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Abstract

The ongoing novel coronavirus pandemic (COVID-19) has highlighted the need for new
therapeutics to counter the threat of emerging viral pathogens. The main proteases are a
promising target for developing antiviral inhibitors. In this work, we utilized a novel combination of
artificial intelligence-driven iterative design of covalent inhibitor candidates, physics-based
computational modeling of protein-inhibitor interactions, and “All in One” Native MS biophysical
assay screening and characterization of designed candidates. With our existing expertise in hit
generation using a particular scaffold as a starting point, we first generated tens of thousands of
compounds that preserve the key scaffold. In order to optimize the candidates, we calculated
about 136 descriptors consisting of 2D and 3D features for molecules targeting the SARS-CoV-2
Main protease (Mpro). These compounds were initially filtered according to properties and further
sorted by predicted binding affinity using our automated docking modeling and machine learning
methods. We tested a handful of candidates and identified two as inhibitors of Mpro with
micromolar affinities.
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Summary

We develop a computational strategy that will transition from hit-finding based on explainable Al
and computational methods to a deeper analysis and iterative design-make-test cycles to include
a set of chemical modifications around a common core with clear structure-activity relationships
(SAR) of various properties. These candidates were validated using PNNL’s screening and native
MS to define molecular mechanisms for rapid iteration of Al design. The tight integration between
data scientists, modelers, and experimentalists provided a closed loop machine intelligent model
that learns from protein specific data and builds an ML algorithm to identify novel candidates and
perform lead optimization with broad spectrum antiviral properties, which can possibly
revolutionize the drug discovery for fast response to future pandemics.

Summary iii



PNNL- 33349

Acknowledgments

This research was supported by the 13T Investment, under the Laboratory Directed Research
and Development (LDRD) Program at Pacific Northwest National Laboratory (PNNL). PNNL is
a multi-program national laboratory operated for the U.S. Department of Energy (DOE) by
Battelle Memorial Institute under Contract No. DE-AC05-76RL01830. The computational work
was performed using PNNL Computing at Pacific Northwest National Laboratory. Part of the
research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a
national scientific user facility sponsored by the DOE’s Office of Biological and Environmental
Research and located at PNNL. PNNL is a multi-program national laboratory operated for the

U.S. Department of Energy (DOE) by Battelle Memorial Institute under Contract No. DEACO05-
76RL0-1830.

Acknowledgments iv



PNNL- 33349

Contents
Y 01 { =T SR ii
101010 0= oY PP RT RPN iii
ACKNOWIEAGIMENTS......cceiiiiiie ettt e e e e e e et e e e e e e r e e e e e e e e annnnees iv
] (oo 18 o3 1T o NSRRI 1
ResUIts and DiSCUSSION: ......cco i 2
MPro Library GENEIatioN ........ccoi ittt e e et e e e e e e e e e e e e e e enees 5
Ligand-based CompoUNd SCrEENING .......coiiuuiiiiiiiiiie ettt e e e e ebee e e e anre e e e e enees 6
Structure-based COMPOUN SCrEENING .....coouuiiiiiiiiiie ettt e e 7
(== To @ o] 1 01721 (o] o 1RSSR SSURPRPRR 8
Experimental Validation ... 9
REFEIENCES ...ttt e ettt e e e e e e sttt e e e e e e s s e sseseeeeaeeeesannssaeeeeeeeeaannns 11
Figures
Figure 1. Representation of therapeutic candidate identification and lead

optimization procedure followed in our research. (a) The process is

initiated by providing a scaffold (*) as an input to our 3D-scaffold model

that generates several ligands. (b) The generated compounds are

screened based on different physiochemical properties to identify hits. (c)

HTVS using molecular docking and QSAR to identify lead compounds; (d)

ML/DL based activity prediction of lead compounds. ..........cccceeeviiiiiiiinee e, 3

Tables

Table 1. Top 8 high throughput virtually screened compounds with their respective
molecular properties submitted for experimental validation. ..................c.ccc......... 3

Contents v



PNNL- 33349

Introduction

The process of identifying and discovering novel small molecules with desired properties
using conventional methods is time-consuming and expensive (Hughes et al., 2011). Furthermore,
the risk of such drug therapeutic candidates ultimately failing in subsequent pre-clinical trials is
very high (Sun, D. et al., 2022). Over the past 2 years, the COVID-19 pandemic has posed
challenges to develop potent drug candidates while overcoming time and cost constraints. The
rapid spread of novel SARS-CoV-2 viral variants underscores the need for an efficient platform
for developing small molecule antiviral drug leads that show high efficacy targeting the viruses
while being nontoxic. It is a monumental task to obtain a potent drug from scratch using traditional
approaches like target identification and validation, hit discovery, high throughput screening
assays, and toxicity assays. However, the availability of compound libraries containing structural,
functional, and therapeutic information for previously approved drugs and millions of chemical
compounds from databases like Enamine (Shivanyuk et al. 2007), Mcule (Kiss et al., 2012), and
ChEMBL (Gaulton et al., 2017) allows for the leveraging of computational resources and expertise
at PNNL to aid in understanding and searching the vast chemical space of the compounds as a
starting point. With the availability of several open source in silico tools—including those
developed at PNNL— for high throughput virtual screening (HTVS), hit-to-lead identification, and
optimization, recent advances in the field of machine learning (ML) and artificial intelligence (Al)
have helped to accelerate drug discovery and development, thus expanding the scope of
treatments for a wide variety of targets.

One such PNNL-developed tool, 3D-Scaffold (Joshi et al, 2021) that we previously
developed, utilizes deep learning with a fragment-based or functional group method, where a
fragment or scaffold is used as an initial structure and molecules are generated using the scaffold
as their core structure. A benefit of this approach is that scaffolds can be chosen from
experimentally validated active compound libraries such that they retain key features with respect
to a given target protein. The generated compound library can be further screened based on
calculated physicochemical properties to identify whether the compounds are desirable
candidates for proceeding to experiments. With this work, we developed a drug discovery and
lead optimization (LO) workflow (Figure 1) for generating potential therapeutic candidates
targeting the Mpro (Kneller et al., 2020). We confirmed two candidates as inhibitors of Mpro using
PNNL experimental resources.

Introduction 1
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Results and Discussions

To identify potential hits, we utilized our 3D-Scaffold model, high throughput virtual
screening (HTVS) techniques, and cutting-edge hit identification and optimization methods as
shown in our computational workflow (Figure 1). The key scaffolds (or chemical fragments)
important for Mpro activity were identified and extracted from experimentally validated potential
candidates. These scaffolds were then provided as input for our 3D-scaffold model to generate a
library of compounds covering extensive chemical space. Predicted novel compounds were then
screened and sorted based on cheminformatics, physiochemical properties, and similarity
patterns with their parent compounds. The compounds were ranked based on the interpreted
results and using molecular docking simulations to predict binding affinity. The compounds’
conformations were visually inspected to elucidate the orientation of the compound in the binding
pocket and observe key interactions of the compounds with the target protein. However, with the
above-mentioned criteria one can reduce the number of molecules but not improve their potency.
LO is then utilized to achieve optimal potency and interactions. With the increasing number of 2D
and 3D structural properties, and their relevant importance to ADMET properties and activity, LO
has become a challenging task to achieve. Several structural and ADMET properties are to be
converged to a point where one can identify the key properties that are to be altered to obtain
desired potent compounds. Here, this was achieved by 3D-QSAR and MPO analysis which
provided us with 5 important descriptors to consider for lead optimization.

The screened hits were optimized further before testing them using experimental
validation. Once we finalized the hits (Table 1), we ordered them and tested and characterized
the final set of compounds with experimental methods using Native MS and FRET based
functional assays (Clyde et al., 2021). The capabilities and insights developed with this project
will be ultimately applicable to a wide range of protein targets and biological systems of interest.

Introduction 2
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Figure 1. Representation of therapeutic candidate identification and lead optimization procedure
followed in our research. (a) The process is initiated by providing a scaffold (*) as an
input to our 3D-scaffold model that generates several ligands. (b) The generated
compounds are screened based on different physiochemical properties to identify hits.
(c) HTVS using molecular docking and QSAR to identify lead compounds; (d) ML/DL
based activity prediction of lead compounds.

Table 1. Top 8 high throughput virtually screened compounds with their respective molecular
properties that we finalized based on extensive computational studies and used for
experimental characterization.

Docking Synthetic

# Mcule ID MW LP TPSA HA HD Score Accessibility

1 MCULE- 45717  2.149 104.4 6 1 -7.3 3.83
8568381615-0

2  MCULE- 455.19 1.555 95.17 7 1 -7.2 3.96
8054614126-0

3 MCULE- 401.53 0.919 131.00 7 4 -7.4 3.55
7471308738

4 MCULE- 427.61 2.375 105.14 6 3 -6.5 3.89
5167696303

5 MCULE- 410.54 2.4345 115.04 6 3 -6.7 3.82
7052658287

6 MCULE- 334.37 0.779 81.89 6 1 -6.1 2.64
4947886566
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7 MCULE- 37143  2.005 91.5 7 2 -6.6 2.93
4926166920

8 MCULE- 398.50 1.613 85.25 7 2 -6.6 3.85
2238978486

MW = Molecular weight; LP = partition coefficient (LogP); TPSA = topological polar surface area; HA and
HD = number of hydrogen bond acceptors and donors; Docking score in kcal/mol; Synthetic Accessibility
score between 1 (easy to synthesize) and 10 (very difficult to synthesize)

Introduction
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Mpro Library Generation

Recently, we developed our model 3D-Scaffold, a deep learning approach which generates the
3D coordinates of molecules built around a desired molecular scaffold provided as an input and
training data sets. The identification of scaffolds is a critical step in the process, as it defines
candidate generation. To identify core scaffolds to use as input, we curated a library of potent
drug candidates with their IC50 and/or EC50 values (measurements of binding affinity) from
various sources such as Protein Data Bank (RCSB PDB) (Burley et al., 2021), PostEra, and
published literature (Qin et al., 2022, Ghahremanpour et al., 2020, Narayanan et al., 2022). In
particular, we included scaffolds which have shown promising antiviral or inhibitory activity against
Mpro experimentally. Ultimately, we generated a broad compound library consisting of both
covalent and non-covalent inhibitors. For each scaffold, our 3D-scaffold model generated
between 500-4000 molecules not only sharing fingerprint similarity with the training set but also
constraining the properties with respect to the input scaffolds. The generated molecules were
then checked for validity, uniqueness, and novelty as described in Joshi et al.

Mpro Library Generation 5
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Ligand-based Compound Screening

Ligand-based screening techniques were applied to the 3D-Scaffold generated compounds such
that the screened compounds contain a high probability of druglike characteristics. The initial
screening of the compounds was done by computing basic properties of interest like similarity of
the compounds with respect to the parent compound, synthetic accessibility (SA) score, and
quantitative estimation of druglikeness (QED). Next, various physicochemical properties were
considered including: (i) logP, the partition coefficient, which indicates the lipophilicity of the
compound (lipophilic if the value is positive or hydrophilic if the value is negative) and measures
its permeability; (ii) topological polar surface area (TPSA), which estimates polarity and is one of
the important parameter to measure absorption and blood-brain barrier permeability of the
compounds; (iii) molecular weight (MW), selecting a range between 150-500 Da; and (iv) toxicity
prediction. In total, 58 such properties were used for screening. This reduced the number of
compounds under consideration to fewer than 500 to proceed to the next stage of the pipeline:
molecular docking simulations.

Ligand-based Compound Screening 6
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Structure-based Compound Screening

We utilized molecular docking simulations for structure-based compound screening. Docking
helps not only in understanding the key interactions between the target protein and the screened
lead compounds, but also how these compounds bind in the binding pocket of the target protein.
We used a homo-dimeric Mpro 3D structure as the target protein, with a binding site near the
surface of each monomer. The binding site is further categorized into subsites (S1 to S4)
containing a catalytic dyad composed of a cysteine and histidine pair (Cys145 and His41). We
used our Automated Modeling Engine for Covalent Docking (AME-CoV) using AutoDockFR for
covalent docking and our Automated Modeling Engine for non-covalent docking (AME-Non_CoV)
using AutoDock Qvina02. A combination of docking scores and visual inspection of docked poses
were used to further filter the set of candidates to proceed to lead optimization.

Structure-based Compound Screening 7
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Lead Optimization

A significant contribution of this work is the code developed in our lead optimization efforts. While
ligand- and structure-based screening such as that outlined in the previous sections has
established utility, both suffer from higher failure rates than desired. As such, the development of
computational lead optimization techniques with the ability to mitigate error have the potential for
high impact. A key contribution of this work is the three LO methodologies we employed, and the
models thereby obtained. The methods developed include: i) multi-parameter optimization,
whereby weights are applied to linear combinations of chemical properties to achieve a model
with reliable rankings of compounds; ii) 3D-quantitative structure-activity relationship (3D-QSAR)
analysis; and iii) parallel graph neural network for binding affinity prediction. The curated Mpro
library obtained as an early step was further utilized to train models using each of these methods.
For 3D-QSAR model development, five ML-based models were trained and assessed for
performance using multiple metrics. Decoy molecules were also obtained to serve as negative
controls during training and assessment. Following training, filtered candidate molecules were
submitted to each model and assessed for their predicted ability to target Mpro. Toxicity models
were also utilized as a critical part of our LO process. The LO results helped inform which
candidates to submit for experimental validation.

Lead Optimization 8
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Experimental Validation

Native MS Experiments: We experimentally tested top 8 screen hits (Table 1) using native mass
spectrometry to examine if the designed compounds form stable complexes with the target
protein. After mixing 4 yM MP™ with each of the compounds at 20 uM, each sample was then
subjected to electrospray MS detection under native conditions. From the compounds tested,
compounds MCULE-4926166920 and MCULE-7471308738 showed best binding as we can see
clear mass shifts to the dimer of the protein. Dimers of M?™ showed binding to one molecule in
both MCULE-4926166920 and MCULE-7471308738. Based on the peak areas of the apo and
holo species, we estimated the Kd to be in the hundreds of uM range.

A 100
Apo Holo
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i <j%nj\'(n\/\)ol\<)\'r
%- |
i Kd~100uM
0 . : Lﬁ-\ : :
67.4 67.6 67.8 68.0 68.2 68.4
Mass (kDa)
B 100 - q
Apo 0

| 343 oM~
i 403 N
t Holo

| .
% .

67.4 67.6 67.8 68.0 68.2 68.4
Mass (kDa)

Figure 2. Native MS of Mpro mixed with compound A) MCULE-4926166920 and B) MCULE-
7471308738 showed binding of one molecule to the dimer of the protein.
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Functional Assay Experiments: We experimentally verified that our screen hits were capable
of inhibiting MP™ activity using a plate reader-based biochemical assay with purified MP™ enzyme
and a commercially available fluorogenic FRET peptide substrate. From the 8 compounds tested
(Table 1), MCULE-7471308738 showed significant inhibition at higher concentration (62.5 yM)
after incubating for 60 minutes. Further experiments will be conducted at higher concentrations

to determine the actual ICso of the compounds.
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Figure 3: IC50 curves for compound MCULE-7471308738 after 0 minute and 60 minutes of co-
incubation of enzyme and inhibitor.

Experimental Validation
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