavior, it is not robust enough to be applied in complex solutions.
Following sections will provide further insight into observed spectral complexity and advanced
analysis approaches that can accurately handle this data while minimizing uncertainty in
quantification.

Collection of training sets and building of chemometric models 20
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Table 4-2. LODs for target analytes on the red, green, and blue systems. Spectral
preprocessing included a 1st derivative, normalizing to the water band, followed
by mean centering.
Analyte V\f:\(/:elztlztr:zsh, PI:\;er, Ir_:_:;ger:a;ci;)cn Ave{age Ave;age Avelr(;age Avesrc;age Avlegzge
nm mwW
NaOH 405 80 0.5 1020-10* 280-10* 230-10* 136-10* 26.0-10*
532 100 0.5 2480-10% 708-10* 535-10* 117-10* 47.2-10*
671 120 0.5 5370-10* 3080:10* 2480-10* 1080-10* 458-10*
Al(OH)s 405 80 0.5 247-10* 149-10* 100-10* 21.0-10% 11.9-10*
532 100 0.5 445.10* 199-10* 192-10* 106-:10* 26.3-10*
671 120 0.5 2150-10* 1330-10* 878-10* 206-10* 90.4-10*
COs> 405 80 0.5 125-10* 56.7-10* 51.3-10* 15.0-10* 2.85-10*
532 100 0.5 204-10* 60.7-10* 50.8-10* 15.7-10* 6.65-10*
671 120 0.5 988-10* 406-10* 317-10* 91.4-10* 43.4-10*
CrO4* 405 80 0.5 21.9-10* 6.91-10* 2.02-10* 0.31-10* 0.058-10*
532 100 0.5 11.0-10* 6.92-10* 5.09-10* 0.011-10* 0.52-10*
671 120 0.5 115-10* 70.9-10* 52.8-10* 11.1-10* 4.10-10*
NO3” 405 80 0.5 65.4-10* 22.3-10* 13.9-10* 2.88-10* 1.92:10*
532 100 0.5 63.8-10* 40.3-10* 19.3-10* 6.05-10* 2.13-10*
671 120 0.5 378-10* 193-10* 142-10* 42.1-10* 21.5-10*
NOz 405 80 0.5 211-10* 88.4-10* 49.8-10* 23.9-10* 3.55:10*
532 100 0.5 700-10* 221-10* 162-10* 58.6-10* 17.8:10*
671 120 0.5 1640-10* 711-10* 544-10* 333-10* 123-10%
PO,* 405 80 0.5 340-10* 81.3-10* 61.9-10* 41.0-10* 6.58-10*
532 100 0.5 297-10* 135-10* 117-10* 40.3-10* 8.67-10*
671 120 0.5 1970-10* 474-10* 446-10* 264-10* 33.3-10*
504> 405 80 0.5 94.7-10* 32.3-10* 16.7-10* 6.51-10% 2.89-10*
532 100 0.5 83.0-10* 61.2-10* 35.9-10* 6.11-10* 2.74-10*
671 120 0.5 443-10* 198:10* 131-10* 48.6-:10* 22.3-10*
C,04% 405 80 0.5 392-10* 128-10* 132-10* 59.3-10* 8.79-10*
532 100 0.5 610-10* 441-10* 213-10* 37.5-10% 16.9-10*
671 120 0.5 1600-10* 674-10* 618-10* 222-10* 37.0-10*
NH.OH 405 80 0.5 811-10* 606-10* 326-10* 86.9-10* 22.0-10*
532 100 0.5 1590-10* 804-10* 447-10* 98.6-10* 51.0-10*
671 120 0.5 5240-10*  1190-10*  1030-10*  275-10* 175-10*

Several chemometric modeling approaches were assessed for application to this system. Partial
least-square (PLS) regression was utilized for the analysis of this work. This technique has been
applied to other studies of complex systems (Lines et al. 2019, Lackey et al. 2020, Casella et al.
2016). Some of the analytes which produced a lower Raman signal and where the spectral
signature overlapped with the signatures of several other species (oxalate, carbonate, nitrite,
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hydroxide, phosphate) required the use of a locally weighted regression (LWR) model utilizing
30 of the most similar spectra to use in the PLS model instead of the entire training set. Spectra
were preprocessed by applying a 15t derivative, normalizing to the water band, and then
applying a mean centering before further analysis. Cross validation was done using venetian
blinds with 10 data splits and 1 sample per blind. Several modeling methods were compared to
determine the best approach for this system. In all models, each analyte was modeled
separately using a limited spectral range which encompassed only the spectral signature range
for each analyte. By doing this, the model is better able to ignore contributions from other
analytes which have signatures in different wavenumber regions. In the first modeling method,
each laser system was analyzed separately which can provide a comparison of the
effectiveness of each laser system in measuring each analyte. Example modeling results are
shown in Figure 4-2 for high signal (chromate and nitrate) and low signal (oxalate and
aluminate) species. Model statistics included the root-mean-error of calibration (RMSEC) which
is a measure of the model’s ability to predict the known concentrations of the training set, and
the root-mean-error of cross-validation (RMSECV) is a measure of model’s ability to predict
concentrations of training set data left out of the model during cross-validation. The statistics for
this model are shown in Table 4-3.

The second modeling method involved combining all laser data together into a multiblock
model. The results for these multiblock models for all analytes are show in
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Figure 4-3 and the modeling statistics are presented in Table 4-4. In this modeling method, the
model can use all available information from the three laser systems to build the models. This
can help the model compensate for weaknesses of specific laser systems by emphasizing other
laser system data. For example, the 405 nm excitation wavelength is absorbed by yellow
chromate solutions resulting in a loss of signal produced by that laser system. This can be seen
in Figure 4-2A where the parity plot for the 405 nm system is not linear. By combining the data
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from all three laser systems, the model can emphasize the data from the 532 and 671 nm
systems and results in a linear parity plot shown in
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Parity plots of training set models built for each laser system separately and

analyzing analytes separately. These example results include CrO4% (A-C), NOs
(D-F), C204% (G-l), and Al(OH)4 (J-L).
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Figure 4-3.

Parity plots of training set models built using multiblock modeling of all 3 laser

systems and modeling all analytes separately.
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Table 4-3. Modeling statistics for the models shown in Figure 4-2: RMSECV=uncertainty, M
LVs/ RMSEC / RMSECV (M) R(cal) / R¥(CV)
Analyte PCs
405 nm 532 nm 671 nm 405 nm 532 nm 671 nm
Cro.- ) 0.0311646/ 0.00340662 / 0.00343803/ 0.952595/ 0.999423/ 0.999423/
4 0.0864587 0.00530473 0.00573472 0.652312 0.998398 0.998398
NO~ ’ 0.0283222/ 0.0232122/ 0.0266677/ 0.996612/ 0.997724/ 0.996997/
3 0.0338791 0.0385515 0.0379185 0.995158 0.993931 0.994171
G0 3 0.000048145/ 0.000038941/ 0.000272238/ 0.999993/ 0.999996/ 0.999791/
24 0.0188283 0.000554652 0.00220596 0.488593 0.999173 0.988088
Al(OH)s 3 0.0917895/ 0.0139981/ 0.022476/ 0.644031/ 0.991721/ 0.978657/
4 0.170208 0.0168246 0.0278428 0.181233 0.988056 0.967416
Table 4-4. Modeling statistics for the models shown in Figure 4-3: RMSECV=uncertainty, M
Analyte LVs/PCs RMSEC / RMSECV (M) R?(cal)/R?(CV)
OH- 2 0.0829918/0.297851 0.99431/0.93796
Al(OH)4 2 0.0291948/0.035735 0.96399/0.94885
CO5%* 2 0.0095627/0.013426 0.99850/0.99776
CrO4* 2 0.0032201/0.005783 0.99949/0.99837
NO3" 2 0.0271728/0.038207 0.99688/0.99398
NOy” 2 0.0013885/0.003948 0.99990/0.99920
PO, 4 0.0006670/0.002860 0.99985/0.99785
S0.% 3 0.0084707/0.009485 0.99265/0.99078
C,0.* 3 0.0005393/0.004740 0.99917/0.93767
NH4* 2 0.0587489/0.117749 0.99845/0.99370

In chemometric modeling, the RMSECYV is defined as the root-mean-square-error between the
measured and known values used in cross validation, and can be interpreted as the uncertainty
(or the = concentration value with the same measurement units as the training set, M here) for
quantification results.(Faber and Bro 2002) As seen in Tables 4-3 and 4-4, RMSECV values
indicate lower uncertainty for several of the target species compared to others. This is clearer in
subsequent sections where these uncertainty values can be compared to anticipated
concentrations within real and simulated Hanford samples. Furthermore, an improvement in
uncertainty is generally observed in the single Raman laser models following the pattern of
red>green>blue. Interestingly, multiblock models generally perform at least as well as the green
single system models, and in some cases perform better than all single Raman system models.

Collection of training sets and building of chemometric models
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5.0 Application to Hanford tank processing samples and
simulants

The PNNL team had unique opportunities to capture optical data on several real-tank processing
samples’. Figure 5-1 presents the spectra of the characterized samples before application of any
preprocessing. Application of models to real sample data is an ideal way to determine model
performance. However, because the number and variability of real samples was limited, additional
simulant samples of Hanford tanks as well as additional validation samples were created and
integrated into the model validation data set. The additional validation samples were designed to
encompass the low concentration ranges of each analyte to better determine the lower limit of the
models. Table 5-1 describes all the samples in the validation set, including the real processing
samples, simulants, and additional validation samples. Note that for the real processing samples,
some analyte concentrations were determined by elemental analysis (Al, Cr, P, S) and assumed
to be present in solution as the molecular form presented in Table 5-1 (Al(OH)s, CrO%, PO4*,

S0O4?%).

Table)5—1. Samples included in the validation set with molar concentrations of each analyte.
Sample OH" Al(OH)4 COs* CrO4* NOs5 NOy PO,*> NoJts C,0,%
f:r;ijzi :::;gas — 000135 -  221E04 0276 8.07E-05 8.92E-04
’:\'Z;gfa‘iif'gas —  0.0135 — 000221 276 0.000807  0.00892
AP-105 1.24 0.523 - 0.00656 1.89 1.38 0.00882 0.0228 0.00180
AP-107
evaporator --- 1.86E-04 - 4.81E-06 8.10E-05 1.09E-04 5.29E-05 5.23E-05 ---
condensate
AP-107 and
evaporator 0.260 0.00671 0.336 0.276 0.0201 0.0432
concentrate
AW-102 -- 0.432 - 0.00987 1.74 1.16 0.0233 0.0250 0.00253
Simulant AP-105 1.41 0.640 0.440 0.00701 1.72 1.28 0.0201 0.0360 0.00201
Simulant S-109EF 2.04 0.520 0.611 0.0789 4.28 0.825 0.0249 0.140 0
Simulant S-109LF 0.451 0.0439 0.240 0.0182 1.54 0.077 0.0550 0.158 0
Simulant AY-102 1.56 1.02 1.03 0 0.057 0.001072 0.0110 0.0180 0.0329
Simulant AP-101 3.28 0.452 0.470 0 2.01 0.947 0.00833 0.0293 0.00982
Validation 1 1.49 0 0 0.00100 0.0150 0 0.0747 0 0.0150
Validation 2 0.752 0.00200 0.0200 0 0 0.0150 0 0 9.97E-04
Validation 3 0.498 0.149 0 0 0.747 0.198 0 0.0499 0
Validation 4 1.48 0.200 0.0501 0.0300 0 0.100 0 0 0
Validation 5 0.500 0 0.151 0 0.400 0 0.0998 0.00102 0
Validation 6 0.317 0.150 0 0 0.150 0 0 0.0801 0.00750
Validation 7 0.747 0.0750 0 0 0.225 0.0300 0.0400 0 0.0200
Validation 8 0.105 0.00200 0.396 0 0.155 0 0.00100 0.0990 0
Validation 9 0.991 0.248 0.396 0 0.462 0.199 0.0991 0.00102 0.0198
Validation 10 1.00 0.00401 0.150 0.00100 0.404 0.0998 0.00100 0.0990 0.00747

" These samples were collected during testing on the PNNL Radioactive Waste Test platform.

--- Analyte concentrations not measured during analysis.
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Figure 5-1. Raman spectra of real-tank processing samples measured with the 671 nm (left),
532 nm (middle) and 405 nm (right) systems. Each spectrum was measured at
0.1 sec integration time and represents an average of 200 spectra.
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Spectra of the real Hanford processing samples help highlight one of the challenges faced in
utilizing lower excitation wavelength Raman systems. Firstly, fluorescence is observed in
several samples with the greatest interference occurring in the 405 nm, or blue Raman system,
data, as seen in the last (blue) column of Figure 5-1. The 532 nm, or green Raman system,
shows some fluorescence interference but at a significantly lower level than the blue system.
Secondly, at least one common tank species, chromate being the key example in this data set,
strongly absorbs the 405 nm excitation light, making it difficult to quantify chromate or solutions
containing high concentrations of chromate with the blue system. The first challenge of
fluorescence can be mitigated by preprocessing data. Figure 5-2 contains examples of this
where the interferences observed in Figure 5-1 are significantly reduced on the preprocessed
data of Figure 5-2.

Ultimately the most important question is how well the chemometric models described in the
previous section can measure target analytes in the validation set. Figure 5-3 presents parity
plots demonstrating application of models to validation set data. Several models perform well,
including aluminate, chromate, nitrate, nitrite, phosphate, and sulphate models. Some outliers
are observed even in these model results. In these cases, spectral results clearly indicate the
presence of the chemical targets. This project team is working with the test platform team to
ensure sample characterization values presented here represent the same process analyzed
samples. Results for oxalate and carbonate show stronger deviations from known values. In the
case of oxalate, spectral signatures do not show any significant fingerprints for oxalate, despite
anticipated concentration ranges well within measurable range. Here it is possible that some
precipitation might have impacted solution composition by the time the on-line monitoring team
was able to characterize the samples. Similarly, differences in pH between the training set and
validation samples may have impacted carbonate results.

Quantitative model outputs combined with the uncertainty (RMSECV) values reported in Table

4-4 generally show excellent model performance for several key analytes within Hanford
processing streams and demonstrate successful application to low concentration samples.
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Figure 5-2. Preprocessed Raman spectra of real-tank processing samples measured with the
671 nm (left), 532 nm (middle) and 405 nm (right) systems. Preprocessing
included: 1st derivative, normalization to the water band, and mean centering.
Each spectrum was measured at 0.1 sec integration time and represents an
average of 200 spectra.
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Figure 5-3. Parity plots of training set models overlayed with validation set results built using
multiblock modeling of all 3 laser systems together.
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Table 5-2. Comparison of known Hanford waste, waste concentrate, and evaporate samples
used as analyte validation set concentrations compared to chemometrically
measured concentrations.

Sample Al(OH)4- CrO42' NOs” NOy PO43_ 5042- C2042-
AP-105 off-gas 000135 0000221 0276 8.07E-05  0.000892
condensate known

Measured + 0.024+  0.0006 + 0.288 + 0.0000+  1.8E-05+  -0.0091+  -0.0035%
RMSECV 0.036 0.0058 0.038 0.0039 286E-05 0.0095 0.0047
AFTIDEIER 0.0135 0.00221 2.76 0.000807  0.00892
evaporate known

Measured + 0.089+  0.0092+ 1.438 + 0.0000+ 00240+  -0.1019+  -0.1397+
RMSECV 0.036 0.0058 0.038 0.0039 0.0029 0.0095 0.0047
AP-105 known 0.523 0.00656 1.89 138 0.00882 0.0228 0.00180
Measured + 0.417 + 0.0037 + 1.906 + 15223+  0.0001+  -0.0284+  0.0000 +
RMSECV 0.036 0.0058 0.038 0.0039 0.0029 0.0095 0.0047

AP-107 evaporator

0.000186 4.81E-06 8.10E-05 0.000109 5.29E-05 5.23E-05
condensate known

Measured + 0.001+  1040E-06+ 714E-05+ 00000+  44.6E-05+ 253E-05+  0.0056 +
RMSECV 0.036 5783E-06  3821E-05 0.0039 286E-05 949E-05 0.0047
AP-107 and

evaporator 0.260 0.00671 0.336 0.276 0.0201 0.0432
concentrate

known

Measured + 0228+ 0.0107 + 1.831+ 1.0032+ 00000+  -0.0262+  -0.0990+
RMSECV 0.036 0.0058 0.038 0.0039 0.0029 0.0095 0.0047
AW-102 known 0.432 0.00987 1.74 1.16 0.0233 0.0250 0.00253
Measured + 0362+ 0.0099 + 1557 + 09735+ 00000+  -0.0277+  0.0000 +
RMSECV 0.036 0.0058 0.038 0.0039 0.0029 0.0095 0.0047
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6.0 Next steps for implementation into the Hanford Direct
Feed Low Activity Waste processing

In FY21 PNNL combined optimized wavelength RAMAN systems with chemometric analysis, a
form of supervised machine learning, to increase the sensitivity of the optical real-time systems.
The use of chemometric analysis facilitates the transformation of data into information that can
be used by a process operator to easily understand process conditions. The project team has
experience not only in developing these systems, but also working with a small business partner
to commercialize the equipment and chemometric models into systems that can be procured
commercially and then maintained by the small business.

The next steps for using the Raman system in the DFLAW process are outlined below.

o Perform initial lab demonstration of in situ monitoring of solution with Raman spool piece
in flow loop. This includes:

O

O

Establish necessary design features of Raman probe and spool piece:

Make design changes necessary to safely integrate Raman sensor and ensure
compatibility with the intended online/in-tank deployment locations

Identify appropriate target analytes and determine if Raman sensitivity is
appropriate for accurately quantifying targets in anticipated process
concentration ranges

Design and build spool piece for insertion of Raman probe into flow loop,
targeting design to integrate into jumper under future FY work

Enrich chemometric training set to expand applicably to additional tanks (building
on previous AP-105 focus) and build chemometric models

Integrate spool piece and probe into flow loop, characterize probe response and
test applicability of chemometric models

e Spool Design and Testing

O

Design and build spool piece for integrating Raman probe into flow loop test
platform

Identify target analyte(s) and enrich training sets to include expanded data for
enhanced applicability to tanks/processes. Build chemometric model(s) for real-
time quantification of target analyte

This will include collection of spectral training set, building and validating model
performance.

Collaborate with SMEs to verify spool piece design and integration plan are
appropriate

e Finalize the Raman technology for DFLAW field use.
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o Complete any on-line monitoring software modifications identified in FY22.
o Verify and validate automated analysis software.

o Complete safety evaluation(s) of Raman probe and deployment configuration
(e.g., spool piece) that are necessary for field deployment.

o Integrate Raman spool piece and probe into flow loop test platform

o Complete demonstration tests of probe ability to detect analytes and real-time
analysis software ability to quantify target analytes in real-time.

o Deploy for use.
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7.0 Conclusions

On-line monitoring is a powerful tool to gain insight into chemical processes. Optical approaches
such as Raman spectroscopy can provide chemical composition analysis, and uniquely identify
and quantify several key constituents of Hanford waste, including nitrate, nitrite, carbonate,
chromate, sulfate, phosphate, hydroxide, oxalate, ammonia, and aluminate. Furthermore, when
optical approaches are paired with advanced analysis such as chemometric modeling, highly
accurate data analysis can be achieved in real-time.

Automated data analysis such as this can be used to continuously monitor processes, enabling
real-time control and verification of process conditions, reducing the need for costly grab sample
collections. Work here demonstrated Raman spectroscopy coupled with chemometric analysis
can be successfully applied to the analysis of 10 key analytes within Hanford waste streams.
Specifically, optical instrument parameters such as Raman excitation wavelengths (671 nm, 532
nm, and 405 nm), spectral collection time, and averaging were optimized to obtain low limits of
detection and enable application to low concentration waste streams. Several chemometric
modeling approaches were explored, including models based solely on single excitation
wavelengths as well as multiblock models built using data from all three Raman systems
simultaneously.

Overall models accurately quantified multiple targets within both real and simulated tank
processing samples. Most importantly, optimization of Raman data collection and chemometric
modeling approaches enabled notable improvements in uncertainty of measured results. As an
example, for nitrate, limits of detection were dropped substantially as laser wavelength was
decreased from 671 nm to 405 nm. Further improvement was observed as collection parameters
such as collection time and averaging were also increased. This sensitivity translated to reduced
uncertainty (measured as the root mean square error of cross validation, RMSECV) when building
chemometric models. Overall, results observed here show successful application of Raman-
based monitoring approaches to the analysis of low concentration Hanford processing streams.

Conclusions
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