S ANQAS-1SLL

CONF—940353--2

Aerospace Modal Test Optimization Using VETO
(Virtual Environment for Test Optimization)

S. E. Klenke, G. M. Reese, L. A. Schoof and C. L. Shierling
Sandia National Laboratories
Albuquerque, New Mexico 87185-0557

BIOGRAPHY

Scott Klenke is a member of the Experimental Struc-
tural Dynamics Department at Sandia National Labora-
tories. He was responsible for development of test
instrumentation and equipment models for the test
simulation. Garth Reese is a member of the Structural
Dynamics Department at Sandia National Laborato-
ries. He performed the FEM modeling in addition to
developing the main graphical interface used in this
software environment. Larry Schoof is a member of
Computational Mechanics and Visualization Depart-
ment at Sandia National Laboratories. He was respon-
sible for the development of the visualization
environment used in the software. Craig Shierling
works for RE/SPEC Inc. He supported this project
through programming and system integration work.

ABSTRACT

We present a software environment integrating
analysis and test based models to support optimal
modal test design of aerospace components through a
Virtual Environment for Test Optimization (VETO). A
goal in developing this software tool is to provide test
and analysis organizations with a capability of mathe-
matically simulating the complete test environment
within a computer. Derived models of test equipment,
instrumentation and hardware can be combined within
the VETO to provide the user with a unique analysis
and visualization capability to evaluate new and
existing test methods. The VETO assists analysis and
test engineers in maximizing the value of each modal
test. It is particularly advantageous for structural
dynamics model reconciliation applications.

The VETO enables an engineer to interact with a finite
element model of an aerospace component to
optimally place sensors and exciters and to investigate
the selection of data acquisition parameters needed to
conduct a complete modal survey. Additionally, the
user can evaluate the use of different types of instru-
mentation such as filters, amplifiers and transducers for
which models are available in the VETO. The dynamic
response of most of the virtual instruments (including
the device under test) are modeled in the state space
domain. Design of modal excitation levels and appro-
priate test instrumentation are facilitated by the VETO's
ability to simulate such features as unmeasured
external inputs, A/D quantization effects, and electronic
noise. Measures of the quality of the experimental
design, including the Modal Assurance Criterion, and
the Normal Mode Indicator Function are available[1].
The VETO also integrates tools such as Effective Inde-
pendence[2] and minamac[1] to assist in selection of

optimal sensor locations. The software is designed
about three distinct modules:

1. a main controller and GUI written in C++,

2. avisualization model, taken from FEAVR[3],

running under AVST, and
3. astate space model and time integration module,

built in SIMULINK ¥,

These modules are designed to run as separate
processes on interconnected machines. MATLAB'’s
external interface library is used to provide transparent,
bidirectional communication between the controlling
program and the computational engine where alt the
time integration is performed. Data from the finite
element model is downloaded to the MATLAB engine
where the SIMULINK model is automatically created
and executed. MATLAB GUI elements are used to
simulate the data acquisition environment including
response traces, over-range indicators, and full scale
voltage ranges.

KEYWORDS

Simulation, modeling, test optimization, virtual test envi-
ronment, visualization

INTRODUCTION

This paper presents an innovative test/analysis tool,
called the Virtual Environment for Test Optimization
(VETO), which reduces test instrumentation iteration,
producing better modal tests. Communication between
test and analysis engineers is enhanced early in the
design cycle. Traditionally, the role of testing in the
product realization process is limited to the end of the
design cycle, after hardware has aiready been
produced. As a result, data analysis and test require-
ments for a component are only considered when the
hardware is scheduled for testing. Thus, the full benefit
of the analysis in guiding the test is not realized. A goal
in developing this software tool is to provide test and
analysis organizations with a capability of mathemati-
cally simulating the complete test environment within a
computer. Derived models of test equipment, instru-
mentation and hardware can be combined within the
VETO to provide the user with a unique analysis and
visualization capability to evaluate new and existing test
methods. By providing engineers with a tool that allows
them to optimize an experimental design within a

TAVS is a trademark of Advanced Visual Systems, Inc.,
Waltham, MA.

MATLAB and SIMULINK are trademarks of The Math
Works, Inc., Natick, MA.

HASTER
DISTRISUTION OF THiS ch‘mtré’%gfg%m MITED” Ty

computer environment, pre-test analysis can be
performed using analytical models to rapidly evaluate
components before manufacturing has occurred. The
benefits of using this type of experimental design tool
can be very extensive. The user can evaluate the use
of different types of test instrumentation and equipment
as well as investigating new testing techniques for
system identification to be used in analysis/experi-
mental model validation.

A major objective of this software development effort is
flexibility. Because the virtual environment is a
prototype software system, a primary concern for its
design is that the code be easy to develop. To minimize
our effort, existing software tools are used wherever
possible, provided that the necessary functionality and
flexibility are available. Another significant design
objective is to provide a final software system that can
be used by a variety of individuals who have not been
involved in its development. As is described below, our
design integrates several commercial tools to meet
these objectives.

The major tasks involved in our effort include: 1)
database management, 2) visualization of the device
under test, 3) utility functions (such as those providing
additional information about any of the instruments, or
interconnecting them), and 4) time integration of the
system. A key element within the VETO environment is
the use of virtual instruments to simulate dynamic
behavior of real instruments. Each virtual instrument
may require a different data representation within the
different VETO modules. For example, the device
under test requires a geometric definition under the
visualization module, while the model is reduced to
state space ABCD matrices for use in the time integra-
tion module.

PROGRAM INTEGRATION - UNIX™ SOCKET
CONNECTED MODULES

The VETO program is divided into three main modules:
1) user interface, database and utilities, 2) visualiza-
tion, and 3) time integration. The user interface and
utilities are written in C++ with the database imple-

mented using the netCDF libraryT. Visualization is
performed using previously developed, custom AVS
networks[3]. Use of existing visualization software
immediately made available a wealth of tools permitting
visualization of extensive finite element results,
including modes of vibration, strain energy densities
and static response data. The time integration module
uses MATLAB and its SIMULINK toolkit. MATLAB was
also used to construct the state space models for many
?If the)virtual instruments (such as amplifiers and
ilters).

Communication between these different modules is
performed using unix sockets. MATLAB is released
with a set of interprocess communication tools (the
“external interface”), by which data may be easily trans-
ferred between the programs. Data transfer with AVS

¥ netCDFis a public domain, machine independent data
format available from the Unidata Program Center in
Boulder (unidata.ucar.edu).

was more complicated but accomplished in a similar
fashion. AVS is distributed with example code permit-
ting execution in a “server” mode. Commands and
parameters may be readily transferred to AVS, but only
the results printed to standard output may be retrieved;
there is no direct access to internal data structures. This
is a significant limitation of the software. Most of the
structural data were shared through EXODUS |l [4]
files used by the AVS visualization software. The
random access data features of this format were quite
important to implementation of many of the analysis
tools discussed below.

In addition to permitting rapid implementation of the
virtual environment concepts, separation of the VETO
software into these three modules had important side
benefits. Unix sockets are network transparent, permit-
ting us to run the application segments on different
machines. For example, AVS could be run on an SGi
machine specifically designed for visualization
problems, while MATLAB ran on a more general
purpose computer platform. Program development and
debugging were also facilitated by the complete sepa-
ration of these processes.

USER INTERFACE

Database, integration, utility and user interface
functions are performed in the vetomain module, see
Figure 1. The “File” option of the vetomain menu bar
allows users to load finite element (FE) models and
previously defined virtual test files into the VETO
software. This module also provides numerous tools to
assist the engineer in understanding how the various
virtual instruments interact together.

The user interface is implemented in C and C++ using
Motif libraries. To provide access to AVS and MATLAB,
user interface widgets were constructed by which
commands could be entered and all output from the
applications displayed. Vetomain acts as a controller,
sending and retrieving data from the other two applica-
tions. Some limitations in the event driven model were
introduced by the separation of the three application
codes. Each module has its own event loop, specific to
the interface events of that application. However, some
events, such as communicating the node numbers from
the visualized model, would be more natural if clicking
on the model directly communicated back to the
database program in vetomain. The single socket
connection between programs makes this quite
awkward. Action specific code was written to deal with
node numbering, however, a more elegant solution
might utilize an additional communication channel
along with integrated event loops.

Vetomain is used to construct parametric models of the
instruments, and to formulate interconnections
between the models. Each of the virtual instruments is

constructed in customized control panels. The user is
able to interact with the Virtual Instruments Control
Panel, selected from the “Setup/Instruments” option, to
provide and view information on the devices in the
simulation, see Figure 2. A typical control panel used in
the design of the virtual actuators and sensors, which
are to be in contact with the device under test (DUT), is
shown in Figure 3. Before initiating a simulation run, the

Names | unlasfal socel =
State Model: i Endevco 2250 Unlnd 24

arid 10

A blrection Cosines

t Grid from Model

g |

tosine X: | 0,0000001 | 6.0000061 | a20.0000] I

cosine ¥: | 0.000008] | 10060081 | 0.00000%]

tosine 2 | 1000000} | 00000001 | 2480800

Flle Edit Generate Witing . Help

Instrument Type: § Sensors 21|

Iriex Rensor L wrided68 {iriax} nodslEndeven 2250 Holaxi
1 : H

£
unlaxiai accel £ orideB83 fumiax] sodelsEndeven 2250 Uoiaxt

Triax Sensor Z goid=2600 Foiax] wodat Endevce 2250 Untax
Figure 3. Virtual Instrument Control Panel for
’ Sensors

user also needs to define additional instruments, such
as filters, amplifiers and the Front End data acquisition
device. Two subpanes for providing parameters
needed for sampling and computation of post-simula-
tion analysis measurements for the Front End model
are shown in Figures 4 and 5. There are additional
subpanes to specify triggering, auto-ranging,
windowing, averaging and display parameters for the
simulation of the Front End device. A special instru-
ment called a “wire” is used to connect muitiple instru-
ments together. Once assembled, the DUT, selected
virtual instruments and wire connections form the
virtual test environment.

Data defining the virtual instruments and the structure
of the test environment are downloaded to MATLAB,
the state space model of the structure or device under
test is constructed, and the ABCD matrices are stored
in the MATLAB workspace. SIMULINK scripts are then
called to organize the virtual instrument models and

Comst Seso s

Specietixes ,"5:.: T e © Desfeatly

Voo TEE™ e

Foraiogh s 2tk

sty BT i
T EHEE s . SRR AR
e B | st

Figure 4. VETO Front End Sampling Panel

data into an integration network trom which the time
histories of the system are computed.

The vetomain module also provides numerous evalua-
tion tools to allow the test engineer to determine the
completeness of the virtual test environment. These
tools can be accessed through the “Pre-simulation”
menu option from vetomain. The modal data used for
visualization is combined with selected virtual instru-

ments to compute the Modal Assurance CriterionT,
normal mode indicator functions, and driving point
frequency response. The effects of the mass loading of
the structure by the sensors may also be computed
using a perturbation method. These and other tools
guide the engineer in the design of tests that will accu-
rately identify all the desired modes of the structure.

Even with these tools, placement of sensors can be a
difficult task. Tools such as the effective independence
method or the minamac are used to automatically
place sensors in locations which may help optimize the
information available from the test. The virtual test envi-
ronment provides the engineer with immediate visual

Figure 5. VETO Front End Measurement
Panel

"The MAC is a normalized measure of mode orthogonal-
ity. It is defined by,

where 9 is the eigenvector of the /& mode. The MAC is

most often used to determine correspondence between
test and analysis. In this effort, it identifies completeness
of the modes. The MAC is sampled only at sensor loca-
tions, hence an incomplete sensor set results in large off-
diagonal terms.

feedback to determine the success of these methods,
for which some engineering interaction is still required.
Methods for automatic selection of actuator locations
are currently under consideration.

VISUALIZATION WITH AVS FINITE ANALYSIS
VIEWER (FEAVR) ‘

Since a finite element (FE) analysis is typically

erformed to predict the modes of vibration of a device,
it was decided to utilize the FE model as the primary
geometric representation of the device for visualization
purposes within VETO. A prototype environment,
FEAVR, which had been developed to provide a
general purpose visualization capability for FE
analyses, was selected as the graphics tool. FEAVR is
an interface to the broad FE visualization functionality
of AVS, incorporating networks and modules written or
customized at Sandia. By using FEAVR, a user is freed
from knowing the details of AVS. As an FE analysis
visualization system, FEAVR provides the following
capabilities:

« color the model! with color fringes representing
element-based (e.g., stress, strain, etc.) or node-
based (e.g., temperature, displacement) scalar
values.

* slice the model by showing an interior cutting

lane or by removing a portion of the model that
ies on one side of a slice plane.

e create an isosurface which is a surface on which
an element-based or node-based scalar value is
constant.

* represent a vector field (velocity, for instance) as
arrows or streamlines (continuous lines that are
everywhere tangent to the vector field).

¢ create X-Y plots of variables as they vary through
time or distance (across or through the model).

* deform the model according to a vector field,
typically a displacement vector.

* create animations of mode shapes.

e “probe” the model to determine mesh-related
values (i.e., nodal coordinates, node ID, element
ID) and values of state variables (temperature,
stress, etc.) at locations of interest.

As discussed previously, AVS is started and then
connected to a Unix socket to accommodate bidirec-
tional communication between AVS and the vetomain
program. This allows vetomain to control the AVS
process by issuing CLI (Command Line Interpreter)
commands and also by receiving information about the
model (such as node ID) from AVS. Via this mecha-
nism, the FEAVR environment is initialized within AVS.

There were two fundamental extensions to FEAVR that
were necessary for VETO. One was the ability to
“attach” a virtual instrument to the model at a user-
selected node point (via a mouse click) with a user
specified orientation. For example, as an analyst or test
engineer reviews the mode shape shownin Figure 6, a
virtual accelerometer can be placed at node 468
oriented parallel to the Z axis. The location and orienta-
tion of the virtual instrument is then transferred back to
vetomain for development of the model of the DUT
needed in the time integration.

Frequency

Figure 6. FEAVR display. Note virtual
instrument at node 468.

The second extension to FEAVR was the capability to
create “trace links” which are lines linking the virtual
instruments on the model to create a simplified repre-
sentation of the device geometry in the absence of the
FE model. These are used in visualizing the simulated
(or experimental) output of the virtual (or real) instru-
ments. Figure 7 shows a deformed FE model (top) and
the same model represented with trace links and virtual
instruments.

SIMULATIONS WITH MATLAB AND SIMULINK

The VETO software tool simulates the dynamic
response behavior of a user defined test environment.
The SIMULINK Dynamic System Simulation Software
toolkit provided by MATLAB is used as the environment
to assemble and ultimately integrate mathematical
models of the test system. This same toolkit controls
the simulation processing. Dynamic response
equations are integrated by SIMULINK to provide
system output time histories. Within the VETO
software, inputs such as type of device and intercon-
nection of instrumentation models are combined to
facilitate the rapid connection of various models
(including models of test instrumentation, equipment
and hardware) which comprise a given testing process.
In order to achieve rapid set up of this virtual environ-
ment, models representing the instrumentation and test
equipment need to be developed. These models
consist of a mathematical description of the dynamic
response of the instruments derived either theoretically

Frequency 26.30

Figure 7. Deformed FE model and trace lines
from FEAVR.

or experimentally. Most of the instruments modeled to
date have been modeled in the discrete state space
domain. A number of system identification tools, e.g.
Power Polynomial [5] and Eigensystem Realization
Algorithm with Data Correlation 11 [6], were used in
MATLAB to generate the mathematical models. Devel-
opment was based on an experimental frequency
response function of the instrument or equipment.

The models of the different types of instruments and
equipment (transducers, amplifiers, filters, etc.) needed
to represent a complete testing environment are
located in a SIMULINK Virtual Test Equipment Library
(VTELib). When preparing for a test simulation, the
selection of the desired test instrumentation from the
vetomain is performed with the assistance of a
MATLAB M-file called lib_contents which searches
the VTELib for available instrument models. Optimal
experimental design and simulation of the complete
test environment is further facilitated by the VETO's
ablility to include models of external inputs and elec-
tronic instrumentation noise. In addition, complex
instrumentation models, such as the Front End data
ac<1uisition system, are constructed by combining
muitiple submodels to simulate the dynamic response
behavior of the hardware.

When “Build Simulation” is chosen from the “Simulate”
menu of vetomain, the analysis data describing the
DUT and other selected instrumentation parameters
are downloaded to the MATLAB workspace.
Processing control is then passed to MATLAB to
construct a SIMULINK model of the test system.

Construction begins with a SIMULINK “new_system”
operation specifying the user's selected name for the
test system. Into this new system diagram, the
procedure places the device model blocks, specified by
the vetomain data. There is a second level of block
placement performed in the building process specific to
the data acquisition device called the “Front End”.
When the “Front End” model block is placed into the
new system, additional submodel blocks that simulate
AC coupling and anti-alias filtering are placed within the
“Front End” block, based on the desired number of data
simulation channels. Figure 8 shows a partial Front End
blOfk diagram as constructed by the VETO software
tool.

As device blocks are added to the new system, inter-
connecting lines are placed between the blocks. These
lines represent the flow of signals in the actual test
system and are specified using the “wire” instrument in
vetomain. Using these interconnecting lines, the input
signals from the actuator devices (e.g. impact
hammers) are fed to both the DUT for simulation of
system excitation and to the “Front End” device for
simulation of data acquisition. The “Front End” device
also receives the signals from the sensors that have
been attached to the DUT to simulate structural system
response to the actuator input. Both the simulated
actuator and sensor signals are linked through amplifier
and ﬁlltering blocks to represent preconditioning of the
signals.

Figure 8. Partial Front End Block Diagram

The completed system is saved as a MATLAB “.m" and
“mat” file. Although it is possible for the user to modify
the system built by VETO, care needs to be taken when
directly modifying the SIMULINK simulation system.

When changes are made to the test design from within
SIMULINK, there is no mechanism for reflecting those
changes in vetomain and in the FEAVR environment.

SIMULINK provides a number of methods for solving
the set of differential equations which define the math-
ematical model of the test system constructed in the
build phase of VETO. The VETO tool uses a Runge-
Kutta fourth order (“rk45” operation) method to numeri-
cally integrate the equations for the test system. This
method is considered to be a good general purpose
integrator applicable to a large range of problems. it is
a variable step size method with step size adjusted
continuously to meet a specified relative error criterion.
However, the VETO overrides the variable step size

character by providing equal minimum and maximum
step sizes as options when the simulation begins. The
selected step size is the reciprocal of 32768 Hz; the
maximum sampling rate of the HP3565 Front End
device used for data acquisition and analysis. This
forces SIMULINK to calculate the system responses at
a constant or uniform time interval during the simulation
process.

The process of simulation begins when the user selects
“Run” from the “Simulate” option on vetomain. The
data files which define the dynamics of the desired
instrumentation are loaded into the test simulation
system and the “Simulation Monitor” is created and
displayed. This monitor allows the user to observe the
estimated system response based on the numerical
integration. The Simulation Monitor represents the data
acquisition environment commonly used to gather data
ina ph‘y‘sical test and is a graphical interface through
which the user interacts with the test simulation system.
It has a set of buttons to control the progress of the
simulation and several display areas to provide visual
feedback to the user. The VETO tool automatically
Eerforms auto-ranging to simulate the setting of Front

nd data acquisition voltage ranges on each analog-to-
digital convertor required in the test simulation.

During the simulation, the user has the option to haltthe
run using a button on the Monitor. Also, as each frame
of data is collected, the simulated response is
displayed on the Monitor and the user is provided visual
feedback on the test simulation results. Voltage ranges
for each channel can be varied in order to maximize the
signal’'s dynamic range before performing post-simula-
tion analysis. Each frame can be accepted or rejected
as a valid set of data using control buttons found at the
bottom of the Monitor. A second set of buttons will
accept or reject and also end the data collection phase.
These buttons also activate a window providing an
interface to analysis routines for computing desired
measures such as frequency response functions,
power spectral densities and coherences.

APPLICATION OF THE VETO TO STRUCTURAL
DYNAMICS TEST SIMULATION OF AN AEROSPACE
COMPONENT

The VETO software environment currently integrates
analysis and test based models to support optimal
modal or structural dynamic test design. The structural
dynamics testing environment was selected as the
initial VETO environment for investigation into areas of
design/analysis/test interfaces, visualization, versatility
and repeatability. This initial VETO effort has focused
?n tassisting engineers to maximize the value of modal
ests,

An aerospace component was selected as a test case
for application in the VETO environment. The VETO
software simulation tool was used to design an optimal
experiment for this mock reentry vehicle, Figure 9. The
goal of performing this test design optimization was to
observe the vibration modes of interest and to study the
interaction of the support flanges with the reentry
vehicle housing. The initial steps in the test design were
to select an appropriate set of instrumentation

(including sensors and actuators) to perform a modal
experiment within the VETO environment and to
simulate a modal test on the aerospace component. A
symmetric finite element model of the structure was
loaded into the VETO environment for use in the modal
test simulation. The test design was performed over a
frequency band, up to 250 Hz, which included fifteen
vibration modes of the reentry vehicle.

The outcome of the VETO test design “Setup” was to
excite the structure using an impact hammer and to
measure acceleration responses on the reentry vehicle
at 40 different locations in order to characterize the
dynamic behavior of the component. Approximately

Figure 9. Mock Reentry Vehicle Model.

half of the response locations were automatically
selected by using the minamac code to optimize the
sensor locations. Some care was taken in utilizing this
code to ensure that redundant or closely spaced
response locations on the structure were not used in
the simulation. A large number of accelerometer
locations were selected in the test design to make the
future process of analytical/experimental mode
compatrison more feasible. Other instrumentation such
as the signal conditioning amplifiers and the Front End
data acquisition system were also set up with the use of
vetomain in preparation for the test simulation. Data
acquisition parameters for sampling, averaging and
acquiring the desired analysis measurements were
also selected for use in the post-simulation analysis.

A number of “Pre-simulation” tools were used to
determine the completeness of the test design. First,
the effects of mass loading the component were calcu-
lated given the test design sensor set. Small acceler-
ometers, Endevco 2250s, were selected in the test
design in order to minimize the mass loading effects
during the experimentation. This analysis showed that
very small changes in the frequencies of vibration
(approximately 0.1%) would be experienced during an
experimental test, based on the number of Endevco
2250 accelerometers chosen in the test design.
Second, a hormal mode indicator function and a driving
point frequency response function were viewed before
conducting the test simulation in order to assess
whether the selected sensor and actuator (selected
impact location) set would accurately identify all the
desired modes of interest on the aerospace compo-

NMIF
o
;=)

0 5’0 160 1-")0 260 2&0 300
Frequency

Figure 10. Normal Mode Indicator Function

for the aerospace component

nent, Figures 10 and 11. By using the normal mode
indicator function, it was determined that a single input
location at the nose of the reentry vehicle would not
excite all of the modes of the structure. Therefore, two

Actuator DOF:1.

200,

180}
Q
éwo-
50F
A
10°
§1°' 1 1
§10° 1 1
10"[1
10

Frequency
Figure 11, Driving point frequency response
for the aerospace component

additional excitation locations were included in the test
setup so that all the modes of vibration of the reentry
vehicle could be observed. Finally, the Modal
Assurance Criterion (MAC) was calculated for the test
design to determine if the modes of vibration of the
structure could easily be distinguished from one
another given the selected sensor set. Small values on
the off-diagonal terms of this MAC matrix, Figure 12,
indicate the relative independence of the modes of
vibration, thus facilitating correlation with analysis.

With the complete test design within the VETO environ-
ment, a SIMULINK block model of the test environment
is automatically generated to support the simulation of
the modal test. Figure 13 shows a partial block model
of the SIMULINK environment.

The next step in the modal test simulation is the
numerical integration of the mathematical models

Mode #

Figure 12, Modal Assurance Criterion
(MAC) of the aerospace component

Figure 13. Partial Block Model of SIMULINK
environment.

within SIMULINK to estimate the system responses.
Using the Simulation Monitor, these responses are
observed for each set or frame of data to be collected,
Figure 14. Once the data are gathered to support the
desired measurement set, the test simulation within
SIMULINK is concluded. A window which provides an
interface to the post-simulation analysis routines is then
used to download the data for measurement analysis.
A number of analysis routines for computing desired
measures such as frequency response functions,
power spectral densities and coherences are available.
The simulated data, which are based on the FE
dynamic analysis, are used to generate frequency
response functions, Figure 15. Placement of sensors
and actuators, as specified in the VETO, results in a test
design from which the required modes can be extracted
unambiguously.

CONCLUSION

The results of this modal test design using the VETO
environment clearly show the benefit of this software
tool. Within this software environment, engineers were
able to simulate the testing of this aerospace
component without the existence of any hardware.The

ey DT Frane 15
Time (ssconcs)
1500 :ll "
2=t " ur;
A i _I]
1 02423
350 2 " l| "l. "' ll s L4 ied l :
10 02428
I 1
10 02433
e i ﬁ_‘, .
10 02455
8 . R e e AR T] :
50 " AR vt seoep dptiergerioss :
s " serbistivs -
— =

Figure 14, Collected Responses from Simulation

Monitor

FRF Magnituda ({n/socr2)b)

'
0 50

100

150
Frequency (Hz)

200 250 300

Figure 15, Simulated Frequency Response
Function

effects that ditterent instrumentation or equipment had
on the results of the experiment were observed and the
selection of appropriate analysis parameters were also
studied. This tool assisted the engineers in the selec-
tion, placement and orientation of the instrumentation
to maximize the information to be gathered from the
experiment. Also, this tool allowed the visualization of
results while iterating the test setup before committing
to an actual test series. This test simulation tool, as
previously described, plays an important role in the
design of experiments for the purpose of computational

model validation.

ACKNOWLEDGEMENT

This work was supported by the United States Depart-
ment of Energy under Contract DE-AC04-94AL85000.

REFERENCES

[1]1T. G, Carne and
Design Strateg‘y
ings of the 13if |

Conference, 1995

GhY:

C. R. Dohrman, “A Modal Test

for Model Correlation,” Proceed-
nternational Modal Analysis

. Kammer, “Sensor Placements for On-Orbit
dal [dentification and Cotrelation of Large Space
Structures,”

I Journal of Guidance, Control, an
Dynamics, V14(2), 1991.

8L

inite Element

A. Schoof, “Finite Element Analysis VieweR
(FEAVR).” unpublished.

4] IT:A Sc?oof and V. R. Yarberty, “‘EXODUS II: A

SAND92-2137

Data Model,” Sandia Report

[5] P. S. Barney, “Power Polynomial Analysis Code,”
unpublished.

[6] J. P. Lauffer, “Eigensystem Realization Algorithm
with Data Correlationi II”. unpublished.

s2181§ panufl
suotuido pue
10 ‘uonjepusit
¢JoImjopjnuB

£q 3uuioag}
2511010 10

urojay possdIdxd sioyne Jo

soaygs pouu) W

-j00101]} Kouade £ue JO JUAWIUIIA0D
11855905U 10U S0P

3

u op
O

nsuod Af

)

JoU3
wosIop

_ smota oYL JO°

uo sy Aduut Jo W
ssureu open £q 291A195 10

SIp ssaoo01d
3 30§ Aiq
gaakodud
“JUSWIUIAACD

u1o1aYy 20U
odo1 SIL
£q polosuods JIom JO junodoE UB su pojedoid ses W
q

aads Aue O}
51 30 ‘pasofd
«foeinode Y
Lue sayewW
a1y 1941eN

pIoUIWI0d LY

ey syuoasaxd:
455019794 W0d

‘fusliem

wi 30 $591d¥0

“onpoxd [et
pinom asn sit
ssaujnjosn 1o
d
fouoSe Aue JOU JUSWILIOA0D SANEIS ponun

pall

umo Aoreatd s3uyjul 10U
i l‘uop\aul.lo.;u! fue Jo
quy] 1edo] fue sowinsse 1O
094}
ANV IOSIA

smyeredde

3

yonpoad

-1suodsal 10 Ay
sopBig panun oW 30 fouaBe ue

-19)0y ‘SW!
ey 1O Kue Jou ‘¥

yrewopen
30 ¢

