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I am old
• From St. Louis, MO
• Ten years at Texas A&M

− Did graduate more than once
− BS, MS, and PhD in Nuclear Engineering

§ Dissertation topic: high-order methods for SN grey radiative transfer equations
− DOE CSGF Fellow 2010-2014

• Strongly suggest trying out different locales and jobs
− Environmental Health Physics Tech (St. Louis, MO; 2007)
− DNFSB (Washington D.C.; 2008)
− ORNL (Oak Ridge, TN 2009)
− LANL (TA-3-390; 2010)
− KAPL (Schenectady, NY; 2012)



56/23/23

I’ve spent 8 years in the Weapons Complex
• 3.5 years at LLNL

− Postdoc, WSC Deterministic transport project
§ ISCB spatial discretization profiling in Kripke proxy-app
§ Lumping for HO Mixed Finite Element Transport
§ Documentation of UCB in Teton

− Staff-member, WSC Deterministic transport project
§ Co-PI LDRD on HO Transport on HO Grids
§ Librarization of Teton deterministic x-ray transport code for multiple multiphysics codes

• 4.5 years at LANL
− Staff-member, XCP-2, supporting Eulerian Application Project (xRAGE, Cassio, …)

§ Edge infrastructure, geometry setup, timestep controls, grey diffusion porting, user support
§ TITANS (3+ year program on weapons physics)
§ Weapon outputs / simulations of a novel design class
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Why work at LANL?
• Meaning in the work

− Support national security of the United States
− Work is used and applied, work is not designing “paper reactors”

• Challenging work
− Never ending supply of new things to learn
− Opportunities to become “the” expert

• National Lab atmosphere
− Everyone is self-motivated

§ Though still a relaxed atmosphere (Dr. not needed if everyone in the room is Dr.)

• Location
− 15 minutes to skiing, no S.A.D. winters
− 28 years of humidity more than enough for a lifetime 
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ASC codes MUST run on a lot of platforms!
• xRAGE nightly regression tests currently on: 

− Snow (CTS), Rocinante (SPR), RZAnsel (Power9), Trinitite (Haswell), Trinitite (KNL) 
− Fire/Ice/Cyclone (CTS), Trinity (Haswell), Trinity (KNL), Sierra (Power9)
− RZVernal (EAS-3), Tioga (EAS-3), and Venado (G+H) in progress / coming soon

• xRAGE is a BIG code with a relatively small # of developers
− O(500K) SLOC
− Budget of < 14 FTE / year for all activities

§ Deployment, user support, new features, code maintenance

• If a platform requires specialized coding for performance it is intractable for 
EAP to implement this given the number of machines we must support
− Enter the Performance Abstraction Layer
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Do you really need to target all those machines?
• YES!

− Users require we run on the bread and butter machines (Snow, Fire/Ice/Cyclone)
− Users *should* want us to target the others

• If FLOPS dictate how awesome your simulation is:
− Fire/Ice/Cyclone: 1.3 PFLOPS 

§ [Peta(1015) FLoating (double precision) point Operations Per Second] each   
− Trinity: 42 PFLOPS

§ KNL partition: 30  PFLOPS
− Crossroads: 44 PFLOPS
− Sierra: 125 PFLOPS

§ 120 PFLOPS on GPUs
− El Capitan: >2000 PFLOPS (predicted)

§ EAS-3: 5.76 PFLOPS GPU / 5.824 PFLOPS Total   
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Are FLOPS everything? Is TOP500 the list?
• Probably not / this is up for debate
• HPCG

− Sparse linear algebra as compared to HPL[inpack]’s dense linear algebra
§ Can be argued that this is much closer to our codes’ behavior than LINPACK

− Sierra 1.8 PFLOPS on HPCG
− Trinity 0.5 PFLOPS on HPCG

• Maybe we’re concerned with power consumption
− Enter Green500:

§ Sierra: 12.723 [GFLOPS/Watt]
§ Trinity: 2.66 [GFLOPS/Watt]

Regardless of metric, running [well] on GPU machines 
is needed to take advantage of ASC resources!!
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Can’t you just run the codes on the GPUs?
• No
• GPU processors are very different than CPU processors

− Lots and lots of “dumb” processors vs. a few very talented multi-taskers
− Slow clock speed vs. faster clock speed
− Small vs. large cache

• Distinct memory spaces
− This is becoming less true, but is important for many current systems

• GPUs are typically programmed in vendor specific code 
− Allows for control of advanced hardware features distinct from CPUs
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What is a performance abstraction layer?
• A set of C++ widgets that ideally lets physics/code be performant on multiple 

platforms with a single set of source code
− Likely benefits from a small companion header file that modifies platform specific 

template parameters
− Might ease maintenance burden

§ Abstraction layers are non-trivial
• Focus on on-node performance
• Requires comfort with template parameters / template programming
• Made possible by lambdas functionality of C++ 11
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What is a performance abstraction layer?
• Is there a performance cost?  Maybe

− Getting access to all of the features may or may not be necessary
− May or may not negate the generality of the abstraction layer

• Is there a code debt cost? Yep
− A third-party library will now be deeeeeply integrated into your code base

• Abstraction layers not required to utilize GPUs / advanced platforms
− OpenMP4.5
− Native hardware languages
− Vectorization intrinsics

• Are performance abstraction layers used and enjoyed by all ASC projects?
− No, not all need it / benefit from it
− Challenges to adoption: FORTRAN, limited # of “hotspots”, heavily OO code

§ Some of these things make GPU programming hard
§ Some of these things make vectorization easy
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Are there different performance abstraction layers?
• Two concepts require abstraction

− Memory locations / data movement
− Loop abstractions

• Two mainline DOE products / projects
1. SNL (Sandia) solution

− Kokkos: Addresses both in one project
2. LLNL (Livermore) solution

− RAJA: Loop abstraction
− Chai: Data movement
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Two central tenants of Kokkos: Views and parallel_<for>

• Views: Data management
− Multidimensional arrays, FORTRAN like (i,j,k) indexing / access operator
− Defined by:

§ data type (double, int, …)
§ storage location (CudaSpace, HostSpace, HipSpace, DefaultMemorySpace, …)
§ rank (1-D to 7-D)
§ data layout (LayoutLeft , LayoutRight , LayoutStride)

− Which index (in a multi-D View) has data closer in memory from index (i,j)? (i+1,j) or (i,j+1)
− Strided memory access arises in array slices

• parallel_for / parallel_reduce / parallel_scan : loop abstraction
− Defined by execution policy

§ Where to do the computation? (Cuda , Serial, OpenMP, … )
§ How to iterate? (RangePolicy, MDRangePolicy, TeamVectorMDRange, …)
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“Standard” View constructor
Kokkos::View< DataType **[3], DataLayout, DataLocation> 
     my_vector(“my_vector”, nX, nY);

• Create a new View that is nX * nY * 3 elements long of type DataType
− Fixed length dimensions must be last (and enclosed in [ ])

• Allocated in DataLocation MemorySpace
• Memset (initialized) to 0
• DataLocation::DefaultExecutionSpace blocking

− This View will allocated and ready before anything else is executed
• “my_vector” is for debugging purposes

− Kokkos may list the “name” of a vector if a runtime issue arises
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More Advanced View constructor
Kokkos::View< DataType **[3], DataLayout, 
              DataLocation, Kokkos::MemoryTraits<Kokkos::Atomic>> 
     my_vector( Kokkos::view_alloc(“my_vector”, Kokkos::WithoutInitializing,     
                eexecStream, DataLocation() ), nX, nY);

• Similar to previous, BUT:
− Kokkos::WithoutInitializing: No memset
− Kokkos::MemoryTraits<Kokkos::Atomic>>: Atomic access enforced when used
− execStream : will be allocated in spaceStream, possibly asynchronously

§ Must call spaceStream.fence() to ensure the View is available
§ Non-blocking call (possibly)!
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Views from Data Outside of Kokkos’ Management
Kokkos::View< DataType ***, DataLayout, 
              DataLocation, Kokkos::MemoryTraits<Kokkos::Unmanaged>> 
     my_vector( data_ptr, nX, nY, 3);

• Developers may hand Kokkos a pointer to data allocated outside of Kokkos
• Developer is asserting Location, Layout, rank, and length of data

− LayoutLeft: FORTRAN allocator
− LayoutRight: C/C++ malloc
− LayoutStride: FORTRAN array slice

• Non-allocating
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How to create “mirrors” in different memory spaces
• Mirrors- related Views that can transfer data between one another via 

deep_copy (typically different spaces)
auto newView = create_mirror([newViewSpace()], srcView);

• Creates a new View in HostSpace or newViewSpace (if given)
− Always a deep copy!

View<newDataType, newLayout, newStorage> newView =    
                      create_mirror_and_copy([newViewSpace()], srcView);

• Create mirror View and copy data (if necessary)
− Can change from non-const to const data
− Can change layout and location in a single call

§ Copying back may then require an intermediate step
− Shallow copy if possible

• All of the above can take view_alloc() to allow synchronizing, control 
initialization state, etc.
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Kokkos Allows for Array Slicing via subview
• Highly recommended to use auto to determine type of the result
int nx,ny,nz; 
View<double***, LayoutLeft, CudaSpace> bigThing(“bigThing”, nx,ny,nz);
auto smallPiece = Kokkos::subview( bigThing, 
                              1, Kokkos::make_pair(2,4), Kokkos::ALL);
parallel_for(“example”, 
             MDRangePolicy<execSpace,Rank<3>>({0,0,0},{1,2,nz}),
        KOKKOS_LAMBDA(size_t i, size_t j, size_t k){
           smallPiece(i,j,k) += 0.25;
             });

• Above smallPiece,  take the data in row 1; columns 2,3;  and all of the next dimension
• Pair indices are read as [closed,open) interval of columns
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Generic Anatomy of Kokkos Parallel Constructs
parallel_blah(“name” , ExecutionPolicy,
              KOKKOS_LAMBDA( size_t index){
   … });
• ExecutionPolicy can have varying levels of verbosity

− nEL; implies 1D RangePolicy(0,nEl) on DefaultExecutionSpace
− nStart,nEnd ;implies 1D RangePolicy(nStart, nEnd) on DefaultExecutionSpace
− RangePolicy<EXEC_SPACE>(0, nEnd); 1D RangePolicy(0, nEnd) on EXEC_SPACE

• KOKKOS_LAMBDA
− A macro that handles the lambda capture syntax / decorating for device as necessary
− Not strictly required, but is convenient to include

• parallel_blah are generally non-blocking
− Work will be started, but other kernels can also be launched.
− Requires use of fence() and/or streams for to respect data dependencies
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Some ExecutionPolicy Examples
• 1-D iteration : RangePolicy
  parallel_for(“name”, RangePolicy<EXEC_SPACE>(a,b), 
             KOKKOS_LAMBDA(const size_t index){});

• Multi-Dimension iteration: MDRangePolicy
   parallel_for(“name”,
           MDRangePolicy<EXEC_SPACE,Kokkos::Rank<3>>({0,0,0},{a,b,c}), 

         KOKKOS_LAMBDA(const size_t i, const size_t j, const size_t k)
     {});

• Above do not pass in execStream
− Use of execStream allows for multiple kernels working at once
parallel_for(“name”, RangePolicy<EXEC_SPACE>(execStream1, a,b), 
               KOKKOS_LAMBDA(const size_t index){});
parallel_for(“name”, RangePolicy<EXEC_SPACE>(execStream2, a,b), 
               KOKKOS_LAMBDA(const size_t index){});
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parallel_for()
parallel_for(“name” , ExecutionPolicy,
              KOKKOS_LAMBDA( size_t index){
                  f(index) = ….
});
• Simplest to think of- “Do a thing for all elements of the ExecutionPolicy”
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parallel_reduce()
Data globalVal;
parallel_reduce(“name” , ExecutionPolicy,
              KOKKOS_LAMBDA( size_t i, Data& localVal){
                  localVal = operation(localVal, val(i));
}, Kokkos::Operation<Data>(globalVal) );
• Kokkos has several built in Reduction operations

− Max, Min, MaxLoc, MinLoc, Sum, …

• Can also create your own, or do a defined reduction on a user-defined type
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parallel_scan()
• prefix or postfix operations, e.g. sum

parallel_scan(“prefixSum” , ExecutionPolicy,
    KOKKOS_LAMBDA( size_t i, Data& localVal, bool is_final){
    const int val_before_sum = x(l);
  sum_of_need_to_update += val_before_sum;
  if(is_final){

•    prefix_sum(l) = sum_of_need_to_update;
  }});

1 3 1 5 2 prefix 1 4 5 10 12

1 3 1 5 2 postfix 1 1 4 9 14
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How to achieve program flow control given 
asynchronous resources
• Unless explicitly stated, it should be assumed that Kokkos idioms are non-

blocking!
− This means that another statement may start executing before the previous action is 

completed
− There are rules to this, but be advised that creativity or over-reliance on what you 

think “should” be happening can lead to horrific debug challenges
• Program flow is controlled by fence()-ing in Kokkos

− Kokkos::fence(); Blocking until all work in all execution spaces completes before 
proceeding

− ExecutionSpace::fence(); Blocking until all work in this execution space 
completes

− streams[i].fence(); Blocking until all work in this execution stream completes
§ Even if streams[i] is of type ExecutionSpace, ExecutionSpace::fence() will NOT 

fence stream[i]
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Tag Views, parallel regions, and add profiling regions 
Kokkos::Profiling::pushRegion(“descriptive Name”);
….
Kokkos::Profiling::popRegion();
• Above are Kokkos specific annotations
• Need to be added in pairs (push/pop)
• No compiler warning if there are un-matched push/pop

− Some kokkos-tools will segfault if there are mismatches
− new Kokkos::Profiling::ScopedRegion will give compiler warnings

§ But must upgrade to Kokkos 4.1 (or later)
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Profiling and debugging tools
• Kokkos has a companion (and separate git repo) of plugin tools, kokkos-tools
• Connector tools available

− Vendor specific profiler adaptors (Intel VTune, NVTX, ROCTX…)
− Memory Usage (allocations by memory type, high-water marks, …)
− Timers (hierarchical time, simple kernel timers, …)

• To use:
− 1) Download kokkos-tools, 2) ‘make’ within the subfolder of the tool you want to us 
     3) Set the environment variable KOKKOS_TOOLS_LIBS to the path of the shared   
         library file that was created

• Note:
− Makefiles may need hand editing to account for how your specific environment looks

§ Ex:. CUDA_ROOT vs. CUDA_PATH
− CMake builds exist, but generally work less well than Makefile path
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How to overlap work, data transfers, etc.
auto streams = Kokkos::Experimental::partition_space(
                       EXEC_SPACE(), weights);
auto streams = Kokkos::Experimental::partition_space(
                       EXEC_SPACE(), 2,1,2…);
• Unless told otherwise, all Kokkos operations are launched on the Default 

stream/queue of the ExecutionSpace that work was set to work on
− Operations complete in order

• It is desirable to overlap multiple things working at once to maximize hardware 
utilization
− Ex: moving data onto the GPU while doing work on the CPU and/or GPU

• Kokkos permits this through the partition_space idea
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partition_space allows for asynchronous work
• weights are used by OpenMP backend to allocate relative resource levels
• With Cuda and other GPU backends, numeric value of weights is ignored

− One new stream for each weights entry
• Each element of partition_space is distinct

− only respects a fence on itself or a global Kokkos::fence()
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Be verbose, incrementally increase complexity only 
after verifying a given implementation is working
• Be explicit in where memory is located and where you think work should occur

− Kokkos will default a lot of things for you
− Leads to lower initial entry barrier, but steeper rise to perfection

• Do not attempt to maximize throughput from the start
− fence() if you’re not sure
− Overlapping work can lead to a bookkeeping nightmare

• Ensure you can default everything to Serial and HostSpace via changing / 
redefining one or two template parameters
− Kokkos allows for not only logic error in your algorithm, but also errors in memory and 

execution space location management!
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Seek information from a variety of sources

• Great to have a friend or colleague that is ahead of the Kokkos game for you
− Thanks danl@lanl

• Kokkos documentation
− Both the current and deprecated have useful information
− Documentation is not perfect, best consumed with source code access

• Kokkos Slack channel
− The Kokkos equivalent to crestone_support@lanl.gov

• Kokkos tutorials / workshops (online)
• Do it to learn it

− Kokkos knowledge really only imprinted after exercising it

mailto:crestone_support@lanl.gov
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Caveats / Things I skipped

• SIMD operations in Kokkos
− Befikir and Yasuki should have some good knowledge soon

• Hierarchical parallelism
− Haven’t used it yet in xRAGE, but I’d like to learn

• Profiling
− Required to effectively direct incremental improvement in your code

• The compiler is right
− I tried to reproduce things correctly in here, but I am prone to mistakes
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Questions?


