
LA-UR-23-26959
Approved for public release; distribution is unlimited.

Title: An Introduction to Kokkos

Author(s): Maginot, Peter Gregory

Intended for: Parallel school lecture

Issued: 2023-06-27

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

16/23/23 16/23/23Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

An Introduction to Kokkos

Pete Maginot
Eulerian Applications Project- Deputy for Physics

XCP Parallel Workshop Lecture
June 30, 2023

26/23/23

Overview

• Who am I?
• What is a performance abstraction layer?

− Why would you do this to yourself?
• Major Kokkos Ideas
• Some gotchas / tricks

36/23/23

Overview

• Who am I?
• What is a performance abstraction layer?

− Why would you do this to yourself?
• Major Kokkos Ideas
• Some gotchas / tricks

46/23/23

I am old
• From St. Louis, MO
• Ten years at Texas A&M

− Did graduate more than once
− BS, MS, and PhD in Nuclear Engineering

§ Dissertation topic: high-order methods for SN grey radiative transfer equations
− DOE CSGF Fellow 2010-2014

• Strongly suggest trying out different locales and jobs
− Environmental Health Physics Tech (St. Louis, MO; 2007)
− DNFSB (Washington D.C.; 2008)
− ORNL (Oak Ridge, TN 2009)
− LANL (TA-3-390; 2010)
− KAPL (Schenectady, NY; 2012)

56/23/23

I’ve spent 8 years in the Weapons Complex
• 3.5 years at LLNL

− Postdoc, WSC Deterministic transport project
§ ISCB spatial discretization profiling in Kripke proxy-app
§ Lumping for HO Mixed Finite Element Transport
§ Documentation of UCB in Teton

− Staff-member, WSC Deterministic transport project
§ Co-PI LDRD on HO Transport on HO Grids
§ Librarization of Teton deterministic x-ray transport code for multiple multiphysics codes

• 4.5 years at LANL
− Staff-member, XCP-2, supporting Eulerian Application Project (xRAGE, Cassio, …)

§ Edge infrastructure, geometry setup, timestep controls, grey diffusion porting, user support
§ TITANS (3+ year program on weapons physics)
§ Weapon outputs / simulations of a novel design class

66/23/23

Why work at LANL?
• Meaning in the work

− Support national security of the United States
− Work is used and applied, work is not designing “paper reactors”

• Challenging work
− Never ending supply of new things to learn
− Opportunities to become “the” expert

• National Lab atmosphere
− Everyone is self-motivated

§ Though still a relaxed atmosphere (Dr. not needed if everyone in the room is Dr.)

• Location
− 15 minutes to skiing, no S.A.D. winters
− 28 years of humidity more than enough for a lifetime

76/23/23

Overview

• Who am I?
• What is a performance abstraction layer?

− Why would you do this to yourself?
• Major Kokkos Ideas
• Some gotchas / tricks

86/23/23

ASC codes MUST run on a lot of platforms!
• xRAGE nightly regression tests currently on:

− Snow (CTS), Rocinante (SPR), RZAnsel (Power9), Trinitite (Haswell), Trinitite (KNL)
− Fire/Ice/Cyclone (CTS), Trinity (Haswell), Trinity (KNL), Sierra (Power9)
− RZVernal (EAS-3), Tioga (EAS-3), and Venado (G+H) in progress / coming soon

• xRAGE is a BIG code with a relatively small # of developers
− O(500K) SLOC
− Budget of < 14 FTE / year for all activities

§ Deployment, user support, new features, code maintenance

• If a platform requires specialized coding for performance it is intractable for
EAP to implement this given the number of machines we must support
− Enter the Performance Abstraction Layer

96/23/23

Do you really need to target all those machines?
• YES!

− Users require we run on the bread and butter machines (Snow, Fire/Ice/Cyclone)
− Users *should* want us to target the others

• If FLOPS dictate how awesome your simulation is:
− Fire/Ice/Cyclone: 1.3 PFLOPS

§ [Peta(1015) FLoating (double precision) point Operations Per Second] each
− Trinity: 42 PFLOPS

§ KNL partition: 30 PFLOPS
− Crossroads: 44 PFLOPS
− Sierra: 125 PFLOPS

§ 120 PFLOPS on GPUs
− El Capitan: >2000 PFLOPS (predicted)

§ EAS-3: 5.76 PFLOPS GPU / 5.824 PFLOPS Total

106/23/23

Are FLOPS everything? Is TOP500 the list?
• Probably not / this is up for debate
• HPCG

− Sparse linear algebra as compared to HPL[inpack]’s dense linear algebra
§ Can be argued that this is much closer to our codes’ behavior than LINPACK

− Sierra 1.8 PFLOPS on HPCG
− Trinity 0.5 PFLOPS on HPCG

• Maybe we’re concerned with power consumption
− Enter Green500:

§ Sierra: 12.723 [GFLOPS/Watt]
§ Trinity: 2.66 [GFLOPS/Watt]

Regardless of metric, running [well] on GPU machines
is needed to take advantage of ASC resources!!

116/23/23

Can’t you just run the codes on the GPUs?
• No
• GPU processors are very different than CPU processors

− Lots and lots of “dumb” processors vs. a few very talented multi-taskers
− Slow clock speed vs. faster clock speed
− Small vs. large cache

• Distinct memory spaces
− This is becoming less true, but is important for many current systems

• GPUs are typically programmed in vendor specific code
− Allows for control of advanced hardware features distinct from CPUs

126/23/23

Overview

• Who am I?
• What is a performance abstraction layer?

− Why would you do this to yourself?
• Major Kokkos Ideas
• Some gotchas / tricks

136/23/23

What is a performance abstraction layer?
• A set of C++ widgets that ideally lets physics/code be performant on multiple

platforms with a single set of source code
− Likely benefits from a small companion header file that modifies platform specific

template parameters
− Might ease maintenance burden

§ Abstraction layers are non-trivial
• Focus on on-node performance
• Requires comfort with template parameters / template programming
• Made possible by lambdas functionality of C++ 11

146/23/23

What is a performance abstraction layer?
• Is there a performance cost? Maybe

− Getting access to all of the features may or may not be necessary
− May or may not negate the generality of the abstraction layer

• Is there a code debt cost? Yep
− A third-party library will now be deeeeeply integrated into your code base

• Abstraction layers not required to utilize GPUs / advanced platforms
− OpenMP4.5
− Native hardware languages
− Vectorization intrinsics

• Are performance abstraction layers used and enjoyed by all ASC projects?
− No, not all need it / benefit from it
− Challenges to adoption: FORTRAN, limited # of “hotspots”, heavily OO code

§ Some of these things make GPU programming hard
§ Some of these things make vectorization easy

156/23/23

Are there different performance abstraction layers?
• Two concepts require abstraction

− Memory locations / data movement
− Loop abstractions

• Two mainline DOE products / projects
1. SNL (Sandia) solution

− Kokkos: Addresses both in one project
2. LLNL (Livermore) solution

− RAJA: Loop abstraction
− Chai: Data movement

166/23/23

Overview

• Who am I?
• What is a performance abstraction layer?

− Why would you do this to yourself?
• Major Kokkos Ideas
• Some gotchas / tricks

176/23/23

Two central tenants of Kokkos: Views and parallel_<for>

• Views: Data management
− Multidimensional arrays, FORTRAN like (i,j,k) indexing / access operator
− Defined by:

§ data type (double, int, …)
§ storage location (CudaSpace, HostSpace, HipSpace, DefaultMemorySpace, …)
§ rank (1-D to 7-D)
§ data layout (LayoutLeft , LayoutRight , LayoutStride)

− Which index (in a multi-D View) has data closer in memory from index (i,j)? (i+1,j) or (i,j+1)
− Strided memory access arises in array slices

• parallel_for / parallel_reduce / parallel_scan : loop abstraction
− Defined by execution policy

§ Where to do the computation? (Cuda , Serial, OpenMP, …)
§ How to iterate? (RangePolicy, MDRangePolicy, TeamVectorMDRange, …)

186/23/23

“Standard” View constructor
Kokkos::View< DataType **[3], DataLayout, DataLocation>
 my_vector(“my_vector”, nX, nY);

• Create a new View that is nX * nY * 3 elements long of type DataType
− Fixed length dimensions must be last (and enclosed in [])

• Allocated in DataLocation MemorySpace
• Memset (initialized) to 0
• DataLocation::DefaultExecutionSpace blocking

− This View will allocated and ready before anything else is executed
• “my_vector” is for debugging purposes

− Kokkos may list the “name” of a vector if a runtime issue arises

196/23/23

More Advanced View constructor
Kokkos::View< DataType **[3], DataLayout,
 DataLocation, Kokkos::MemoryTraits<Kokkos::Atomic>>
 my_vector(Kokkos::view_alloc(“my_vector”, Kokkos::WithoutInitializing,
 eexecStream, DataLocation()), nX, nY);

• Similar to previous, BUT:
− Kokkos::WithoutInitializing: No memset
− Kokkos::MemoryTraits<Kokkos::Atomic>>: Atomic access enforced when used
− execStream : will be allocated in spaceStream, possibly asynchronously

§ Must call spaceStream.fence() to ensure the View is available
§ Non-blocking call (possibly)!

206/23/23

Views from Data Outside of Kokkos’ Management
Kokkos::View< DataType ***, DataLayout,
 DataLocation, Kokkos::MemoryTraits<Kokkos::Unmanaged>>
 my_vector(data_ptr, nX, nY, 3);

• Developers may hand Kokkos a pointer to data allocated outside of Kokkos
• Developer is asserting Location, Layout, rank, and length of data

− LayoutLeft: FORTRAN allocator
− LayoutRight: C/C++ malloc
− LayoutStride: FORTRAN array slice

• Non-allocating

216/23/23

How to create “mirrors” in different memory spaces
• Mirrors- related Views that can transfer data between one another via

deep_copy (typically different spaces)
auto newView = create_mirror([newViewSpace()], srcView);

• Creates a new View in HostSpace or newViewSpace (if given)
− Always a deep copy!

View<newDataType, newLayout, newStorage> newView =
 create_mirror_and_copy([newViewSpace()], srcView);

• Create mirror View and copy data (if necessary)
− Can change from non-const to const data
− Can change layout and location in a single call

§ Copying back may then require an intermediate step
− Shallow copy if possible

• All of the above can take view_alloc() to allow synchronizing, control
initialization state, etc.

226/23/23

Kokkos Allows for Array Slicing via subview
• Highly recommended to use auto to determine type of the result
int nx,ny,nz;
View<double***, LayoutLeft, CudaSpace> bigThing(“bigThing”, nx,ny,nz);
auto smallPiece = Kokkos::subview(bigThing,
 1, Kokkos::make_pair(2,4), Kokkos::ALL);
parallel_for(“example”,
 MDRangePolicy<execSpace,Rank<3>>({0,0,0},{1,2,nz}),
 KOKKOS_LAMBDA(size_t i, size_t j, size_t k){
 smallPiece(i,j,k) += 0.25;
 });

• Above smallPiece, take the data in row 1; columns 2,3; and all of the next dimension
• Pair indices are read as [closed,open) interval of columns

236/23/23

Generic Anatomy of Kokkos Parallel Constructs
parallel_blah(“name” , ExecutionPolicy,
 KOKKOS_LAMBDA(size_t index){
 … });
• ExecutionPolicy can have varying levels of verbosity

− nEL; implies 1D RangePolicy(0,nEl) on DefaultExecutionSpace
− nStart,nEnd ;implies 1D RangePolicy(nStart, nEnd) on DefaultExecutionSpace
− RangePolicy<EXEC_SPACE>(0, nEnd); 1D RangePolicy(0, nEnd) on EXEC_SPACE

• KOKKOS_LAMBDA
− A macro that handles the lambda capture syntax / decorating for device as necessary
− Not strictly required, but is convenient to include

• parallel_blah are generally non-blocking
− Work will be started, but other kernels can also be launched.
− Requires use of fence() and/or streams for to respect data dependencies

246/23/23

Some ExecutionPolicy Examples
• 1-D iteration : RangePolicy
 parallel_for(“name”, RangePolicy<EXEC_SPACE>(a,b),
 KOKKOS_LAMBDA(const size_t index){});

• Multi-Dimension iteration: MDRangePolicy
 parallel_for(“name”,
 MDRangePolicy<EXEC_SPACE,Kokkos::Rank<3>>({0,0,0},{a,b,c}),

 KOKKOS_LAMBDA(const size_t i, const size_t j, const size_t k)
 {});

• Above do not pass in execStream
− Use of execStream allows for multiple kernels working at once
parallel_for(“name”, RangePolicy<EXEC_SPACE>(execStream1, a,b),
 KOKKOS_LAMBDA(const size_t index){});
parallel_for(“name”, RangePolicy<EXEC_SPACE>(execStream2, a,b),
 KOKKOS_LAMBDA(const size_t index){});

256/23/23

parallel_for()
parallel_for(“name” , ExecutionPolicy,
 KOKKOS_LAMBDA(size_t index){
 f(index) = ….
});
• Simplest to think of- “Do a thing for all elements of the ExecutionPolicy”

266/23/23

parallel_reduce()
Data globalVal;
parallel_reduce(“name” , ExecutionPolicy,
 KOKKOS_LAMBDA(size_t i, Data& localVal){
 localVal = operation(localVal, val(i));
}, Kokkos::Operation<Data>(globalVal));
• Kokkos has several built in Reduction operations

− Max, Min, MaxLoc, MinLoc, Sum, …

• Can also create your own, or do a defined reduction on a user-defined type

276/23/23

parallel_scan()
• prefix or postfix operations, e.g. sum

parallel_scan(“prefixSum” , ExecutionPolicy,
 KOKKOS_LAMBDA(size_t i, Data& localVal, bool is_final){
 const int val_before_sum = x(l);
 sum_of_need_to_update += val_before_sum;
 if(is_final){

• prefix_sum(l) = sum_of_need_to_update;
 }});

1 3 1 5 2 prefix 1 4 5 10 12

1 3 1 5 2 postfix 1 1 4 9 14

286/23/23

How to achieve program flow control given
asynchronous resources
• Unless explicitly stated, it should be assumed that Kokkos idioms are non-

blocking!
− This means that another statement may start executing before the previous action is

completed
− There are rules to this, but be advised that creativity or over-reliance on what you

think “should” be happening can lead to horrific debug challenges
• Program flow is controlled by fence()-ing in Kokkos

− Kokkos::fence(); Blocking until all work in all execution spaces completes before
proceeding

− ExecutionSpace::fence(); Blocking until all work in this execution space
completes

− streams[i].fence(); Blocking until all work in this execution stream completes
§ Even if streams[i] is of type ExecutionSpace, ExecutionSpace::fence() will NOT

fence stream[i]

296/23/23

Tag Views, parallel regions, and add profiling regions
Kokkos::Profiling::pushRegion(“descriptive Name”);
….
Kokkos::Profiling::popRegion();
• Above are Kokkos specific annotations
• Need to be added in pairs (push/pop)
• No compiler warning if there are un-matched push/pop

− Some kokkos-tools will segfault if there are mismatches
− new Kokkos::Profiling::ScopedRegion will give compiler warnings

§ But must upgrade to Kokkos 4.1 (or later)

306/23/23

Profiling and debugging tools
• Kokkos has a companion (and separate git repo) of plugin tools, kokkos-tools
• Connector tools available

− Vendor specific profiler adaptors (Intel VTune, NVTX, ROCTX…)
− Memory Usage (allocations by memory type, high-water marks, …)
− Timers (hierarchical time, simple kernel timers, …)

• To use:
− 1) Download kokkos-tools, 2) ‘make’ within the subfolder of the tool you want to us
 3) Set the environment variable KOKKOS_TOOLS_LIBS to the path of the shared
 library file that was created

• Note:
− Makefiles may need hand editing to account for how your specific environment looks

§ Ex:. CUDA_ROOT vs. CUDA_PATH
− CMake builds exist, but generally work less well than Makefile path

316/23/23

How to overlap work, data transfers, etc.
auto streams = Kokkos::Experimental::partition_space(
 EXEC_SPACE(), weights);
auto streams = Kokkos::Experimental::partition_space(
 EXEC_SPACE(), 2,1,2…);
• Unless told otherwise, all Kokkos operations are launched on the Default

stream/queue of the ExecutionSpace that work was set to work on
− Operations complete in order

• It is desirable to overlap multiple things working at once to maximize hardware
utilization
− Ex: moving data onto the GPU while doing work on the CPU and/or GPU

• Kokkos permits this through the partition_space idea

326/23/23

partition_space allows for asynchronous work
• weights are used by OpenMP backend to allocate relative resource levels
• With Cuda and other GPU backends, numeric value of weights is ignored

− One new stream for each weights entry
• Each element of partition_space is distinct

− only respects a fence on itself or a global Kokkos::fence()

336/23/23

Overview

• Who am I?
• What is a performance abstraction layer?

− Why would you do this to yourself?
• Major Kokkos Ideas
• Some gotchas / tricks

346/23/23

Be verbose, incrementally increase complexity only
after verifying a given implementation is working
• Be explicit in where memory is located and where you think work should occur

− Kokkos will default a lot of things for you
− Leads to lower initial entry barrier, but steeper rise to perfection

• Do not attempt to maximize throughput from the start
− fence() if you’re not sure
− Overlapping work can lead to a bookkeeping nightmare

• Ensure you can default everything to Serial and HostSpace via changing /
redefining one or two template parameters
− Kokkos allows for not only logic error in your algorithm, but also errors in memory and

execution space location management!

356/23/23

Seek information from a variety of sources

• Great to have a friend or colleague that is ahead of the Kokkos game for you
− Thanks danl@lanl

• Kokkos documentation
− Both the current and deprecated have useful information
− Documentation is not perfect, best consumed with source code access

• Kokkos Slack channel
− The Kokkos equivalent to crestone_support@lanl.gov

• Kokkos tutorials / workshops (online)
• Do it to learn it

− Kokkos knowledge really only imprinted after exercising it

mailto:crestone_support@lanl.gov

366/23/23

Caveats / Things I skipped

• SIMD operations in Kokkos
− Befikir and Yasuki should have some good knowledge soon

• Hierarchical parallelism
− Haven’t used it yet in xRAGE, but I’d like to learn

• Profiling
− Required to effectively direct incremental improvement in your code

• The compiler is right
− I tried to reproduce things correctly in here, but I am prone to mistakes

376/23/23

Questions?

