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Abstract 
 

The ongoing novel coronavirus pandemic (COVID-19) has highlighted the need for new 
therapeutics to counter the threat of emerging viral pathogens. The main proteases are a 
promising target for developing antiviral inhibitors. In this work, we utilized a novel combination of 
artificial intelligence-driven iterative design of covalent inhibitor candidates, physics-based 
computational modeling of protein-inhibitor interactions, and “All in One” Native MS biophysical 
assay screening and characterization of designed candidates. With our existing expertise in hit 
generation using a particular scaffold as a starting point, we first generated tens of thousands of 
compounds that preserve the key scaffold. In order to optimize the candidates, we calculated 
about 136 descriptors consisting of 2D and 3D features for molecules targeting the SARS-CoV-2 
Main protease (Mpro). These compounds were initially filtered according to properties and further 
sorted by predicted binding affinity using our automated docking modeling and machine learning 
methods. We tested a handful of candidates and identified two as inhibitors of Mpro with 
micromolar affinities.  
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Summary 
We develop a computational strategy that will transition from hit-finding based on explainable AI 
and computational methods to a deeper analysis and iterative design-make-test cycles to include 
a set of chemical modifications around a common core with clear structure-activity relationships 
(SAR) of various properties. These candidates were validated using PNNL’s screening and native 
MS to define molecular mechanisms for rapid iteration of AI design. The tight integration between 
data scientists, modelers, and experimentalists provided a closed loop machine intelligent model 
that learns from protein specific data and builds an ML algorithm to identify novel candidates and 
perform lead optimization with broad spectrum antiviral properties, which can possibly 
revolutionize the drug discovery for fast response to future pandemics.  
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Introduction 
The process of identifying and discovering novel small molecules with desired properties 

using conventional methods is time-consuming and expensive (Hughes et al., 2011). Furthermore, 
the risk of such drug therapeutic candidates ultimately failing in subsequent pre-clinical trials is 
very high (Sun, D. et al., 2022). Over the past 2 years, the COVID-19 pandemic has posed 
challenges to develop potent drug candidates while overcoming time and cost constraints. The 
rapid spread of novel SARS-CoV-2 viral variants underscores the need for an efficient platform 
for developing small molecule antiviral drug leads that show high efficacy targeting the viruses 
while being nontoxic. It is a monumental task to obtain a potent drug from scratch using traditional 
approaches like target identification and validation, hit discovery, high throughput screening 
assays, and toxicity assays. However, the availability of compound libraries containing structural, 
functional, and therapeutic information for previously approved drugs and millions of chemical 
compounds from databases like Enamine (Shivanyuk et al. 2007), Mcule (Kiss et al., 2012), and 
ChEMBL (Gaulton et al., 2017) allows for the leveraging of computational resources and expertise 
at PNNL to aid in understanding and searching the vast chemical space of the compounds as a 
starting point. With the availability of several open source in silico tools—including those 
developed at PNNL— for high throughput virtual screening (HTVS), hit-to-lead identification, and 
optimization, recent advances in the field of machine learning (ML) and artificial intelligence (AI) 
have helped to accelerate drug discovery and development, thus expanding the scope of 
treatments for a wide variety of targets.  

One such PNNL-developed tool, 3D-Scaffold (Joshi et al., 2021) that we previously 
developed, utilizes deep learning with a fragment-based or functional group method, where a 
fragment or scaffold is used as an initial structure and molecules are generated using the scaffold 
as their core structure. A benefit of this approach is that scaffolds can be chosen from 
experimentally validated active compound libraries such that they retain key features with respect 
to a given target protein. The generated compound library can be further screened based on 
calculated physicochemical properties to identify whether the compounds are desirable 
candidates for proceeding to experiments. With this work, we developed a drug discovery and 
lead optimization (LO) workflow (Figure 1) for generating potential therapeutic candidates 
targeting the Mpro (Kneller et al., 2020). We confirmed two candidates as inhibitors of Mpro using 
PNNL experimental resources. 

 

 

 

 

 

 

 

 



PNNL- 33349  

Introduction 2 
 

Results and Discussions  

To identify potential hits, we utilized our 3D-Scaffold model, high throughput virtual 
screening (HTVS) techniques, and cutting-edge hit identification and optimization methods as 
shown in our computational workflow (Figure 1).  The key scaffolds (or chemical fragments) 
important for Mpro activity were identified and extracted from experimentally validated potential 
candidates. These scaffolds were then provided as input for our 3D-scaffold model to generate a 
library of compounds covering extensive chemical space. Predicted novel compounds were then 
screened and sorted based on cheminformatics, physiochemical properties, and similarity 
patterns with their parent compounds. The compounds were ranked based on the interpreted 
results and using molecular docking simulations to predict binding affinity.  The compounds’ 
conformations were visually inspected to elucidate the orientation of the compound in the binding 
pocket and observe key interactions of the compounds with the target protein. However, with the 
above-mentioned criteria one can reduce the number of molecules but not improve their potency. 
LO is then utilized to achieve optimal potency and interactions. With the increasing number of 2D 
and 3D structural properties, and their relevant importance to ADMET properties and activity, LO 
has become a challenging task to achieve. Several structural and ADMET properties are to be 
converged to a point where one can identify the key properties that are to be altered to obtain 
desired potent compounds. Here, this was achieved by 3D-QSAR and MPO analysis which 
provided us with 5 important descriptors to consider for lead optimization. 

The screened hits were optimized further before testing them using experimental 
validation. Once we finalized the hits (Table 1), we ordered them and tested and characterized 
the final set of compounds with experimental methods using Native MS and FRET based 
functional assays (Clyde et al., 2021). The capabilities and insights developed with this project 
will be ultimately applicable to a wide range of protein targets and biological systems of interest. 
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Figure 1. Representation of therapeutic candidate identification and lead optimization procedure 

followed in our research. (a) The process is initiated by providing a scaffold (*) as an 
input to our 3D-scaffold model that generates several ligands. (b) The generated 
compounds are screened based on different physiochemical properties to identify hits. 
(c) HTVS using molecular docking and QSAR to identify lead compounds; (d) ML/DL 
based activity prediction of lead compounds.                        
 

Table 1. Top 8 high throughput virtually screened compounds with their respective molecular 
properties that we finalized based on extensive computational studies and used for 
experimental characterization. 

# Mcule ID MW LP TPSA HA HD 
Docking 
Score 

Synthetic 
Accessibility 

1 MCULE-
8568381615-0 

457.17 2.149 104.4 6 1 -7.3 3.83 

2 MCULE-
8054614126-0 

455.19 1.555 95.17 7 1 -7.2 3.96 

3 MCULE-
7471308738 

401.53 0.919 131.00 7 4 -7.4 3.55 

4 MCULE-
5167696303 

427.61 2.375 105.14 6 3 -6.5 3.89 

5 MCULE-
7052658287 

410.54 2.4345 115.04 6 3 -6.7 3.82 

6 MCULE-
4947886566 

334.37 0.779 81.89 6 1 -6.1 2.64 
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7 MCULE-
4926166920 

371.43 2.005 91.5 7 2 -6.6 2.93 

8 MCULE-
2238978486 

398.50 1.613 85.25 7 2 -6.6 3.85 

 
MW = Molecular weight; LP = partition coefficient (LogP); TPSA = topological polar surface area; HA and 
HD = number of hydrogen bond acceptors and donors; Docking score in kcal/mol; Synthetic Accessibility 
score between 1 (easy to synthesize) and 10 (very difficult to synthesize) 
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Mpro Library Generation 
Recently, we developed our model 3D-Scaffold, a deep learning approach which generates the 
3D coordinates of molecules built around a desired molecular scaffold provided as an input and 
training data sets. The identification of scaffolds is a critical step in the process, as it defines 
candidate generation. To identify core scaffolds to use as input, we curated a library of potent 
drug candidates with their IC50 and/or EC50 values (measurements of binding affinity) from 
various sources such as Protein Data Bank (RCSB PDB) (Burley et al., 2021), PostEra, and 
published literature (Qin et al., 2022, Ghahremanpour et al., 2020, Narayanan et al., 2022). In 
particular, we included scaffolds which have shown promising antiviral or inhibitory activity against 
Mpro experimentally. Ultimately, we generated a broad compound library consisting of both 
covalent and non-covalent inhibitors. For each scaffold, our 3D-scaffold model generated 
between 500-4000 molecules not only sharing fingerprint similarity with the training set but also 
constraining the properties with respect to the input scaffolds. The generated molecules were 
then checked for validity, uniqueness, and novelty as described in Joshi et al. 
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Ligand-based Compound Screening 
Ligand-based screening techniques were applied to the 3D-Scaffold generated compounds such 
that the screened compounds contain a high probability of druglike characteristics. The initial 
screening of the compounds was done by computing basic properties of interest like similarity of 
the compounds with respect to the parent compound, synthetic accessibility (SA) score, and 
quantitative estimation of druglikeness (QED). Next, various physicochemical properties were 
considered including: (i) logP, the partition coefficient, which indicates the lipophilicity of the 
compound (lipophilic if the value is positive or hydrophilic if the value is negative) and measures 
its permeability; (ii) topological polar surface area (TPSA), which estimates polarity and is one of 
the important parameter to measure absorption and blood-brain barrier permeability of the 
compounds; (iii) molecular weight (MW), selecting a range between 150-500 Da; and (iv) toxicity 
prediction. In total, 58 such properties were used for screening. This reduced the number of 
compounds under consideration to fewer than 500 to proceed to the next stage of the pipeline: 
molecular docking simulations. 
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Structure-based Compound Screening 
We utilized molecular docking simulations for structure-based compound screening. Docking 
helps not only in understanding the key interactions between the target protein and the screened 
lead compounds, but also how these compounds bind in the binding pocket of the target protein. 
We used a homo-dimeric Mpro 3D structure as the target protein, with a binding site near the 
surface of each monomer. The binding site is further categorized into subsites (S1 to S4) 
containing a catalytic dyad composed of a cysteine and histidine pair (Cys145 and His41). We 
used our Automated Modeling Engine for Covalent Docking (AME-CoV) using AutoDockFR for 
covalent docking and our Automated Modeling Engine for non-covalent docking (AME-Non_CoV) 
using AutoDock Qvina02. A combination of docking scores and visual inspection of docked poses 
were used to further filter the set of candidates to proceed to lead optimization. 
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Lead Optimization 
A significant contribution of this work is the code developed in our lead optimization efforts. While 
ligand- and structure-based screening such as that outlined in the previous sections has 
established utility, both suffer from higher failure rates than desired. As such, the development of 
computational lead optimization techniques with the ability to mitigate error have the potential for 
high impact. A key contribution of this work is the three LO methodologies we employed, and the 
models thereby obtained. The methods developed include: i) multi-parameter optimization, 
whereby weights are applied to linear combinations of chemical properties to achieve a model 
with reliable rankings of compounds; ii) 3D-quantitative structure-activity relationship (3D-QSAR) 
analysis; and iii) parallel graph neural network for binding affinity prediction. The curated Mpro 
library obtained as an early step was further utilized to train models using each of these methods. 
For 3D-QSAR model development, five ML-based models were trained and assessed for 
performance using multiple metrics. Decoy molecules were also obtained to serve as negative 
controls during training and assessment. Following training, filtered candidate molecules were 
submitted to each model and assessed for their predicted ability to target Mpro. Toxicity models 
were also utilized as a critical part of our LO process. The LO results helped inform which 
candidates to submit for experimental validation. 
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Experimental Validation 
Native MS Experiments:  We experimentally tested top 8 screen hits (Table 1) using native mass 
spectrometry to examine if the designed compounds form stable complexes with the target 
protein. After mixing 4 µM Mpro with each of the compounds at 20 µM, each sample was then 
subjected to electrospray MS detection under native conditions. From the compounds tested, 
compounds MCULE-4926166920 and MCULE-7471308738 showed best binding as we can see 
clear mass shifts to the dimer of the protein. Dimers of Mpro showed binding to one molecule in 
both MCULE-4926166920 and MCULE-7471308738. Based on the peak areas of the apo and 
holo species, we estimated the Kd to be in the hundreds of µM range. 

 

 

Figure 2. Native MS of Mpro mixed with compound A) MCULE-4926166920 and B) MCULE-
7471308738 showed binding of one molecule to the dimer of the protein. 

 

A 

B 
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Functional Assay Experiments:  We experimentally verified that our screen hits were capable 
of inhibiting Mpro activity using a plate reader-based biochemical assay with purified Mpro enzyme 
and a commercially available fluorogenic FRET peptide substrate. From the 8 compounds tested 
(Table 1), MCULE-7471308738 showed significant inhibition at higher concentration (62.5 µM) 
after incubating for 60 minutes. Further experiments will be conducted at higher concentrations 
to determine the actual IC50 of the compounds. 

 

Figure 3: IC50 curves for compound MCULE-7471308738 after 0 minute and 60 minutes of co-
incubation of enzyme and inhibitor. 
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