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Abstract

Methods for modeling the uncertainty in laser tracker angle measurements vary within the
metrology industry, leading to confusion and questionable stochastic modeling for survey network
adjustments and error propagation analysis. Interpreting the published laser tracker manufacturer
performance specifications to determine an a priori sigma value for weighting azimuth and zenith angle
measurements can be confusing and has led to differing implementations. This paper proposes a unique
way to model survey network a priori laser tracker angular uncertainties based on laser tracker
manufacturers’ published maximum permissible error (MPE) values referenced to ISO and ASME
standards for weighting survey network measurements. This paper’s proposed model takes into account
the disparate effects that pointing errors, target centering errors, and leveling errors have on azimuth
and zenith angular uncertainties for measurements with steep sightings and at near ranges.

Introduction

The one-sigma accuracy of a distance measurement (o) is well understood to be range
dependent; accuracy decreases with range. It is common practice to assume a ppm scaling term when
modeling o values. However, a typical default setting in metrology software applies a simplistic
modeling of azimuth and zenith angle uncertainties (g, and g respectively) by assuming that they are
constant (i.e. not range dependent) (Hexagon Metrology, 2021). Another common assumption is that g,
is equal to ag. However, by closely examining the sources of error in measuring azimuth and zenith

angles, it will be shown in this paper that these assumptions of angular uncertainties are not valid. These
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assumptions are especially tenuous for measurements that are steep or at near ranges due to the
effects of pointing errors and target centering errors on angular accuracy. Also, because of the nature of
angular measurements in a spherical coordinate system, the uncertainty of measured azimuths varies as
a function of the zenith angle. Specifically, for a given slope distance, the azimuth uncertainty increases
as the zenith angle moves higher or lower away from the instrument's horizontal plane (Dorsey-
Palmateer, 2018).

Correctly modeling angular uncertainties gives the proper foundation for understanding how
angular errors propagate to calculated coordinate values of measured points and provides a valid
stochastic weighting model for least squares adjustment of survey networks. This paper proposes a
unique way to model the uncertainty of laser tracker angles as a function of range and steepness. This
paper will also demonstrate how different angular uncertainty models propagate to the uncertainty of
the calculated coordinates of measured points. The focus of this paper evaluates laser tracker survey
network measurements which assumes the reflector is stationary during observation. Thomas Ulrich

published a dissertation covering the modeling of uncertainty for dynamic targets (Ulrich, 2016).
Sources of Angle Measurement Error

There are several sources of error to consider for azimuth and zenith measurements. There is
always a small error present in reading the angular encoder circle. Also, there is a small error in pointing
the optical axis to coincide with the center of the target. Target centering error is a third source of error.
For laser tracker measurements using spherically mounted retroreflector (SMR) targets, the primary
sources of target centering error come from the manufacturing errors of an SMR’s sphericity and
miscentering of the reflector optics inside the SMR. The vertex of the reflecting open-air corner cube of
an SMR is nominally manufactured to be coincident with the center of the sphere. A typical 1.5-inch-
diameter SMR has a sphericity of roughly 3 um and an optical centering accuracy ranging from roughly 3
pum to 12 um depending on the manufacturer’s specified grade (MetrologyWorks, 2022). Other SMR
characteristics such as optical flatness, optical reflectivity, and dihedral angle errors also affect the

accuracy of the target (FARO Technologies, Inc., 2016). Sphericity and reflector centering errors are



systematic if the orientation of the SMR is maintained to a particular laser tracker position. However,
points measured from multiple laser tracker positions for a survey control network (the scenario
considered in this paper) will realize sphericity and reflector centering errors as random errors.

Instrument setup errors associated with forced centering over a point can also contribute to the
total angular error (Ghilani, 2010). However, for laser tracker measurements, the instrument setup
position and orientation are typically parameterized and solved with free stationing. Free stationing
removes instrument setup errors from contributing to the total error of angular measurements
(Manwiller, 2020).

Some laser trackers include a dual-axis inclination sensor that detects the deflection angle
between gravity and the standing axis of the instrument. Some trackers with an inclinometer apply
compensating corrections to the raw azimuth and zenith angles to improve the effective levelness of the
instrument’s setup. Assuming the laser tracker is perfectly leveled can be very useful because it reduces
the number of free stationing parameters from 6 to 4. The uncertainty of inclinometer readings, if
applied as compensations to azimuth and zenith angles, is another source of error. The azimuth angles
of steep measurements are greatly affected by leveling errors (Anderson & Mikhail, 1998) which is
something well-known in the context of astronomical observations (Ghilani, 2010). In chapter 7.8 of
Adjustment computations spatial data analysis 5" ed., Ghilani derived the contribution of the error to an
azimuth observation (e, ) from a leveling error (e;) observed at a given zenith angle (8) as the
following:
ea, = €,COt(H) (1)
Laser trackers that apply inclinometer compensation will measure azimuth angles with noticeably worse
repeatability at steep angles as shown later in this paper. For steep measurements, leveling errors
impact azimuth angle accuracy by an order of magnitude greater than zenith angle measurements. For
steep measurements, the cot(f) term becomes a large multiplier; as § approaches 0°, the cot(f)
multiplier term approaches infinity. Because azimuth angle accuracy for steep sightings is extremely

sensitive to leveling errors, the accuracy of any inclinometer corrections will be incorporated into the



modeling of azimuth uncertainty in this paper as shown in Eq. 9. The large impact of leveling errors on
azimuth accuracy for steep surveys is a common consideration in monitoring the top crest of
embankment dams (Ogundare, 2015).
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Fig. 1. ep and ep Bcomponents of optical pointing error

Angle measurement error sources can be categorized as either random or systematic. Sources of
systematic errors can arise from an uncalibrated instrument or from varying air conditions that create
refracted nonlinear sight paths from the instrument to the reflector. Small geometric offsets, tilts, and
eccentricities in the construction of a laser tracker can produce systematic errors in the angles and range
readings if not properly compensated with an on-board software modeling of the errors and calibration
(Muralikrishnan, et al., 2009). Assuming a well-calibrated instrument and stable environmental
conditions free of systematic errors, the variance of an azimuth or zenith angle measurement (gg?) will
be equal to the sum of the angular variances of random errors associated with the following:

1) Electronic reading of the angular encoder (g;2)

2) Pointing the laser tracker’s optic axis onto the center of the target (op2)

3) Sphericity and reflector centering of the SMR target (g;2)
09% = 0% + 0p? + 072 (2)
If inclinometer corrections are applied to the observation, an additional parameter (g, 2) is included for

azimuth observations as described later in this paper in Eq. 9.



A pointing error, ep, associated with gp for a laser tracker’s angular measurement can be
modeled as a linear transverse offset from where the optic axis is pointing on the reflector to the true
optical center of the reflector as shown in Fig. 1.

The pointing error results from the laser beam not perfectly locked onto the center of the SMR. The
horizontal component of the pointing error (ep_ ) contributes to the total horizontal angular error.

Likewise, the vertical component of the pointing error (ePB) contributes to the total vertical angular

error. Laser trackers have an automatic target recognition (ATR) system to automatically center the
optical axis onto the center of a reflective target. ATR helps remove the human variability of pointing
errors that once relied on an operator’s eyesight, but the pointing error is still inherent to the angle
observation whether done by human sighting or using ATR. Chapter 4 of Precision Surveying: The
Principles and Geomatics Practice discusses the physical conditions that contribute to pointing errors
(Ogundare, 2015).

Because op and o7 represent lateral offset errors, their magnitude in angular terms is larger for
nearer-range measurements. In other words, lateral offset errors have an equal effect on measuring a
point’s coordinates (X, Y, Z) at any range, but have a larger effect on the standard errors of angles at
shorter distances. This means that angles observed at short distances are subject to more error and
should be weighted accordingly (Ghilani, 2016). The following is the full quote from Ghilani:

We can see that short sight distances result in larger overall errors in the angles even

though the miscentering error is the same. That is: in terms of the point’s coordinates,

shorter sight distances have little effect on the coordinates of the stations but larger effects

on the standard errors for the angles, which means that angles observed with short sight
distances are subject to more error and should be weighted as such.

Therefore, the total contribution of angular uncertainty by gp and gy is increasingly less significant with
increased range. It has been demonstrated in laboratory testing that a Leica LTD500 laser tracker’s
angular errors are dominated by lateral errors from gp and o at a range of less than 2.5 meters (Meid &
Sandwith, 2000). For ranges beyond roughly 2.5 meters (likely varying only slightly between laser
trackers of other models), the electronic reading uncertainty of the angular encoders (gz) becomes the

primary source of angular uncertainty.



Laser Tracker Manufacturer Accuracy Specifications

Laser tracker manufacturers specify the accuracies of their instruments in terms of maximum
permissible error (MPE) according to ASME B89.4.19-2006 which is the American Society of Mechanical
Engineer’s standard for the performance evaluation of laser-based spherical coordinate measurement
systems (ASME, 2006). The International Organization for Standardization (ISO) also provides a similar
standard for testing and publishing laser tracker MPE values in the ISO 10360-10 specification (ISO,
2021). The specific ASME and ISO standards for laser trackers are important to reference for interpreting
and testing laser tracker MPE values, because within the broader metrology industry (e.g. CMM
machines) there are different standards for determining MPEs (Thompson, et al., 2021). Reported laser
tracker MPE values cite either the ASME or ISO standard that was used for testing. Published laser
tracker angular MPE values represent the extreme values of an error permitted by the specifications and
are commonly interpreted to be roughly equivalent to a 3-sigma value of the laser tracker’s angular
performance (Leica Geosystems, 2009). Leica Geosystems states that “Unless stated otherwise, all
accuracies are Maximum Permissible Error (= £3 o), with typical accuracies being % MPE (or
approximately 1.5 0)” (Leica Geosystems, 2009). One published empirical test determined the distance
uncertainties of three tested laser trackers to be smaller than their corresponding MPE specifications by
at least a factor of four (Wang, Muralikrishnan, Hernandez, Shakariji, & Sawyer, 2020). Manufacturers
commonly include alongside their instrument’s published MPE value a “typical accuracies” value which
is half the MPE value (FARO Technologies, Inc., 2016).

Understanding how to interpret these MPE values is important because they are the published
accuracy performance values available for reference when considering purchasing a particular laser
tracker model. A particular laser tracker passes each of the 41 distinctly configured ISO 10360-10:2021
laboratory test positions if, for each test position, 25 measurements are taken within the published MPE
tolerances compared to a calibrated test length. However, if the errors in any of the 25 measurements

exceed the MPE tolerance, three new measurements are permitted to be taken, of which the one with



the most error of the three can serve as a replacement. No more than two such replacements are
permitted for ISO acceptance (I1SO, 2021).

MPE values for angular performance are expressed in terms of the maximum permissible
transverse error in micrometers (er). The transverse error is the error “resulting from incorrectly
determining the angular components in determining the location of a measured point” (ISO, 2021).
Therefore, the e value incorporates all sources of random errors (and residual systematic errors after
calibration) including uncertainties associated with the angular encoder reading (oy), ATR optical
pointing (op), target centering (o7), and leveling (if applicable) (g,2). This is why e is commonly
published by manufacturers with the stipulation that their most precise instrument measurement mode
and highest grade SMRs be used for testing (Hexagon Metrology, 2012).

Angular transverse MPE values are modeled based on the transverse error er formula shown in
Eqg. 3 as specified in Annex D of ISO 10360-10.
er (um) = Ar (um) + Br (um/m) R (3)
Where A7 is a constant value expressed in micrometers and B is a dimensionless constant value
multiplied by the range (R) between the tracker and the point being measured. Manufacturers
commonly publish their e; MPE formula in their technical specification data sheets by representing By
as a ratio of micrometers per meter. This paper proposes associating the ISO transverse error formula
variables in Eq. 3 with the primary error sources of laser tracker angle measurements. Specifically, the
Ar term is most closely associated with the combined linear transverse offset errors of op and o7, and
Br is most closely associated with gi. These associations are further explained in the following example
of a Leica AT400 series laser tracker.

Leica AT400 series laser trackers have a published value of 1-sigma angular encoder reading
accuracy (og) of 0.5 arcseconds which is approximately 2.4 um/m (Leica Geosystems, 2010). The stated
MPE for angular performance is 15 um + 6 um/m (Hexagon Metrology, 2018). The By term in Eq. 3 is
primarily related to the uncertainty of the angular encoder reading (g). Given a 1-sigma encoder

reading accuracy of 2.4 um/m, it follows that the Leica AT400 series tracker’s By value (6 um/m) is



close to 3 times larger to represent the maximum permissible error. Similarly, the A7 value (15 um) is
closely related to the combined uncertainties of op and o1 because these are offset errors that become
less angularly significant for longer-range measurements. Also, Leica AT400 series laser trackers have an
inclinometer with a one-sigma accuracy (a;) of 0.5 arcseconds (Hexagon Metrology, 2012).

The values A and By in Eq. 3 represent a simplified linearized MPE modeling of the underlying
sources of uncertainty propagated from gy, 0p, and o that contribute to the total uncertainty of gy.
The simple linear model in Eq. 3 is assumed to perform well enough at the typical ranges tested by the
ISO and ASME standards which is implied to be beyond roughly 1.5 meters (ISO, 2021). However, a
better model for observations at near ranges would recognize that Ay and B are approximations of
two types of independent sources of uncertainty that would be more appropriately handled by applying
principles of uncertainty propagation to combine the related terms a and b in quadrature shown in Eq.

4.

er (um) = \/(a (um))? + (b (um/m) R)? (4)
A similar treatment of converting linear specifications to a quadratic form is explained in the context of
distance measurements by Ghilani in Eq. 7.38 of Adjustment Computations Spatial Data Analysis
(Ghilani, 2010).

To relate the a and b terms to the A and By values provided by the manufacturer, let

a= /ATZ + 347By (5)

b = Br (6)
Defining a in Eq. 5 sets the quadratic form in Eq. 4 equal to the linear form in Eq. 3 at R = 1.5 m which
is considered at the close range for testing laser tracker accuracy. Eq. 6 holds b equal to B to maintain
the parity of linear and quadratic models for longer-range measurements where the angular

contribution of A is negligible.



Fig. 2 compares how the transverse error (er), expressed as a transverse offset in micrometers,
increases with range consistent in both the linear model (Eg. 3) and the quadratic model (Eq. 4). Fig. 2
also compares how the angle subtending the transverse error, in arcseconds, decreases as it approaches
the arcseconds equivalent of the By value for both the linear and quadratic model. At the near range of
1.5 meters, the dominant effect on angular accuracy is the A term. At farther ranges, the Ay term
becomes negligible and the angular accuracy becomes approximately constant, range independent, and
dominated by the accuracy of the angular encoder reading (ag). Fig. 2 demonstrates how the calculated
MPE angle is comparable between the standard linear model and this paper’s proposed quadratic model
for the ranges typically tested by the ISO and ASME standards. However, the quadratic model deviates
from the linear model for ranges shorter than 1.5 meters by emphasizing the contribution of transverse

uncertainties from op and or.
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Fig. 2. Leica AT400 series laser tracker MPE transverse error and angle as a function of range
(Ar =15um,Br = 6 um/m,a = 22 ym,b = 6 uym/m)

Modeling Angular Accuracy Based on MPE Formulas

Given a laser tracker’s Ar and By values provided by the manufacturer, consistent with Eq. 3,

and determining a and b values consistent with quadratic modeling of transverse errors described in



Eqgs. 4-6, this paper proposes unique formulas to estimate a priori 1-sigma uncertainties for azimuth and
zenith angles (o, and og) as a function of range (R) and zenith angle (). Using the small angle
approximation (dividing a and b terms by R to express transverse errors in angular radian terms) the

equation for op is the following:

2
um
a(um) 2 b(;) R(m)
3,000,000 R(m) ' 3,000,000 R(m)

op (rad) =

Which simplifies to

2

um

am) 2 b(8%)
3,000,000 R(m) 3,000,000

op (rad) = (8)

Where R is the range (i.e. slope distance) from the tracker to the reflector, and the divisor 3 scales the
MPE values (which approximate 3-sigma values) to 1-sigma. Notice that the a term must be converted
from a distance unit to radians by diving by the range. The units given for the b term (um/m) are a
unitless microradian value that does not need to be scaled as a function of range as shown in Eq. 8. This
makes sense because the angular accuracy of the encoder reading (g3) is unaffected by the range,
which is the primary contributor to the b term.

For measurements that include leveling corrections, the published MPE values are expected to
have considered all error sources including those from the instrument’s reading of the inclination.
Therefore, adding an inclination term to Eqgs. 7 and 8 for zenith uncertainty would be considering the
error twice and would be double counting. Leveling errors have the same small amount of effect on
zenith angle uncertainty regardless of the steepness of observation (Ogundare, 2015). However, for
steep observations, leveling errors impact azimuth angles by an order of magnitude greater than would
be considered by the normal ISO and ASME testing ranges. This effect is reflected in Eq. 1. The multiplier
factor of cot(f) at § = 5°is 11.4! Because I1SO and ASME evaluations do not test at such steep angles,
this effect on azimuth angles would not be reflected in the MPE values. This is why this paper proposes
including a leveling term for the azimuth angle uncertainty formula in Eq. 9, but not for the zenith angle

uncertainty formula in Egs. 7 and 8.



The proposed equation for g, (Eq. 9) is similar to g, but it uses the horizontal distance instead
of the slope distance to convert the a term into radians by including sin(f) in the denominator. Also,

the inclinometer uncertainty term (a;) is included, if applicable, as described in Eq.1.

o 2
~ a2 (=) 2
0 (rad) = 3,000,000 sin(B) R(m) t 3000000 T (0, (rad) cot(p)) ©)

Using the horizontal distance to convert the a term to radians is necessary for calculating g,
because horizontal offset errors of an azimuth angle are subtended by an arc with a radius equal to the
measurement’s horizontal distance. This is especially apparent at steep angles. To illustrate this, a 19.05
mm (0.75 inches) diameter U.S. penny held horizontally at arm’s length (0.7 m) subtends roughly 1.5° of
a viewer’s horizontal viewing angle as shown in Fig 3. If held at arm’s length 80° above horizontal, the
penny subtends 9° of horizontal viewing angle. A penny held at arm’s length above a viewer’s head will
subtend the full 360° of the viewer’s horizontal angular viewing because the horizontal distance to the
penny is zero once it is directly overhead. This illustrates why an azimuth measurement’s horizontal

offset errors are much larger, in angular terms, for steeper measurements.

Penny at viewer’s zenith —
e, 9° horizontal angle (19.05 mm)

at 80° above viewer’s horizon

\ 1.5° horizontal angle (19.05 mm)
A\
. *—— at viewer’s horizon
0.7m :

Viewer’s horizontal plane —% =

(Sketch not to scale)

Fig. 3. Horizontal viewing angle subtended by a penny at varying elevations

The azimuth angle of an observation defines the direction of the horizontal distance.

Increasingly steeper observations will have shorter horizontal distances which will increase the azimuth



angle’s uncertainty. If an observation is so steep that the horizontal distance is shorter than the
combined uncertainties from lateral offset errors (op and ar) then the azimuth angle becomes unstable
and nearly meaningless. This scenario is akin to attempting to report the longitude position of the North
Pole. This effect is reflected in Eq. 9, where g, is undefined at § = 0°. It is also undefined at § = 180°, but
this scenario is not relevant since the author is unaware of existing laser trackers that can peer
downward through their own bodies. There are several models of trackers on the market that have
either a removable handle or a curved handle to permit vertical viewing. Because the formula for
calculating g, proposed in this paper (Eq. 9) utilizes the small angle approximation, the formula should
be adapted to use the arctangent function for observations with extremely short horizontal distances.
For observations pointing at (or very near) the zenith, the horizontal distance will become shorter than
the combined uncertainties from the lateral offset errors (gp and o), and the value of g, will become
too large to provide stochastic value to the strength of a survey network. Before the indeterminacy of
the o, value at the zenith is encountered, the azimuth observation can be stochastically ignored by
down-weighting it completely. In this unique case, the value of an azimuth angle is understood to
approach a uniform distribution where any value is equally likely between 0° and 360°.

Fig. 4 plots Eq. 9 using a and b values resulting from Leica’s published A and B values for the

ATA400 series laser tracker at four different zenith angles.
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Fig. 4. Modeled a priori o, values (Eq. 9) at varying zenith angles () for a Leica AT400
series laser tracker (a = 22 um, b = 6 um/m, g, = 0.5")

Fig. 5 does the same for a FARO Vantage laser tracker given the following published ASME standard

transverse MPE values: Ar = 20 um, By =5 pum/m (FARO Technologies, Inc., 2016).
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The Leica and FARO trackers have comparable a and b values, but the plots in Fig. 4 and Fig. 5 are
noticeably different because the FARO tracker does not apply leveling compensations to the raw angular
measurements (so the g; term is not applicable). For the FARO tracker in Fig. 5, the uncertainty of
azimuth angles at all four zenith angles converge to roughly 0.5 arcseconds at the far range because gy
is dominant at the far range while uncertainties from transverse offset errors become insignificant. The

plot for the Leica tracker in Fig. 4 does not have the same convergence of azimuthal uncertainty at the
far ranges because g; becomes the dominant source of error for steep measurements at the far ranges.

Fig. 4 and Fig. 5 demonstrate that correctly modeling uncertainties of azimuth angles as a function of
range and zenith angle is especially significant for steep sightings and at near ranges.

This paper’s proposed modeling of the uncertainty of azimuth and zenith angles (Egs. 8 and 9)
suggests using the MPE angular performance values published by the manufacturer as a starting point.
There are limitations to modeling angular uncertainty in this way; no two laser trackers are the same
even if each is the same model as the other and made by the same manufacturer. The performance
values can be refined to reflect the actual performance of a particular laser tracker. The repetition of
measurements is a good way to empirically refine a and b values for a pairing of a particular laser
tracker and SMR. Chapter 4 of Precision Surveying: The Principles and Geomatics Practice by John
Ogundare describes detailed procedures to determine the pointing accuracy (op) and reading accuracy
(og) using the repetition method (Ogundare, 2015).

A similar modeling of the azimuth angle uncertainty was proposed by John W. Dorsey-Palmateer
in the Journal of the CMSC (Dorsey-Palmateer, 2018). The article implies that g, should be equivalent to
o/ sin(B) for calculating Monte Carlo simulated uncertainty volumes for the coordinates of measured
points. This insight is on the right track, but it does not take into account one important consideration;
only a portion of the angular uncertainty in an azimuth angle should be divided by sin(f) because the
uncertainty of the horizontal angular encoder reading (o) is unaffected by how steep the measurement
is. Also, the article does not consider errors that may be present from leveling compensation or address

how to relate MPE angular performance values reported from laser tracker manufacturers to determine a



priori angular uncertainties. By taking into account the physical underlying principles of the error sources,
this paper proposes refining the simplistic assumption that g, = oﬁ/ sin(f) and instead only applies the
sine term to the a value and not to the b value as reflected in Eq. 9.
Repeatability Test

A simple repeatability test was done using a recently calibrated Leica AT402 laser tracker and a
FARO Vantage laser tracker to demonstrate that azimuth angles become less accurate with increased
steepness. The SMR used was certified to have an optical centering of + 3 um and sphericity of + 3 um.
Four SMR positions were each measured 20 times in both faces (front sight and back sight modes) as
shown in Fig. 6.

B =10°

D=7m

g —o0e B =90°
D=15m D=7m
' 0

(Sketch not to scale)

Fig. 6. Angular-repeaz;ability tests at four SMIR positions
For the Leica AT402, the measurements were taken with the inclinometer applying leveling
compensations to the angular measurements. The measurements were taken at § = 10° and 8 = 90°
with ranges of 1.5 meters and 7 meters. After each measurement, the SMR was rotated 90° in its nest
about the line of sight to vary the offset direction of any optical centering errors in the SMR.
Table 1 shows the sample standard deviations of the 20 azimuth and zenith angles from the Leica AT402

and FARO Vantage laser trackers after averaging the front sight and back sight values.



Table 1. Sample standard deviations of azimuth and zenith measurements at 4 SMR positions

Laser Tracker Zenith 6.@D=15(m) cg@D=15(m) | 6.@D=7(m) | g @D =7(m)
Leica AT402 B=10° o0, =10.8" o0p=0.7" Oq=7.5" op=0.4"
Leica AT402 B=90° o.= 0.4" op=0.7" 0,=0.2" o =0.3"
FARO Vantage B=10° Oq= 5.3" op=1.0" 0q=2.3" o =0.9"
FARO Vantage B =90° O« = 0.2" op=0.3" 04 =0.3" op=0.3"

The values in Table 1 show that the sample standard deviation between azimuth and zenith

angles are comparable to each other at f = 90°. However, the azimuth angles were much less repeatable

when viewed more steeply.

The purpose of this paper’s repeatability test is to empirically demonstrate that steepness and

range have a noticeable effect on the accuracy of the azimuth angle. The repeatability test is not meant

to directly verify the true accuracy of the laser tracker—that is what the ISO and ASME standards are

for. The repeatability of measurements only represents the rough magnitude of random errors under

nearly identical conditions and can only loosely imply the actual size of random errors. Repeatability

tests also say nothing about the size of systematic errors that may be present (such as biases, offsets,

etc.) (Ridler, Lee, Martens, & Wong, 2007). Other papers, such as by Muralkrishnan et al., discuss

methods for detecting and correcting systematic laser tracker angular measurements (Muralkrishnan, et

al., 2010).

Spherical to Cartesian Transformation

Propagating laser tracker observation uncertainties oy, 0, dp to coordinate values X, Y, Z of

measured points through the spherical-to-Cartesian transformation reveals their impact

on oy, gy, 0z. Given a laser tracker measurement where D = Slope Distance, @ = Azimuth Angle, § =




Zenith Angle as shown in Fig. 7, the spherical-to-Cartesian coordinate transformation equations are the

following:

Instrument’s horizontal plane

Reflector point pa—
X Y2 \

Fig. 7. Spherical to Cartesian transformation

X = D sin(a) sin(B) (10a)
Y = D cos(a) sin(B) (10b)
Z =D cos(B) (10c)

Error Propagation

Egs. 11 through 16 show the steps to calculating oy, oy, 0; from op, 0, ag.

Putting Egs. 10a, 10b, and 10c in matrix form:

fxD,a,B)| [x1 |D sin(a)sin(p)
fr(D,a,B)| =|Y|=|D cos(a) sin(B)
fz(D,a, B) A D cos(B)

Given a variance matrix of observations D, «, f3:

o2 0 0
Z=|0 o,2 0 (11)
0 0 O'ﬁz

A Jacobian matrix of partial derivatives:

oD  da 9P sin(a) sin(f) D cos(a)sin(B) D sin(a)cos(B)

J= |% aa% aa%| = |cos(a) sin(B) —Dsin(a)sin(B) D cos(a)cos(pB) (12)
[m Uz Uz cos(B) 0 ~D sin(B)
D da P

Apply principles of error propagation:



UXZ Ox0y Ox0z

2 _ T
OxOy Oy oyoz| =] 2] (13)
0x0z OyOz Uzz

Solving for oy, oy, 0z

ox = \/Dzaazcos(oc)zsin(ﬁ)z + D20gg%cos(B)?sin(a)? + ap?sin(a)?sin(B)? (14)
oy = \/Dzaazsin(cx)zsin(B)Z + D20g%cos(a)?cos(B)? + op?cos(a)?sin(B)? (15)
07 = \/Dzaﬁzsin(ﬁ)z + ap?cos(B)? (16)

Fig. 8. Simulated measurements at a 1.5 (m) range and varying zenith angles

Using Egs. 14 - 16, it can be shown that the commonly used stochastic model of 6, = o does
not make sense at steep angles. Applying a stochastic model of g, = o = 1" to calculate gy, gy, g, for
7 simulated points, each measured at a 1.5 meter range and spaced apart by 15° vertically in the XZ

plane, shows the flaw of this stochastic approach.



Table 2 shows the results of applying the error propagation of the o, = og = 1" stochastic

model to the simulated measurements shown in Fig. 8.

Table 2. Error propagation from observations (0g, 04 , 0p) to coordinates (ay, oy, 07)
where ap = 10 um and a, = og = 1" (a common and simplistic, yet flawed stochastic model)

B a D o 0y op X Y Z Oy oy oz

1° 90° 15m |17 17 10pm | 0.026179m  0.000000 m 1.499772 m 7um 0 pm 10 pm

15° 90° 15m |17 1”7 10 pm | 0.388229m  0.000000 m 1.448889 m 7um 2 um 10 pm

30°  90° 15m |17 17 10 pm | 0.750000m  0.000000 m 1.299038 m Sum 4 um 9 um

45° 90° 15m |1” 1~ 10pm | 1.060660m  0.000000 m 1.060660 m Oum 5pum 9 um

60° 90° 15m |17 17 10pm | 1.299038 m  0.000000 m 0.750000 m Oum 6 um 8 um

75°  90° 15m |17 17 10 pm | 1.448889m  0.000000 m 0.388229 m 10pm 7 pm 7 pm

90° 90° 15m |17 17 10 pm | 1.500000m  0.000000 m 0.000000 m 10pm 7 pm 7 pm

Notice that Table 2 shows oy = 0 um for the near-vertical measurement at § = 1°. (highlighted). A
value of gy = 0 is not realistic because there should be at least several micrometers of lateral
uncertainty present outside of the XZ plane from azimuthal pointing and target errors that should be
represented in the Y dimension. This demonstrates that o, = g is not a good stochastic model for
steep measurements.

Table 3 shows the error propagation of the same simulated measurements in Table 2, but using
the stochastic model proposed by this paper in Egs. 8 and 9, assuming no leveling compensation, and
using @ =22 um and b = 5 um/m. This model only holds o, = gp = 1" at § = 90°.

Table 3. Error Propagation from observations (0,04 , 0p) to coordinates (o, oy, 67)
where o, =10 um and o, and o are determined by Eq. 8 and Eq. 9 using a =22 um and b = 5 um/m

B o D |opg o, op X Y Z Oy oy oz

1° 90° 15m |17 587 10pm |0.026179m  0.000000 m 1.499772 m 7um  7pm 10 um

15° 90° 15m |17 397 10um | 0.388229m  0.000000 m 1.448889 m 7um  7pm 10 um

30°  90° 15m |17 207 10pum | 0.750000m  0.000000 m 1.299038 m 8um 7pum 10 um

45°  90° 15m |17 15”7 10pm |1.060660m  0.000000 m 1.060660 m Sum 8um 9 um

60° 90° 15m |17 127 10pum |1.299038m  0.000000 m 0.750000 m Qum 8um 8 um

75°  90° 15m |17 1.1” 10pum | 1.448889m  0.000000 m 0.388229 m I0pm 8 pm 7 um

90° 90° 15m |17 17 10 ym | 1.500000 m  0.000000 m 0.000000 m 10pm 9 pm 7 pm

Table 3 shows gy = 7 um for the near vertical measurement at § = 1° by weighting o, = 58"

(highlighted). The gy values in Table 3 are more realistic than the near-zero gy values in Table 2. This



demonstrates that Eq. 9 better models the uncertainty of azimuth observations for steep and near-range

measurements than more simplistic modeling approaches.
Conclusion

In this paper, a unique approach to modeling a priori uncertainties of laser tracker angle
measurements based on manufacturers’ reported MPE performance values was proposed in detail. This
approach takes into account the various sources of a spherical instrument’s angular errors and how they
propagate to the measured coordinates of a point. A field test of laser tracker repeatability and
simulated measurement scenarios were presented to demonstrate that the proposed modeling
approach provides realistic results and is consistent with observable effects in real-world

measurements.
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