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ABSTRACT 

As the frequency and intensity of severe weather has increased, its 

effect on the electric grid has manifested in the form of significantly 

more and larger outages in the United States. This has become 

especially true for regions that were previously isolated from 

weather extremes. In this paper, we analyze the weather impacts on 

the electric power grid across a variety of weather conditions, draw 

correlations, and provide practical insights into the operational state 

of these systems. High resolution computational modeling of 

specific meteorological variables, computational approaches to 

solving power system models under these conditions, and the types 

of resiliency needs are highlighted as goal-oriented computing 

approaches are being built to address grid resiliency needs. An 

example analysis correlating outages to 1km day-ahead weather 

from two historical winter storms, calculated on a large cluster 

using a combination of interpolated and extrapolated inputs from 

multiple instrumented sites to workflows that produce primary 

meteorological outputs, is shown as initial proof of concept.   
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1 Introduction 

Advances in technology such as electrification of vehicles and 

buildings are increasing customer electricity demand and customer 

expectations of power system reliability [37]. At the same time, 

increases in frequency and intensity of extreme weather events 

continue to challenge energy reliability across the United States 

power grid. Since the year 2000, many studies have found that the 

leading causes of large electricity outages are weather related [26, 

1, 19]. These challenges must be addressed to identify strategies for 

performance under extreme weather conditions and assess potential 

grid weaknesses in order to mitigate the reduced grid performance 

and improve the resilience and reliability. Additionally, gas 

availability, (including contractual and physical supply disruption), 

seasonal availability constraints, and infrastructure limitations; and 

transmission availability and congestion must be addressed [24]. In 

recent years, researchers have applied machine learning (ML) 

techniques to predict power outages based on winter weather, land 

use, grid asset status, vegetation management and other conditions 

[5, 23, 7, 35]. Here we outline the issues associated with extreme 

weather and grid resilience, demonstrate a cold weather use case 

for which correlation and machine learning methods are applied, 

and discuss how large computing facilities can help predict and 

facilitate energy reliability and resilience.  

2 Background 

We provide an overview of the effects of severe weather such as 

extreme heat or cold, high winds, and flooding on the power system 

followed by an introspection of the state of the power system under 

such constraints and particularly with increasing penetration of 

renewables. 

2.1 Severe Weather 
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Increasing frequency and intensity of extreme weather events 

continues to raise concerns about the resilience of the electric grid 

to present and future climate and extreme weather hazards [3]. For 

example, increased severity of extreme weather events was the 

principal contributor to an observed increase in the duration of U.S. 

power outages between 2000 and 2012 [19]. Additionally, during 

the period of 2014–2018, a total of 891 events of power outages 

were reported to be caused by severe weather events [1].  

Extreme weather and climate-related threats to electrical grid 

systems include heat waves, drought, wildfire, flooding, ice storms 

and damaging winds from high-energy hurricanes and tornadoes. 

For example, transformers and power lines are particularly 

vulnerable to persistent high ambient air temperature, which can 

cause short lifetimes or abrupt failure of these components. 

Average power output from these components decreases 0.7% to 

1% per 1 C increase in air temperature above 20 C [21]. 

Additionally, the lifetime of a transformer is limited by the “hot 

spot” temperature, the highest temperature within the windings of 

the transformer, which can be much greater than the ambient 

temperature [32].  

Severe drought can cause thermoelectric power plant water 

reservoir levels to drop below the level of intake valves that supply 

the cooling water to those plants, causing plants to stop or reduce 

power production [18]. Low anomalies in hydropower generation 

have expressed a strong linear correlation between low streamflow 

anomalies and generation [2]. Wildfires can consume support 

structures for electric grid assets; and heat, smoke and particulate 

matter from wildfires can affect the transmission capacity of power 

lines. For example, the insulators that attach the lines to the towers 

can accumulate soot and enable leakage currents; and ionized air in 

smoke can act as a conductor, causing arcing between lines or 

between lines and the ground [8].  

Flooding poses risks primarily to underground transmission and 

distribution systems, as water seepage from flooding may follow 

electrical lines back to underground conduits and vaults and cause 

damage to both underground power lines and substations [15]. Ice 

storms can lead to ice accumulation on overhead power lines, 

stressing the lines and increasing the probability of line galloping 

and line breakage under moderate wind exposure [16]. 

Additionally, the combination of low temperature and high 

humidity can lead to natural gas pipeline and wind turbine freezing 

and shut down of these generation resources [10].  In fact, nearly 

half of all major outage events for the years 2015-2019 were caused 

by extreme winter weather associated with low temperatures, high 

winds, heavy snow, hail, and blizzards [11]. Finally, high winds can 

snap towers and poles and down power lines leading to further 

downstream electric grid asset failures as a result [12].  

2.2 Impacts on Electrical Power Systems 

Electrical power system reliability involves the performance of the 

electric grid against high probability, low consequence events. 

When we think of the electric grid’s resilience to weather events, it 

involves the performance of the electric grid due to low probability, 

high consequence events such as hurricanes, earthquakes, and man-

made threats. Resilience can be thought of as the ability of the grid 

to prepare for and adapt to changing conditions, withstand and 

recover from deliberate attacks, accidents, or naturally occurring 

threats or incidents [24]. 

The future electric grid reliability and resilience investigations 

typically cover a balanced portfolio of all aspects of the bulk power 

system (BPS) from generation through end-use, e.g., transmission, 

generation, and demand [25]. Thermal generating units are the 

foundation of the grid, but due to renewable portfolios, 

decarbonization goals and cost competitiveness, the future of these 

generation units is in doubt. Natural gas is currently the fastest-

growing source of electric power generation, according to data 

from the United States Energy Information Administration (EIA) 

Hourly Electric Grid Monitor 

(https://www.eia.gov/electricity/gridmonitor/dashboard/electric_o

verview/US48/US48). The increase in natural gas-fired generation 

was the result of recent low prices and natural gas-fired power 

capacity additions. Natural gas-fired generation has generally 

increased in most U.S. regions since 2015, according to data from 

the EIA Power Plant Operations Report 

(https://www.eia.gov/electricity/annual/pdf/epa.pdf). Annual 

electricity generation from natural gas power plants in the United 

States increased by 31% in the Northeast region, by 20% in the 

Central region, and by 17% in the South region between 2015 and 

2019. In the western region of the continental United States, electric 

power generation from natural gas power plants remained relatively 

flat during the same period. 

Wind and solar energy sources are becoming a larger portion of the 

grid and their presence may make operations more challenging in 

some ways, but also provide some significant benefits [28].  For 

example, when hurricanes hit, wind and solar will not be able to 

produce electricity generation during the duration of the storm.  The 

winds will be too high and cloud cover will block solar from 

providing energy during the storm.  However, distributed solar can 

help during these extreme events, as was seen in Florida, when the 

grid goes down and adds a local resilience effect that can keep 

power on in communities and help communities recover quickly.  

Renewables add another challenge to the system because they are 

uncertain and variable [33].  Large amounts of computing power 

will be needed to maintain sufficient forecasts and perform large-

scale coordination of these renewable resources across regions to 

maintain reliability and resilience of the grid.  

Large-scale weather patterns can affect multiple states and 

coordination across these regions can be challenging during severe 

weather events.  It is likely that during this energy transition, we 

will need traditional energy sources such as natural gas to maintain 

reliability and resilience of the grid during these severe weather 

events.  As we are able to build up our capacity for forecasting, 

storing large amounts of energy in the form of long-duration 

storage [34], and advanced controls of these assets [17], we will be 

able to transition to a 100% clean energy future.  

https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/US48
https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/US48
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In the near future, many local and regional policy transitions could 

begin to impact the reliability and resilience of the electric grid that 

is closely connected with the interdependency of the natural gas 

system, water systems and telecommunications infrastructure. In an 

effort to examine the reliability and resilience of the electric grid 

and natural gas transportation availability, our research identifies 

and describes the specific reliability and resilience metrics that can 

possibly be used.  

2.3 Computational Aspects 

Computing and computational approaches play a vital role in the 

operations and upkeep of the power sector [13, 22]. The computing 

needs are several and can be broadly decomposed into planning, 

operational, and extraordinary circumstance needs.  

The planning needs can range from short-term day-ahead type of 

load and generation predictions to significantly longer term needs 

around infrastructure planning, siting, and resource planning. It is 

interesting to note that the level of uncertainty and the influence of 

externalities increases as we get into the longer time frames. 

Population movements, business opportunity changes, changing 

energy mix, and types of generation become important. With the 

increasing penetration of renewables and utilities and governments 

having certain clean energy targets, the understanding around 

future generation mix and types and length of energy storage is 

becoming increasingly complicated, and perhaps uncertain. 

Numerous computational and algorithmic tools are being 

developed to specifically address this problem. One such tool is the 

Hybrid Optimization and Performance Platform (HOPP) [14], 

which is a software tool that enables detailed analysis and 

optimization of hybrid power plants down to the component level. 

It has the capability to assess and optimize projects that contain 

combinations of wind (onshore and offshore), solar, storage, 

geothermal, and hydro. The HOPP platform aims to answer the 

crucial question "When and where do hybrid plants make sense, 

and how can we design them optimally?" HOPP leverages other 

computational tools to size, analyze, and design the hybrid power 

plants of the future, allowing for detailed output on a myriad of 

design conditions, from number and types of turbines to the overall 

layout and topology of assets within the system. An average case 

run of HOPP involving component scale analysis with an 

optimization objective can easily use a few hundred cores for 

several hours. Tools such as HOPP are particularly important as we 

begin to address the changing climate and its resulting impacts on 

our power systems. 

When addressing large computing needs for the large-scale power 

systems, there are several limitations. For example, PSSE (product 

of Siemens) is a power system dynamics computational tool that 

simulates the impact of transient events on large power systems (up 

to 100K buses) to observe dynamic behavior in the 0.1 – 3.0 Hz 

range. This corresponds to both small signal stability and transient 

stability phenomena that have been identified as culprits in some of 

the largest blackouts in North America history. However, because 

of its prevalence in transmission planning departments of eastern 

North America utilities, there are significant datasets and models 

available in PSSE that are widely used in simulations of the US 

Eastern Interconnect or EI. Therefore, PSSE is often chosen as the 

primary electric grid simulation tool for computing high 

performance scenarios.  

Likewise, PowerWorld has become widely used in the western 

North America utility community. Models and datasets compatible 

with PowerWorld and available through WECC (Western 

Electricity Coordinating Council) make it a natural choice to study 

scenarios in the US Western Interconnect or WI. Seeding these 

models with good data and at high resolutions is a continuing 

challenge.  

On the operational side, the computational tools are quite mature 

and are designed with aspects of providing time-constrained 

analysis results. Many generation and transmission utilities have 

extensive home-grown software tools to address their unique needs. 

A sub-class of these software systems are designed to orchestrate 

control actions at various time scales (from sub-second to time-of-

day). Huge challenges as well as opportunities are emerging in this 

area as the end use of energy applications are getting smarter 

offering up the ability to control the devices and be able to shape 

the nature of load demand for the grid. A number of new elements 

in the controllability of equipment are emerging, notably, the 

ability to organize a large number of end use devices in a reliable 

enough fashion to meet certain grid needs [38]. Model-predictive 

control, control-theory based approaches, reinforcement learning 

and transfer learning-based approaches, as well as statistical 

methods to are emerging. Having a large number of distributed 

energy resources adds grid stability issues in managing the real and 

reactive component in the power. Significant computational 

challenges exist in addressing the needs and maturing these 

approaches to the level of robustness needed for wide adoption. 

More specifically, some of the specific challenges are: 

• The distributed devices have different levels of participation

in their availability for control.

• For those that participate, human override of the controls is

extremely common and unpredictable, even with incentives.

• These devices have a variety of communication protocols

and non-standardized (often proprietary) standards.

• Individual devices exist their own surroundings and respond

to changes to variables such as temperature. Having that level

of observability of anticipated behavior is difficult and can

invade on privacy.

• Their collective control is necessary to meet the needs of the

future electric grid having high penetration of renewables.

When shaping the load using control, transients can get

introduced in the power system leading to instability.

The third category of computational needs are around severe events 

and extraordinary circumstances or scenarios. The nature of the 

computational needs is very cross-disciplinary. These situations 

could arise when extreme weather conditions are prevalent, or 

when certain human induced events cause disturbances in the grid. 



There may be some weather events like a hurricane or snowstorm 

that may have a lead time of days. There could be other events that 

have very little lead time, such as earthquakes. The computational 

needs in such scenarios require the knowledge and setup that can 

predict the severity and extent of impact of the weather 

phenomenon to a level of sufficient confidence and then the ability 

to evaluate computationally the resulting impact on the power grid. 

Recent events such as the extreme hot and cold waves seen recently 

in Texas are pointing to a need to build more reliable mathematical 

constructs that can help understand the consequences using an 

interdependent system of systems approach. 

Generation sources such as wind and solar have a distinct highly 

temporal dependance on the state of wind and cloud cover. Cloud 

cover, in particular, can be challenging to predict at near real-time 

timescales. Highly localized irradiance forecast with cloud cover 

are needed to anticipate solar production and both are notoriously 

difficult to obtain using standard forecast data. An emerging body 

of work is using sky facing cameras to anticipate photovoltaic 

power production factoring in weather conditions, cloud density, 

and the changing cloud positions [40]. These methods have value 

in the 5 – 15 minute time horizon; however, their reliability 

becomes questionable for longer timeframes.  

Fortunately, instrumentation and the ability to collect fine 

resolution data, both spatially and temporally, is rapidly improving 

and paving the way for data-driven models to be built that are 

showing significant promise. Several Artificial Intelligence and 

data-driven methodologies are now being developed to address this 

need for the sector. The future grid having an increasingly larger 

share of distributed energy resources will force our hand to mature 

these models as we address power flow, stability, and resiliency 

needs. 

3 Power Sector Impact Analysis 

Herein we discuss the types of analysis needs starting with a 

discussion of cross-sector interdependencies, reliability versus 

resilience, and metrics to quantify them. 

3.1 Cross-sector interdependencies 

In 2019, 40% of the natural gas delivered by transmission and 

distribution pipelines went to electric power plants, 30% to 

industrial plants, and 30% to residential and commercial 

consumers. Gas transmission reliability is an important factor to gas 

generation units and distribution reliability should be analyzed for 

residential and commercial consumers. The distribution and 

transmission of gas pipelines are subject to different regulations 

which affect reliability analyses.  

Modeling and analyzing the weather driven resilience of natural gas 

is necessary to understand its risks and its contribution to grid 

infrastructure improvement decisions to make it less vulnerable to 

weather-related outages and reduce the time it takes to restore 

power after an outage. An integrated electricity and natural gas 

analysis is highly recommended; however, performing one of these 

at regional to national scales involves the obtaining of natural gas 

flow data, the type, configuration, and operation of pumping 

stations, potentially pricing information, as well as current 

operational status of these units. A holistic approach suffers from 

being accurate enough because of the complicated data acquisition 

process. 

The natural gas sector is but one of several other sectors impacting 

the analysis. The availability of coal and the supply chain for coal 

continues to be a need. The sector is, however, relatively mature 

and sufficient understanding exists to model these components 

well.  

To integrate the natural gas interdependency, one can assume to 

begin with the generating capacity and demand projections from 

the North American Electric Reliability Council’s or NERC’s 

Long-Term Reliability Assessment and the Bulk Electric System 

(BES) transmission topologies as defined in its Western Electricity 

Coordinating Council (WECC) Anchor Data Set, Eastern 

Interconnection Reliability Assessment Group Multi-Regional 

Modeling Working Group (ERAG/MMWG) Data Set. From here 

one can calculate baseline regional power sector gas demands from 

present electricity delivery year through the end of delivery year by 

applying security constrained economic dispatch. The load demand 

can then be compiled along with demand projections for regional 

residential, commercial, and industrial natural gas demands from 

the most recent Energy Information Administration (EIA) Annual 

Energy Outlook Reference Case into Deloitte’s MarketBuilder® 

North American Gas Model.  Through the application of these 

demands, MarketBuilder® one can project the topology of natural 

gas flows in the natural gas pipeline network across the 

interconnected North American system along with regional natural 

gas prices that may be seen by market participants in future years. 

It is worth nothing that nuclear energy provides an alternate option 

that does not suffer from sudden ramps, can provide for adequate 

spinning reserve, as well as be extremely resilient. However, 

nuclear energy has historically been controversial even though 

some countries like France produce bulk of their energy from 

nuclear.  

Emerging trends indicate the need to incorporate the status of 

communications infrastructure to approach a near-complete 

understanding of the state of the power sector. 

The computational needs point to building systems-of-systems that 

have roots in graph-theory based models and analysis. The key is 

in adequately establishing the relationships between the various 

nodes and edges. The computing solutions heavily involve solving 

power flow models and using the outputs to derive the 

consequences on interdependent systems.  

3.2 Reliability versus Resilience 

A main differentiator between reliability and resilience is the 

frequency and impact of an event. Reliability focuses on assuring 

adequate electric grid operations in typical conditions, through real-

time load and generator balancing, and operating equipment within 

defined limits. Resilience focuses on the operation of the electric 



grid during extreme and adverse events, which can be categorized 

as atypical and emergent conditions. Another distinction between 

reliability and resilience is that a system may be considered reliable 

without identifying a specific threat to the system. However, when 

discussing resilience, systems are considered resilient to a 

particular threat or set of threats. Hence, reliability metrics do not 

attribute the cause to the metric (e.g., a load is de-energized without 

regard to why or how), whereas resilience metrics do consider the 

cause (e.g., a hurricane caused the load to be de-energized). 

Therefore, resilience bridges the gap between the system response 

and a root cause. 

3.2.1 Time-Dependent Analysis of an Event 

An important aspect of resilience is its time-varying nature. Many 

of the basic elements of system resilience can be captured in 

different phases before and during a severe event as well as after 

the event, when the system has been restored. Figure 1 shows an 

illustrative generic resilience curve where a resilience indicator is 

used to quantify the resilience level of a power system during an 

event as a function of time. The resilience indicators are in the form 

of the following: 

• The amount of generation capacity (MW).

• The load demand served or not served (MW).

• Number of transmission lines tripped.

• Number of outages.

• Number of customers not served.

In Figure 1, five different phases can be clearly seen: the pre-

disturbance state, disturbance state, post-disturbance degraded 

state, recovery & restoration state, and the post-restoration state 

[24]. 

3.2.1.1 Pre-disturbance Phase 

The pre-disturbance state is the operating point of the system before 

a severe event occurs. In this state, resources are prepositioned to 

prepare for an event. Remedial actions are set up to minimize the 

impact of the event. The metrics that are calculated in this phase 

include Loss of Load Probability, Planning Reserve Margins, etc. 

These metrics quantify the generation resource adequacy. 

3.2.1.2 Disturbance Phase 

The disturbance phase is the time between the start of the event to 

the end of the event. In this phase, the resilience indicator quantifies 

how fast and how low the resilience drops. This includes the 

amount of generation MW lost, load MW disconnected, and the rate 

at which generation, transmission lines, and customers are 

disconnected during the event. 

3.2.1.3 Post-Disturbance and Degraded Phase 

Following the end of the event and just before restoration is 

initiated is the post-disturbance degraded state. In this stage, the 

damages caused by the event are assessed and critical components 

required for recovery are identified. 

3.2.1.4 Recovery and Restoration phase 

A resilient system should demonstrate high restorative capabilities 

in order to restore disconnected customers and collapsed 

infrastructures. The recovery phase of the event commences at the 

time the system performance has reached its minimum level and 

ends at a point in time in which some minimally acceptable and 

stable level of system performance has been recovered through 

adaptive actions by the system and its human operators. 

3.2.1.5 Post-Restoration Phase 

Following the event and the restoration of the system to an 

acceptable operational state, the post-restoration phase begins. In 

this phase, the impact of the event and the performance of the 

network are thoroughly analyzed to identify the weaknesses and 

limitations of the network. 

Figure 1: Multi-phase trapezoid curve [24]. 

3.3 Metrics for Resilience and Reliability 

A discussion of reliability and resilience is incomplete without the 

inclusion of relevant metrics. We include a summary of the most 

important resiliency and robustness metrics [24]. The topic is vast 

and a full review is outside the scope of this exposition. 

3.3.1 Resilience metrics 

The following are some of the important resilience metrics [24]: 

a. FLEP metric: This is a time-dependent resilience metric

that captures the performance during the different event

phases in terms of how Fast the resilience drops, how

Low it drops, how Extensive it is, and how Prompt is the

recovery.

b. Severity Risk Index: The SRI is a metric where

generation loss, transmission loss and load loss events are

aggregated into a single value that represents the risk to

the Bulk Energy System.

c. Dynamic Resilience Indicator: The DRI addresses the

need for an overall resilience measure for shorter periods

of time.



d. Cumulative customer energy not served

e. Critical customer energy demand not served

f. Time to operational recovery

3.3.2 Reliability metrics 

The notable reliability metrics include the following and most are 

self-explanatory [24]: 

a. Planning Reserve Margin: This is a primary metric used

to measure resource adequacy and is measured as a

percentage of additional expected capacity over demand.

b. Loss of Load Probability (LOLP) measures the

probability of a system daily peak demand exceeding

available resources.

c. Loss of Load Expectation (LOLE) is the expected

number of days per time period for which the generation

capacity becomes insufficient to serve the demand.

d. Effective load Carrying Capacity (ELCC) is the amount

of incremental load a resource can reliably serve.

e. Expected Unserved Energy (EUE) is the summation of

the expected number of megawatt hours of demand that

will not be served in a given time period as a result of

demand exceeding the available capacity across all hours.

f. System Average Interruption Frequency Index (SAIFI)

g. System Average Interruption Duration Index (SAIDI)

h. Customer Average Interruption Duration Index (CAIDI)

i. Customer Total Average Interruption Duration Index

(CTAIDI)

j. Customer Average Interruption Frequency Index

(CAIFI)

It should be noted that SAIFI, SAIDI, CAIDI, CTAIDI and CAIFI 

are primarily used for the analysis of electric distribution systems. 

3.3.3 The FLEP Metric Set 

The FLEP metrics [5] is a time-dependent resilience metric set that 

captures the performance of a network during the different phases 

associated with an event.  It includes how Fast (Φ) resilience drops, 

how Low (Λ) resilience drops, how Extensive (E) the post-

degraded state becomes and how Promptly (Π) the network 

recovers to its pre-event state [5]. Figure 2 summarizes the FLEP 

(ΦΛΕΠ) metric set 

Figure 2:  FLEP Metrics Set. 

Figure 3 shows the mathematical representation of the FLEP 

metric set, The Φ-metric is evaluated by estimating the slope of the 

resilience curve during the disturbance phase, while the Λ-metric is 

defined by the resilience degradation level at the end of the event 

at 𝑡2. The E-metric is simply the time that the network remains in

the post-disturbance degraded state is given by 𝑡3 − 𝑡2. The Π-

metric is defined by the slope of the resilience recovery curve which 

considers both the resilience improvement during this phase and the 

time required for achieving this required for reaching this resilience 

level [6]. Complementing the “ΦΛΕΠ” resilience metrics system, 

an additional metric can be used, i.e., the area of the trapezoid. The 

area metric is expressed as the integral of the trapezoid for the 

duration of the event. 

Figure 3:  Mathematical representation of the FLEP Metric set. 

3.3.4 Severity Risk Index (SRI) 

The SRI is a metric where generation loss, transmission loss and 

load/demand loss events are aggregated into a single value that 

represents the risk to the Bulk Energy System. It can serve as a 

resilience indicator of the power system over a longer period. The 

score can show the best and poorest performance of the grid within 

weeks, months, or a year.  

As shown in Figure 4, the SRI is the sum of three weighted 

components: percentage of generation lost, percentage of 

transmission lines tripped, and the percentage of load disconnected. 

To calculate the SRI, each element (generation, transmission, and 

load loss) is weighted by a pre-determined factor. It can be written 

as: 

𝑆𝑅𝐼 = 𝛽1𝐺 + 𝛽2𝑇 + 𝛽3𝐿

𝛽1 + 𝛽2 + 𝛽3 = 1

Where G is the percentage of Generation lost per hour/day, T is the 

percentage of Transmission lines tripped per hour/day, L is the 

percentage of load disconnected per hour/day, 𝛽1 , 𝛽2, and 𝛽3  are

the weighting indices. NERC calculates a daily SRI for the BES 

with 𝛽1 = 0.1, 𝛽2 = 0.3 and 𝛽3 = 0.6

Figure 4: Mathematical representation of the FLEP Metric set. 

3.3.5 Dynamic Risk Index (DRI) 

The authors have been involved in the development of the DRI to 

address the need for an overall resilience measure for shorter 

periods, e.g., minutes to hours. As shown in Figure 5, the DRI is 

also the sum of three weighted components:  

• RR: The measure of reactive reserves, e.g., the phase angle

separation between areas/regions of interest.

• LL: the Loadability limit, e.g., the point of maximum load,

i.e., the tip of the nose curve.

Phase State Description Symbol 

1 Disturbance Progress How fast resilience drops Φ 

2 Disturbance Progress How low resilience drops Λ 

3 Post-disturbance degraded state How extensive is the post-disturbance degraded state  Ε 

4 Recovery and Restoration state  How promptly does the network recover Π 

Metric Mathematical Expression Unit 

Φ 𝑅0 − 𝑅1

𝑡2 − 𝑡1

MW/hours, No. of lines tripped/hours, No. outages/hours, No. of unserved 

customers/hours 

Λ 𝑅1 − 𝑅0 MW, No. of Lines tripped, No. of outages, No. of unserved customers 

Ε 𝑡3 − 𝑡2 Hours 

Π 𝑅1 − 𝑅0

𝑡4 − 𝑡3

MW/Hours, No. of lines restored/hours, No. of restored customers/hours  

Area 

 𝑅 𝑡 𝑑𝑡

𝑡4

𝑡1

 

MW X hours, No. of lines in service X hours, No. of outages X hours, No. 

of customers X hours 

Metric Mathematical Expression Unit 

Φ 𝑅0 − 𝑅1

𝑡2 − 𝑡1

MW/hours, No. of lines tripped/hours, No. outages/hours, No. of unserved 

customers/hours 

Λ 𝑅1 − 𝑅0 MW, No. of Lines tripped, No. of outages, No. of unserved customers 

Ε 𝑡3 − 𝑡2 Hours 

Π 𝑅1 − 𝑅0

𝑡4 − 𝑡3

MW/Hours, No. of lines restored/hours, No. of restored customers/hours  

Area 

 𝑅 𝑡 𝑑𝑡

𝑡4

𝑡1

 

MW X hours, No. of lines in service X hours, No. of outages X hours, No. 

of customers X hours 



• FA: Measure of frequency agility e.g., the percentage of

frequency nadir.

 Mathematically, the DRI is written as: 

𝐷𝑅𝐼 = 𝛼1𝑅𝑅 + 𝛼2𝐿𝐿 + 𝛼3𝐹𝐴

𝛼1 + 𝛼2 + 𝛼3 = 1

Figure 5: Severity Risk Index (SRI) and Dynamic Resilience 

Indicator (DRI) 

4 Computational Methods to Support the 

Analysis and Prediction 

As evidenced, the need for applying the state-of-the-art in 

computing and computational approaches is important to enhance 

the resiliency of our power systems in the increasingly complex and 

dynamic nature of power systems. The entire range of computing 

and computational approaches are likely expansive. We limit this 

discussion to the computing approaches that are relevant for the 

objective of delivering resiliency during severe weather events. 

4.1 Ensemble methods for severe weather 

A large body of work exists that has elevated the use of ensemble 

methods to derive an understanding of the mean and spread of 

future weather forecasts. For power systems, the effects are often 

localized and individualized forecasts at that spatial granularity are 

unavailable and unreliable. There is a significant computational 

cost for running these ensembles and in particular, for generating 

dynamic nested grids for regions of significant interest. The 

Weather Research and Forecasting model, one of the more popular 

tools for weather prediction, scales well; however, its preprocessing 

and postprocessing involving initialization, domain decomposition, 

and input/output do not scale well. Ensemble scenarios require the 

parallel setup of different initialization conditions or 

parametrizations. A well-designed setup that automates most of the 

steps can easily consume a dedicated HPC system. Nested grids 

typically provide for adding higher temporal and spatial resolution 

in certain areas of interest within the computational domain. Each 

nest adds complexity and sometimes the calculations can get into 

indeterminate regimes that are difficult to anticipate. I/O can easily 

be in the 100s of TBs for an ensemble run. 

The demands of a setup of high-performance computing resources 

in an operational close-loop environment is challenging. The costs 

of setup and maintaining such systems is prohibitive. Still, the 

benefits of having more accurate weather forecasts are highly 

desirable. This will translate to improvements across all metrics of 

reliability and resiliency as utilities will find themselves more 

streamlined in responding to such events. 

4.2 Model development of resulting impacts 

Arguably, the most significant and far-reaching impact could be 

had from reliably translating the anticipated severity of a weather 

event to the nature of impact expected on the power system. This is 

usually approached using fragility curves, which are essentially 

transfer functions that map certain variables in the weather 

prediction to a level of adverse impact on the power system. Some 

of these fragility curves can incorporate additional factors in its 

assessment. Building out a computational capability that can take 

in the complex power system network and its current state and 

dynamically resolve the impacts as a severe threat comes in and 

unfolds can have outstanding benefits. Not only can they help the 

operators reliably anticipate system outages, they can also help 

operators devise alternate solutions as certain parts of the network 

go down. Building in layers of maturity, some of these decisions 

can be automated and computed on the fly to be presented as 

potential options for the final decision at the operator level. 

4.4 Controllability-based approaches with 

distributed energy resources 

There is a healthy need for devising scaled up end-to-end 

optimization solutions that involves the control of participating 

hardware devices. This is a very complex landscape as there could 

be tens of thousands of devices that offer up controllability. 

Usually, the space heating and water heating appliances are the top 

targets for energy flexibility, but even the subset of these have 

numerous firmware versions, device protocols, and varying level of 

participation in such programs. Impending externalities such as 

severe heat or cold requires load management and curtailment. As 

such, the assured delivery of a quantified amount of load flexibility 

is still not mature. Fluctuating generation from renewables and 

right-sizing energy storage continues to be multi-objective 

optimization problem. Assuring robustness in such decentralized 

systems with varying penetrations of different distributed energy 

resources is an emerging computational challenge. 

An additional aspect of the deep controllability problem is equity 

and energy justice [9]. The electric power grids tend to be less 

robust and reliable in historically disadvantaged geographies and 

communities. The quality of building construction and the 

availability of sufficient participating devices could vary 

significantly. The amount of assumed available demand flexibility 

in such communities could adversely affect their existing quality of 

life. At the same time, the penetration of distributed energy 

resources in these communities may itself be a challenge. 

Therefore, any control development that spans large geographic 

areas must assure a quality of service that does not adversely impact 

such communities. 

4.5 Situational awareness and visualization 



There is a distinct need for the advancement of situational 

awareness tools and advanced visualization capabilities for the 

integrated assessment of severe weather and power systems. This 

manifests as a multi-scale problem as the relevant time scales of 

weather phenomena could be in the order of minutes to hours while 

their impacts on the electric grid propagate in the order of seconds. 

Having the ability to fold in decision support tools, as discussed 

earlier, would offer up an ability to enhance the situational 

comprehension of unfolding events. 

4.6 Role of Artificial Intelligence 

This discussion would be remiss without the inclusion of emerging 

artificial intelligence approaches that hold tremendous promise. AI 

has pervasively touched every realm of our lives including the topic 

of our discussion. There are efforts underway that use AI for 

weather predictions, for controls development, and to devise data-

driven decision science tools. Deep neural networks, surrogate 

modeling, gaming adversarial networks, and multiple other 

approaches are showing huge promise in weather predictions [41] 

and other applications. In particular, huge gains in run time have 

been observed using surrogate models. Our view is that AI is a very 

powerful tool and that it can substantially improve on various 

challenges outlined in this paper. We also believe that the 

challenges highlighted are fundamental in their own way and that 

the drive for resiliency in our power system is ongoing. 

5 Preliminary Results from two Cold Weather 

Use Cases 

We now illustrate the analysis of two cold weather events to further 

anchor our discussion with real-world examples. 

In February of 2021, Winter Storm Uri caused electricity power 

outages for 4.5 million customers and left many without power for 

several days [6]. In February 2022, Winter Storm Landon [27], 

caused tremendous outages across a 2,000-mile-long expanse of 

snow and ice from the Southern Rockies and Plains into the 

Midwest and northern New England. To examine the impacts of 

these storms on electricity customers in Texas during these periods, 

we employed a Pearson’s correlation coefficient analysis and a 

Random Forest machine learning method to understand the 

relationship between gridded (1 km spacing) daily weather 

variables  and county-level daily customer outages recorded during 

these events. 

5 Correlation of Outages to Weather 

The correlation analysis evaluated the strength of the relationship 

between the relative movements of two variables, meteorological 

conditions, and percentage of customer outages, using Pearson’s 

correlation coefficient. In the case of Winter Storm Uri, the 

percentage of customer outages in each Texas county on a given 

day were strongly and positively correlated to the percentage of 

customer outages the day before. It can be interpreted from this 

result, and it was certainly observed during the storms, that outages 

persisted in the same regions for several days. Additionally, 

maximum daily temperature and daily average incident short-wave 

radiation were positively correlated with outages, an unexpected 

but interesting outcome. There were no strong negative correlations 

observed. 

The same type of correlation performed using data for Winter 

Storm Landon, did not show any strong positive or negative 

correlations. However, minimum temperature and snow water 

equivalent were weakly positively correlated to the percentage of 

customer outages on the next day. Finally, a Pearson’s correlation 

using Texas county-level data from both storms showed that while 

daylight average incident shortwave radiation and cumulative snow 

water equivalent on a given day were weakly positively correlated 

to the percentage of customer outages the next day, and average 

vapor pressure, maximum and minimum temperature and 

cumulative precipitation were more highly and negatively 

correlated with the percentage of customer outages the next day, 

the highest positive correlation occurred in the combined dataset 

again between outages on consecutive days (Figure 2). 

Figure 6. Visualization of the result of Pearson’s correlation of the 

percentage of next-day customer outages (t+1, x-axis) in Uri and 

Landon winter storms to each of the weather and outage variables. 

The y-axis shows the strength and sign of the correlation [4]. 

5.2 Random Forest Analysis 

For the Random Forest (RF) analysis, we used the daily weather 

and outage data for five days each from the two winter storms, to 

determine whether yesterday’s weather information can predict 

tomorrow’s outages. Data for this analysis focused on Texas 

outages for both storms. 90% of the data were used for training the 

model to predict the percent of outages in each affected county in 

Texas and 10% of the data were used to validate the result. These 

results showed a small positive correlation for Winter Storm Uri of 

yesterday’s weather to today’s outages, with a root mean squared 

error (RMSE) of 9.793. Results from using the same geographical 

data for the 2022 Winter Storm Landon showed a lower RMSE of 

7.224 indicating that there is a greater positive correlation among 

the weather variables and the percentage of customers outaged 

during that storm. Combining the Texas county data from both 

winter storms provided the best correlation among weather 

variables and outages, and produced the lowest RMSE at 6.125, 

indicating that prediction from the combined data from both storms 

was better than that of either Uri or Landon alone.  



5.3 Data and Methods Employed for Cold 

Weather Use Cases 

Meteorological data for Winter Storms Uri (February 13-17, 2021) 

and Landon (February 2-6, 2021) were obtained for the state of 

Texas from the Oak Ridge National Laboratory’s (ORNL) Daymet 

Version 3 [36]. The meteorological data included maximum and 

minimum daily temperature, daylight average incident short-wave 

radiation, cumulative precipitation, snow water equivalent and 

average vapor pressure calculated using a combination of 

interpolated and extrapolated inputs from multiple instrumented 

sites to workflows executed on a large computing cluster. Data 

were averaged spatially to the county level to match customer 

outage counts. County level customer outages were obtained from 

the archives of the Department of Energy (DOE) Environment for 

Analysis of Geo-Located Energy Information (EAGLE-I [31]) 

situational awareness platform for near real-time energy status. 

The Pearson’s Correlation and Random Forest analyses performed 

used components of the Advanced data SCiENce toolkit for Non-

Data Scientists (ASCENDS) tool [20, 30], which is a set of 

command-line and web-based tools for performing data analysis 

and machine learning. Among the methods supported by 

ASCENDS are linear, logistic and other types of regression, 

random forests, support vector machines and neural networks. 

The Pearson correlation algorithm in ASCENDS that was used for 

this study is: 

with the X matrix including all weather and outage variables, and 

y representing the outage predictions. In the above equation, std 

refers to the standard deviation of the data distribution. 

ASCENDS’ Random Forest tool is an implementation of the 

Python Scikit-learn Random Forest (RF) Regressor [29], a non-

parametric model that fits a selected number of classifying decision 

trees to various samples subset from the data. 

5.4 Computational Enhancements 

The analysis illustrated here highlights how data was sourced from 

multiple places (Daymet, EAGLE-I, etc.) and both machine 

learning and statistical approaches (ASCENDS) were used for the 

preliminary analysis. Daymet is a 1km x 1km gridded daily dataset 

for North America while EAGLE-I houses about a decade of 15-

minute resolution customer outage data at the utility and county 

resolution. For a robust setup, a system-of-systems approach that 

can source data from various systems, run computational models, 

perform machine learning, and run statistical techniques is needed. 

Furthermore, when the next hurricane unfolds, a system that can 

provide insights that are significantly more advanced would 

position the electrical power systems sector much more resiliently. 

5.6 Collecting Electric Grid Data for a winter storm case 

This process of acquiring data starts by collecting historical 

weather, power generation/consumption, and natural gas 

production/consumption data of an area. This identifies the worst 

cold year by analyzing the historical weather data. It is relatively 

effortless beyond this to model scenarios with having extreme 

winter weather in a certain area. 

Additionally, one can analyze the forced outage rates (FOR) of 

conventional generators, including different type of units, based on 

historical outage rate data such as winter storm Uri. Historical FOR 

data of transmission lines can be integrated. This eventually can 

model the impact of extreme weather conditions on load demand 

using winter weather parameters (WWP) during winter storms in 

an area. Additionally, it is relatively easy to investigate the impact 

of a winter storm on natural gas demand (an interdependent asset). 

Analyzing the impact of winter storm Uri on pipeline operations 

and natural gas production is critical to validate any use case. 

5.7 5.7 Use Case of an Impact of a Winter Storm on Electric 

Demand 

To model the impact of cold weather on electric load, historical 

load data and weather data is needed during winter (Jan., Nov., and 

Dec.). Firstly, we can calculate the WWP value using the following 

equation: 

{
𝑊𝑊𝑃 = 𝑇𝑒𝑚𝑝 − (0.5 ×  𝑊𝑖𝑛𝑑 − 10 ), 𝑖𝑓 𝑊𝑖𝑛𝑑 > 10

𝑊𝑊𝑃 = 𝑇𝑒𝑚𝑝, 𝑖𝑓 𝑊𝑖𝑛𝑑 ≤ 10

where, Wind = Wind velocity in MPH, Temp = Dry bulb 

temperature. For each load zone, we used linear spline fitting 

functions to map the relationship between WWP and electric load.  

The relationships between WWP and load of AE, Dayton, and 

COMED zones are shown in Figure 7. With the decrease of WWP 

value, the daily maximum load increases. At WWP values greater 

than 40, there appears to be minimal load response to weather 

conditions. 

Figure 7: The impact of WWP parameter on load of AE, 

Dayton, and COMED 

6 Conclusion 

The paper presents a discussion on the resiliency and reliability 

needs of the electrical power sector with respect to severe weather 

conditions. A computing audience relevant introduction to the 

reliability and resiliency approach used in power systems was 

presented followed by a dialogue on the computing and 

computational needs to achieve a higher state-of-the-art in power 

systems resiliency. Two use cases of severe cold weather with 

subsequent analysis were presented to highlight the possibilities 

that could result with computational advancement in the field. 



The end goal of such systems is ultimately to prevent the loss of 

life and property. It will require bridging across multiple sectors 

and domains. This is somewhat inevitable and forced in many ways 

by the distributed nature of renewables. The computing and 

computational community will have a significant role as the world 

transitions over to cleaner sources of energy. 
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