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effect on the electric grid has manifested in the form of significantly
more and larger outages in the United States. This has become
especially true for regions that were previously isolated from
weather extremes. In this paper, we analyze the weather impacts on
the electric power grid across a variety of weather conditions, draw
correlations, and provide practical insights into the operational state
of these systems. High resolution computational modeling of
specific meteorological variables, computational approaches to
solving power system models under these conditions, and the types
of resiliency needs are highlighted as goal-oriented computing
approaches are being built to address grid resiliency needs. An
example analysis correlating outages to 1km day-ahead weather
from two historical winter storms, calculated on a large cluster
using a combination of interpolated and extrapolated inputs from
multiple instrumented sites to workflows that produce primary
meteorological outputs, is shown as initial proof of concept.
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approaches, analysis.

1 Introduction

Advances in technology such as electrification of vehicles and
buildings are increasing customer electricity demand and customer
expectations of power system reliability [37]. At the same time,
increases in frequency and intensity of extreme weather events
continue to challenge energy reliability across the United States
power grid. Since the year 2000, many studies have found that the
leading causes of large electricity outages are weather related [26,
1, 19]. These challenges must be addressed to identify strategies for
performance under extreme weather conditions and assess potential
grid weaknesses in order to mitigate the reduced grid performance
and improve the resilience and reliability. Additionally, gas
availability, (including contractual and physical supply disruption),
seasonal availability constraints, and infrastructure limitations; and
transmission availability and congestion must be addressed [24]. In
recent years, researchers have applied machine learning (ML)
techniques to predict power outages based on winter weather, land
use, grid asset status, vegetation management and other conditions
[5, 23, 7, 35]. Here we outline the issues associated with extreme
weather and grid resilience, demonstrate a cold weather use case
for which correlation and machine learning methods are applied,
and discuss how large computing facilities can help predict and
facilitate energy reliability and resilience.

2 Background

We provide an overview of the effects of severe weather such as
extreme heat or cold, high winds, and flooding on the power system
followed by an introspection of the state of the power system under
such constraints and particularly with increasing penetration of
renewables.

2.1 Severe Weather
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Increasing frequency and intensity of extreme weather events
continues to raise concerns about the resilience of the electric grid
to present and future climate and extreme weather hazards [3]. For
example, increased severity of extreme weather events was the
principal contributor to an observed increase in the duration of U.S.
power outages between 2000 and 2012 [19]. Additionally, during
the period of 20142018, a total of 891 events of power outages
were reported to be caused by severe weather events [1].

Extreme weather and climate-related threats to electrical grid
systems include heat waves, drought, wildfire, flooding, ice storms
and damaging winds from high-energy hurricanes and tornadoes.
For example, transformers and power lines are particularly
vulnerable to persistent high ambient air temperature, which can
cause short lifetimes or abrupt failure of these components.
Average power output from these components decreases 0.7% to
1% per 1 °C increase in air temperature above 20 °C [21].
Additionally, the lifetime of a transformer is limited by the “hot
spot” temperature, the highest temperature within the windings of
the transformer, which can be much greater than the ambient
temperature [32].

Severe drought can cause thermoelectric power plant water
reservoir levels to drop below the level of intake valves that supply
the cooling water to those plants, causing plants to stop or reduce
power production [18]. Low anomalies in hydropower generation
have expressed a strong linear correlation between low streamflow
anomalies and generation [2]. Wildfires can consume support
structures for electric grid assets; and heat, smoke and particulate
matter from wildfires can affect the transmission capacity of power
lines. For example, the insulators that attach the lines to the towers
can accumulate soot and enable leakage currents; and ionized air in
smoke can act as a conductor, causing arcing between lines or
between lines and the ground [8].

Flooding poses risks primarily to underground transmission and
distribution systems, as water seepage from flooding may follow
electrical lines back to underground conduits and vaults and cause
damage to both underground power lines and substations [15]. Ice
storms can lead to ice accumulation on overhead power lines,
stressing the lines and increasing the probability of line galloping
and line breakage under moderate wind exposure [16].
Additionally, the combination of low temperature and high
humidity can lead to natural gas pipeline and wind turbine freezing
and shut down of these generation resources [10]. In fact, nearly
half of all major outage events for the years 2015-2019 were caused
by extreme winter weather associated with low temperatures, high
winds, heavy snow, hail, and blizzards [11]. Finally, high winds can
snap towers and poles and down power lines leading to further
downstream electric grid asset failures as a result [12].

2.2 Impacts on Electrical Power Systems

Electrical power system reliability involves the performance of the
electric grid against high probability, low consequence events.
When we think of the electric grid’s resilience to weather events, it
involves the performance of the electric grid due to low probability,

high consequence events such as hurricanes, earthquakes, and man-
made threats. Resilience can be thought of as the ability of the grid
to prepare for and adapt to changing conditions, withstand and
recover from deliberate attacks, accidents, or naturally occurring
threats or incidents [24].

The future electric grid reliability and resilience investigations
typically cover a balanced portfolio of all aspects of the bulk power
system (BPS) from generation through end-use, e.g., transmission,
generation, and demand [25]. Thermal generating units are the
foundation of the grid, but due to renewable portfolios,
decarbonization goals and cost competitiveness, the future of these
generation units is in doubt. Natural gas is currently the fastest-
growing source of electric power generation, according to data
from the United States Energy Information Administration (EIA)
Hourly Electric Grid Monitor
(https://www.eia.gov/electricity/gridmonitor/dashboard/electric_o
verview/US48/US48). The increase in natural gas-fired generation
was the result of recent low prices and natural gas-fired power
capacity additions. Natural gas-fired generation has generally
increased in most U.S. regions since 2015, according to data from
the EIA Power Plant Operations Report
(https://www.eia.gov/electricity/annual/pdf/epa.pdf). Annual
electricity generation from natural gas power plants in the United
States increased by 31% in the Northeast region, by 20% in the
Central region, and by 17% in the South region between 2015 and
2019. In the western region of the continental United States, electric
power generation from natural gas power plants remained relatively
flat during the same period.

Wind and solar energy sources are becoming a larger portion of the
grid and their presence may make operations more challenging in
some ways, but also provide some significant benefits [28]. For
example, when hurricanes hit, wind and solar will not be able to
produce electricity generation during the duration of the storm. The
winds will be too high and cloud cover will block solar from
providing energy during the storm. However, distributed solar can
help during these extreme events, as was seen in Florida, when the
grid goes down and adds a local resilience effect that can keep
power on in communities and help communities recover quickly.
Renewables add another challenge to the system because they are
uncertain and variable [33]. Large amounts of computing power
will be needed to maintain sufficient forecasts and perform large-
scale coordination of these renewable resources across regions to
maintain reliability and resilience of the grid.

Large-scale weather patterns can affect multiple states and
coordination across these regions can be challenging during severe
weather events. It is likely that during this energy transition, we
will need traditional energy sources such as natural gas to maintain
reliability and resilience of the grid during these severe weather
events. As we are able to build up our capacity for forecasting,
storing large amounts of energy in the form of long-duration
storage [34], and advanced controls of these assets [17], we will be
able to transition to a 100% clean energy future.
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In the near future, many local and regional policy transitions could
begin to impact the reliability and resilience of the electric grid that
is closely connected with the interdependency of the natural gas
system, water systems and telecommunications infrastructure. In an
effort to examine the reliability and resilience of the electric grid
and natural gas transportation availability, our research identifies
and describes the specific reliability and resilience metrics that can
possibly be used.

2.3 Computational Aspects

Computing and computational approaches play a vital role in the
operations and upkeep of the power sector [13, 22]. The computing
needs are several and can be broadly decomposed into planning,
operational, and extraordinary circumstance needs.

The planning needs can range from short-term day-ahead type of
load and generation predictions to significantly longer term needs
around infrastructure planning, siting, and resource planning. It is
interesting to note that the level of uncertainty and the influence of
externalities increases as we get into the longer time frames.
Population movements, business opportunity changes, changing
energy mix, and types of generation become important. With the
increasing penetration of renewables and utilities and governments
having certain clean energy targets, the understanding around
future generation mix and types and length of energy storage is
becoming increasingly complicated, and perhaps uncertain.
Numerous computational and algorithmic tools are being
developed to specifically address this problem. One such tool is the
Hybrid Optimization and Performance Platform (HOPP) [14],
which is a software tool that enables detailed analysis and
optimization of hybrid power plants down to the component level.
It has the capability to assess and optimize projects that contain
combinations of wind (onshore and offshore), solar, storage,
geothermal, and hydro. The HOPP platform aims to answer the
crucial question "When and where do hybrid plants make sense,
and how can we design them optimally?" HOPP leverages other
computational tools to size, analyze, and design the hybrid power
plants of the future, allowing for detailed output on a myriad of
design conditions, from number and types of turbines to the overall
layout and topology of assets within the system. An average case
run of HOPP involving component scale analysis with an
optimization objective can easily use a few hundred cores for
several hours. Tools such as HOPP are particularly important as we
begin to address the changing climate and its resulting impacts on
our power systems.

When addressing large computing needs for the large-scale power
systems, there are several limitations. For example, PSSE (product
of Siemens) is a power system dynamics computational tool that
simulates the impact of transient events on large power systems (up
to 100K buses) to observe dynamic behavior in the 0.1 — 3.0 Hz
range. This corresponds to both small signal stability and transient
stability phenomena that have been identified as culprits in some of
the largest blackouts in North America history. However, because
of its prevalence in transmission planning departments of eastern

North America utilities, there are significant datasets and models
available in PSSE that are widely used in simulations of the US
Eastern Interconnect or El. Therefore, PSSE is often chosen as the
primary electric grid simulation tool for computing high
performance scenarios.

Likewise, PowerWorld has become widely used in the western
North America utility community. Models and datasets compatible
with PowerWorld and available through WECC (Western
Electricity Coordinating Council) make it a natural choice to study
scenarios in the US Western Interconnect or WI. Seeding these
models with good data and at high resolutions is a continuing
challenge.

On the operational side, the computational tools are quite mature
and are designed with aspects of providing time-constrained
analysis results. Many generation and transmission utilities have
extensive home-grown software tools to address their unique needs.
A sub-class of these software systems are designed to orchestrate
control actions at various time scales (from sub-second to time-of-
day). Huge challenges as well as opportunities are emerging in this
area as the end use of energy applications are getting smarter
offering up the ability to control the devices and be able to shape
the nature of load demand for the grid. A number of new elements
in the controllability of equipment are emerging, notably, the
ability to organize a large number of end use devices in a reliable
enough fashion to meet certain grid needs [38]. Model-predictive
control, control-theory based approaches, reinforcement learning
and transfer learning-based approaches, as well as statistical
methods to are emerging. Having a large number of distributed
energy resources adds grid stability issues in managing the real and
reactive component in the power. Significant computational
challenges exist in addressing the needs and maturing these
approaches to the level of robustness needed for wide adoption.
More specifically, some of the specific challenges are:

e The distributed devices have different levels of participation
in their availability for control.

e  For those that participate, human override of the controls is
extremely common and unpredictable, even with incentives.

e  These devices have a variety of communication protocols
and non-standardized (often proprietary) standards.

e Individual devices exist their own surroundings and respond
to changes to variables such as temperature. Having that level
of observability of anticipated behavior is difficult and can
invade on privacy.

e  Their collective control is necessary to meet the needs of the
future electric grid having high penetration of renewables.
When shaping the load using control, transients can get
introduced in the power system leading to instability.

The third category of computational needs are around severe events
and extraordinary circumstances or scenarios. The nature of the
computational needs is very cross-disciplinary. These situations
could arise when extreme weather conditions are prevalent, or
when certain human induced events cause disturbances in the grid.



There may be some weather events like a hurricane or snowstorm
that may have a lead time of days. There could be other events that
have very little lead time, such as earthquakes. The computational
needs in such scenarios require the knowledge and setup that can
predict the severity and extent of impact of the weather
phenomenon to a level of sufficient confidence and then the ability
to evaluate computationally the resulting impact on the power grid.
Recent events such as the extreme hot and cold waves seen recently
in Texas are pointing to a need to build more reliable mathematical
constructs that can help understand the consequences using an
interdependent system of systems approach.

Generation sources such as wind and solar have a distinct highly
temporal dependance on the state of wind and cloud cover. Cloud
cover, in particular, can be challenging to predict at near real-time
timescales. Highly localized irradiance forecast with cloud cover
are needed to anticipate solar production and both are notoriously
difficult to obtain using standard forecast data. An emerging body
of work is using sky facing cameras to anticipate photovoltaic
power production factoring in weather conditions, cloud density,
and the changing cloud positions [40]. These methods have value
in the 5 — 15 minute time horizon; however, their reliability
becomes questionable for longer timeframes.

Fortunately, instrumentation and the ability to collect fine
resolution data, both spatially and temporally, is rapidly improving
and paving the way for data-driven models to be built that are
showing significant promise. Several Artificial Intelligence and
data-driven methodologies are now being developed to address this
need for the sector. The future grid having an increasingly larger
share of distributed energy resources will force our hand to mature
these models as we address power flow, stability, and resiliency
needs.

3 Power Sector Impact Analysis

Herein we discuss the types of analysis needs starting with a
discussion of cross-sector interdependencies, reliability versus
resilience, and metrics to quantify them.

3.1 Cross-sector interdependencies

In 2019, 40% of the natural gas delivered by transmission and
distribution pipelines went to electric power plants, 30% to
industrial plants, and 30% to residential and commercial
consumers. Gas transmission reliability is an important factor to gas
generation units and distribution reliability should be analyzed for
residential and commercial consumers. The distribution and
transmission of gas pipelines are subject to different regulations
which affect reliability analyses.

Modeling and analyzing the weather driven resilience of natural gas
is necessary to understand its risks and its contribution to grid
infrastructure improvement decisions to make it less vulnerable to
weather-related outages and reduce the time it takes to restore
power after an outage. An integrated electricity and natural gas
analysis is highly recommended; however, performing one of these

at regional to national scales involves the obtaining of natural gas
flow data, the type, configuration, and operation of pumping
stations, potentially pricing information, as well as current
operational status of these units. A holistic approach suffers from
being accurate enough because of the complicated data acquisition
process.

The natural gas sector is but one of several other sectors impacting
the analysis. The availability of coal and the supply chain for coal
continues to be a need. The sector is, however, relatively mature
and sufficient understanding exists to model these components
well.

To integrate the natural gas interdependency, one can assume to
begin with the generating capacity and demand projections from
the North American Electric Reliability Council’s or NERC’s
Long-Term Reliability Assessment and the Bulk Electric System
(BES) transmission topologies as defined in its Western Electricity
Coordinating Council (WECC) Anchor Data Set, Eastern
Interconnection Reliability Assessment Group Multi-Regional
Modeling Working Group (ERAG/MMWG) Data Set. From here
one can calculate baseline regional power sector gas demands from
present electricity delivery year through the end of delivery year by
applying security constrained economic dispatch. The load demand
can then be compiled along with demand projections for regional
residential, commercial, and industrial natural gas demands from
the most recent Energy Information Administration (EIA) Annual
Energy Outlook Reference Case into Deloitte’s MarketBuilder®
North American Gas Model. Through the application of these
demands, MarketBuilder® one can project the topology of natural
gas flows in the natural gas pipeline network across the
interconnected North American system along with regional natural
gas prices that may be seen by market participants in future years.

It is worth nothing that nuclear energy provides an alternate option
that does not suffer from sudden ramps, can provide for adequate
spinning reserve, as well as be extremely resilient. However,
nuclear energy has historically been controversial even though
some countries like France produce bulk of their energy from
nuclear.

Emerging trends indicate the need to incorporate the status of
communications infrastructure to approach a near-complete
understanding of the state of the power sector.

The computational needs point to building systems-of-systems that
have roots in graph-theory based models and analysis. The key is
in adequately establishing the relationships between the various
nodes and edges. The computing solutions heavily involve solving
power flow models and using the outputs to derive the
consequences on interdependent systems.

3.2 Reliability versus Resilience

A main differentiator between reliability and resilience is the
frequency and impact of an event. Reliability focuses on assuring
adequate electric grid operations in typical conditions, through real-
time load and generator balancing, and operating equipment within
defined limits. Resilience focuses on the operation of the electric



grid during extreme and adverse events, which can be categorized
as atypical and emergent conditions. Another distinction between
reliability and resilience is that a system may be considered reliable
without identifying a specific threat to the system. However, when
discussing resilience, systems are considered resilient to a
particular threat or set of threats. Hence, reliability metrics do not
attribute the cause to the metric (e.g., a load is de-energized without
regard to why or how), whereas resilience metrics do consider the
cause (e.g., a hurricane caused the load to be de-energized).
Therefore, resilience bridges the gap between the system response
and a root cause.

3.2.1 Time-Dependent Analysis of an Event

An important aspect of resilience is its time-varying nature. Many
of the basic elements of system resilience can be captured in
different phases before and during a severe event as well as after
the event, when the system has been restored. Figure 1 shows an
illustrative generic resilience curve where a resilience indicator is
used to quantify the resilience level of a power system during an
event as a function of time. The resilience indicators are in the form
of the following:

e  The amount of generation capacity (MW).

e  The load demand served or not served (MW).
e Number of transmission lines tripped.

e Number of outages.

e Number of customers not served.

In Figure 1, five different phases can be clearly seen: the pre-
disturbance state, disturbance state, post-disturbance degraded
state, recovery & restoration state, and the post-restoration state
[24].

3.2.1.1 Pre-disturbance Phase

The pre-disturbance state is the operating point of the system before
a severe event occurs. In this state, resources are prepositioned to
prepare for an event. Remedial actions are set up to minimize the
impact of the event. The metrics that are calculated in this phase
include Loss of Load Probability, Planning Reserve Margins, etc.
These metrics quantify the generation resource adequacy.

3.2.1.2 Disturbance Phase

The disturbance phase is the time between the start of the event to
the end of the event. In this phase, the resilience indicator quantifies
how fast and how low the resilience drops. This includes the
amount of generation MW lost, load MW disconnected, and the rate
at which generation, transmission lines, and customers are
disconnected during the event.

3.2.1.3 Post-Disturbance and Degraded Phase

Following the end of the event and just before restoration is
initiated is the post-disturbance degraded state. In this stage, the
damages caused by the event are assessed and critical components
required for recovery are identified.

3.2.1.4 Recovery and Restoration phase

A resilient system should demonstrate high restorative capabilities
in order to restore disconnected customers and collapsed
infrastructures. The recovery phase of the event commences at the
time the system performance has reached its minimum level and
ends at a point in time in which some minimally acceptable and
stable level of system performance has been recovered through
adaptive actions by the system and its human operators.

3.2.1.5 Post-Restoration Phase

Following the event and the restoration of the system to an
acceptable operational state, the post-restoration phase begins. In
this phase, the impact of the event and the performance of the
network are thoroughly analyzed to identify the weaknesses and
limitations of the network.

Resilience
Indicator
R(t)

PHASE 1 PHASE 2 PHASE 3 PHASE 4 PHASE §
Pre- ® !
disturbance - { Post- :
Period : Disturbance ; disturbance ; Recovery & i Post-
Period : degraded : Restoration period restoration
Ry state :
Ry

4 t ts 1y Time (t)
Figure 1: Multi-phase trapezoid curve [24].

3.3 Metrics for Resilience and Reliability

A discussion of reliability and resilience is incomplete without the
inclusion of relevant metrics. We include a summary of the most
important resiliency and robustness metrics [24]. The topic is vast
and a full review is outside the scope of this exposition.

3.3.1 Resilience metrics
The following are some of the important resilience metrics [24]:

a. FLEP metric: This is a time-dependent resilience metric
that captures the performance during the different event
phases in terms of how Fast the resilience drops, how
Low it drops, how Extensive it is, and how Prompt is the
recovery.

b. Severity Risk Index: The SRI is a metric where
generation loss, transmission loss and load loss events are
aggregated into a single value that represents the risk to
the Bulk Energy System.

c. Dynamic Resilience Indicator: The DRI addresses the
need for an overall resilience measure for shorter periods
of time.



d. Cumulative customer energy not served
e. Critical customer energy demand not served
f.  Time to operational recovery

3.32 Reliability metrics
The notable reliability metrics include the following and most are
self-explanatory [24]:

a. Planning Reserve Margin: This is a primary metric used
to measure resource adequacy and is measured as a
percentage of additional expected capacity over demand.

b. Loss of Load Probability (LOLP) measures the
probability of a system daily peak demand exceeding
available resources.

c. Loss of Load Expectation (LOLE) is the expected
number of days per time period for which the generation
capacity becomes insufficient to serve the demand.

d.  Effective load Carrying Capacity (ELCC) is the amount
of incremental load a resource can reliably serve.

e. Expected Unserved Energy (EUE) is the summation of
the expected number of megawatt hours of demand that
will not be served in a given time period as a result of
demand exceeding the available capacity across all hours.

System Average Interruption Frequency Index (SAIFT)
System Average Interruption Duration Index (SAIDI)

5@

Customer Average Interruption Duration Index (CAIDI)

—

Customer Total Average Interruption Duration Index
(CTAIDI)

j. Customer Average Interruption Frequency Index
(CAIFI)

It should be noted that SAIFI, SAIDI, CAIDI, CTAIDI and CAIFI
are primarily used for the analysis of electric distribution systems.

3.3.3 The FLEP Metric Set

The FLEP metrics [5] is a time-dependent resilience metric set that
captures the performance of a network during the different phases
associated with an event. It includes how Fast (®) resilience drops,
how Low (A) resilience drops, how Extensive (E) the post-
degraded state becomes and how Promptly (IT) the network
recovers to its pre-event state [5]. Figure 2 summarizes the FLEP
(OAEIT) metric set

State Description

Disturbance Progress How fast resilience drops

How low resilience drops

How extensive is the post-disturbance degraded state
How promptly does the network recover

Disturbance Progress
Post-disturbance degraded state
Recovery and Restoration state

Figure 2: FLEP Metrics Set.

Figure 3 shows the mathematical representation of the FLEP
metric set, The ®-metric is evaluated by estimating the slope of the
resilience curve during the disturbance phase, while the A-metric is
defined by the resilience degradation level at the end of the event
at t,. The E-metric is simply the time that the network remains in
the post-disturbance degraded state is given by t; —t,. The II-
metric is defined by the slope of the resilience recovery curve which
considers both the resilience improvement during this phase and the

time required for achieving this required for reaching this resilience
level [6]. Complementing the “@AEIT” resilience metrics system,
an additional metric can be used, i.e., the area of the trapezoid. The
area metric is expressed as the integral of the trapezoid for the
duration of the event.

Metric Mathematical Expression

0 1 MWr/hours, No. of lines tripped/hours, No. outages/hours, No. of unserved

t,—t customers/hours
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==

Ry —Ry MW/Hours, No. of lines r , No. of restored
t,—ty
Area E MW X hours, No. of lines in service X hours, No. of outages X hours, No.
I R(Ddt of customers X hours

i

Figure 3: Mathematical representation of the FLEP Metric set.

3.3.4 Severity Risk Index (SRI)

The SRI is a metric where generation loss, transmission loss and
load/demand loss events are aggregated into a single value that
represents the risk to the Bulk Energy System. It can serve as a
resilience indicator of the power system over a longer period. The
score can show the best and poorest performance of the grid within
weeks, months, or a year.

As shown in Figure 4, the SRI is the sum of three weighted
components: percentage of generation lost, percentage of
transmission lines tripped, and the percentage of load disconnected.
To calculate the SRI, each element (generation, transmission, and
load loss) is weighted by a pre-determined factor. It can be written
as:

SRI = B,G + B,T + BslL
Pr+B.+B=1

Where G is the percentage of Generation lost per hour/day, T is the
percentage of Transmission lines tripped per hour/day, L is the
percentage of load disconnected per hour/day, B;, 8., and S5 are
the weighting indices. NERC calculates a daily SRI for the BES
with B, = 0.1,8, = 0.3 and B3 = 0.6

Metric Mathematical Expression Unit

@ Ry — Ry MWr/hours, No. of lines tripped/hours, No. outages/hours, No. of unserved
t—t customers/hours

A R, — R, MW, No. of Lines tripped, No. of outages, No. of unserved customers

E ty—t, Hours

n Ri—Ry MW/Hours, No. of lines r ,No. of restored
7

% MW X hours, No. of lines in service X hours, No. of outages X hours, No.
f R(D)dt of customers X hours
i

Figure 4: Mathematical representation of the FLEP Metric set.
3.3.5 Dynamic Risk Index (DRI)

The authors have been involved in the development of the DRI to
address the need for an overall resilience measure for shorter
periods, e.g., minutes to hours. As shown in Figure 5, the DRI is
also the sum of three weighted components:

e RR: The measure of reactive reserves, e.g., the phase angle
separation between areas/regions of interest.

e LL:the Loadability limit, e.g., the point of maximum load,
i.e., the tip of the nose curve.



e FA: Measure of frequency agility e.g., the percentage of
frequency nadir.

Mathematically, the DRI is written as:

DRI = a;RR + a,LL + a3FA
a;ta, +taz=1

Figure 5: Severity Risk Index (SRI) and Dynamic Resilience
Indicator (DRI)

4 Computational Methods to Support the
Analysis and Prediction

As evidenced, the need for applying the state-of-the-art in
computing and computational approaches is important to enhance
the resiliency of our power systems in the increasingly complex and
dynamic nature of power systems. The entire range of computing
and computational approaches are likely expansive. We limit this
discussion to the computing approaches that are relevant for the
objective of delivering resiliency during severe weather events.

4.1 Ensemble methods for severe weather

A large body of work exists that has elevated the use of ensemble
methods to derive an understanding of the mean and spread of
future weather forecasts. For power systems, the effects are often
localized and individualized forecasts at that spatial granularity are
unavailable and unreliable. There is a significant computational
cost for running these ensembles and in particular, for generating
dynamic nested grids for regions of significant interest. The
Weather Research and Forecasting model, one of the more popular
tools for weather prediction, scales well; however, its preprocessing
and postprocessing involving initialization, domain decomposition,
and input/output do not scale well. Ensemble scenarios require the
parallel setup of different initialization conditions or
parametrizations. A well-designed setup that automates most of the
steps can easily consume a dedicated HPC system. Nested grids
typically provide for adding higher temporal and spatial resolution
in certain areas of interest within the computational domain. Each
nest adds complexity and sometimes the calculations can get into
indeterminate regimes that are difficult to anticipate. I/O can easily
be in the 100s of TBs for an ensemble run.

The demands of a setup of high-performance computing resources
in an operational close-loop environment is challenging. The costs
of setup and maintaining such systems is prohibitive. Still, the
benefits of having more accurate weather forecasts are highly

desirable. This will translate to improvements across all metrics of
reliability and resiliency as utilities will find themselves more
streamlined in responding to such events.

4.2 Model development of resulting impacts

Arguably, the most significant and far-reaching impact could be
had from reliably translating the anticipated severity of a weather
event to the nature of impact expected on the power system. This is
usually approached using fragility curves, which are essentially
transfer functions that map certain variables in the weather
prediction to a level of adverse impact on the power system. Some
of these fragility curves can incorporate additional factors in its
assessment. Building out a computational capability that can take
in the complex power system network and its current state and
dynamically resolve the impacts as a severe threat comes in and
unfolds can have outstanding benefits. Not only can they help the
operators reliably anticipate system outages, they can also help
operators devise alternate solutions as certain parts of the network
go down. Building in layers of maturity, some of these decisions
can be automated and computed on the fly to be presented as
potential options for the final decision at the operator level.

4.4 Controllability-based approaches with
distributed energy resources

There is a healthy need for devising scaled up end-to-end
optimization solutions that involves the control of participating
hardware devices. This is a very complex landscape as there could
be tens of thousands of devices that offer up controllability.
Usually, the space heating and water heating appliances are the top
targets for energy flexibility, but even the subset of these have
numerous firmware versions, device protocols, and varying level of
participation in such programs. Impending externalities such as
severe heat or cold requires load management and curtailment. As
such, the assured delivery of a quantified amount of load flexibility
is still not mature. Fluctuating generation from renewables and
right-sizing energy storage continues to be multi-objective
optimization problem. Assuring robustness in such decentralized
systems with varying penetrations of different distributed energy
resources is an emerging computational challenge.

An additional aspect of the deep controllability problem is equity
and energy justice [9]. The electric power grids tend to be less
robust and reliable in historically disadvantaged geographies and
communities. The quality of building construction and the
availability of sufficient participating devices could vary
significantly. The amount of assumed available demand flexibility
in such communities could adversely affect their existing quality of
life. At the same time, the penetration of distributed energy
resources in these communities may itself be a challenge.
Therefore, any control development that spans large geographic
areas must assure a quality of service that does not adversely impact
such communities.

45 Situational awareness and visualization



There is a distinct need for the advancement of situational
awareness tools and advanced visualization capabilities for the
integrated assessment of severe weather and power systems. This
manifests as a multi-scale problem as the relevant time scales of
weather phenomena could be in the order of minutes to hours while
their impacts on the electric grid propagate in the order of seconds.
Having the ability to fold in decision support tools, as discussed
earlier, would offer up an ability to enhance the situational
comprehension of unfolding events.

4.6 Role of Artificial Intelligence

This discussion would be remiss without the inclusion of emerging
artificial intelligence approaches that hold tremendous promise. Al
has pervasively touched every realm of our lives including the topic
of our discussion. There are efforts underway that use Al for
weather predictions, for controls development, and to devise data-
driven decision science tools. Deep neural networks, surrogate
modeling, gaming adversarial networks, and multiple other
approaches are showing huge promise in weather predictions [41]
and other applications. In particular, huge gains in run time have
been observed using surrogate models. Our view is that Al is a very
powerful tool and that it can substantially improve on various
challenges outlined in this paper. We also believe that the
challenges highlighted are fundamental in their own way and that
the drive for resiliency in our power system is ongoing.

5 Preliminary Results from two Cold Weather
Use Cases

We now illustrate the analysis of two cold weather events to further
anchor our discussion with real-world examples.

In February of 2021, Winter Storm Uri caused electricity power
outages for 4.5 million customers and left many without power for
several days [6]. In February 2022, Winter Storm Landon [27],
caused tremendous outages across a 2,000-mile-long expanse of
snow and ice from the Southern Rockies and Plains into the
Midwest and northern New England. To examine the impacts of
these storms on electricity customers in Texas during these periods,
we employed a Pearson’s correlation coefficient analysis and a
Random Forest machine learning method to understand the
relationship between gridded (1 km spacing) daily weather
variables and county-level daily customer outages recorded during
these events.

5 Correlation of Outages to Weather

The correlation analysis evaluated the strength of the relationship
between the relative movements of two variables, meteorological
conditions, and percentage of customer outages, using Pearson’s
correlation coefficient. In the case of Winter Storm Uri, the
percentage of customer outages in each Texas county on a given
day were strongly and positively correlated to the percentage of
customer outages the day before. It can be interpreted from this
result, and it was certainly observed during the storms, that outages
persisted in the same regions for several days. Additionally,

maximum daily temperature and daily average incident short-wave
radiation were positively correlated with outages, an unexpected
but interesting outcome. There were no strong negative correlations
observed.

The same type of correlation performed using data for Winter
Storm Landon, did not show any strong positive or negative
correlations. However, minimum temperature and snow water
equivalent were weakly positively correlated to the percentage of
customer outages on the next day. Finally, a Pearson’s correlation
using Texas county-level data from both storms showed that while
daylight average incident shortwave radiation and cumulative snow
water equivalent on a given day were weakly positively correlated
to the percentage of customer outages the next day, and average
vapor pressure, maximum and minimum temperature and
cumulative precipitation were more highly and negatively
correlated with the percentage of customer outages the next day,
the highest positive correlation occurred in the combined dataset
again between outages on consecutive days (Figure 2).
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Figure 6. Visualization of the result of Pearson’s correlation of the
percentage of next-day customer outages (t+1, x-axis) in Uri and
Landon winter storms to each of the weather and outage variables.
The y-axis shows the strength and sign of the correlation [4].

5.2 Random Forest Analysis

For the Random Forest (RF) analysis, we used the daily weather
and outage data for five days each from the two winter storms, to
determine whether yesterday’s weather information can predict
tomorrow’s outages. Data for this analysis focused on Texas
outages for both storms. 90% of the data were used for training the
model to predict the percent of outages in each affected county in
Texas and 10% of the data were used to validate the result. These
results showed a small positive correlation for Winter Storm Uri of
yesterday’s weather to today’s outages, with a root mean squared
error (RMSE) of 9.793. Results from using the same geographical
data for the 2022 Winter Storm Landon showed a lower RMSE of
7.224 indicating that there is a greater positive correlation among
the weather variables and the percentage of customers outaged
during that storm. Combining the Texas county data from both
winter storms provided the best correlation among weather
variables and outages, and produced the lowest RMSE at 6.125,
indicating that prediction from the combined data from both storms
was better than that of either Uri or Landon alone.



5.3 Data and Methods Employed for Cold
Weather Use Cases

Meteorological data for Winter Storms Uri (February 13-17, 2021)
and Landon (February 2-6, 2021) were obtained for the state of
Texas from the Oak Ridge National Laboratory’s (ORNL) Daymet
Version 3 [36]. The meteorological data included maximum and
minimum daily temperature, daylight average incident short-wave
radiation, cumulative precipitation, snow water equivalent and
average vapor pressure calculated using a combination of
interpolated and extrapolated inputs from multiple instrumented
sites to workflows executed on a large computing cluster. Data
were averaged spatially to the county level to match customer
outage counts. County level customer outages were obtained from
the archives of the Department of Energy (DOE) Environment for
Analysis of Geo-Located Energy Information (EAGLE-I [31])
situational awareness platform for near real-time energy status.

The Pearson’s Correlation and Random Forest analyses performed
used components of the Advanced data SCiENce toolkit for Non-
Data Scientists (ASCENDS) tool [20, 30], which is a set of
command-line and web-based tools for performing data analysis
and machine learning. Among the methods supported by
ASCENDS are linear, logistic and other types of regression,
random forests, support vector machines and neural networks.

The Pearson correlation algorithm in ASCENDS that was used for
this study is:

. Y[( X4 — mean(X[:,1])) * (y — mean(y))] 0
(std(X[:, 1)) * std(y))

with the X matrix including all weather and outage variables, and
y representing the outage predictions. In the above equation, std
refers to the standard deviation of the data distribution.

ASCENDS’ Random Forest tool is an implementation of the
Python Scikit-learn Random Forest (RF) Regressor [29], a non-
parametric model that fits a selected number of classifying decision
trees to various samples subset from the data.

5.4 Computational Enhancements

The analysis illustrated here highlights how data was sourced from
multiple places (Daymet, EAGLE-I, etc.) and both machine
learning and statistical approaches (ASCENDS) were used for the
preliminary analysis. Daymet is a 1km x 1km gridded daily dataset
for North America while EAGLE-I houses about a decade of 15-
minute resolution customer outage data at the utility and county
resolution. For a robust setup, a system-of-systems approach that
can source data from various systems, run computational models,
perform machine learning, and run statistical techniques is needed.
Furthermore, when the next hurricane unfolds, a system that can
provide insights that are significantly more advanced would
position the electrical power systems sector much more resiliently.

5.6 Collecting Electric Grid Data for a winter storm case

This process of acquiring data starts by collecting historical
weather, power generation/consumption, and natural gas
production/consumption data of an area. This identifies the worst
cold year by analyzing the historical weather data. It is relatively
effortless beyond this to model scenarios with having extreme
winter weather in a certain area.

Additionally, one can analyze the forced outage rates (FOR) of
conventional generators, including different type of units, based on
historical outage rate data such as winter storm Uri. Historical FOR
data of transmission lines can be integrated. This eventually can
model the impact of extreme weather conditions on load demand
using winter weather parameters (WWP) during winter storms in
an area. Additionally, it is relatively easy to investigate the impact
of a winter storm on natural gas demand (an interdependent asset).
Analyzing the impact of winter storm Uri on pipeline operations
and natural gas production is critical to validate any use case.

5.7 5.7 Use Case of an Impact of a Winter Storm on Electric
Demand

To model the impact of cold weather on electric load, historical
load data and weather data is needed during winter (Jan., Nov., and
Dec.). Firstly, we can calculate the WWP value using the following
equation:

WWP = Temp — (0.5 x (Wind — 10)),if Wind > 10
WWP = Temp,if Wind < 10

where, Wind = Wind velocity in MPH, Temp = Dry bulb
temperature. For each load zone, we used linear spline fitting
functions to map the relationship between WWP and electric load.

The relationships between WWP and load of AE, Dayton, and
COMED zones are shown in Figure 7. With the decrease of WWP
value, the daily maximum load increases. At WWP values greater
than 40, there appears to be minimal load response to weather
conditions.
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Figure 7: The impact of WWP parameter on load of AE,
Dayton, and COMED

6 Conclusion

The paper presents a discussion on the resiliency and reliability
needs of the electrical power sector with respect to severe weather
conditions. A computing audience relevant introduction to the
reliability and resiliency approach used in power systems was
presented followed by a dialogue on the computing and
computational needs to achieve a higher state-of-the-art in power
systems resiliency. Two use cases of severe cold weather with
subsequent analysis were presented to highlight the possibilities
that could result with computational advancement in the field.



The end goal of such systems is ultimately to prevent the loss of
life and property. It will require bridging across multiple sectors
and domains. This is somewhat inevitable and forced in many ways
by the distributed nature of renewables. The computing and
computational community will have a significant role as the world
transitions over to cleaner sources of energy.
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