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Jlll Blickdooeulid M&heidétlef Binary Electrolyte

Low-Concentration Electrolyte (LCE)
Sol\ier&ﬁecﬁ?r%eg azlr,g ?gl)r( — free cation/anion
Contact ion §aeiréo—nscip?leevl_ei+l-FSI' coordination
Solvent-driven.SElllf]c?Paaltg)\r) &l organic-rich

Heterogeneous, porguF Mﬁtqgeéﬁl
* Fifth level

High-Concentration Electrolyte (HCE)

« Aggregate clusters — multiple Li*-FSI-
coordination

Salt-driven SEI formation — inorganic-rich

High cost, high viscosity & poor ionic
conductivity

S. Chen et al, Adv. Mater. 30, 1706102 (2018).
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X. Cao et al, Nature Energy 4, 796 (2019).

Jll Blickdooentid M&ieidélef Ternary Electrolyte

Localized High-Concentration Electrolyte (LHCE)

. DiI&eiai%tk—taegaﬁe%)\éitscosity, improved thermal and high-voltage stability
° Stenc_ @éebﬁ@%@teractlng Wlth Salts Table 1| Physical properties of TFEQ and conventional solvents

Compound DFT calculation Boiling  Viscosity at
HOMO LUMO point  30°C (cP)
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LiFSI/DME-TFEO (1:1.2:1 by mol.)
. . ‘ ’ LiFS/DME-TFEO (1:1.2:2 by mol.)
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How do we decide our LHCE components L MLESIEGEMC BTRE 05072 by ok +
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Multiscale understanding of electrolyte
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C.M. Efaw, Q. Wu et al, submitted to Nature Materials.

Solvation Structure
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Jll Blickdooeuid MaSikeeltii8tructure

* Micelle structure — arrangement of molecules in a 3-D spherical form

urfactant permlts mixture of otherwise immiscible components
|ck to edl

. rltlca ggg% ﬁf centratlon (CMC) — “break” point of micelle
hird |ey

structur intained, based upon concentration of surfactant
* Apply this to an II_= %%Ilvatlon structure — “micelle-like” structure
* Fifth level

Below CMC

Surfactant

Above CMC
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J Blickdooentid MaMéoetikdelike” Structure

a Conventional understanding b  Micelle-like structures of C Real micelle electrolyte
of LHCE in literature LHCE revealed in this work proposed by Gao Liu et al.
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Utilize a ternary phase diagram
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29°C

D Click to edit text
122 pmeTFE0 Second lev

* Immiscibility between LiFSI & TFEO

* Miscibility between DME & TFEO

 TFEO dominates mixed solvent
Raman spectra

— Fourth lewel
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Il Bticdpectivi RSneotitte Work

* New insights into the structure & properties of LHCEs
- Clickdasatitgmiolecular, structural, & macroscale
- “NBeelbardikeVealtructure proposed

* |nspire raticHEd Jﬁ%ﬁhization of LHCEs to improve cell capabilities

— Decision mathoeX@lat kinds & how much components to
include in LHCHfth level

— Observe impact of other parameters (e.g., T) for improved
formation protocols & application-based electrolytes
* We need more insight into electrolyte properties & interactions
— Correlation and expansion of experiments with models
— Different applications need different electrolyte properties

* How can we extend microscale improvements while
maintaining functional macroscale properties??

— Impacts of electric field on properties, interfacial mechanisms
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- Click to edit Master title

* Click to edit text
— Second level
* Third level
— Fourth level
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