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| am old

 From St. Louis, MO

« Ten years at Texas A&M
— Did graduate more than once
- BS, MS, and PhD in Nuclear Engineering

= Dissertation topic: high-order methods for Sy grey radiative transfer equations
- DOE CSGF Fellow 2010-2014

« Strongly suggest trying out different locales and jobs
- Environmental Health Physics Tech (St. Louis, MO; 2007)
— DNFSB (Washington D.C.; 2008)
— ORNL (Oak Ridge, TN 2009)
— LANL (TA-3-390; 2010)
— KAPL (Schenectady, NY; 2012)
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I’'ve spent 8 years in the Weapons Complex

« 3.5 years at LLNL

- Postdoc, WSC Deterministic transport project
= |SCB spatial discretization profiling in Kripke proxy-app
= Lumping for HO Mixed Finite Element Transport
= Documentation of UCB in Teton

- Staff-member, WSC Deterministic transport project
= Co-PI LDRD on HO Transport on HO Grids
= Librarization of Teton deterministic x-ray transport code for multiple multiphysics codes

* 4.5 years at LANL

— Staff-member, XCP-2, supporting Eulerian Application Project (xRAGE, Cassio, ...)
= Edge infrastructure, geometry setup, timestep controls, grey diffusion porting, user support
= TITANS (3+ year program on weapons physics)
= Weapon outputs / simulations of a novel design class
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Why work at LANL?

* Meaning in the work
— Support national security of the United States
— Work is used and applied, work is not designing “paper reactors”

» Challenging work
— Never ending supply of new things to learn
— Opportunities to become “the” expert

* National Lab atmosphere
— Everyone is self-motivated
= Though still a relaxed atmosphere (Dr. not needed if everyone in the room is Dr.)
« Location
— 15 minutes to skiing, no S.A.D. winters
— 28 years of humidity more than enough for a lifetime
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ASC codes MUST run on a lot of platforms!

» XRAGE nightly regression tests currently on:
— Snow (CTS), Rocinante (SPR), RZAnsel (Power9), Trinitite (Haswell), Trinitite (KNL)
— Fire/lce/Cyclone (CTS), Trinity (Haswell), Trinity (KNL), Sierra (Power9)
- RZVernal (EAS-3), Tioga (EAS-3), and Venado (G+H) in progress / coming soon
 XRAGE is a BIG code with a relatively small # of developers
- O(500K) SLOC

— Budget of < 14 FTE / year for all activities
= Deployment, user support, new features, code maintenance

« If a platform requires specialized coding for performance it is intractable for

EAP to implement this given the number of machines we must support
- Enter the Performance Abstraction Layer
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Do you really need to target all those machines?

 YES!
— Users require we run on the bread and butter machines (Snow, Fire/lce/Cyclone)
- Users *should* want us to target the others

 If FLOPS dictate how awesome your simulation is:
— Fire/lce/Cyclone: 1.3 PFLOPS
= [Peta(10'%) FLoating (double precision) point Operations Per Second] each
— Trinity: 42 PFLOPS
= KNL partition: 30 PFLOPS
— Crossroads: 44 PFLOPS
Sierra: 125 PFLOPS 500
= 120 PFLOPS on GPUs

- El Capitan: >2000 PFLOPS (predicted)
= EAS-3:5.76 PFLOPS GPU / 5.824 PFLOPS Total

The List.
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Are FLOPS everything? Is TOP500 the list?

* Probably not / this is up for debate
+ HPCG

- Sparse linear algebra as compared to HPL[inpack]’'s dense linear algebra
= Can be argued that this is much closer to our codes’ behavior than LINPACK

— Sierra 1.8 PFLOPS on HPCG
— Trinity 0.5 PFLOPS on HPCG

* Maybe we’re concerned with power consumption
- Enter Green500:
= Sierra: 12.723 [GFLOPS/Watt]
= Trinity: 2.66 [GFLOPS/Watt]

Regardless of metric, running [well] on GPU machines

is needed to take advantage of ASC resources!!
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Can’t you just run the codes on the GPUs?

* No

« GPU processors are very different than CPU processors
- Lots and lots of “dumb” processors vs. a few very talented multi-taskers
— Slow clock speed vs. faster clock speed
- Small vs. large cache

 Distinct memory spaces
— This is becoming less true, but is important for many current systems

« GPUs are typically programmed in vendor specific code
— Allows for control of advanced hardware features distinct from CPUs
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What is a performance abstraction layer?

» Aset of C++ widgets that ideally lets physics/code be performant on multiple
platforms with a single set of source code

- Likely benefits from a small companion header file that modifies platform specific
template parameters

— Might ease maintenance burden
= Abstraction layers are non-trivial

* Focus on on-node performance
» Requires comfort with template parameters / template programming
* Made possible by lambdas functionality of C++ 11
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What is a performance abstraction layer?

* |s there a performance cost? Maybe
- Getting access to all of the features may or may not be necessary
— May or may not negate the generality of the abstraction layer

* |s there a code debt cost? Yep
— Athird-party library will now be deeeeeply integrated into your code base

» Abstraction layers not required to utilize GPUs / advanced platforms
- OpenMP4.5
— Native hardware languages
— Vectorization intrinsics

» Are performance abstraction layers used and enjoyed by all ASC projects?

— No, not all need it / benefit from it

— Challenges to adoption: FORTRAN, limited # of “hotspots”, heavily OO code
= Some of these things make GPU programming hard
= Some of these things make vectorization easy
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Are there different performance abstraction layers?

» Two concepts require abstraction
— Memory locations / data movement
— Loop abstractions

« Two mainline DOE products / projects

1. SNL (Sandia) solution
— Kokkos: Addresses both in one project

2. LLNL (Livermore) solution
— RAJA: Loop abstraction
- Chai: Data movement
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Two central tenants of Kokkos: Views and parallel_<for>

» Views: Data management
— Multidimensional arrays, FORTRAN like (i,j,k) indexing / access operator
— Defined by:
= data type (double, int, ...)
= storage location (CudaSpace, HostSpace, HipSpace, DefaultMemorySpace, ...)
*= rank (1-D to 7-D)
» data layout (LayoutLeft , LayoutRight , LayoutStride)
- Which index (in a multi-D View) has data closer in memory from index (i,j)? (i+1,j) or (i,j+1)
- Strided memory access arises in array slices

» parallel _for [ parallel _reduce | parallel _scan : loop abstraction

— Defined by execution policy
= Where to do the computation? (Cuda , Serial, OpenMP, ... )
= How to iterate? (RangePolicy, MDRangePolicy, TeamVectorMDRange, ...)
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“Standard” View constructor

Kokkos: :View< DataType xx[3], DatalLayout, Datalocation>
my_vector(“my_vector”, nX, nY);

« Create a new View that is nX * nY * 3 elements long of type DataType
- Fixed length dimensions must be last (and enclosed in [ ])

 Allocated in DataLocation MemorySpace
« Memset (initialized) to 0

« Datalocation::DefaultExecutionSpace blocking
- This View will allocated and ready before anything else is executed

* “my_vector” is for debugging purposes
— Kokkos may list the “name” of a vector if a runtime issue arises
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More Advanced View constructor

Kokkos: :View< DataType x%[3], DatalLayout,
DatalLocation, Kokkos::MemoryTraits<Kokkos::Atomic>>
my_vector( Kokkos::view_alloc(“my_vector”, Kokkos::WithoutInitializing,
eexecStream, DatalLocation() ), nX, nY);
« Similar to previous, BUT:
- Kokkos::WithoutInitializing: No memset

- Kokkos: :MemoryTraits<Kokkos::Atomic>>: Atomic access enforced when used
— execStream : will be allocated in spaceStream, possibly asynchronously

= Must call spaceStream.fence() to ensure the View is available
= Non-blocking call (possibly)!
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Views from Data Outside of Kokkos’ Management

Kokkos: :View< DataType x*x, Datalayout,
DatalLocation, Kokkos::MemoryTraits<Kokkos::Unmanaged>>
my_vector( data_ptr, nX, nY, 3);
» Developers may hand Kokkos a pointer to data allocated outside of Kokkos

« Developer is asserting Location, Layout, rank, and length of data
— LayoutLeft: FORTRAN allocator
— LayoutRight: C/C++ malloc
— LayoutStride: FORTRAN array slice

» Non-allocating
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How to create “mirrors” in different memory spaces

* Mirrors- related Views that can transfer data between one another via
deep_copy (typically different spaces)

auto newView = create_mirror([newViewSpace()], srcView);
» Creates a new View in HostSpace or newViewSpace (if given)
— Always a deep copy!
View<newDataType, newLayout, newStorage> newView =
create_mirror_and_copy([newViewSpace()], srcView);
» Create mirror View and copy data (if necessary)
— Can change from non-const to const data
— Can change layout and location in a single call

= Copying back may then require an intermediate step
— Shallow copy if possible

 All of the above can take view_alloc() to allow synchronizing, control

initialization state, etc.
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Kokkos Allows for Array Slicing via subview

« Highly recommended to use auto to determine type of the result
int nx,ny,nz;
View<doublexxx, LayoutlLeft, CudaSpace> bigThing(“bigThing”, nx,ny,nz);
auto smallPiece = Kokkos::subview( bigThing,
1, Kokkos::make_pair(2,4), Kokkos::ALL);

parallel_for(“example”,

MDRangePolicy<execSpace,Rank<3>>({0,0,0},{1,2,nz}),

KOKKOS_LAMBDA (size_t 1, size_t j, size_t k){

smallPiece(i,j,k) += 0.25;

1)

« Above smallPiece, take the data in row 1; columns 2,3; and all of the next dimension

« Pair indices are read as [closed,open) interval of columns
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Generic Anatomy of Kokkos Parallel Constructs

parallel_blah(“name” , ExecutionPolicy,
KOKKOS_LAMBDA( size_t index){
w 1)

« ExecutionPolicy can have varying levels of verbosity
- nEL; implies 1D RangePolicy(0,nEl) on DefaultExecutionSpace
- nStart,nEnd ;implies 1D RangePolicy(nStart, nEnd) on DefaultExecutionSpace
- RangePolicy<EXEC_SPACE>(0, nEnd); 1D RangePolicy(0, nEnd) on EXEC_SPACE

« KOKKOS LAMBDA
- A macro that handles the lambda capture syntax / decorating for device as necessary
— Not strictly required, but is convenient to include

« parallel_blah are generally non-blocking
- Work will be started, but other kernels can also be launched.
- Requires use of fence() and/or streams for to respect data dependencies
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Some ExecutionPolicy Examples

« 1-D iteration : RangePolicy
parallel_for(“name”, RangePolicy<EXEC_SPACE>(a,b),
KOKKOS_LAMBDA (const size_t index){}):

« Multi-Dimension iteration: MDRangePolicy
parallel_for(“name”,

MDRangePolicy<EXEC_SPACE,Kokkos: :Rank<3>>({0,0,0},{a,b,c}),
KOKKOS_LAMBDA (const size_t 1, const size_t j, const size_t k)

{});

» Above do not pass in execStream
— Use of execStream allows for multiple kernels working at once
parallel_for(“name”, RangePolicy<EXEC_SPACE>(execStreaml, a,b),
KOKKOS_LAMBDA(const size_ t index){});
parallel_for(“name”, RangePolicy<EXEC_SPACE>(execStream2, a,b),
KOKKOS _LAMBDA(const size_ t index){});
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parallel_for()

parallel_for(“name” , ExecutionPolicy,
KOKKOS_LAMBDA( size_t index){
f(index) = ...
});

« Simplest to think of- “Do a thing for all elements of the ExecutionPolicy”
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parallel_reduce()

Data globalVal;
parallel_reduce(“name” , ExecutionPolicy,
KOKKOS_LAMBDA( size_t i, Data& localVal){
localvVal = operation(localval, val(i));
}, Kokkos::0Operation<Data>(globalval) );

« Kokkos has several built in Reduction operations
- Max, Min, MaxLoc, MinLoc, Sum, ..

« Can also create your own, or do a defined reduction on a user-defined type
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parallel_scan()

« prefix or postfix operations, e.g. sum

orei
osii 2

parallel_scan(“prefixSum” , ExecutionPolicy,
KOKKOS_LAMBDA( size_t i, Data& localVal, bool is_final){
const int val _before_sum = x(1);
sum_of_need_to_update += val_before_sum;
if(is_final){
. prefix_sum(1) = sum_of_need_to_update;

}r);
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How to achieve program flow control given
asynchronous resources

» Unless explicitly stated, it should be assumed that Kokkos idioms are non-
blocking!
— This means that another statement may start executing before the previous action is
completed

— There are rules to this, but be advised that creativity or over-reliance on what you
think “should” be happening can lead to horrific debug challenges

« Program flow is controlled by fence()-ing in Kokkos

— Kokkos::fence(); Blocking until all work in all execution spaces completes before
proceeding

- ExecutionSpace: :fence(),; Blocking until all work in this execution space
completes

- streams[1i].fence(); Blocking until all work in this execution stream completes

= Evenifstreams[1] is of type ExecutionSpace, ExecutionSpace: :fence() wil NOT
fence stream|i]
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Tag Views, parallel regions, and add profiling regions

Kokkos: :Profiling: :pushRegion(“descriptive Name”);

Kokkos::Profiling::popRegion();
» Above are Kokkos specific annotations
» Need to be added in pairs (push/pop)

« No compiler warning if there are un-matched push/pop
- Some kokkos-tools will segfault if there are mismatches

— new Kokkos::Profiling::ScopedRegion will give compiler warnings
= But must upgrade to Kokkos 4.1 (or later)
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Profiling and debugging tools

Kokkos has a companion (and separate git repo) of plugin tools, kokkos-tools

Connector tools available

— Vendor specific profiler adaptors (Intel VTune, NVTX, ROCTX...)

- Memory Usage (allocations by memory type, high-water marks, ...)
— Timers (hierarchical time, simple kernel timers, ...)

To use:
— 1) Download kokkos-tools, 2) ‘make’ within the subfolder of the tool you want to us
3) Set the environment variable KOKKOS_ TOOLS LIBS to the path of the shared
library file that was created

Note:

— Makefiles may need hand editing to account for how your specific environment looks
= Ex:. CUDA_ROOT vs. CUDA_PATH

- CMake builds exist, but generally work less well than Makefile path
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AAAAAAAAAAAAAAAA



How to overlap work, data transfers, etc.

auto streams = Kokkos::Experimental::partition_space(
EXEC_SPACE(), weights);

auto streams = Kokkos::Experimental::partition_space(
EXEC_SPACE(), 2,1,2..);

» Unless told otherwise, all Kokkos operations are launched on the Default

stream/queue of the ExecutionSpace that work was set to work on
— Operations complete in order

* |tis desirable to overlap multiple things working at once to maximize hardware
utilization

— Ex: moving data onto the GPU while doing work on the CPU and/or GPU
« Kokkos permits this through the partition _space idea
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partition_space allows for asynchronous work

« welights are used by OpenMP backend to allocate relative resource levels

« With Cuda and other GPU backends, numeric value of weights is ignored
— One new stream for each weights entry

» Each element of partition space is distinct
— only respects a fence on itself or a global Kokkos: : fence()
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Be verbose, incrementally increase complexity only
after verifying a given implementation is working

» Be explicit in where memory is located and where you think work should occur
— Kokkos will default a lot of things for you
- Leads to lower initial entry barrier, but steeper rise to perfection

« Do not attempt to maximize throughput from the start
- fence() if you’re not sure
— Overlapping work can lead to a bookkeeping nightmare

« Ensure you can default everything to Serial and HostSpace via changing /
redefining one or two template parameters

— Kokkos allows for not only logic error in your algorithm, but also errors in memory and
execution space location management!
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Seek information from a variety of sources

Great to have a friend or colleague that is ahead of the Kokkos game for you
— Thanks dani@lanl

Kokkos documentation
— Both the current and deprecated have useful information
— Documentation is not perfect, best consumed with source code access

Kokkos Slack channel
— The Kokkos equivalent to crestone_support@lanl.gov

Kokkos tutorials / workshops (online)

Do it to learn it
— Kokkos knowledge really only imprinted after exercising it

1% Los Alamos

AAAAAAAAAAAAAAAA


mailto:crestone_support@lanl.gov

Caveats / Things | skipped

SIMD operations in Kokkos
— Befikir and Yasuki should have some good knowledge soon

Hierarchical parallelism

- Haven'’t used it yet in xXRAGE, but I'd like to learn

Profiling

- Required to effectively direct incremental improvement in your code

The compiler is right
— | tried to reproduce things correctly in here, but | am prone to mistakes
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