

Journal Pre-proof

Wave climate and energy resources in the Mariana Islands from a 42-year high-resolution hindcast

Ning Li, Gabriel García Medina, Zhaoqing Yang, Kwok Fai Cheung, David Hitzl, Yi-Leng Chen

PII: S0960-1481(23)00725-5

DOI: <https://doi.org/10.1016/j.renene.2023.05.093>

Reference: RENE 18835

To appear in: *Renewable Energy*

Received Date: 9 December 2022

Revised Date: 8 May 2023

Accepted Date: 22 May 2023

Please cite this article as: Li N, García Medina G, Yang Z, Cheung KF, Hitzl D, Chen Y-L, Wave climate and energy resources in the Mariana Islands from a 42-year high-resolution hindcast, *Renewable Energy* (2023), doi: <https://doi.org/10.1016/j.renene.2023.05.093>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Ltd.

CRediT author statement:

Ning Li: Conceptualization, Methodology, Investigation, Formal analysis, Data Processing Writing—original draft preparation, Writing—review and editing, Visualization.

Gabriel Garcia-Medina: Conceptualization, Methodology, Investigation, Formal analysis, Data Processing, Writing—review and editing, Visualization.

Zhaoqing Yang: Conceptualization, Methodology, Investigation, Resources, Writing—review and editing, Supervision, Project administration, Funding acquisition.

Kwok Fai Cheung: Conceptualization, Methodology, Writing—original draft preparation, Writing—review and editing, Supervision.

David Hitzl: Conceptualization, Writing—review and editing.

Yi-Leng Chen: Conceptualization, Writing—review and editing.

Wave climate and energy resources in the Mariana Islands from a 42-year high-resolution hindcast

Ning Li¹, Gabriel García Medina², Zhaoqing Yang^{2,3*}, Kwok Fai Cheung¹, David Hitzl⁴,
Yi-Leng Chen⁴

¹ Department of Ocean and Resources Engineering, University of Hawaii at Manoa, HI 96822, USA

² Coastal Sciences Division, Pacific Northwest National Laboratory, Seattle, WA 98109, USA

³ Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA

⁴ Department of Atmospheric Sciences, University of Hawaii at Manoa, HI 96822, USA

*Corresponding author: Zhaoqing.Yang@pnnl.gov

1 Wave climate and energy resources in the Mariana Islands from a
2 42-year high-resolution hindcast

3 Ning Li¹, Gabriel García Medina², Zhaoqing Yang^{2,3*}, Kwok Fai Cheung¹, David Hitzl⁴,
4 Yi-Leng Chen⁴

5 ¹ Department of Ocean and Resources Engineering, University of Hawaii at Manoa, HI
6 96822, USA

7 ² Coastal Sciences Division, Pacific Northwest National Laboratory, Seattle, WA 98109,
8 USA

9 ³ Department of Civil and Environmental Engineering, University of Washington, Seattle,
10 WA, 98195, USA

11 ⁴ Department of Atmospheric Sciences, University of Hawaii at Manoa, HI 96822, USA

12 *Corresponding author: Zhaoqing.Yang@pnnl.gov

13 **Abstract:**

14 A high-resolution wave hindcast from 1979 to 2020 was developed for Guam and
15 the Commonwealth of the Northern Mariana Islands, which are influenced by mesoscale
16 and synoptic weather systems from the western Pacific Rim to the Central Pacific. The
17 spectral wave modeling utilized structured global and unstructured regional grids with
18 improved resolution in nearshore waters, where wave resources development is most
19 feasible. The hindcast demonstrates its capability in capturing multi-modal seas through
20 reproduction of bulk and partitioned wave parameters derived from altimetry and buoy
21 measurements. The local wave climate is influenced by the year-round trade winds and
22 tropical cyclones as well as seasonal monsoons, frontal systems, and mid-latitude high-
23 and low-pressure systems. The strong intra-annual variation of the significant wave
24 height and power flux reflects transitions between local and distant weather systems,

25 which account for the diverse wave conditions comprised of short-period wind waves,
26 intermediate-period seas, and long-period swells around the islands. Among the Pacific
27 island regions, spectral partitioning is particularly important for describing the dominant
28 wave components by period and direction with pertinent information for energy
29 resources characterization and applications related to coastal engineering, ecosystem,
30 and management in the Mariana Islands.

31 **Keywords:** Wave hindcast, Wave climate, Wave energy resources, Partitioned wave
32 spectrum, Mariana Islands

33 **1. Introduction**

34 Most remote Pacific Island communities depend heavily on imported fossil fuels
35 as an energy source, which is vulnerable to natural disasters and market volatility. A
36 diversified energy portfolio including ocean wave resources is favorable for promoting
37 energy independence in these isolated locations with proximity to the ocean. The
38 Mariana Islands, located in the northwestern Pacific Ocean, are 2000 km from Japan,
39 the Philippines, and New Guinea (Figure 1a). The island group includes Guam, an
40 unincorporated territory of the US, as well as the most populous islands of the
41 Commonwealth of the Northern Mariana Islands (CNMI) - Rota, Tinian, and Saipan.
42 Although the islands are relatively small, their Exclusive Economic Zone (EEZ) covers a
43 large region (970,772 km²) with vast marine resources. On the inhabited islands, ocean
44 waves play a significant role in coastal hazard management, coral reef ecology, and
45 maritime activity all year round. To capture real-time wave conditions, a Waverider buoy
46 was installed at 200 m depth off the east shore of Guam in 2003. Two additional wave
47 buoys were deployed north of Guam at 500 m depth and north of Saipan at 487 m
48 depth in 2012 (Figure 1b). The buoy records provide vital information for coastal
49 activities but are insufficient to describe the complex wave climate due to sparse

50 coverage, island blocking, limited years of record, and irregular downtimes. Numerical
51 modeling, when appropriately validated, serves to extend the observation record by
52 creating a synthetic time history, which can support wave energy resource quantification
53 and coastal management activities.

54 Third-generation spectral wave models, such as WAVEWATCH III (Tolman and
55 Chalikov, 1996; Tolman 2006, 2008, 2009) and WAM (WAMDIG 1988, Komen et al.
56 1994), have been utilized with coupled model systems including atmosphere, land,
57 ocean, and sea ice components to produce wave hindcasts as part of global reanalysis
58 products. The ERA-interim reanalysis produced by the European Centre for Medium-
59 Range Weather Forecasts (ECMWF) includes wave data products from WAM for 1979
60 to 2019 at 1 arc-deg grid resolution (Dee et al., 2011). It was superseded by the recently
61 released ERA5 reanalysis, which provides a global wave hindcast from 1950 to the
62 present with 0.36 arc-degree resolution (Hersbach et al., 2020). The US National
63 Centers for Environmental Prediction (NCEP) produced comparable datasets such as
64 the Climate Forecast Reanalysis (CFSR) at 0.5 arc-deg resolution from 1979 to 2009
65 (Sara et al., 2010) and CFS version 2 (CFSv2) at 0.25 arc-deg resolution from 2010
66 onward (Saha et al., 2014). This facilitates development of global and regional wave
67 hindcast at 0.5 arc-deg to 4 arc-min resolution using WAVEWATCH III (Chawla et al.,
68 2012). The global hindcast datasets are suitable for wave climate and resources
69 assessment at the basin level (Stopa and Cheung, 2014a, b), but do not have sufficient
70 spatial resolution and provisions for shoaling and refraction in coastal waters around
71 many of the Pacific islands including the Mariana Islands. In addition, shadowing around
72 islands is a major local factor influencing available ocean wave resources in a multi-
73 modal sea state (Stopa et al., 2011).

74 The Centre for Australian Weather and Climate Research (CAWCR) developed a
75 1979-2009 wave hindcast for the Central and South Pacific with resolution as fine as 4
76 arc-min in coastal waters (Durrant et al., 2019). The Changing Waves and Coasts of the

77 Pacific project utilized an earlier version of the CAWCR hindcast to assess the wave
78 climate and seasonal variability for Guam (Durrant et al., 2014). The study focused on
79 bulk parameters such as significant wave height and peak period derived from the
80 combined sea state to provide a baseline assessment. Waves generated by local and
81 distant weather systems, which have surface winds of varying strength and fetch, can
82 have distinct heights, periods, and directions in the waters surrounding Guam
83 (Bosscherelle et al., 2014). To better understand the wave climate for Pacific islands such
84 as Guam and the CNMI, an in-depth investigation of wave components within the mixed
85 seas and their relationship with the near and far-field weather system is needed. The
86 latest versions of spectral wave models such as WAVEWATCH III and SWAN, also
87 known as Simulating WAves Nearshore (Booij et al., 1997; Booij et al., 1999), include a
88 watershed algorithm (Hanson and Phillips, 2001) to partition the frequency-direction
89 spectrum by dominant component. Wave parameters from the partitions can be used for
90 separate analyses of wind waves and swells to better quantify global and regional wave
91 resources (Arinaga and Cheung, 2012; Portilla-Yandún et al., 2015). The partitioned
92 wave parameters have the advantage over the bulk parameters in providing detailed
93 classification of energy resources by direction and frequency ranges (Ahn et al., 2022)
94 and facilitate their statistical analyses for more accurate projection of extrema (Portilla-
95 Yandún et al., 2020).

96 Under the US Department of Energy's nationwide Powering the Blue Economy
97 initiative, the Pacific Northwest National Laboratory (PNNL) in collaboration with the
98 University of Hawaii developed a high-resolution wave hindcast from 1979 to 2020 for
99 characterization of energy resources around the US coastal regions and affiliated
100 islands in the Pacific Ocean (García Medina et al., 2019, 2021; Yang et al., 2020). The
101 modeled island regions include the EEZs around Hawaii, American Samoa, Baker and
102 Howland Islands, the CNMI, Guam, Jarvis Island, Johnston Atoll, Palmyra Atoll,
103 Kingman Reef, and Wake Island in the central and western Pacific as illustrated in

104 Figure 2. The use of unstructured computational grids in SWAN (Zijlema, 2010) is
105 especially important for small islands by allowing a gradual, local refinement of the
106 spatial representation for complex bathymetry and jagged shores. This provides a more
107 accurate description of the wave shoaling, refraction, and dissipation in the nearshore
108 region, where wave energy resources development is most feasible. The wave
109 hindcasting follows the Technical Specification published by the International
110 Electrotechnical Commission Technical Committee 114 (IEC-TC 114) to assure
111 compatibility for resources assessment among oceanic and continental regions (García
112 Medina et al., 2019, 2021; Yang et al 2018, 2019). Li et al. (2021) utilized the hindcast
113 to study the wave climate in Hawaiian waters and complemented the IEC TS with the
114 use of partitioned spectra to characterize wave resources in multimodal seas.

115 Located in the northwestern Pacific Ocean, the inhabited Mariana Islands are
116 subject to waves influenced by ocean-surface winds originating from both Asia
117 continental and Pacific oceanic weather systems with unique characteristics among
118 other Pacific Island regions covered by the PNNL hindcast. Prior studies examined the
119 local wave climate (Durrant et al., 2014; and Bosserelle et al., 2014), but additional work
120 is still needed to explore its spatial-temporal relationship with weather systems and to
121 quantify the multimodal seas by component for meaningful applications. In the present
122 paper, we utilize the 42 years of high-resolution hindcast to investigate the weather
123 patterns and wave climate characterizing the wave energy resources for Guam and the
124 CNMI, while a companion paper in this special collection focuses on the PNNL hindcast
125 around the Samoan Islands in the South Pacific Ocean (García Medina et al., 2023).
126 Section 2 provides a summary of the hindcast model and data system from García
127 Medina et al. (2021) followed by validation with satellite altimetry and buoy
128 measurements around the Mariana Islands in Section 3. The validation includes an
129 analysis of the spectral partitions at the buoys, delineating dominant components in the
130 multimodal sea state for subsequent analyses. Section 4 links the representative wave

131 patterns and weather systems to investigate the sources of the multimodal seas. This
132 provides a framework to understand the composition and intra-annual variations of the
133 hindcast significant wave height and energy flux in Section 5. The concluding remarks in
134 section 6 includes key features of the wave climate, potential for wave energy
135 development, and applications of the data products in the Mariana region.

136 **2. Hindcast model and data system**

137 The wave hindcast system is comprised of the third-generation spectral models
138 WAVEWATCH III and SWAN with a suite of nested computational grids from the globe
139 to the Mariana Islands (Figure 2). WAVEWATCH III covers the entire globe at 0.5 arc-
140 deg, the central and western Pacific at 10 arc-min resolution, and the regions around
141 the US and affiliated Pacific Island territories at 4 arc-min resolution. The three levels of
142 model grids are two-way nested with direct information exchange during run time. The 4
143 arc-min regional grid, which extends about 1 arc-deg outside the EEZ of Guam and the
144 CNMI, serves as a transition from the Pacific Island grid by producing two-dimensional
145 spectral boundary conditions for the implementation of SWAN around the Mariana
146 Islands. The SWAN grid is built on an unstructured triangular mesh with resolution
147 refining from 5 km offshore to 100 m at the shore with less than 10% area change
148 between adjacent elements for smooth transitions (Figure 3). The grid flexibility allows
149 detailed local descriptions of the rugged shorelines, shallow shelves, harbors, and
150 marinas extending the model validity into nearshore waters with optimal efficiency.
151 Important coastal structures, not resolvable by the 100-m nearshore mesh, are
152 manually incorporated for proper geospatial representation in the model.

153 Accurate wave modeling requires a digital elevation model (DEM) that can
154 describe intricate seafloor features such as seamounts, shelves, channels, and
155 nearshore reefs in shoaling waters. We compiled a DEM from high-resolution
156 bathymetry and topography datasets for Guam and the CNMI with the Earth

157 Topography (ETOPO) Global Relief Model as the background. The datasets were
158 obtained from multiple sources and rectified with the World Geodetic System 84
159 spheroid and the local mean sea level as the horizontal and vertical datums. They are
160 listed in the order of precedence for computational grid generation:

161 • 2007 U.S. Army Corps of Engineers (USACE) LiDAR topography at 0.5 m resolution
162 for the entire island of Guam.

163 • 2008 US Navy & National Oceanic and Atmospheric Administration (NOAA)
164 multibeam bathymetry of Apra Harbor at 1 m resolution.

165 • 2001 USACE Scanning Hydrographic Operational Airborne (SHOALS) LiDAR
166 bathymetry to 40 m depth at 4 m resolution.

167 • 2007 USACE LiDAR bathymetry at 4 m resolution (limited coverage).

168 • 2007 University of Hawaii School of Ocean and Earth Science and Technology
169 (SOEST) multibeam bathymetry to 400 m depth at 5 m resolution.

170 • 2011 University of Hawaii SOEST multibeam bathymetry to 3.5 km depth at 60-m
171 resolution.

172 The multibeam datasets are available from the Pacific Islands Benthic Habitat Mapping
173 Center at the University of Hawaii (<https://www.soest.hawaii.edu/pibhmc/cms/data-by-location/>). The LiDAR datasets have recently been integrated into the Continuously
174 Updated Digital Elevation Model (CUDEM) - 1/3 Arc-Second Resolution Bathymetric-
175 Topographic Tiles (<https://www.fisheries.noaa.gov/inport/item/48051>).

177 The input forcing for wave hindcasting includes hourly surface winds with spatial
178 resolutions of 0.5 arc-deg from CFSR for 1979-2020 and 0.25 arc-deg from CFSV2 for
179 2010- 2020. Orographic effects are not fully resolved in the wind field but are unlikely to
180 influence the wave field due to the relatively small size of the Mariana Islands. The
181 CFSR and CFSV2 winds are well reproduced over the ocean and proven accurate in
182 wave modeling for other US regions (Allahdadi et al. 2019; Ahn et al. 2020; Garcia-
183 Media et al. 2019, 2021a, 2021b; Yang et al. 2017, 2018, 2019, 2020; Wu et al. 2020).

184 The ST4 source term package developed by Arduin et al. (2010) is used in
185 WAVEWATCH III and the spectrum is discretized into 24 direction bins following the
186 setup of the NCEP global wave forecast (Chao et al., 2003a; Chao et al., 2003b) and 29
187 frequency bins with a logarithmic increment factor of 1.1 from 0.035 to 0.505 Hz. In
188 SWAN, the default options for the source term, bottom friction, depth-induced breaking,
189 and triad interactions are used. The SWAN spectrum is discretized with 5-deg
190 directional bins and 31 logarithmically-spaced frequency bins from 0.035 to 0.505 Hz to
191 account for energy density distributions. The higher directional resolution is needed to
192 mitigate the garden sprinkler effects, which are amplified by refraction over the steep
193 volcanic island slopes. The model configuration is consistent with the hindcast for the
194 US West Coast, Alaska, and the Hawaiian Islands by following the IEC TS for wave
195 resources characterization.

196 We implement the model system for wave hindcasting around the Mariana
197 Islands for the period from 1979 to 2020. The 42-year hindcast dataset includes the bulk
198 and partitioned wave parameters such as the significant wave height, peak period, and
199 peak direction for all grid points within the SWAN domain as well as the frequency-
200 direction spectra along the 100-m water depth contour, at distances 2 and 5 km from
201 the shore, and at the three buoys near the islands. The computational time step is 2 min
202 for a balance of accuracy and efficiency, while the output interval of 3 hours is sufficient
203 to capture wave events from mesoscale weather phenomena. The dataset for the
204 Mariana Islands along with those for other US and affiliated Pacific islands will be
205 publicly available at the Registry of Open Data on AWS (Amazon Web Services) for
206 implementation in coastal environment studies, wave climate analysis, and energy
207 resources assessment.

208 **3. Validation of wave hindcast**

209 Satellite-borne altimeters have provided nearly continuous measurements
210 covering most of the ocean since the GEOSAT (GEOdetic SATellite) mission in 1985.
211 Despite the long orbital repeat cycle, the altimetry data serve as a valuable resource for
212 model validation and assessment (e.g., Li et al., 2016; Stopa and Cheung, 2014; Dutheil
213 et al., 2021). The Australian Ocean Data Network portal (<https://portal.aodn.org.au/>)
214 provides the significant wave height derived from the Ku band measurements on
215 multiple altimetry platforms (Ribal and Young, 2020). The dataset includes more than
216 four million observations within the SWAN model domain from 1985 to 2020. We binned
217 the dataset over a 0.2 arc-deg grid to allow for an adequate description of the spatial
218 variation and provide sufficient data in each bin for statistical analysis. The data density
219 in Figure 4a shows sufficient coverage with distinct tracks having more measurements.
220 The hindcast significant wave height is interpolated to match the time and location of
221 each available altimetry observation and bins with less than 200 data pairs are omitted
222 in the computation of error metrics. Figures 4b, c, and d show the bias, linear correlation,
223 and the root-mean-square-error (RMSE) of the hindcast against the altimetry data.
224 Good agreement is indicated by a bias of less than 0.1 m as well as a correlation
225 coefficient of over 0.9 and its relatively uniform distribution across the model region. The
226 negative bias of the model results near Guam is consistent with experiences from local
227 weather forecasters with the operational data products. The RMSE of 0.2~0.5 m is
228 typical among hindcast datasets for other Pacific Island regions (Li et al., 2016, Durrant
229 et al., 2014) and is not concerning given the similar range of errors in the altimetry-
230 derived significant wave height (Yang and Zhang, 2019). The slightly higher RMSE to
231 the north and west of the Mariana Islands is a result of the more dynamic weather
232 systems around the western Pacific rim.

233 Wave buoy measurements are commonly considered as ground truth for the
234 validation of model results. There are three Waverider buoys deployed, respectively, off
235 the north shore of Saipan, and the north and east shores of Guam with Coastal Data

236 Information Program (CDIP) indexes 197, 196, and 121 (Figure 1b). The wave buoys
237 continuously record sea-surface movement, from which the frequency-direction
238 spectrum and parameters such as significant wave height, peak period, and peak
239 direction are automatically derived every 30 minutes. Buoy 196 immediately north of
240 Guam is the most exposed to the dominant wave components. The time series of the
241 hindcast and recorded wave parameters from 2013 to 2020 are shown in Figure 5a and
242 a close-up view of the comparison for 2017 in Figure 5b. The buoy records suggest a
243 wide range of conditions with significant wave heights of 0.3-6.9 m, peak periods of 3.3-
244 18.2 s, and directions typically from the southwest through east clockwise. The diverse
245 waves have strong seasonal variations with large events above 4 m in the winter
246 months and waves of 1-2 m in the summer months. The moderate summer sea state is
247 occasionally interrupted by large waves from tropical cyclones passing nearby as
248 indicated by rapid changes in wave directions from south to north. The hindcast follows
249 the buoy measurements to capture both the seasonal variations and the individual wave
250 events, despite slight overestimation of the small events and a tendency to
251 underestimate the peak of some large events. The latter is likely due to limited
252 resolution of strong winds near the core of large storms (Stopa and Cheung, 2014).

253 We pair the hindcast and buoy measurements of the same hour for a direct
254 comparison. Figures 6a and 6b provide the scatter and Q-Q plots for the significant
255 wave height from 2013 through 2020. The scatter plot gives a small RMSE of 0.3 m and
256 a high correlation coefficient of 0.91 with 90% of the data pairs within ± 0.46 m of a
257 perfect match. This point comparison corroborates the spatial comparison with altimetry
258 data with an improved agreement and reiterates the good correspondence between the
259 hindcast and observations. The large spreading for waves above 4 m may be attributed
260 to timing differences of events between the two datasets. The quantile-quantile (Q-Q)
261 plot eliminates any time difference to compare the statistical distributions. Despite the
262 slight underestimation of the significant wave height in the range of 2 to 4 m, the

263 hindcast is within 10% of the measurements even at the 99th and higher percentiles.
264 Comparisons with available data at Buoys 121 and 197 show similar patterns (Figures
265 A1-A4 in the appendix). The location of Buoy 121 on the east side of Guam is open to
266 waves from the central Pacific that are partially blocked at Buoys 196 and 197. The
267 recorded waves, which approach Guam from the east through the south in the summer,
268 are complementary to the validation. Despite mismatching the peaks for some extreme
269 events, the long-term hindcast provides a reliable dataset for statistical analysis and an
270 accurate description of the overall sea state in the entire region.

271 The sea state comprises waves from multiple sources with distinct characteristics.
272 Figure 7 illustrates the occurrence probability of the measured significant wave height
273 and peak period at buoy #196 along with the distributions in the cardinal and ordinal
274 directional sectors. Waves from the northeast are dominant 42% of the time, and these
275 are followed by easterly and northerly waves with 24% and 18% occurrences. The
276 remaining directional sectors account for less than 10% each. Waves from the
277 southeast and south are rare and partially blocked by the island, and those that reach
278 the buoy after wrapping around the headlands account for less than 0.2% of the time.
279 Despite the disproportionate distribution among the directions, all show a dominant
280 peak at 10 s and rapidly diminishing occurrence probability and significant wave height
281 below 7 s. A second peak appears at 12 s from north and northwest with significant
282 wave height ranges similar to those of the primary peak at 10 s. The results suggest a
283 mix of dominant wave components in the Mariana Islands delineated by 7 and 11 s
284 periods. Following the marine definitions of the US National Weather Service
285 (<https://www.weather.gov/gum/MarineDefinitions>), we classify the multimodal seas into
286 three main components identified as wind waves, seas, and swells for periods below 7s,
287 of 7-11 s, and above 11 s, respectively. The classification of the dominant wave
288 components is also consistent with local knowledge and the weather patterns in the
289 Western and Central Pacific (Jordan, 1955; Lander 1994; Lander and Guard, 2003).

290 Since the wave climate analysis will be based on separate wave components from the
 291 hindcast, it is necessary to independently verify their delineation and to understand the
 292 model performance for each sea state.

293 For each component, we integrate the 2D spectrum from SWAN over the period
 294 range for the zeroth moment (m_0) and calculate the representative wave height $h_s =$
 295 $4\sqrt{m_0}$ that reflects the energy level. Figure 8 shows good correspondence of the
 296 representative wave heights computed from the hindcast and records at #196 for 2017.
 297 The predefined period ranges capture distinct peaks of wind waves, seas, and swells,
 298 but are not absolute in delineating the wave components. There are some concurrent
 299 peaks between adjacent period ranges as the atmospheric forcing from weather
 300 systems is not always well distinguished from one another. The three components have
 301 distinct seasonal characteristics adding confidence to their delineation by period. The
 302 wind waves under 7 s are the most persistent with representative wave heights in the
 303 range of 0.5-2 m throughout the year. Seas of 7 to 11 s also have a year-round
 304 presence with higher energy in the winter than in summer. In particular, the
 305 representative wave height reaches 4 m in February and typically stays within 0.5~1.5
 306 m from June to August. There is also a stronger correlation between the wind waves
 307 and seas in the winter months suggesting their generation from large weather systems
 308 with long fetches extending to the Mariana Islands. Swells with periods above 11 s are
 309 mostly independent of the other components and dominant in the winter months with
 310 heights exceeding 3 m, while being sporadic in the summer. The hindcast and the buoy
 311 measurements show good agreement in terms of the total energy for the mixed seas as
 312 well as the energy distribution among the components for in-depth investigation of
 313 weather and wave climate as well as its implications for wave resources.

314 **4. Weather and wave patterns**

315 The strong seasonal, multi-modal sea state around the Mariana Islands is a
316 result of synoptic and mesoscale weather systems in different parts of the Western and
317 Central Pacific. The National Weather Service reports the atmospheric and marine
318 conditions daily in the Area Forecast Discussion (AFD) for Guam and the CNMI
319 (<https://mesonet.agron.iastate.edu/wx/afos/list.phtml>). The historical AFD archive and
320 the hindcast provide a basis for identifying typical weather and wave patterns in the
321 region for understanding the sea state in terms of its components delineated by period.
322 Figure 9 shows representative summer events with the CFSR surface wind and
323 pressure as well as the hindcast significant wave height, peak period, and peak
324 direction to demonstrate the met-ocean conditions. Among the synoptic weather
325 phenomena in the region, trade winds are prevalent throughout the year (Eldredge,
326 1983, Jordan, 1955). They originate from a subtropical high ridge extending across the
327 North Pacific with anti-cyclonic flows producing easterly winds toward the Mariana
328 Islands. The trade winds are relatively gentle and uniform with periodic fluctuations
329 during most of the summer. Figure 9a shows typical trade-wind conditions with steady
330 moderate winds of 8 m/s in early July 2020. The seas around the islands, which are
331 generated along an open fetch, are a result of the upstream flow and local winds at
332 earlier and present time, respectively. The significant wave height of 1.5 m is quite
333 uniform east of the islands, but decreases to 0.5 m off the sheltered west shores.
334 Outside the sheltered waters, the peak period is consistent at 8 s, associated with the
335 open fetch from the North Central Pacific to the Mariana Islands.

336 The summer trades near the Mariana Islands are sometimes interrupted by the
337 monsoons originating from Southeast Asia (Becerro et al., 2006, Lander, 1996, Beattie
338 and Elsberry, 2012, Lander and Guard, 2003). On July 30, 2018, the westerly monsoon
339 flow with speeds of 7 m/s extends from the Philippines to the Mariana Islands (Fig. 9b).
340 The event lasted for a few days with fully developed seas of 1.2 m significant wave
341 height around Guam and the CNMI on August 1, 2018. The peak period increases from

342 7 to 9 s across the islands due to the increased fetch toward the east. Tropical cyclones
343 occur typically in the summer and transition months (Holliday, 1975, Rupp and Lander,
344 1996) and influence the wave conditions around the Mariana Islands, even from a
345 distance. As an example, Figure 9c shows the northwest migration of Typhoon Haisen
346 away from the CNMI in early September 2020. It strengthens rapidly from September 3
347 to 4 and becomes a super-typhoon reaching category 4 strength with maximum 1-min
348 sustained wind speeds above 69 m/s, but did not have a direct impact on the islands
349 due to its location 1600 km away. The typhoon swells generated earlier traverse the
350 open ocean to Mariana waters reaching 2.2 m wave height and 13 s peak period,
351 except for the sheltered areas to the southeast where background seas of about 1 m
352 and 9 s from the trade winds are dominant. Tropical cyclones which make direct landfall
353 or pass near the islands can generate hazardous waves to the coastal communities.

354 In addition to trade-wind flows, mid-latitude cyclones and anticyclones migrating
355 from west to east are rather common during the winter months (Harr et al., 2000). The
356 resulting northerly swells and seas produce a notable contribution to the wave climate in
357 the islands. Figure 10a shows a high-pressure system in the East China Sea on
358 January 21, 2020, moving eastward to the north of the Mariana Islands 1.5 days later.
359 The anticyclonic system produces northeasterly winds with speeds reaching 12 m/s
360 across the islands that augment the easterly trades to generate heightened seas.
361 Meanwhile, the low-pressure system east of the Kuril Islands strengthens and moves
362 northeast toward the Kamchatka Peninsula. The low-pressure system with strong
363 northwesterly winds generates swells reaching the Mariana islands. The combined
364 significant wave height from seas and swells reaches 3.5 m on January 22, 2020.
365 Around each island or island group, prominent shadows of the seas develop to the
366 southwest with near-shore wave heights of less than 2.0 m. More extended shadows of
367 the swell develop to the south of the islands at the same time. In contrast to the gradual
368 transition of the significant wave height, the peak period shows a patchy distribution

369 around the islands associated with shadowing of the multi-modal seas. The period of
370 northeast seas from the nearby mid-latitude high increases from 8 s to 11 s along the
371 fetch to the southwest. The background north swells with 14 s periods from the more
372 distant mid-latitude low are visible off the western shores in the shadows of the
373 moderate seas and to the east of the island chain.

374 The migrating mid-latitude systems can also generate northerly winds reaching
375 the islands with influence on the local met-ocean conditions (Donets et al., 2018, Lander,
376 1994). In late January 2020, a low-pressure system east of Japan is accompanied by a
377 high-pressure system at the East China Sea during the passage of an occluded cold
378 front (Figure 10b). South-southeasterly winds prevail in the prefrontal atmosphere north
379 of the Mariana Islands. As the high and low-pressure systems strengthen and move
380 eastward, strong northwesterly winds sweep across the East China Sea bringing cold
381 air from the mid-latitudes toward the tropics. The cold front reaches the Mariana islands
382 with post-frontal northerly winds of 10 m/s on February 1. The post-frontal winds
383 converge with moderate easterly trade winds of 6 m/s creating a shearline southeast of
384 the islands. These near and far-field weather systems have profound influence on the
385 complex local wave conditions. The significant wave height of the combined seas
386 reaches 2.5 m west of the islands primarily due to the strong post-frontal northerly winds
387 and decreases to 1.5 m on the east side, where the sea state can be mostly attributed
388 to the moderate easterly seas augmented by north swells generated earlier by the low-
389 pressure system east of the Kuril Islands. The distinct characteristics of each wave
390 system can be identified in the peak period distribution. The short 5-7 s and long 14 s
391 peak period west and east of the island chain, respectively, indicate wind waves from
392 the frontal system and swells from the mid-latitude low-pressure system, while the
393 intermediate 8-10 s period around the islands represents the combined effect of the
394 easterly trade winds and northerly postfrontal winds. These typical weather systems and

395 the corresponding wave fields provide a basis to elucidate the seasonal and spatial
 396 variations of the wave energy resources around the Mariana Islands.

397 The characteristics of the dominant wave components are best assessed using
 398 the partitioned hindcast. The IEC wave resources parameters, which are integrated
 399 from the entire spectrum, can be extended through spectral partitioning to provide a
 400 more complete description for multi-modal seas. The spectral partitions of the hindcast
 401 have already been validated with measurements from buoy 196. Figure 11 shows the
 402 six IEC parameters computed from the validated spectrum as well as its partitions for
 403 the three dominant wave components in 2017. The wave power and significant wave
 404 height time series have similar trends, but the former more clearly depicts the
 405 dominance of seas between 7 and 11 s due to the year-round occurrence of trade winds
 406 as well as their intensification by migrating mid-latitude high in the northwestern Pacific
 407 during the winter. The energy is occasionally augmented by swells with periods greater
 408 than 11 s from mid-latitude lows further north. The wind waves can have significant
 409 wave heights in the 0.5~2 m range, but only minor contributions to the total energy
 410 because of their short periods. The integrated energy period is close to the period for
 411 seas due to their primary contribution.

412 The spectral width parameter clearly differentiates the narrowband
 413 characteristics of the swells and the broadband wind waves. The seas have very
 414 consistent spectral width slightly above the swells. The same parameter for the
 415 combined sea state is noticeably larger than those of the individual components but is
 416 closer to the wind waves despite their low energy level throughout the year. This is
 417 complemented by the direction of the maximum directionally resolved wave power and
 418 the directionality coefficient, which correspond well to the characteristics of each
 419 component from a specific directional window. In the winter, eastward migration of mid-
 420 latitude lows and highs produces periodic direction changes for swells from north to
 421 northeast and seas from northeast to east. Wind waves throughout the year and seas in

422 the summer are mainly from the east due to persistent trades albeit with occasional
423 disruptions from tropical cyclones and monsoons. The results show wider directional
424 spread of wind waves and seas due to their multiple sources, but more focused swells
425 primarily from more distant low-pressure systems in the winter. Computation of the IEC
426 parameters by spectral partition provides more pertinent information that can assist
427 designers and operators to tune their devices for optimizing energy production in the
428 strongly multimodal sea state around the Mariana Islands.

429 **5. Seasonal wave resources**

430 The validated long-term hindcast provides a wealth of information for analysis of
431 the mixed seas and the individual components to understand the wave climate and
432 resources. Figure 12 shows the average significant wave height and wave power as
433 well as their intraannual variability. Averaged over the 42-year hindcast, the significant
434 wave height is quite uniform across the region with a slight variation from 2.0 m to 1.8 m
435 along the island chain from north to south. The wave height decreases to under 1 m off
436 the western shores due to sheltering of the prevailing seas from easterly trade winds.
437 This is important for the development of wave energy resources in the Mariana Islands
438 because the western shores host major harbors and infrastructure, which can provide
439 logistic support and serve as transportation hubs for deployment and maintenance. The
440 wave conditions have large seasonal variations. Calmer trade winds occur in the boreal
441 summer months of June, July, and August with about 1.5 m average significant wave
442 height in the open ocean. Waves from tropical cyclones and summer monsoons can
443 interrupt the moderate sea state and have minor contributions to the seasonal average
444 due to their relatively low occurrence, but are enough to introduce faint shadows off the
445 east shores. The trade winds and the resulting seas are strengthened by mid-latitude
446 high-pressure systems in the northwestern Pacific during the boreal winter months of
447 December to February. Frontal systems and mid-latitude low-pressure systems to the

448 north also become active and produce severe wind waves and large swells impacting
449 the Mariana Islands. Multi-modal seas become more frequent in winter with occasional
450 treacherous conditions increasing the average significant wave height to above 2.4 m
451 off the island shores. Such conditions are less favorable for installation and
452 maintenance of wave energy devices and mooring systems.

453 The wave power is proportional to the square of wave height producing a larger
454 contrast in the spatial distribution. The year-round average reaches 18 and 15 kW/m in
455 the north and south with 10 kW/m in the shadows west of the islands. The Mariana
456 Islands have steep insular slopes in the absence of shelves. The wave power in the
457 deep water around islands increases linearly with the wave period to augment the
458 seasonal variation. With mostly seas from westerly monsoons and east trade winds in
459 the summer, the seasonal average is about 10 kW/m away from the islands and below
460 6 kW/m in the shadows off the west and east shores. In the winter months, the wave
461 power reaches 26 and 22 kW/m in the northern and southern Mariana Islands primarily
462 due to stronger easterly trade wind seas. The slight northward increase is a result of
463 intermittent occurrences of north swells from mid-latitude low-pressure systems off the
464 Kamchatka peninsula as well as northerly seas and wind waves from mid-latitude high-
465 pressure systems and northwest frontal systems originating in the East China Sea. The
466 north-facing shore experiences the most diverse wave climate as well as the highest
467 energy level of each island. The wave power at the east and west shores is under 10
468 kW/m due to island sheltering. The overall increase of the significant wave height and
469 wave power from the summer to winter in Guam and the CNMI is directly related to
470 transition of the dominant weather systems in the Western and Central Pacific. Bulk
471 parameters derived from the combined seas in Mariana waters do not always provide
472 pertinent information for practical applications.

473 Performance of most wave energy conversion devices also depends on the wave
474 period. The wave power can characterize the available wave resources but might not be

475 sufficient for engineering design and operation planning. The mixed seas around the
476 islands are generated by a range of synoptic and mesoscale processes in the Western
477 and Central Pacific. The hindcast partitions allow separate analysis of each wave
478 component defined by its period range. There are up to 10 partitions from the watershed
479 algorithm for each hindcast spectrum in the SWAN output. We consider the three
480 primary partitions by energy level and classify the computed wave height under the wind
481 wave, seas, and swell categories based on the period being under 7 s, between 7 and
482 11 s, and above 11 s. When more than one partition is assigned to the same
483 component at a time step, only the largest one is recorded to minimize noise from small
484 and intermittent events and concatenated into a continuous sub-dataset. The three sub-
485 datasets provide a basis for spatial and temporal analysis by dominant wave
486 components. Figure 13 provides the average partitioned wave height for the
487 occurrences in each category during the boreal summer and winter months. In contrast
488 to the combined seas, the three components have distinct energy levels, patterns, and
489 seasonality associated with climatology in the western and central Pacific.

490 The short-period wind waves are primarily generated by local winds with a
491 relatively uniform distribution across the island chain. The summer has an average
492 partitioned wave height of less than 0.6 m associated with the light to moderate easterly
493 trades and southwesterly monsoon winds in the region. The partitioned wave height
494 increases to 1.0 m from the strengthened trades and northerly frontal winds in the winter.
495 In contrast, the intermediate-period seas are influenced by upstream trade wind flows
496 with a longer fetch extending to the central Pacific. The average partitioned wave height
497 reaches 1.1 m and 1.7 m on the windward side in the summer and winter, with a
498 prominent reduction on the leeside to the west due to sheltering by the island chain. The
499 long-period swells have distinct seasonal patterns due to the source location. Tropical
500 cyclones are most active in the western Pacific during the summer months producing an
501 average wave height of 1.3 m west of the island chain. The wave height from a tropical

502 cyclone varies with the intensity, track, and forward speed, and the peak value could be
503 much larger than the average. Mid-latitude cyclones occur to the north of the islands
504 during the winter months. The average partitioned wave height of the swell reaches 1.5
505 m with a prominent shadow to the south. Similar to tropical cyclones, the peak swells
506 could be much larger than the average. The seasonal distribution of individual wave
507 components provides an additional level of detail for the description of wave climate and
508 energy resources that assist selection and design of wave energy conversion devices
509 for deployment near the Mariana Islands.

510 **6. Discussion and Conclusions**

511 The multimodal wave conditions in the Mariana Islands are influenced by local
512 and distant weather systems in the Western and Central Pacific. An assessment of the
513 recorded significant wave height, peak period, and peak direction identifies distinct
514 components of wind waves, seas, and swells of below 7 sec, 7-11 sec, and above 11
515 sec, respectively. The 42-year hindcast, which was generated from reanalysis winds
516 following the IEC TC-114 Technical Specification for a Class 2 (Feasibility) study,
517 provides an effective approach to quantifying their spatial and temporal distributions
518 around the islands for in-depth analysis of the wave climate and energy resources. The
519 wave parameters and spectral partitions are thoroughly validated with measurements
520 around the islands. The comparison with the altimetry observations shows good
521 reproduction of the overall wave height and spatial pattern. The slight increase of
522 RMSEs toward the west and north is associated with transition to more dynamic
523 weather systems from the Central to the Western Pacific. In comparison with buoy
524 records, the wave hindcast shows slight overestimation for the small events and
525 underestimation for the peaks of large events, while demonstrating good agreement for
526 the energy distribution among the dominant wave components in the multi-modal sea
527 state. Although the demarcation of wind waves, seas, and swells is not always well

528 defined as with the atmospheric forcing and is location or event dependent, the good
529 correlation obtained in the spectral partitions ensures that the selected period ranges
530 can capture the dominant energy in the subsequent analysis.

531 The validated hindcast and partitioned parameters provide details in the temporal
532 and spatial distributions of the wind waves, seas, and swells. The year-round trade
533 winds, driven by a subtropical ridge, account for the prevailing and background seas
534 that play a significant role in the local wave climatology. The sea state is gentler with the
535 prevailing direction from the east in the summer and can be augmented on the leeside
536 of the islands by seas from monsoons as well as swells from tropical cyclones to the
537 west even at some distance away. In the winter months, the trade wind waves are
538 energized by northeasterly winds from mid-latitude high-pressure systems and
539 augmented by swells from the mid-latitude low-pressure systems to the north. In
540 addition, frontal systems can reach the Mariana Islands from the northwest generating
541 short-period wind waves with large amplitude on the west side of the islands. These
542 local and distant weather systems bring waves of various occurrence frequencies
543 accounting for the seasonal variation of significant wave height, peak period, and
544 energy level. The wave components from different directions are sheltered by the
545 islands leading to complex spatial variations. Implementation of the IEC wave energy
546 resource parameters by spectral partition is an effective approach to describe the multi-
547 modal sea state with distinct energy characteristics for each component.

548 The 42-year wave hindcast provides valuable insights into the wave resources
549 along the island chain in support of energy converter design and planning. The wave
550 power has strong seasonal variation due to transition between near and far-field
551 weather systems affecting both the wave height and period. The summer has an
552 average around 10 kW/m associated with light to moderate trade winds, despite
553 occasional large events from tropical cyclones and monsoons. The sea state becomes
554 more treacherous in the winter months with average wave power up to 22 kW/m around

555 the islands. Despite having different energy levels in the two seasons, the northern
556 portion of the island archipelago has slightly greater energy resources. Around each
557 Island, the energy level decrease dramatically off the west shores because of sheltering
558 of persistent trade wind waves and seasonal north swells. The north-facing shores of
559 Saipan, Rota, and Guam have the most diverse energy resources comparable to those
560 in the open ocean due to direct exposure to seas all year round as well as strong wind
561 waves and swells in the winter. The available wave power, which meets the
562 requirements of most energy converters, is at a short distance from shores due to the
563 steep insular slope and the absence of shelves. However, candidate energy converters
564 should be adaptable over the wide range of peak periods and directions to be viable for
565 the Mariana Islands.

566 The PNNL hindcast has been proven to be a valuable dataset for wave climate
567 research and energy resource assessment through the present study with the Mariana
568 Islands as well as the corresponding studies for American Samoa (García Medina et al.,
569 2023) and Hawaii (Li et al., 2021). The Mariana Islands experience the most diverse
570 wave conditions among the studied regions due to their location in a typhoon spawning
571 area as well as the presence of monsoons and cold fronts from the western Pacific Rim.
572 The dataset covers all US and affiliated Pacific islands, in which the ocean has a
573 significant role in the livelihood of local communities. The archived model output of bulk
574 and partitioned parameters within the EEZs and frequency-direction spectra near the
575 shore is meant to support a wide variety of scientific and engineering applications. The
576 100-m resolution on an unstructured grid provides a long-term description of the
577 nearshore wave environment that influences coastal circulation, sediment transport, and
578 mixing processes. The spectral data can provide boundary conditions for phase-
579 averaged or phase-resolving modeling of coastal waves and circulations at much higher
580 resolution at the shore. The full hindcast dataset, which will be publicly available online,

581 can be implemented in studies related to coastal hazards, shoreline erosion, maritime
582 operations, and coral reef ecosystems.

583 **Acknowledgement**

584 This research is supported by the US Department of Energy, Office of Energy Efficiency
585 and Renewable Energy, Water Power Technologies Office under contract DE-AC05-
586 76RL01830 to Pacific Northwest National Laboratory (PNNL). Model simulations were
587 performed using PNNL's and National Renewable Energy Laboratory Institutional
588 Computing facilities. The authors thank the external steering committee, chaired by Dr.
589 Bryson Robertson, for providing technical oversight to the development of the wave
590 hindcast that covers the US and affiliated Pacific islands and the two anonymous
591 reviewers for the comments and suggestions on the manuscript.

592 **References:**

593 A. Chawla, S. Deanna, T. Hendrik, 30 Year Wave Hindcasts using WAVEWATCH III
594 with CFSR winds, Phase 1. NOAA/NWS/NCEP/MMAB. Maryl. USA 23, 2012.

595 A. Ribal, I.R. Young, 33 years of globally calibrated wave height and wind speed data
596 based on altimeter observations. *Sci Data* 6, 77 (2019).
597 <https://doi.org/10.1038/s41597-019-0083-9>.

598 S. Ahn, V.S. Neary, K. A. Haas, Global wave energy resource classification system for
599 regional energy planning and project development. *Renewable and Sustainable
600 Energy Reviews*, 162 (2022), 112438. <https://doi.org/10.1016/j.rser.2022.112438>.

601 C. Bosserelle, S. Reddy, D. Lal, WACOP wave climate reports. Guam, Guam.
602 Secretariat of the Pacific Community. 2015, <http://gsd.spc.int/wacop/>.

603 C.R. Holliday, Tropical Cyclones Affecting Guam. FLEET WEATHER CENTRAL/JOINT
604 TYPHOON WARNING CENTER FPO SAN FRANCISCO 96630, 1975.

605 C.L. Jordan, Some features of the rainfall at Guam. *Bulletin of the American*
 606 *Meteorological Society*, 36(1955), 446-455, <https://doi.org/10.1175/1520-0477-36.9.446>.

608 D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae,
 609 M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de
 610 Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L.
 611 Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M.
 612 Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park,
 613 C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, F. Vitart , The ERA-Interim
 614 reanalysis: Configuration and performance of the data assimilation system, *Quarterly*
 615 *Journal of the royal meteorological society*, 137 (2011), 553-597,
 616 <https://doi.org/10.1002/qj.828>.

617 C. Dutheil, S. Jullien, J. Aucan, C. Menkes, R. Le Gendre, and S. Andréfouët, The wave
 618 regimes of the Central Pacific Ocean with a focus on pearl farming atolls, *Marine*
 619 *Pollution Bulletin* 162 (2021): 111751.
 620 <https://doi.org/10.1016/j.marpolbul.2020.111751>.

621 F. Arduin, E. Rogers, A.V. Babanin, J.-F. Filipot, R. Magne, A. Roland, A. van der
 622 Westhuyzen, P. Queffeulou, J.-M. Lefevre, L. Aouf, F. Collard, Semiempirical
 623 Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and
 624 Validation. *Journal of Physical Oceanography*, 40 (2010), 1917–41.
 625 <https://doi.org/10.1175/2010JPO4324.1>.

626 G. G. Medina, Z. Yang, Z., N. Li, K.F. Cheung, H. Wang, F.M. Ticona Rollano, High-
 627 Resolution Regional Wave Hindcast for US Pacific Island Territories (No. PNNL-
 628 31208). Pacific Northwest National Lab (PNNL), Richland, WA (United States), 2021.

629 G. G. Medina, Z. Yang, W.-C. Wu, T. Wang, Wave resource characterization at regional
 630 and nearshore scales for the U.S. Alaska coast based on a 32-year high-resolution

631 hindcast. Renewable Energy, 170 (2021), 595–612.
 632 <https://doi.org/10.1016/j.renene.2021.02.005>.

633 G. G. Medina, Z. Yang, N. Li, K.F. Cheung, T. Wang, and W. Wu., High-Resolution
 634 Regional Wave Hindcast for Hawaii. PNNL-29370. Richland, WA: Pacific Northwest
 635 National Laboratory. High-Resolution Regional Wave Hindcast for Hawaii, 2019.

636 G. G. Medina, Z. Yang, N. Li, K.F. Cheung, E. Luto-McMoore, Wave climate and energy
 637 resources in American Samoa from a 42-year hindcast. *Renewable Energy*, in
 638 review.

639 G.J. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann and P. A. E. M.
 640 Janssen, Dynamics and Modelling of Ocean Waves. Cambridge University Press,
 641 1994.

642 J. L. Hanson, O. M. Phillips, Automated analysis of ocean surface directional wave
 643 spectra, *Journal of Atmospheric and Oceanic Technology*, 18 (2001), 277–93.
 644 [https://doi.org/10.1175/1520-0426\(2001\)018<0277:AAOOSD>2.0.CO;2](https://doi.org/10.1175/1520-0426(2001)018<0277:AAOOSD>2.0.CO;2).

645 H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J.
 646 Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X.
 647 Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. D. Chiara, P.
 648 Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes,
 649 A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P.
 650 Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S.
 651 Villaume, J.-N. Thépaut The ERA5 global reanalysis. *Quarterly Journal of the Royal
 652 Meteorological Society*, 146(2020), 1999-2049. <https://doi.org/10.1002/qj.3803>.

653 H.L. Tolman, D. Chalikov, Source terms in a third-generation wind-wave model, *J. Phys.
 654 Oceanogr.*, 26 (1996), 2497-2518. [https://doi.org/10.1175/1520-0485\(1996\)026%3C2497:STIATG%3E2.0.CO;2](https://doi.org/10.1175/1520-0485(1996)026%3C2497:STIATG%3E2.0.CO;2).

655 H.L. Tolman, Development of a multi-grid version of WAVEWATCH III. NOAA / NWS /
 656 NCEP / MMAB Technical Note 256, 2006.

658 H.L. Tolman, A mosaic approach to wind wave modeling, *Ocean Modelling*, 25 (2008),
 659 35-47. <https://doi.org/10.1016/j.ocemod.2008.06.005>

660 H.L. Tolman, User manual and system documentation of WAVEWATCH III version 3.14.
 661 NOAA / NWS / NCEP / MMAB Technical Note 276, 2009.

662 J. Portilla-Yandún, C. Luigi, J.P. Van Vledder, Wave spectra partitioning and long term
 663 statistical distribution. *Ocean Modelling*, 96 (2015), 148-160.
 664 <https://doi.org/10.1016/j.ocemod.2015.06.008>

665 J. Portilla-Yandún, J. Edwin, Covariate extreme value analysis using wave spectral
 666 partitioning. *Journal of Atmospheric and Oceanic Technology* 37.5 (2020), 873-888.
 667 <https://doi.org/10.1175/JTECH-D-19-0198.1>

668 J.A. Rupp, M.A. Lander, A technique for estimating recurrence intervals of tropical
 669 cyclone-related high winds in the tropics: Results for Guam. *Journal of Applied
 670 Meteorology and Climatology*, 35(1996), 627-637. <https://doi->
 671 [org.eres.library.manoa.hawaii.edu/10.1175/1520-0450\(1996\)035%3C0627:ATFERI%3E2.0.CO;2](https://doi.org/10.1175/1520-0450(1996)035%3C0627:ATFERI%3E2.0.CO;2)

673 J.C. Beattie, R.L. Elsberry, Western North Pacific monsoon depression formation.
 674 *Weather and forecasting*, 27(2012), 1413-1432. <https://doi->
 675 [org.eres.library.manoa.hawaii.edu/10.1175/WAF-D-11-00094.1](https://doi.org/10.1175/WAF-D-11-00094.1)

676 J.E. Stopa, K.F. Cheung, Periodicity and pattern of ocean wind and wave climate.
 677 *Journal of Geophysical Research: Oceans*, 119(2014), 5563–5584.
 678 <https://doi.org/10.1002/2013JC009729>.

679 J.E. Stopa, K.F. Cheung, Intercomparison of wind and wave data from the ECMWF
 680 Reanalysis Interim and NCEP Climate Forecast System Reanalysis. *Ocean
 681 Modelling*, 75 (2014), 65-83. <https://doi.org/10.1016/j.ocemod.2013.12.006>.

682 J.E. Stopa, J.E., K.F. Cheung, Y.L. Chen, Assessment of wave energy resources in
 683 Hawaii. *Renewable Energy*, 36(2011), 554-567.
 684 <https://doi.org/10.1016/j.renene.2010.07.014>.

685 L.G. Eldredge, Summary of environmental and fishing information on Guam and the
686 Commonwealth of the Northern Mariana Islands: historical background, description
687 of the islands, and review of the climate, oceanography, and submarine topography.
688 1983

689 M.A. Becerro, V. Bonito, V.J. Paul, Effects of monsoon-driven wave action on coral
690 reefs of Guam and implications for coral recruitment. *Coral Reefs*, 25 (2006), 193-
691 199.

692 M. Zijlema, Computation of wind-wave spectra in coastal waters with SWAN on
693 unstructured grids. *Coastal Engineering*, 57(2010), 267-277.
694 <https://doi.org/10.1016/j.coastaleng.2009.10.011>.

695 M.A., Lander, Meteorological factors associated with drought on Guam (No. 75). Water
696 and Energy Research Institute of the Western Pacific, 1994.

697 M.A. Lander, C.P. Guard, Creation of a 50-year rainfall database, annual rainfall
698 climatology, and annual rainfall distribution map for Guam. Mangilao, GU, USA:
699 Water and Environmental Research Institute of the Western Pacific, University of
700 Guam, 2003.

701 M.A. Lander, Specific tropical cyclone track types and unusual tropical cyclone motions
702 associated with a reverse-oriented monsoon trough in the western North Pacific.
703 Weather and Forecasting, 11(1996), 170-186. [https://doi-
704 org.eres.library.manoa.hawaii.edu/10.1175/1520-
705 0434\(1996\)011%3C0170:STCTTA%3E2.0.CO;2](https://doi.org/10.1175/1520-0434(1996)011%3C0170:STCTTA%3E2.0.CO;2)

706 M.N. Allahdadi, B. Gunawan, J. Lai, R. He, V.S. Neary, Development and validation of a
707 regional-scale high-resolution unstructured model for wave energy resource
708 characterization along the US East Coast. *Renewable Energy*, 136 (2019), 500-511.
709 <https://doi.org/10.1016/j.renene.2019.01.020>.

710 N. Li, K.F. Cheung, J.E. Stopa, F. Hsiao, Y.-L. Chen, L. Vega, P. Cross, Thirty-four
711 years of Hawaii wave hindcast from downscaling of climate forecast system

712 reanalysis, *Ocean Modelling*, 100 (2016), 78-95.
 713 <https://doi.org/10.1016/j.ocemod.2016.02.001>.

714 N. Li, G. García-Medina, K.F. Cheung, Z. Yang, Wave energy resources assessment for
 715 the multi-modal sea state of Hawaii. *Renewable Energy*, 174(2021), 1036-1055.
 716 <https://doi.org/10.1016/j.renene.2021.03.116>.

717 N. Booij, L.H. Holthuijsen, R.C. Ris, The "SWAN" wave model for shallow water.
 718 *Coastal Engineering* 1996, 668-676. <https://doi.org/10.1061/9780784402429.053>.

719 N.R.R.C. Booij, R.C. Ris, L.H. Holthuijsen, A third-generation wave model for coastal
 720 regions: 1. Model description and validation, *Journal of geophysical research: Oceans*, 104(1999), 7649-7666. <https://doi.org/10.1029/98JC02622>.

722 P.A. Harr, R.L. Elsberry, T.F. Hogan, Extratropical transition of tropical cyclones over
 723 the western North Pacific. Part II: The impact of midlatitude circulation
 724 characteristics. *Monthly weather review*, 128(2000), 2634-2653. [https://doi.org.eres.library.manoa.hawaii.edu/10.1175/1520-0493\(2000\)128%3C2634:ETOTCO%3E2.0.CO;2](https://doi.org.eres.library.manoa.hawaii.edu/10.1175/1520-0493(2000)128%3C2634:ETOTCO%3E2.0.CO;2)

727 S. Ahn, A.H. Kevin, V. S. Neary. Wave Energy Resource Characterization and
 728 Assessment for Coastal Waters of the United States. *Applied Energy*, 267 (2020):
 729 114922. <https://doi.org/10.1016/j.apenergy.2020.114922>.

730 S. Saha, S. Moorthi, H. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen,
 731 D. Behringer, H. Liu, D. Stokes, R. Grumbine, G. Gayno, J. Wang, Y.-T. Hou, H.-Y.
 732 Chuang, H.-M. H. Juang, J. Sela, M. Iredell, R. Treadon, D. Kleist, P. V. Delst, D.
 733 Keyser, J. Derber, M. Ek, J. Meng, H. Wei, R. Yang, S. Lord, H. van den Dool, A.
 734 Kumar, W. Wang, C. Long, M. Chelliah, Y. Xue, B. Huang, J.-K. Schemm, W.
 735 Ebisuzaki, R. Lin, P. Xie, M. Chen, S. Zhou, W. Higgins, C.-Z. Zou, Q. Liu, Y. Chen,
 736 Y. Han, L. Cucurull, R. W. Reynolds, G. Rutledge, M. Goldberg, The NCEP Climate
 737 Forecast System Reanalysis. *Bulletin of the American Meteorological Society*, 91
 738 (2010), 1015-58. <https://doi.org/10.1175/2010BAMS3001.1>.

739 S. Saha, S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Y.T. Hou, H.Y.
 740 Chuang, M. Iredell, M. Ek, The NCEP climate forecast system version 2. *Journal of*
 741 *climate*, 27(2014), 2185-2208. <https://doi.org/10.1175/JCLI-D-12-00823.1>.

742 T. Durrant, D. Greenslade, M. Hemer, C. Trenham, A global wave hindcast focussed on
 743 the Central and South Pacific, *Centre for Australian Weather and Climate Research*
 744 *Tech. Rep.*, 54 (2014), 1917-1941.

745 T. Durrant, M. Hemer, G. Smith, C. Trenham, D. Greenslade, CAWCR Wave Hindcast -
 746 Aggregated Collection. v5. CSIRO. Service Collection, 2019.
 747 <http://hdl.handle.net/102.100.100/137152?index=1>.

748 T. Durrant, D. Greenslade, M. Hemer, C. Trenham, A global wave hindcast focussed on
 749 the Central and South Pacific, 40(2014), 1917-1941.

750 U. Ulbrich, G.C. Leckebusch, J.G. Pinto, Extra-tropical cyclones in the present and
 751 future climate: a review. *Theoretical and Applied Climatology*, 96(2009), 117–131.
 752 <https://doi.org/10.1007/s00704-008-0083-8>

753 V. Donets, E.L. Atlas, L.L. Pan, S.M. Schauffler, S. Honomichl, R.S. Hornbrook, E.C.
 754 Apel, T. Campos, S.R. Hall, K. Ullmann, J.F. Bresch, Wintertime transport of reactive
 755 trace gases from East Asia into the deep tropics. *Journal of Geophysical Research: Atmospheres*,
 756 123(2018), pp.12-877. <https://doi.org/10.1029/2017JD028231>

757 W. Wu, T. Wang, Z. Yang, and G. García-Medina, Development and Validation of a
 758 High-Resolution Regional Wave Hindcast Model for U.S. West Coast Wave
 759 Resource Characterization, *Renewable Energy*, 152 (2020), 736–53.
 760 <https://doi.org/10.1016/j.renene.2020.01.077>.

761 WAMDIG, The WAM model - A third generation ocean wave prediction model, *Journal*
 762 *of Physical Oceanography*, 18 (2009), 1775-1810. [https://doi.org/10.1175/1520-0485\(1988\)018%3C1775:TWMTGO%3E2.0.CO;2](https://doi.org/10.1175/1520-0485(1988)018%3C1775:TWMTGO%3E2.0.CO;2).

765 J. Yang, and J. Zhang. Validation of Sentinel-3A/3B satellite altimetry wave heights with
766 buoy and Jason-3 data. *Sensors*, 19 (2019), 2914.
767 <https://doi.org/10.3390/s19132914>.

768 Y.Y. Chao, L. D. Burroughs, H. L. Tolman, Wave forecasting for the Eastern North
769 Pacific and adjacent waters. NWS/NCEP Technical Procedures Bulletin 491 (2003).

770 Y.Y. Chao, L. D. Burroughs, H. L. Tolman, Wave forecasting for the Western North
771 Atlantic and adjacent waters. NWS/NCEP Technical Procedures Bulletin 495 (2003).

772 Z. Yang, G. García-Medina, W. Wu, T. Wang. Characteristics and Variability of the
773 Nearshore Wave Resource on the U.S. West Coast, *Energy*, 203 (2020), 117818.
774 <https://doi.org/10.1016/j.energy.2020.117818>.

775 Z. Yang, V. S. Neary, T. Wang, B. Gunawan, A. R. Dallman, and W. Wu., A Wave
776 Model Test Bed Study for Wave Energy Resource Characterization, *Renewable
777 Energy, Wave and Tidal Resource Characterization*, 114 (2017), 132–44.
778 <https://doi.org/10.1016/j.renene.2016.12.057>.

779 Z. Yang, W. Wu, T. Wang, and L. Castrucci. High-Resolution Regional Wave Hindcast
780 for the U.S. West Coast, 2018. <https://doi.org/10.2172/1573061>.

781 Z. Yang, W. Wu, T. Wang, G. García Medina, and L. Castrucci, High-Resolution
782 Regional Wave Hindcast for the U.S. Alaska Coast, 2019.
783 <https://doi.org/10.2172/1579259>.

784

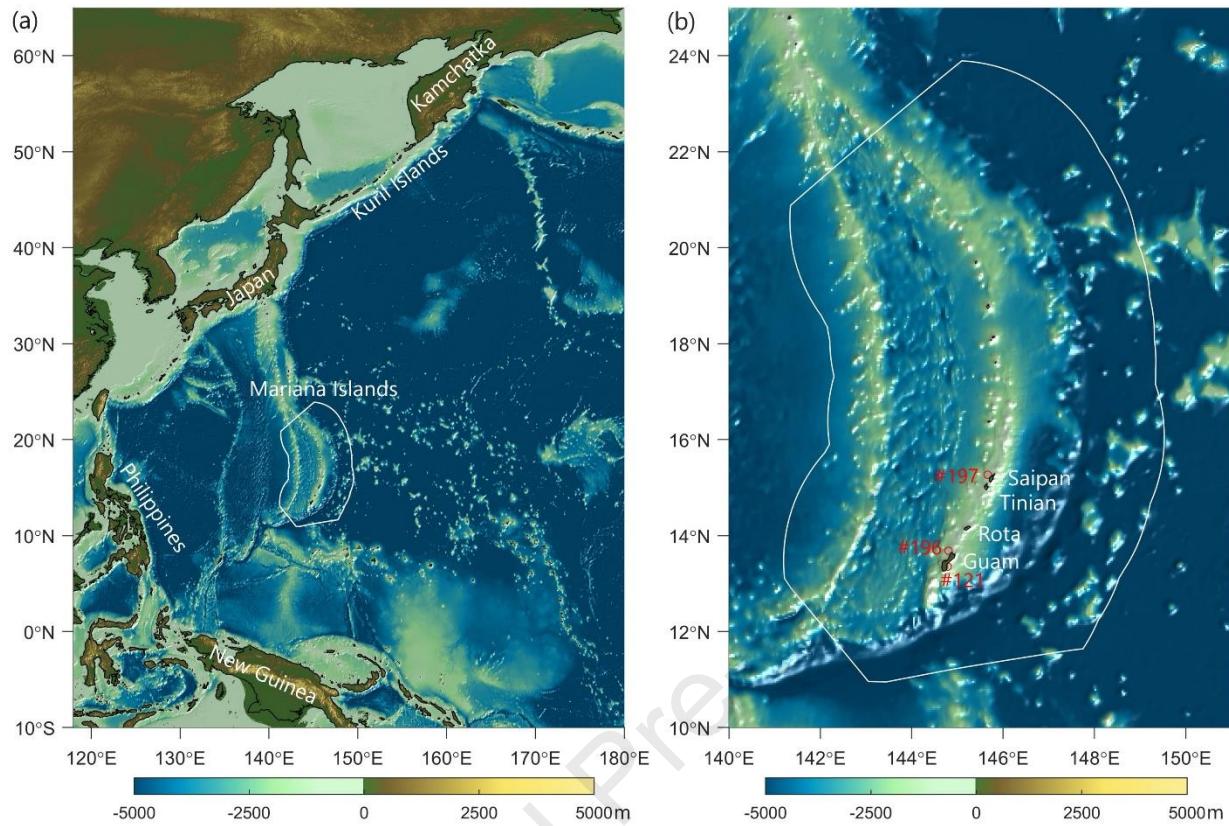


Figure 1. Location and bathymetric maps. (a) Western and central Pacific. (b) Mariana Islands. The red circles and labels indicate CDIP buoys. The white line delineates the Exclusive Economic Zone.

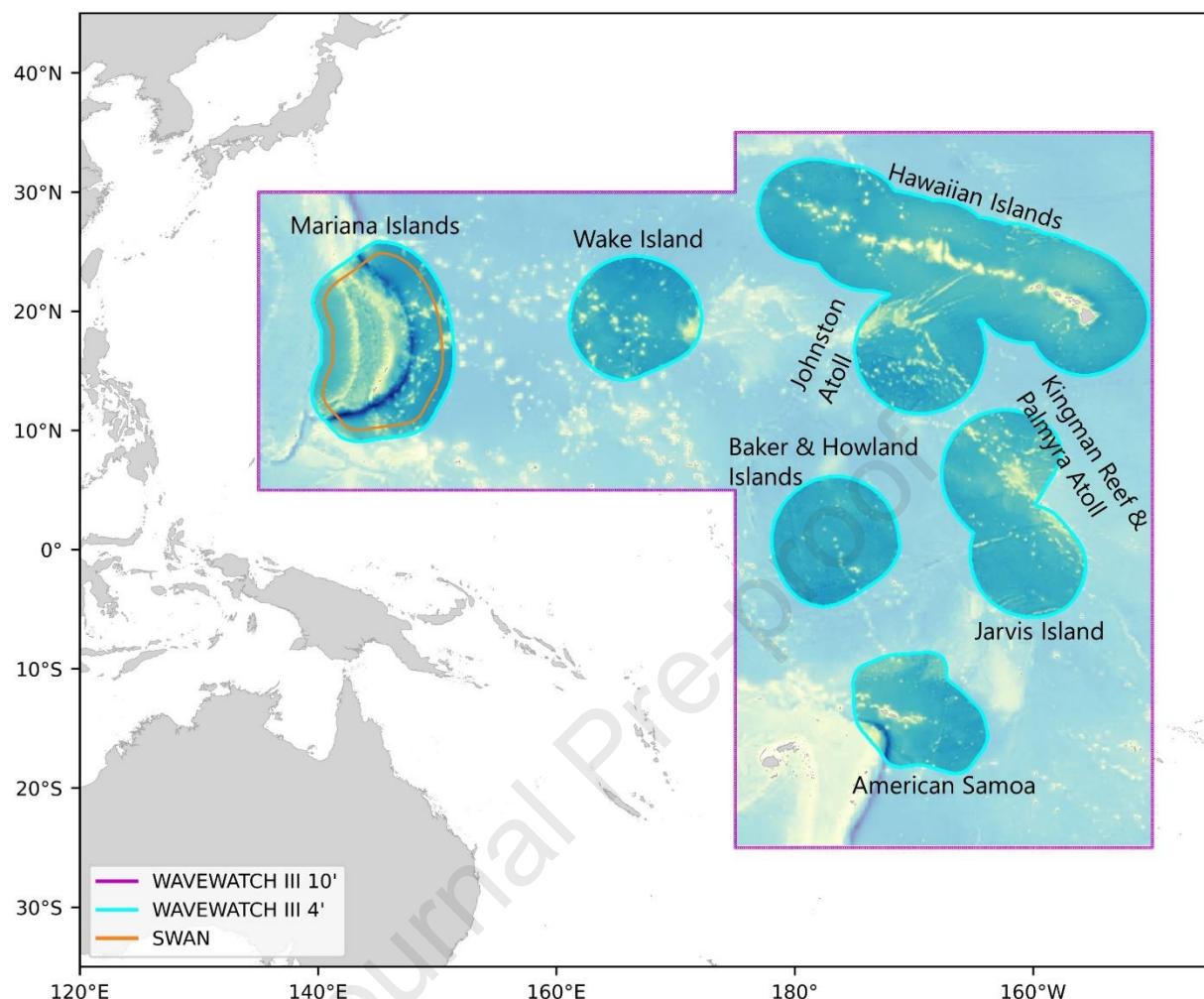


Figure 2. Regional WAVEWATCH III nested grids for the Pacific Islands and the SWAN unstructured grid for the Mariana Islands.

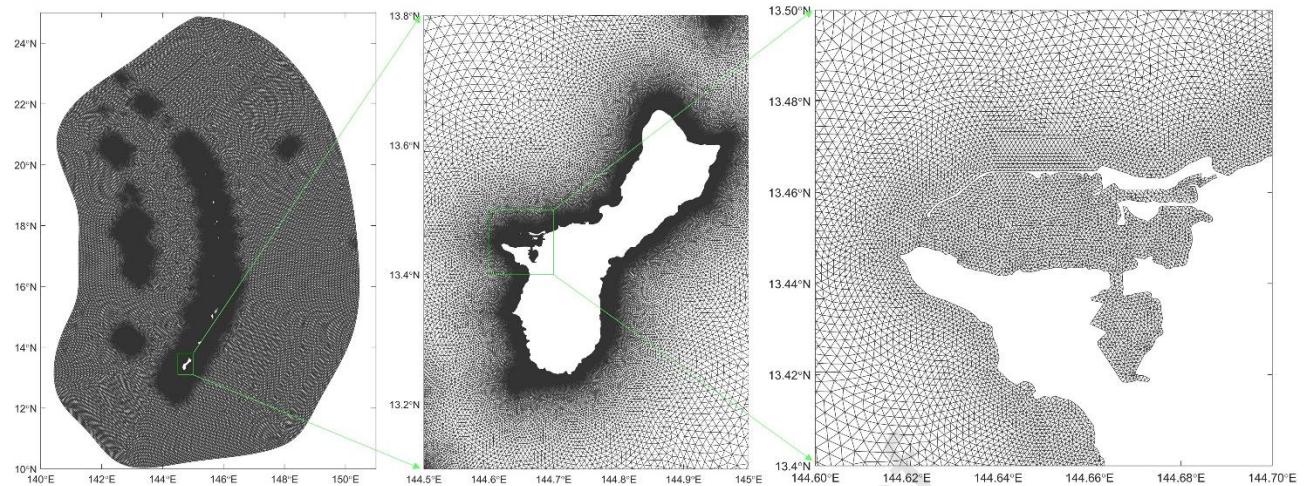


Figure 3. Telescopic views of the SWAN unstructured grid with resolution from 5 km at the boundary to 100 m at the shore.



Figure 4. Comparison between hindcast and altimetry observations. (a) Bins and data density over the SWAN domain. (b) Bias. (c) Correlation Coefficient. (d) Root-mean-square error (RMSE).

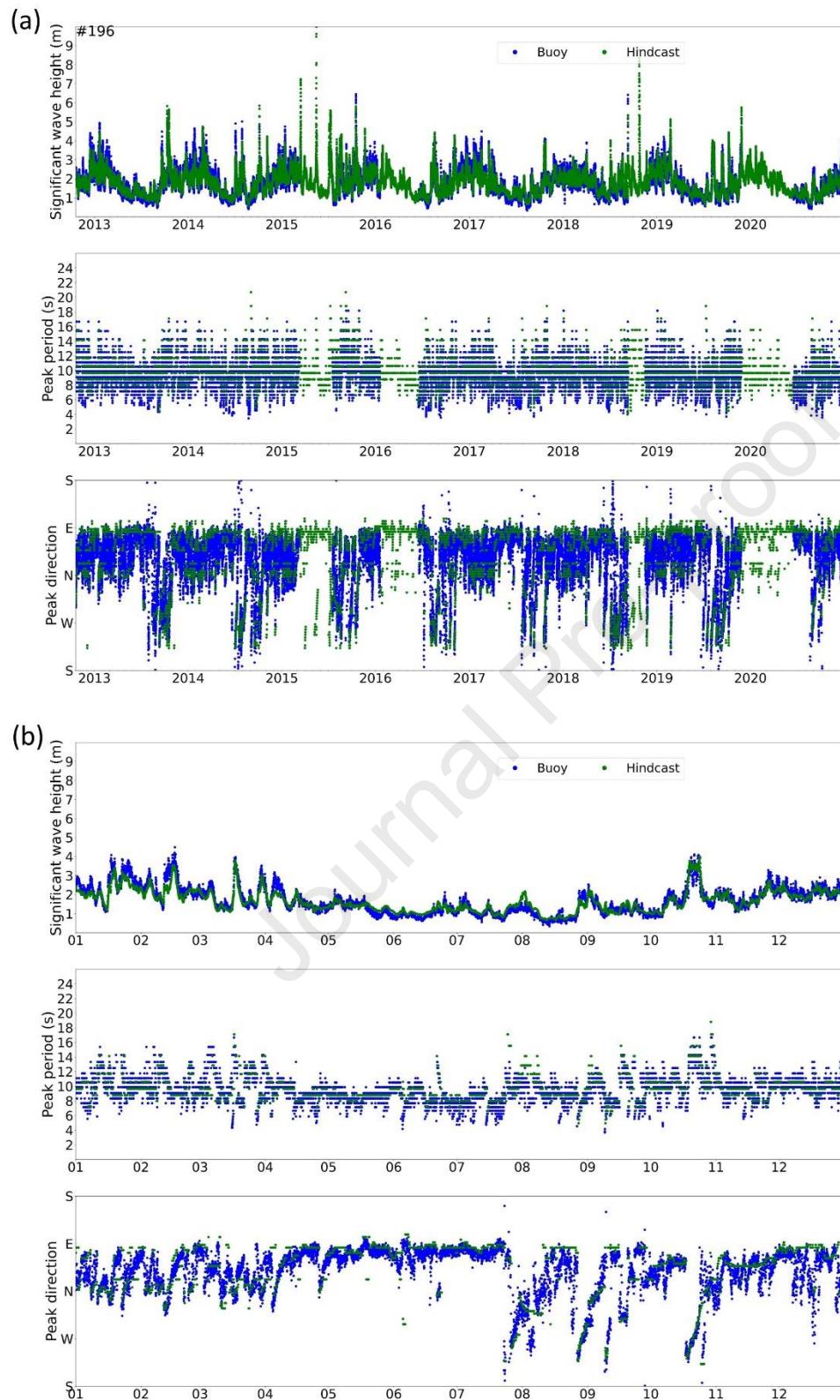


Figure 5. Time series of significant wave height, peak period, and direction from buoy #196 and the wave hindcast (a) from 2013 to 2020 and (b) in 2017.

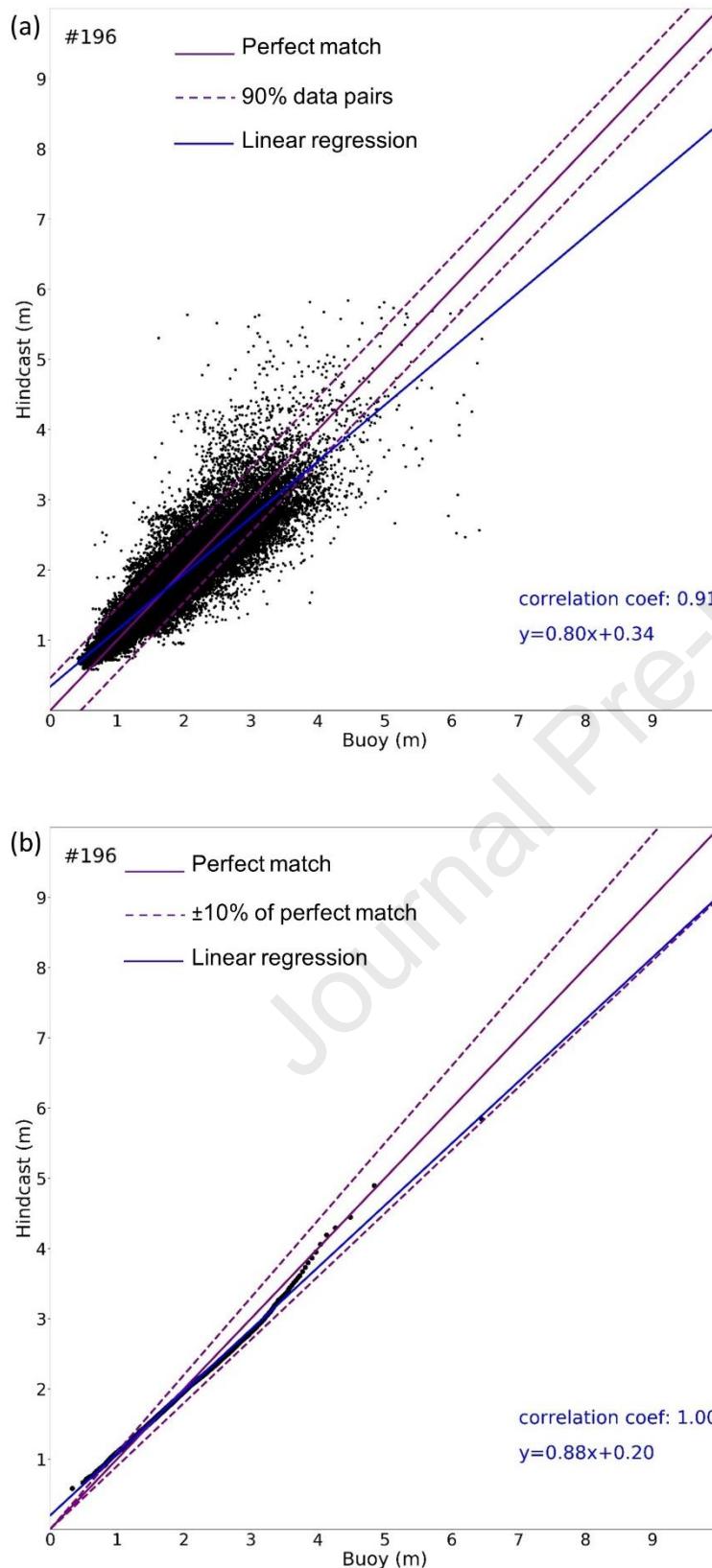


Figure 6. Scatter and Q-Q plots of measured and hindcast significant wave height at buoy #196.

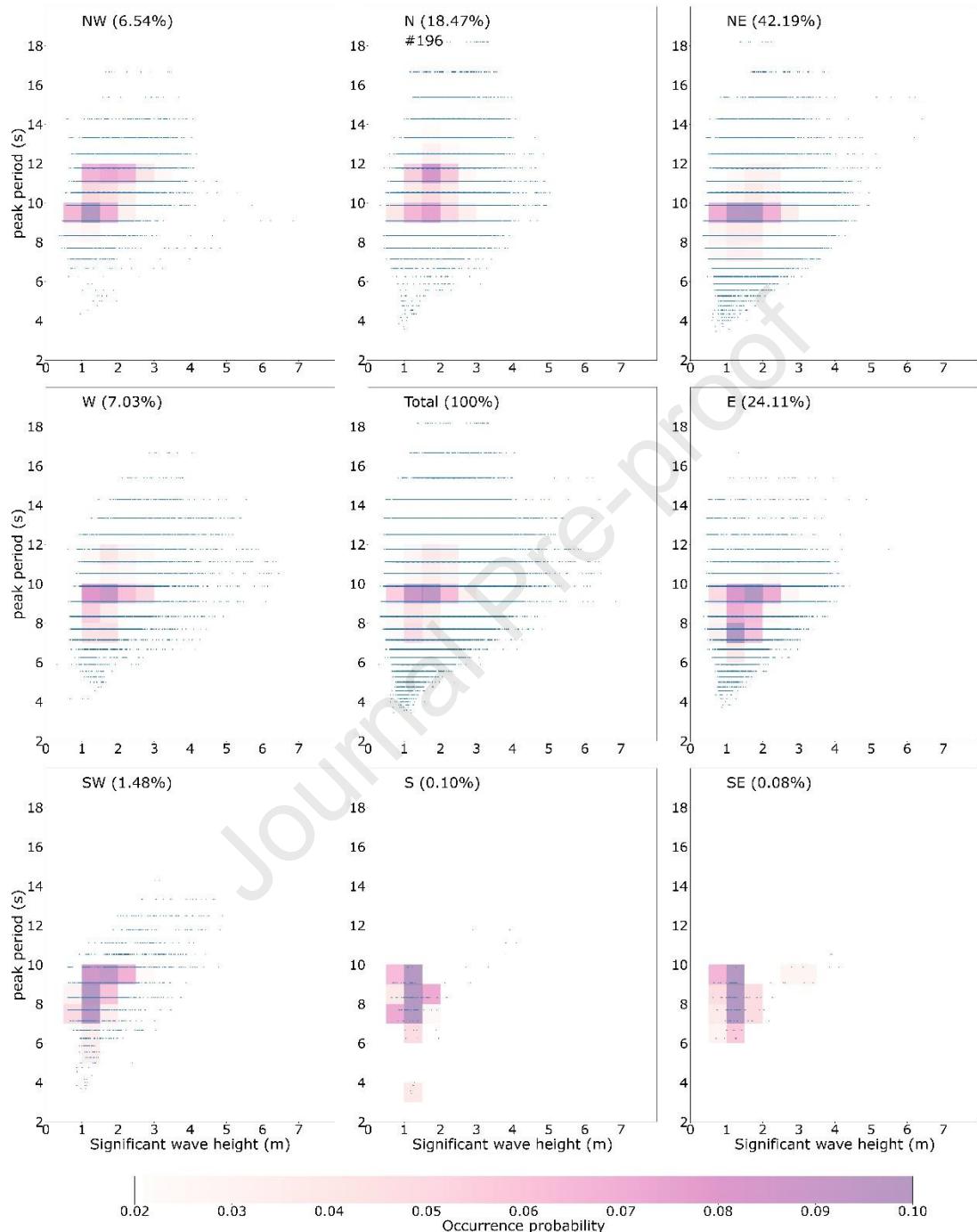


Figure 7. Scatter diagram for the measured significant wave height and peak period in eight directional windows from buoy #196.

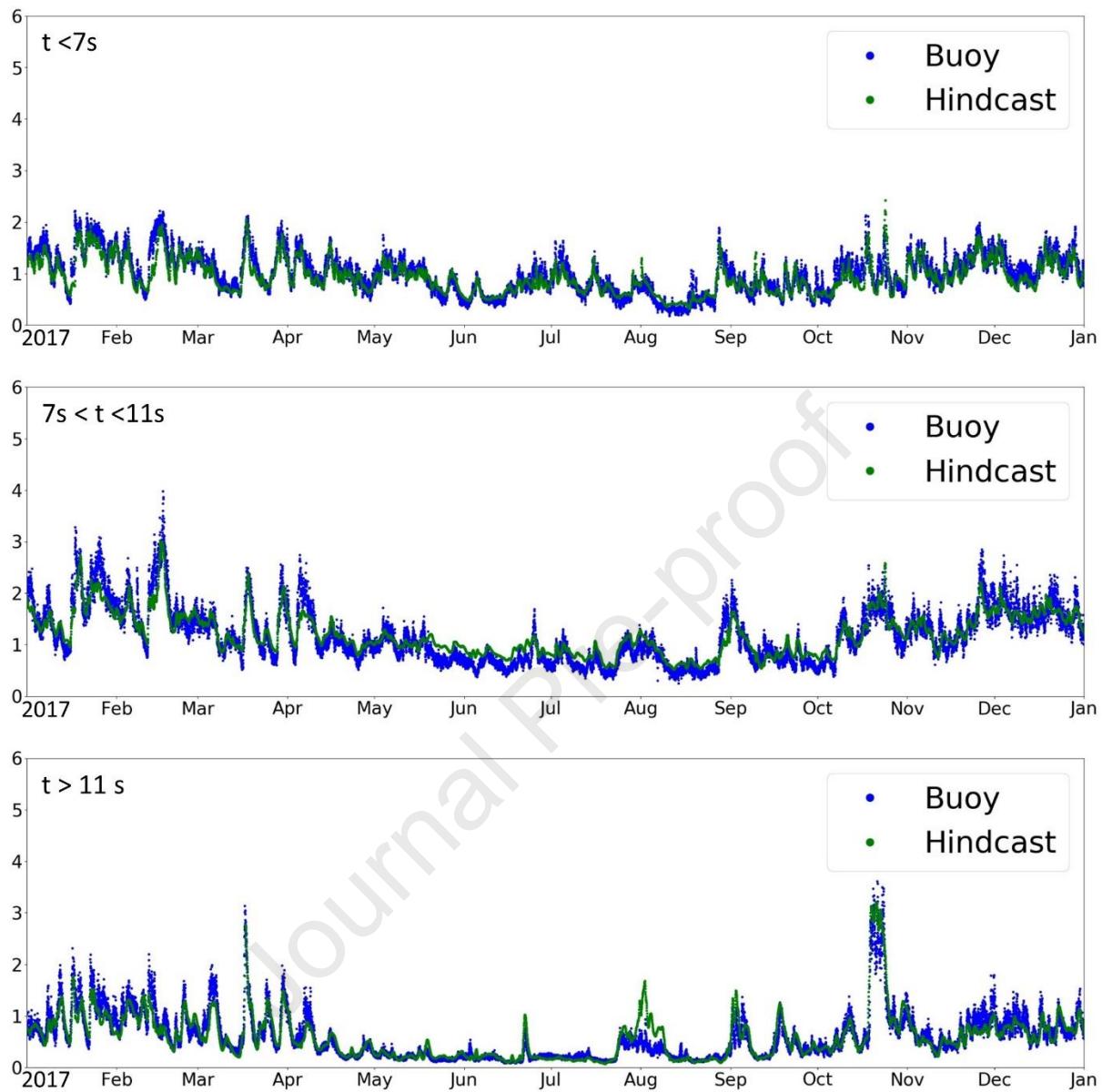


Figure 8. Time series of representative wave heights for periods less than 7s, 7-11 s, and above 11 s at buoy #196 in 2017.

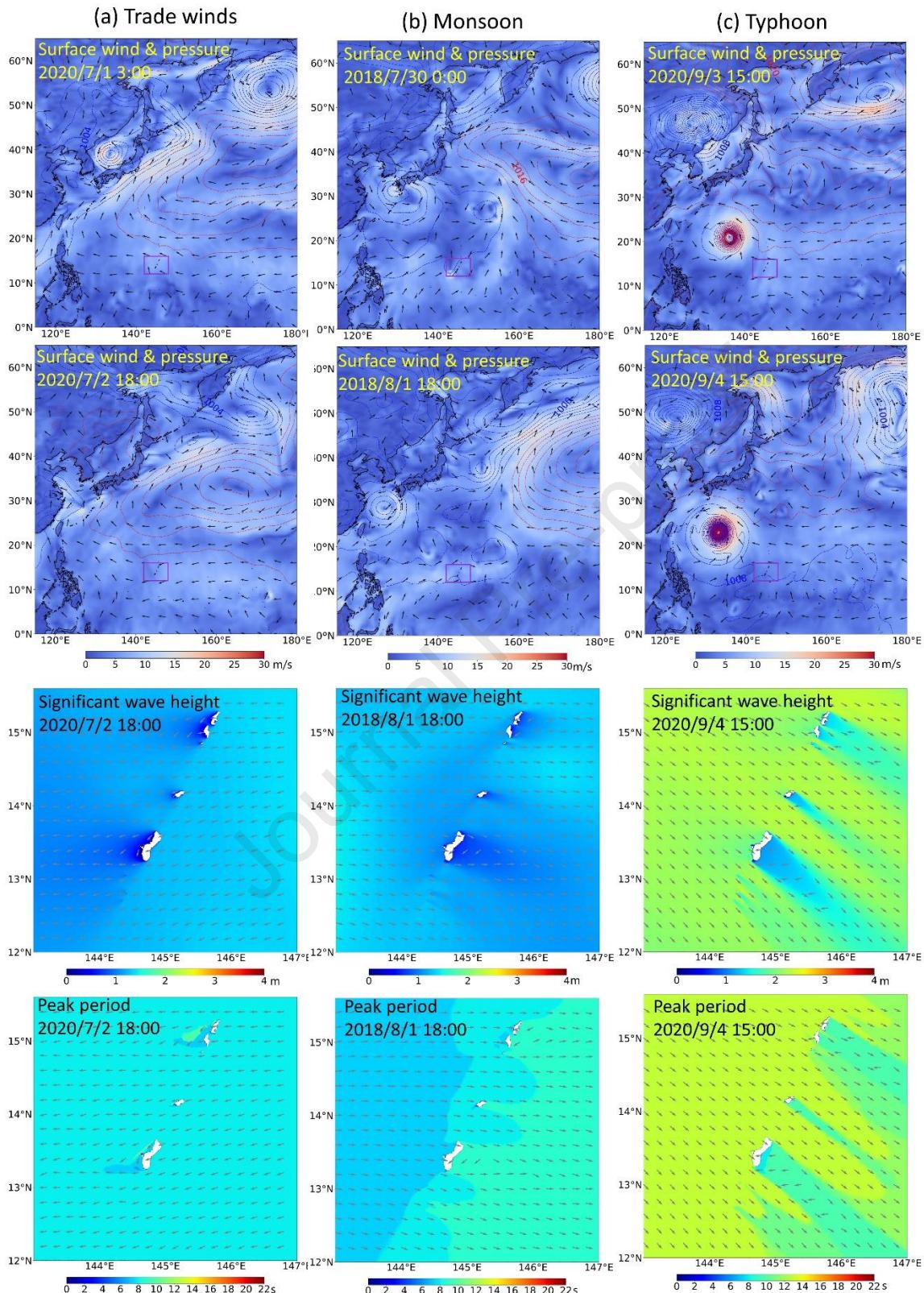


Figure 9. Representative summer weather systems in the Western and Central Pacific and wave patterns near Guam and the CNMI. (a) Trade winds. (b) Monsoon. (c) Tropical cyclone.

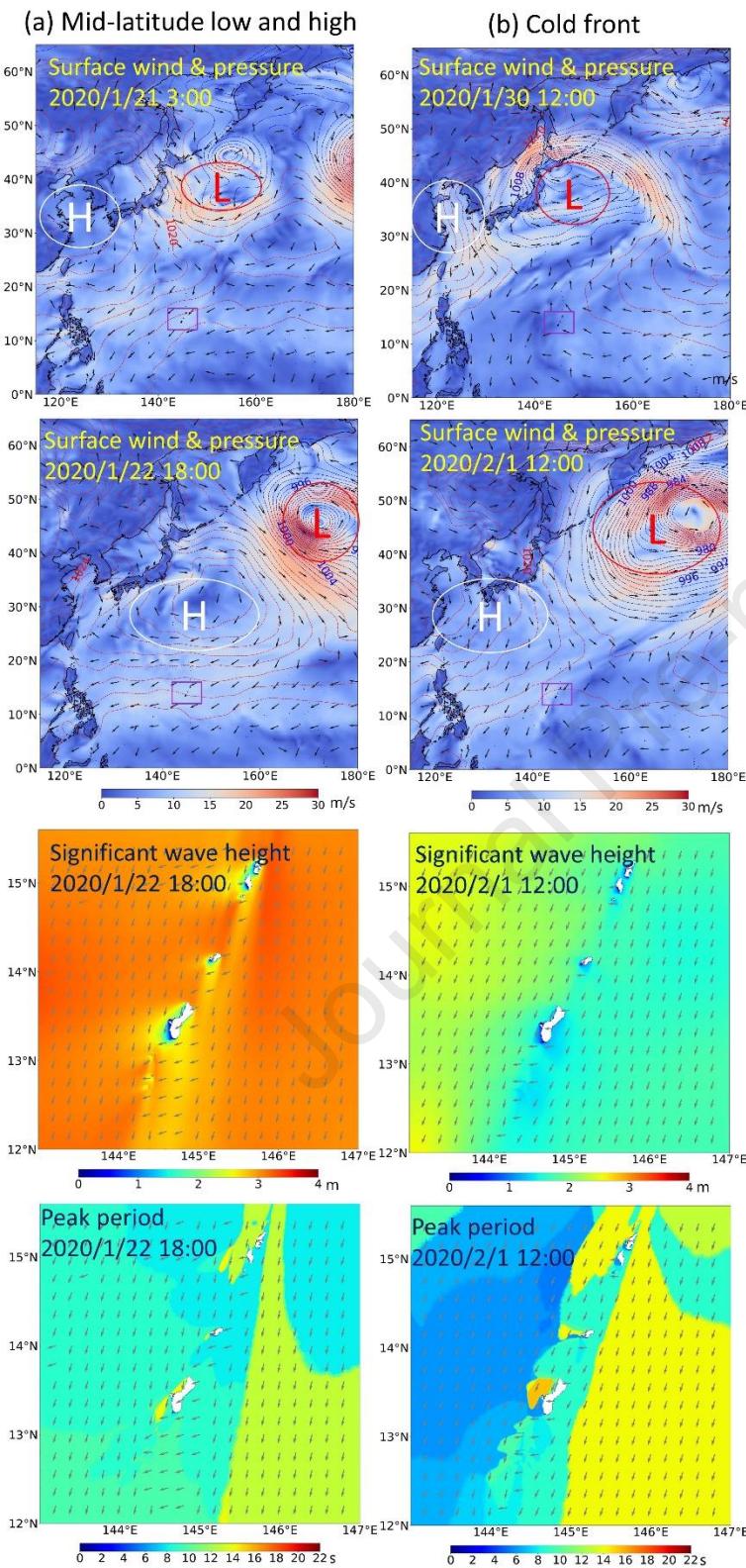


Figure 10. Representative winter weather systems in the Western and Central Pacific and wave patterns near Guam and the CNMI. (a) Mid-latitude low and high (b) Cold front

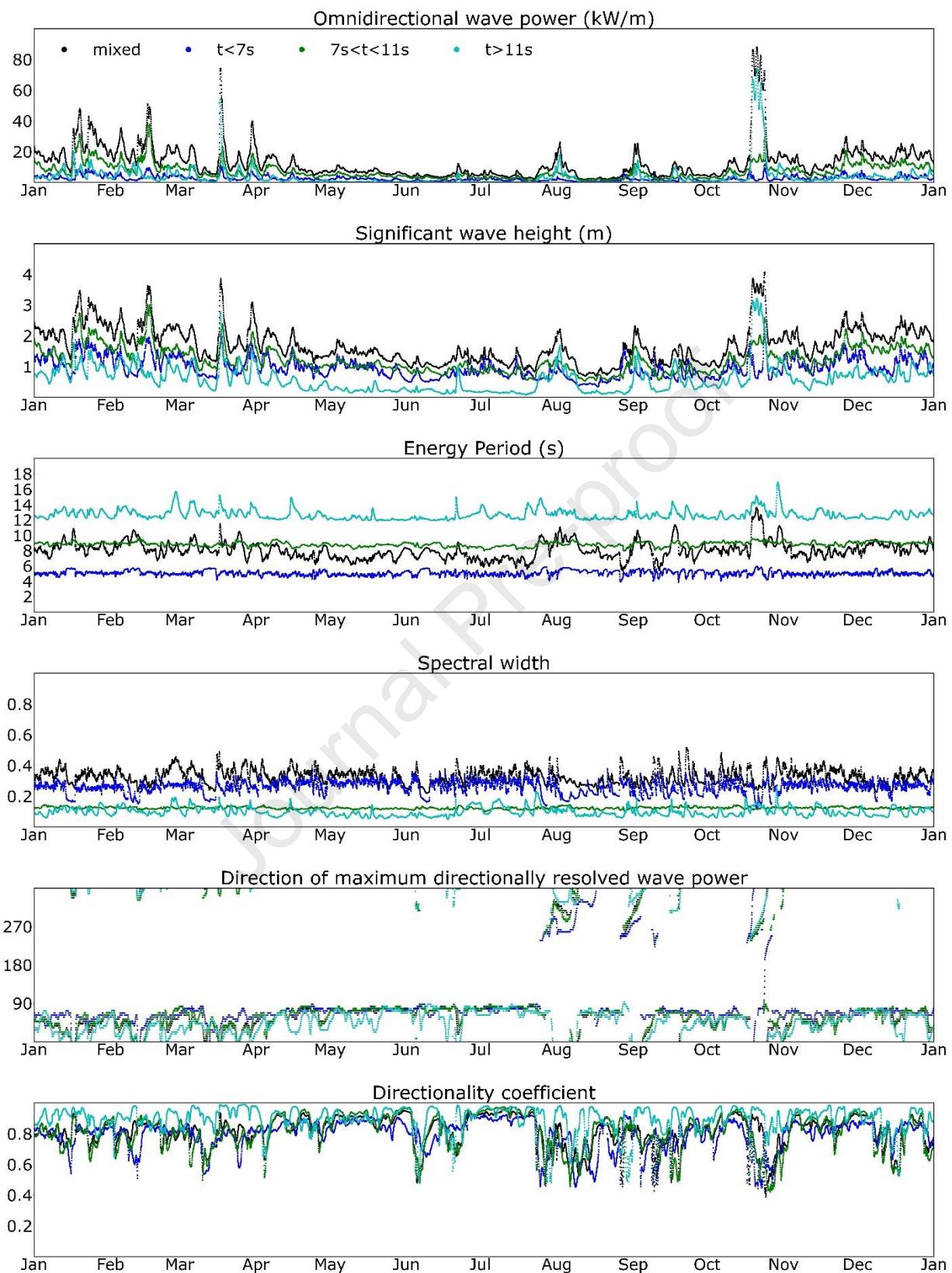


Figure 11. Time series of the six IEC wave energy resources parameters for the full and partitioned spectra from the hindcast at buoy #196 in 2017.

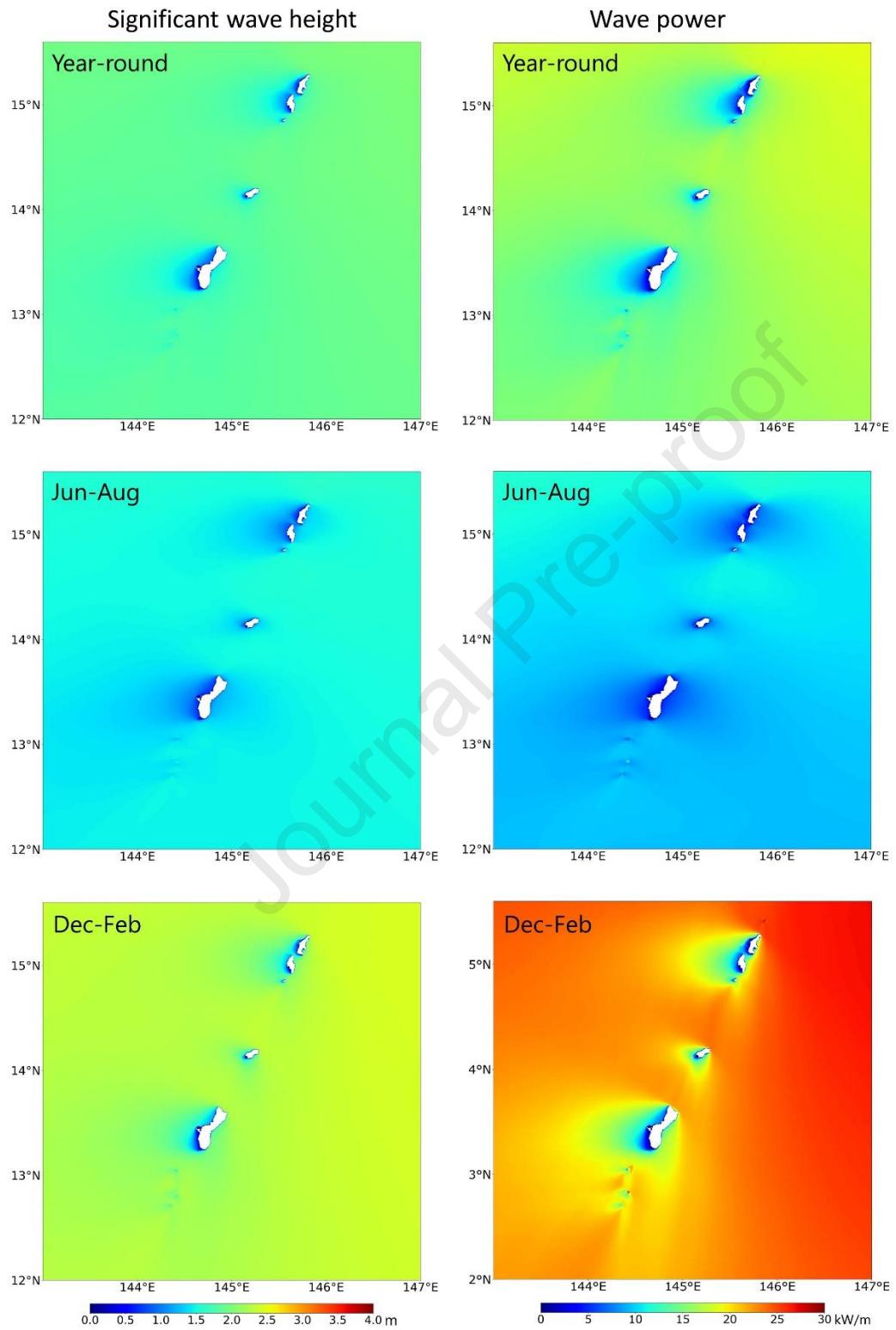


Figure 12. Year-round and seasonal averaged significant wave height and wave power from the 1979-2020 hindcast.

Figure 13. Seasonal average wave heights for spectral partitions of wind seas, wind waves, and swells from the 1979-2020 hindcast.

Appendix

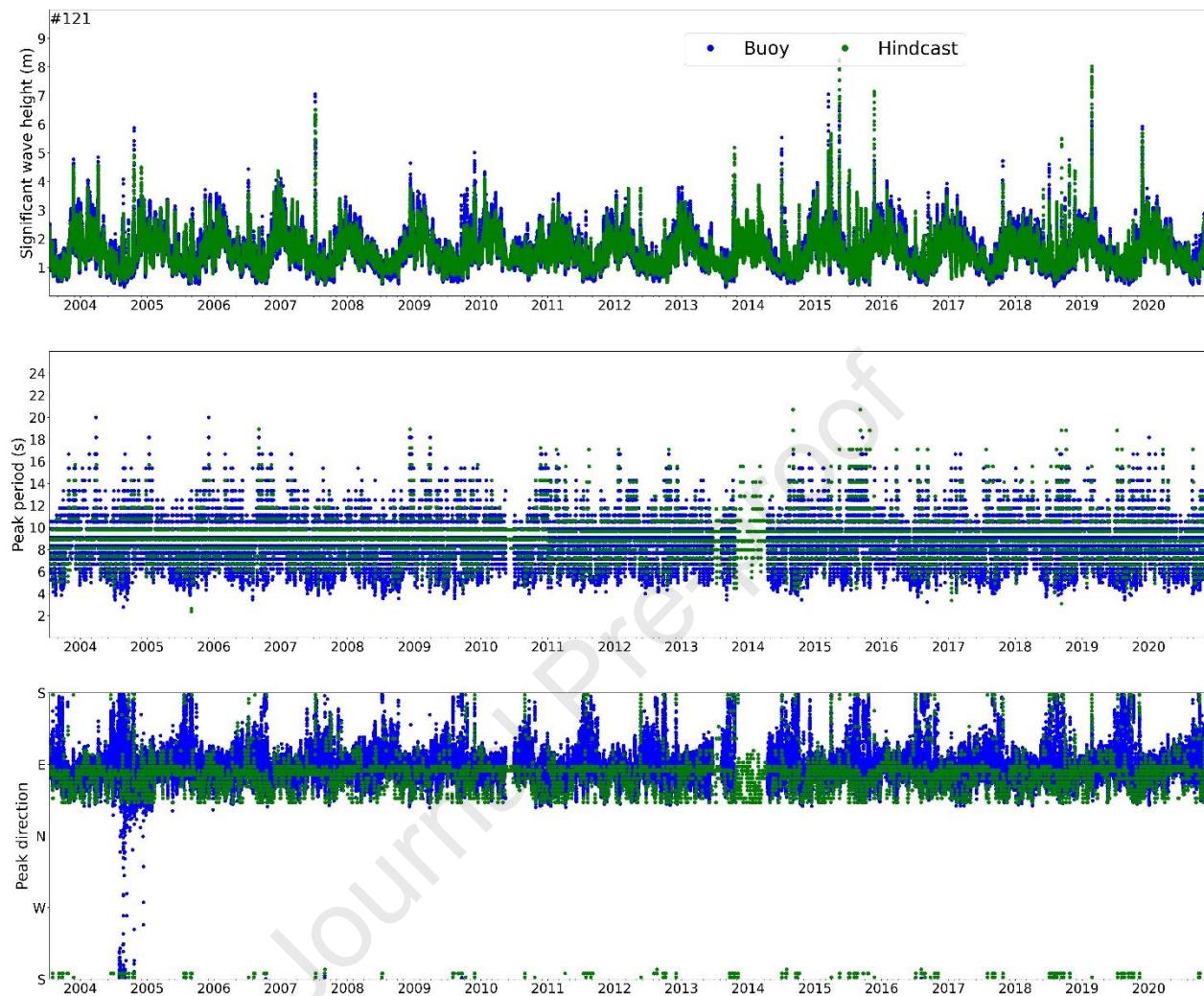


Figure A1. Time series of significant wave height, peak period, and direction from buoy #121 and the wave hindcast.

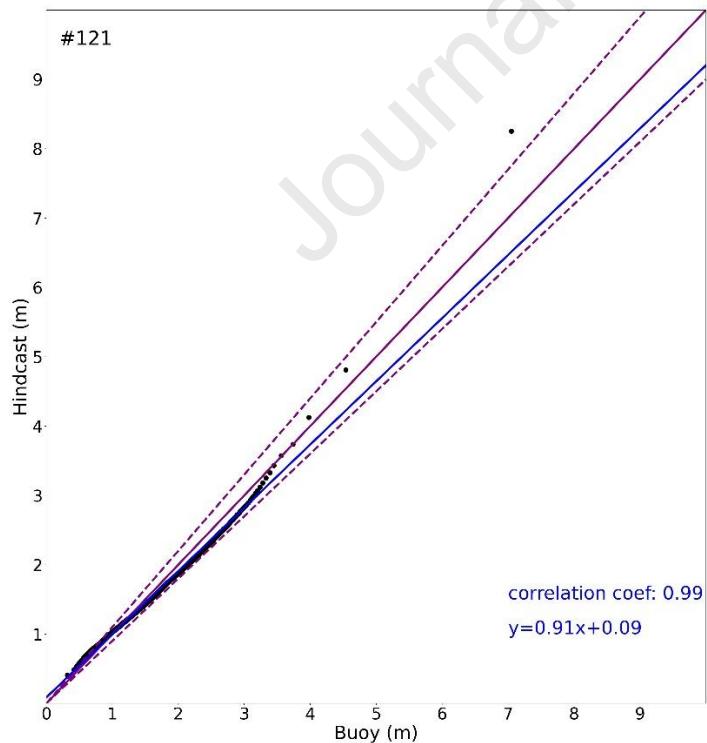
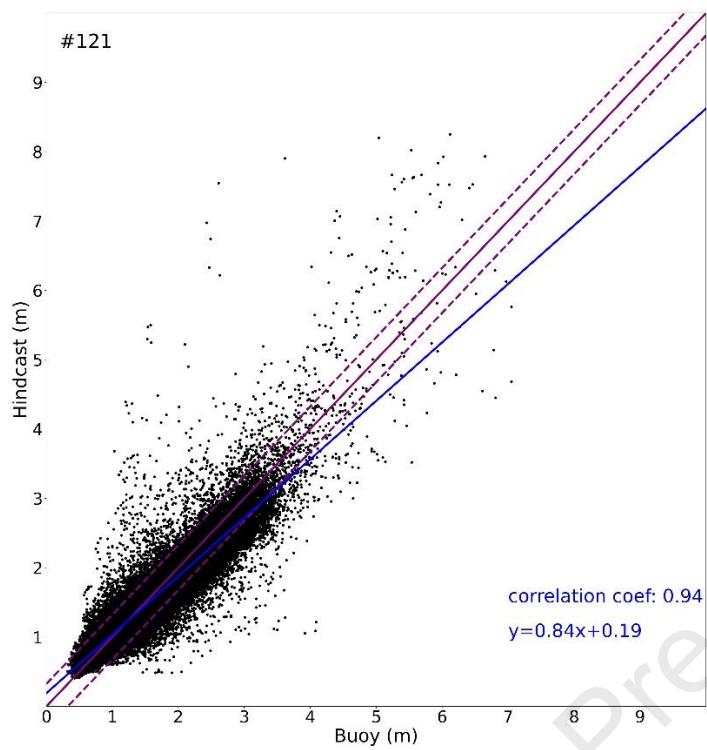



Figure A2. Scatter and Q-Q plots of measured and hindcast significant wave height at buoy #121.

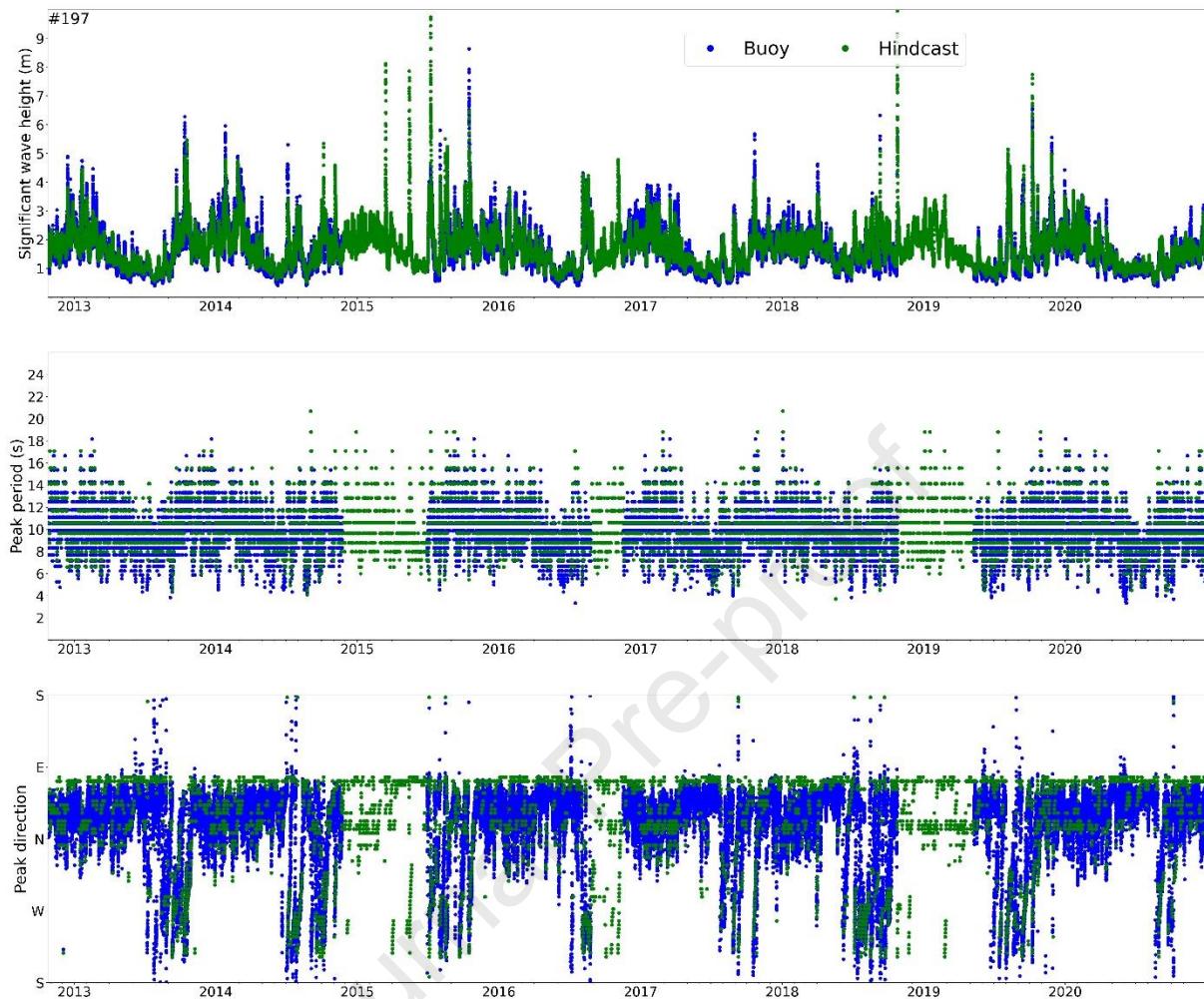


Figure A3. Time series of significant wave height, peak period, and direction from buoy #197 and the wave hindcast.

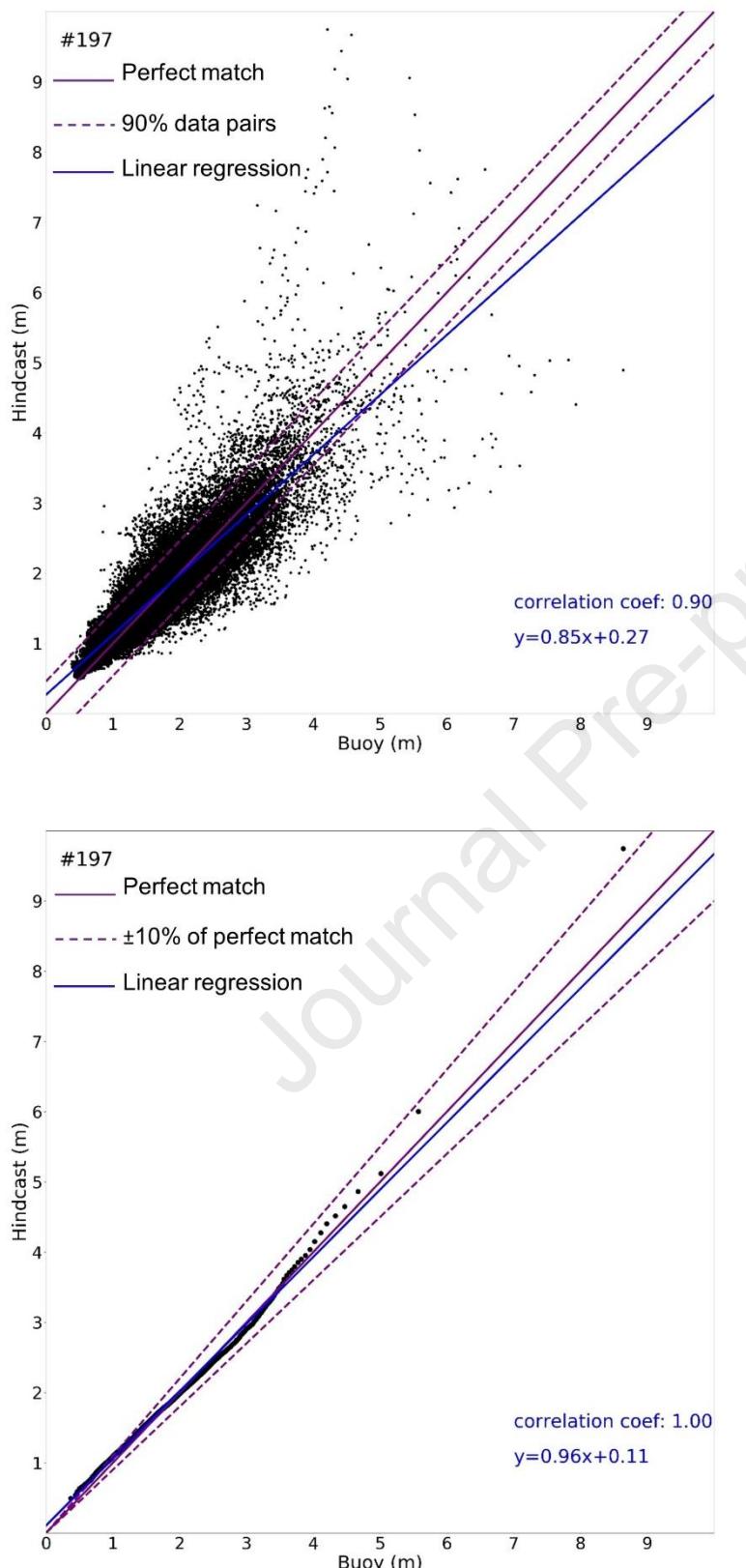


Figure A4. Scatter and Q-Q plots of measured and hindcast significant wave height at buoy #197.

Highlights:

- A 42-year wave hindcast by unstructured SWAN following IEC-TC 114 technical specifications.
- Hindcast validation of bulk and partitioned spectral energy for multimodal seas.
- Strong correlation between wave components to local and regional weather systems.
- Spatiotemporal descriptions of dominant wave components and energy levels.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: