LA-UR-23-26959

Approved for public release; distribution is unlimited.

Title: An Introduction to Kokkos
Author(s): Maginot, Peter Gregory
Intended for: Parallel school lecture
Issued: 2023-06-27

NATIONAL LABORATORY

% Los Alamos

1% Los Alamos NYSE

NATIONAL LABORATORY National Nuclear Security Administration

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

1% Los Alamos

NATIONAL LABORATORY

An Introduction to Kokkos

Pete Maginot
Eulerian Applications Project- Deputy for Physics

XCP Parallel Workshop Lecture
June 30, 2023

)
NA‘S’% Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA. 6/23/23 1

Overview

Who am 1?

What is a performance abstraction layer?
- Why would you do this to yourself?

Major Kokkos Ideas

Some gotchas / tricks

1% Los Alamos

AAAAAAAAAAAAAAAA

Overview

Who am 1?

What is a performance abstraction layer?
- Why would you do this to yourself?

Major Kokkos Ideas

Some gotchas / tricks

—~_
1% Los Alamos

| am old

 From St. Louis, MO

« Ten years at Texas A&M
— Did graduate more than once
- BS, MS, and PhD in Nuclear Engineering

= Dissertation topic: high-order methods for Sy grey radiative transfer equations
- DOE CSGF Fellow 2010-2014

« Strongly suggest trying out different locales and jobs
- Environmental Health Physics Tech (St. Louis, MO; 2007)
— DNFSB (Washington D.C.; 2008)
— ORNL (Oak Ridge, TN 2009)
— LANL (TA-3-390; 2010)
— KAPL (Schenectady, NY; 2012)

1% Los Alamos

AAAAAAAAAAAAAAAA

I’'ve spent 8 years in the Weapons Complex

« 3.5 years at LLNL

- Postdoc, WSC Deterministic transport project
= |SCB spatial discretization profiling in Kripke proxy-app
= Lumping for HO Mixed Finite Element Transport
= Documentation of UCB in Teton

- Staff-member, WSC Deterministic transport project
= Co-PI LDRD on HO Transport on HO Grids
= Librarization of Teton deterministic x-ray transport code for multiple multiphysics codes

* 4.5 years at LANL

— Staff-member, XCP-2, supporting Eulerian Application Project (xRAGE, Cassio, ...)
= Edge infrastructure, geometry setup, timestep controls, grey diffusion porting, user support
= TITANS (3+ year program on weapons physics)
= Weapon outputs / simulations of a novel design class

1% Los Alamos

AAAAAAAAAAAAAAAA

Why work at LANL?

* Meaning in the work
— Support national security of the United States
— Work is used and applied, work is not designing “paper reactors”

» Challenging work
— Never ending supply of new things to learn
— Opportunities to become “the” expert

* National Lab atmosphere
— Everyone is self-motivated
= Though still a relaxed atmosphere (Dr. not needed if everyone in the room is Dr.)
« Location
— 15 minutes to skiing, no S.A.D. winters
— 28 years of humidity more than enough for a lifetime

1% Los Alamos

AAAAAAAAAAAAAAAA

Overview

Who am 1?

What is a performance abstraction layer?
- Why would you do this to yourself?

Major Kokkos Ideas

Some gotchas / tricks

1% Los Alamos

AAAAAAAAAAAAAAAA

ASC codes MUST run on a lot of platforms!

» XRAGE nightly regression tests currently on:
— Snow (CTS), Rocinante (SPR), RZAnsel (Power9), Trinitite (Haswell), Trinitite (KNL)
— Fire/lce/Cyclone (CTS), Trinity (Haswell), Trinity (KNL), Sierra (Power9)
- RZVernal (EAS-3), Tioga (EAS-3), and Venado (G+H) in progress / coming soon
 XRAGE is a BIG code with a relatively small # of developers
- O(500K) SLOC

— Budget of < 14 FTE / year for all activities
= Deployment, user support, new features, code maintenance

« If a platform requires specialized coding for performance it is intractable for

EAP to implement this given the number of machines we must support
- Enter the Performance Abstraction Layer

1% Los Alamos

AAAAAAAAAAAAAAAA

Do you really need to target all those machines?

 YES!
— Users require we run on the bread and butter machines (Snow, Fire/lce/Cyclone)
- Users *should* want us to target the others

 If FLOPS dictate how awesome your simulation is:
— Fire/lce/Cyclone: 1.3 PFLOPS
= [Peta(10'%) FLoating (double precision) point Operations Per Second] each
— Trinity: 42 PFLOPS
= KNL partition: 30 PFLOPS
— Crossroads: 44 PFLOPS
Sierra: 125 PFLOPS 500
= 120 PFLOPS on GPUs

- El Capitan: >2000 PFLOPS (predicted)
= EAS-3:5.76 PFLOPS GPU / 5.824 PFLOPS Total

The List.

1% Los Alamos

AAAAAAAAAAAAAAAA

Are FLOPS everything? Is TOP500 the list?

* Probably not / this is up for debate
+ HPCG

- Sparse linear algebra as compared to HPL[inpack]’'s dense linear algebra
= Can be argued that this is much closer to our codes’ behavior than LINPACK

— Sierra 1.8 PFLOPS on HPCG
— Trinity 0.5 PFLOPS on HPCG

* Maybe we’re concerned with power consumption
- Enter Green500:
= Sierra: 12.723 [GFLOPS/Watt]
= Trinity: 2.66 [GFLOPS/Watt]

Regardless of metric, running [well] on GPU machines

is needed to take advantage of ASC resources!!

1% Los Alamos

AAAAAAAAAAAAAAAA

Can’t you just run the codes on the GPUs?

* No

« GPU processors are very different than CPU processors
- Lots and lots of “dumb” processors vs. a few very talented multi-taskers
— Slow clock speed vs. faster clock speed
- Small vs. large cache

 Distinct memory spaces
— This is becoming less true, but is important for many current systems

« GPUs are typically programmed in vendor specific code
— Allows for control of advanced hardware features distinct from CPUs

1% Los Alamos

AAAAAAAAAAAAAAAA

Overview

Who am 1?

What is a performance abstraction layer?
- Why would you do this to yourself?

Major Kokkos Ideas

Some gotchas / tricks

1% Los Alamos

AAAAAAAAAAAAAAAA

What is a performance abstraction layer?

» Aset of C++ widgets that ideally lets physics/code be performant on multiple
platforms with a single set of source code

- Likely benefits from a small companion header file that modifies platform specific
template parameters

— Might ease maintenance burden
= Abstraction layers are non-trivial

* Focus on on-node performance
» Requires comfort with template parameters / template programming
* Made possible by lambdas functionality of C++ 11

AAAAAAAAAAAAAAAA

What is a performance abstraction layer?

* |s there a performance cost? Maybe
- Getting access to all of the features may or may not be necessary
— May or may not negate the generality of the abstraction layer

* |s there a code debt cost? Yep
— Athird-party library will now be deeeeeply integrated into your code base

» Abstraction layers not required to utilize GPUs / advanced platforms
- OpenMP4.5
— Native hardware languages
— Vectorization intrinsics

» Are performance abstraction layers used and enjoyed by all ASC projects?

— No, not all need it / benefit from it

— Challenges to adoption: FORTRAN, limited # of “hotspots”, heavily OO code
= Some of these things make GPU programming hard
= Some of these things make vectorization easy

1% Los Alamos

AAAAAAAAAAAAAAAA

Are there different performance abstraction layers?

» Two concepts require abstraction
— Memory locations / data movement
— Loop abstractions

« Two mainline DOE products / projects

1. SNL (Sandia) solution
— Kokkos: Addresses both in one project

2. LLNL (Livermore) solution
— RAJA: Loop abstraction
- Chai: Data movement

AAAAAAAAAAAAAAAA

Overview

Who am 1?

What is a performance abstraction layer?
- Why would you do this to yourself?

Major Kokkos Ideas

Some gotchas / tricks

1% Los Alamos

AAAAAAAAAAAAAAAA

Two central tenants of Kokkos: Views and parallel_<for>

» Views: Data management
— Multidimensional arrays, FORTRAN like (i,j,k) indexing / access operator
— Defined by:
= data type (double, int, ...)
= storage location (CudaSpace, HostSpace, HipSpace, DefaultMemorySpace, ...)
*= rank (1-D to 7-D)
» data layout (LayoutLeft , LayoutRight , LayoutStride)
- Which index (in a multi-D View) has data closer in memory from index (i,j)? (i+1,j) or (i,j+1)
- Strided memory access arises in array slices

» parallel _for [parallel _reduce | parallel _scan : loop abstraction

— Defined by execution policy
= Where to do the computation? (Cuda , Serial, OpenMP, ...)
= How to iterate? (RangePolicy, MDRangePolicy, TeamVectorMDRange, ...)

1% Los Alamos

AAAAAAAAAAAAAAAA

“Standard” View constructor

Kokkos: :View< DataType xx[3], DatalLayout, Datalocation>
my_vector(“my_vector”, nX, nY);

« Create a new View that is nX * nY * 3 elements long of type DataType
- Fixed length dimensions must be last (and enclosed in [])

 Allocated in DataLocation MemorySpace
« Memset (initialized) to 0

« Datalocation::DefaultExecutionSpace blocking
- This View will allocated and ready before anything else is executed

* “my_vector” is for debugging purposes
— Kokkos may list the “name” of a vector if a runtime issue arises

1% Los Alamos

AAAAAAAAAAAAAAAA

More Advanced View constructor

Kokkos: :View< DataType x%[3], DatalLayout,
DatalLocation, Kokkos::MemoryTraits<Kokkos::Atomic>>
my_vector(Kokkos::view_alloc(“my_vector”, Kokkos::WithoutInitializing,
eexecStream, DatalLocation()), nX, nY);
« Similar to previous, BUT:
- Kokkos::WithoutInitializing: No memset

- Kokkos: :MemoryTraits<Kokkos::Atomic>>: Atomic access enforced when used
— execStream : will be allocated in spaceStream, possibly asynchronously

= Must call spaceStream.fence() to ensure the View is available
= Non-blocking call (possibly)!

1% Los Alamos

AAAAAAAAAAAAAAAA

Views from Data Outside of Kokkos’ Management

Kokkos: :View< DataType x*x, Datalayout,
DatalLocation, Kokkos::MemoryTraits<Kokkos::Unmanaged>>
my_vector(data_ptr, nX, nY, 3);
» Developers may hand Kokkos a pointer to data allocated outside of Kokkos

« Developer is asserting Location, Layout, rank, and length of data
— LayoutLeft: FORTRAN allocator
— LayoutRight: C/C++ malloc
— LayoutStride: FORTRAN array slice

» Non-allocating

1% Los Alamos

AAAAAAAAAAAAAAAA

How to create “mirrors” in different memory spaces

* Mirrors- related Views that can transfer data between one another via
deep_copy (typically different spaces)

auto newView = create_mirror([newViewSpace()], srcView);
» Creates a new View in HostSpace or newViewSpace (if given)
— Always a deep copy!
View<newDataType, newLayout, newStorage> newView =
create_mirror_and_copy([newViewSpace()], srcView);
» Create mirror View and copy data (if necessary)
— Can change from non-const to const data
— Can change layout and location in a single call

= Copying back may then require an intermediate step
— Shallow copy if possible

 All of the above can take view_alloc() to allow synchronizing, control

initialization state, etc.
1% Los Alamos

Kokkos Allows for Array Slicing via subview

« Highly recommended to use auto to determine type of the result
int nx,ny,nz;
View<doublexxx, LayoutlLeft, CudaSpace> bigThing(“bigThing”, nx,ny,nz);
auto smallPiece = Kokkos::subview(bigThing,
1, Kokkos::make_pair(2,4), Kokkos::ALL);

parallel_for(“example”,

MDRangePolicy<execSpace,Rank<3>>({0,0,0},{1,2,nz}),

KOKKOS_LAMBDA (size_t 1, size_t j, size_t k){

smallPiece(i,j,k) += 0.25;

1)

« Above smallPiece, take the data in row 1; columns 2,3; and all of the next dimension

« Pair indices are read as [closed,open) interval of columns

1% Los Alamos

AAAAAAAAAAAAAAAA

Generic Anatomy of Kokkos Parallel Constructs

parallel_blah(“name” , ExecutionPolicy,
KOKKOS_LAMBDA(size_t index){
w 1)

« ExecutionPolicy can have varying levels of verbosity
- nEL; implies 1D RangePolicy(0,nEl) on DefaultExecutionSpace
- nStart,nEnd ;implies 1D RangePolicy(nStart, nEnd) on DefaultExecutionSpace
- RangePolicy<EXEC_SPACE>(0, nEnd); 1D RangePolicy(0, nEnd) on EXEC_SPACE

« KOKKOS LAMBDA
- A macro that handles the lambda capture syntax / decorating for device as necessary
— Not strictly required, but is convenient to include

« parallel_blah are generally non-blocking
- Work will be started, but other kernels can also be launched.
- Requires use of fence() and/or streams for to respect data dependencies

1% Los Alamos

AAAAAAAAAAAAAAAA

Some ExecutionPolicy Examples

« 1-D iteration : RangePolicy
parallel_for(“name”, RangePolicy<EXEC_SPACE>(a,b),
KOKKOS_LAMBDA (const size_t index){}):

« Multi-Dimension iteration: MDRangePolicy
parallel_for(“name”,

MDRangePolicy<EXEC_SPACE,Kokkos: :Rank<3>>({0,0,0},{a,b,c}),
KOKKOS_LAMBDA (const size_t 1, const size_t j, const size_t k)

{});

» Above do not pass in execStream
— Use of execStream allows for multiple kernels working at once
parallel_for(“name”, RangePolicy<EXEC_SPACE>(execStreaml, a,b),
KOKKOS_LAMBDA(const size_ t index){});
parallel_for(“name”, RangePolicy<EXEC_SPACE>(execStream2, a,b),
KOKKOS _LAMBDA(const size_ t index){});

1% Los Alamos

AAAAAAAAAAAAAAAA

parallel_for()

parallel_for(“name” , ExecutionPolicy,
KOKKOS_LAMBDA(size_t index){
f(index) = ...
});

« Simplest to think of- “Do a thing for all elements of the ExecutionPolicy”

1% Los Alamos

AAAAAAAAAAAAAAAA

parallel_reduce()

Data globalVal;
parallel_reduce(“name” , ExecutionPolicy,
KOKKOS_LAMBDA(size_t i, Data& localVal){
localvVal = operation(localval, val(i));
}, Kokkos::0Operation<Data>(globalval));

« Kokkos has several built in Reduction operations
- Max, Min, MaxLoc, MinLoc, Sum, ..

« Can also create your own, or do a defined reduction on a user-defined type

1% Los Alamos

AAAAAAAAAAAAAAAA

parallel_scan()

« prefix or postfix operations, e.g. sum

orei
osii 2

parallel_scan(“prefixSum” , ExecutionPolicy,
KOKKOS_LAMBDA(size_t i, Data& localVal, bool is_final){
const int val _before_sum = x(1);
sum_of_need_to_update += val_before_sum;
if(is_final){
. prefix_sum(1) = sum_of_need_to_update;

}r);

1% Los Alamos

AAAAAAAAAAAAAAAAAA

How to achieve program flow control given
asynchronous resources

» Unless explicitly stated, it should be assumed that Kokkos idioms are non-
blocking!
— This means that another statement may start executing before the previous action is
completed

— There are rules to this, but be advised that creativity or over-reliance on what you
think “should” be happening can lead to horrific debug challenges

« Program flow is controlled by fence()-ing in Kokkos

— Kokkos::fence(); Blocking until all work in all execution spaces completes before
proceeding

- ExecutionSpace: :fence(),; Blocking until all work in this execution space
completes

- streams[1i].fence(); Blocking until all work in this execution stream completes

= Evenifstreams[1] is of type ExecutionSpace, ExecutionSpace: :fence() wil NOT
fence stream|i]

1% Los Alamos

AAAAAAAAAAAAAAAA

Tag Views, parallel regions, and add profiling regions

Kokkos: :Profiling: :pushRegion(“descriptive Name”);

Kokkos::Profiling::popRegion();
» Above are Kokkos specific annotations
» Need to be added in pairs (push/pop)

« No compiler warning if there are un-matched push/pop
- Some kokkos-tools will segfault if there are mismatches

— new Kokkos::Profiling::ScopedRegion will give compiler warnings
= But must upgrade to Kokkos 4.1 (or later)

AAAAAAAAAAAAAAAA

Profiling and debugging tools

Kokkos has a companion (and separate git repo) of plugin tools, kokkos-tools

Connector tools available

— Vendor specific profiler adaptors (Intel VTune, NVTX, ROCTX...)

- Memory Usage (allocations by memory type, high-water marks, ...)
— Timers (hierarchical time, simple kernel timers, ...)

To use:
— 1) Download kokkos-tools, 2) ‘make’ within the subfolder of the tool you want to us
3) Set the environment variable KOKKOS_ TOOLS LIBS to the path of the shared
library file that was created

Note:

— Makefiles may need hand editing to account for how your specific environment looks
= Ex:. CUDA_ROOT vs. CUDA_PATH

- CMake builds exist, but generally work less well than Makefile path

1% Los Alamos

AAAAAAAAAAAAAAAA

How to overlap work, data transfers, etc.

auto streams = Kokkos::Experimental::partition_space(
EXEC_SPACE(), weights);

auto streams = Kokkos::Experimental::partition_space(
EXEC_SPACE(), 2,1,2..);

» Unless told otherwise, all Kokkos operations are launched on the Default

stream/queue of the ExecutionSpace that work was set to work on
— Operations complete in order

* |tis desirable to overlap multiple things working at once to maximize hardware
utilization

— Ex: moving data onto the GPU while doing work on the CPU and/or GPU
« Kokkos permits this through the partition _space idea

AAAAAAAAAAAAAAAA

partition_space allows for asynchronous work

« welights are used by OpenMP backend to allocate relative resource levels

« With Cuda and other GPU backends, numeric value of weights is ignored
— One new stream for each weights entry

» Each element of partition space is distinct
— only respects a fence on itself or a global Kokkos: : fence()

AAAAAAAAAAAAAAAA

Overview

Who am 1?

What is a performance abstraction layer?
- Why would you do this to yourself?

Major Kokkos Ideas

Some gotchas / tricks

1% Los Alamos

AAAAAAAAAAAAAAAA

Be verbose, incrementally increase complexity only
after verifying a given implementation is working

» Be explicit in where memory is located and where you think work should occur
— Kokkos will default a lot of things for you
- Leads to lower initial entry barrier, but steeper rise to perfection

« Do not attempt to maximize throughput from the start
- fence() if you’re not sure
— Overlapping work can lead to a bookkeeping nightmare

« Ensure you can default everything to Serial and HostSpace via changing /
redefining one or two template parameters

— Kokkos allows for not only logic error in your algorithm, but also errors in memory and
execution space location management!

AAAAAAAAAAAAAAAA

Seek information from a variety of sources

Great to have a friend or colleague that is ahead of the Kokkos game for you
— Thanks dani@lanl

Kokkos documentation
— Both the current and deprecated have useful information
— Documentation is not perfect, best consumed with source code access

Kokkos Slack channel
— The Kokkos equivalent to crestone_support@lanl.gov

Kokkos tutorials / workshops (online)

Do it to learn it
— Kokkos knowledge really only imprinted after exercising it

1% Los Alamos

AAAAAAAAAAAAAAAA

mailto:crestone_support@lanl.gov

Caveats / Things | skipped

SIMD operations in Kokkos
— Befikir and Yasuki should have some good knowledge soon

Hierarchical parallelism

- Haven'’t used it yet in xXRAGE, but I'd like to learn

Profiling

- Required to effectively direct incremental improvement in your code

The compiler is right
— | tried to reproduce things correctly in here, but | am prone to mistakes

1% Los Alamos

AAAAAAAAAAAAAAAA

Questions?

—~_
1% Los Alamos

