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Abstract 

Methods for modeling the uncertainty in laser tracker angle measurements vary within the 

metrology industry, leading to confusion and questionable stochastic modeling for survey network 

adjustments and error propagation analysis. Interpreting the published laser tracker manufacturer 

performance specifications to determine an a priori sigma value for weighting azimuth and zenith angle 

measurements can be confusing and has led to differing implementations. This paper proposes a unique 

way to model survey network a priori laser tracker angular uncertainties based on laser tracker 

manufacturers’ published maximum permissible error (MPE) values referenced to ISO and ASME 

standards for weighting survey network measurements. This paper’s proposed model takes into account 

the disparate effects that pointing errors, target centering errors, and leveling errors have on azimuth 

and zenith angular uncertainties for measurements with steep sightings and at near ranges.  

Introduction 

The one-sigma accuracy of a distance measurement (𝜎𝐷) is well understood to be range 

dependent; accuracy decreases with range. It is common practice to assume a ppm scaling term when 

modeling 𝜎𝐷 values. However, a typical default setting in metrology software applies a simplistic 

modeling of azimuth and zenith angle uncertainties (𝜎𝛼 and 𝜎𝛽 respectively) by assuming that they are 

constant (i.e. not range dependent) (Hexagon Metrology, 2021). Another common assumption is that 𝜎𝛼 

is equal to 𝜎𝛽. However, by closely examining the sources of error in measuring azimuth and zenith 

angles, it will be shown in this paper that these assumptions of angular uncertainties are not valid. These 
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assumptions are especially tenuous for measurements that are steep or at near ranges due to the 

effects of pointing errors and target centering errors on angular accuracy. Also, because of the nature of 

angular measurements in a spherical coordinate system, the uncertainty of measured azimuths varies as 

a function of the zenith angle.  Specifically, for a given slope distance, the azimuth uncertainty increases 

as the zenith angle moves higher or lower away from the instrument's horizontal plane (Dorsey-

Palmateer, 2018). 

Correctly modeling angular uncertainties gives the proper foundation for understanding how 

angular errors propagate to calculated coordinate values of measured points and provides a valid 

stochastic weighting model for least squares adjustment of survey networks. This paper proposes a 

unique way to model the uncertainty of laser tracker angles as a function of range and steepness. This 

paper will also demonstrate how different angular uncertainty models propagate to the uncertainty of 

the calculated coordinates of measured points. The focus of this paper evaluates laser tracker survey 

network measurements which assumes the reflector is stationary during observation. Thomas Ulrich 

published a dissertation covering the modeling of uncertainty for dynamic targets (Ulrich, 2016). 

Sources of Angle Measurement Error 

There are several sources of error to consider for azimuth and zenith measurements. There is 

always a small error present in reading the angular encoder circle. Also, there is a small error in pointing 

the optical axis to coincide with the center of the target. Target centering error is a third source of error. 

For laser tracker measurements using spherically mounted retroreflector (SMR) targets, the primary 

sources of target centering error come from the manufacturing errors of an SMR’s sphericity and 

miscentering of the reflector optics inside the SMR. The vertex of the reflecting open-air corner cube of 

an SMR is nominally manufactured to be coincident with the center of the sphere. A typical 1.5-inch-

diameter SMR has a sphericity of roughly 3 μm and an optical centering accuracy ranging from roughly 3 

μm to 12 μm depending on the manufacturer’s specified grade (MetrologyWorks, 2022). Other SMR 

characteristics such as optical flatness, optical reflectivity, and dihedral angle errors also affect the 

accuracy of the target (FARO Technologies, Inc., 2016). Sphericity and reflector centering errors are 



systematic if the orientation of the SMR is maintained to a particular laser tracker position. However, 

points measured from multiple laser tracker positions for a survey control network (the scenario 

considered in this paper) will realize sphericity and reflector centering errors as random errors.  

Instrument setup errors associated with forced centering over a point can also contribute to the 

total angular error (Ghilani, 2010). However, for laser tracker measurements, the instrument setup 

position and orientation are typically parameterized and solved with free stationing. Free stationing 

removes instrument setup errors from contributing to the total error of angular measurements 

(Manwiller, 2020). 

Some laser trackers include a dual-axis inclination sensor that detects the deflection angle 

between gravity and the standing axis of the instrument. Some trackers with an inclinometer apply 

compensating corrections to the raw azimuth and zenith angles to improve the effective levelness of the 

instrument’s setup. Assuming the laser tracker is perfectly leveled can be very useful because it reduces 

the number of free stationing parameters from 6 to 4. The uncertainty of inclinometer readings, if 

applied as compensations to azimuth and zenith angles, is another source of error. The azimuth angles 

of steep measurements are greatly affected by leveling errors (Anderson & Mikhail, 1998) which is 

something well-known in the context of astronomical observations (Ghilani, 2010). In chapter 7.8 of 

Adjustment computations spatial data analysis 5th ed., Ghilani derived the contribution of the error to an 

azimuth observation (𝑒𝛼𝐿
) from a leveling error (𝑒𝐿) observed at a given zenith angle (𝛽) as the 

following: 

𝑒𝛼𝐿
= 𝑒𝐿𝑐𝑜𝑡(𝛽) (1) 

Laser trackers that apply inclinometer compensation will measure azimuth angles with noticeably worse 

repeatability at steep angles as shown later in this paper. For steep measurements, leveling errors 

impact azimuth angle accuracy by an order of magnitude greater than zenith angle measurements. For 

steep measurements, the 𝑐𝑜𝑡(𝛽) term becomes a large multiplier; as 𝛽 approaches 0°, the 𝑐𝑜𝑡(𝛽) 

multiplier term approaches infinity. Because azimuth angle accuracy for steep sightings is extremely 

sensitive to leveling errors, the accuracy of any inclinometer corrections will be incorporated into the 



modeling of azimuth uncertainty in this paper as shown in Eq. 9. The large impact of leveling errors on 

azimuth accuracy for steep surveys is a common consideration in monitoring the top crest of 

embankment dams (Ogundare, 2015).  

Angle measurement error sources can be categorized as either random or systematic. Sources of 

systematic errors can arise from an uncalibrated instrument or from varying air conditions that create 

refracted nonlinear sight paths from the instrument to the reflector. Small geometric offsets, tilts, and 

eccentricities in the construction of a laser tracker can produce systematic errors in the angles and range 

readings if not properly compensated with an on-board software modeling of the errors and calibration 

(Muralikrishnan, et al., 2009). Assuming a well-calibrated instrument and stable environmental 

conditions free of systematic errors, the variance of an azimuth or zenith angle measurement (𝜎𝜃
2) will 

be equal to the sum of the angular variances of random errors associated with the following: 

1) Electronic reading of the angular encoder (𝜎𝑅
2)  

2) Pointing the laser tracker’s optic axis onto the center of the target (𝜎𝑃
2) 

3) Sphericity and reflector centering of the SMR target (𝜎𝑇
2) 

𝜎𝜃
2 = 𝜎𝑅

2 + 𝜎𝑃
2 + 𝜎𝑇

2 (2) 

If inclinometer corrections are applied to the observation, an additional parameter (𝜎𝐿
2) is included for 

azimuth observations as described later in this paper in Eq. 9. 
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Fig. 1. 𝑒𝑃𝛼
and 𝑒𝑃𝛽

components of optical pointing error 



A pointing error, 𝑒𝑃, associated with 𝜎𝑃 for a laser tracker’s angular measurement can be 

modeled as a linear transverse offset from where the optic axis is pointing on the reflector to the true 

optical center of the reflector as shown in Fig. 1. 

The pointing error results from the laser beam not perfectly locked onto the center of the SMR. The 

horizontal component of the pointing error (𝑒𝑃𝛼
) contributes to the total horizontal angular error. 

Likewise, the vertical component of the pointing error (𝑒𝑃β
) contributes to the total vertical angular 

error. Laser trackers have an automatic target recognition (ATR) system to automatically center the 

optical axis onto the center of a reflective target. ATR helps remove the human variability of pointing 

errors that once relied on an operator’s eyesight, but the pointing error is still inherent to the angle 

observation whether done by human sighting or using ATR. Chapter 4 of Precision Surveying: The 

Principles and Geomatics Practice discusses the physical conditions that contribute to pointing errors 

(Ogundare, 2015). 

Because 𝜎𝑃 and 𝜎𝑇 represent lateral offset errors, their magnitude in angular terms is larger for 

nearer-range measurements. In other words, lateral offset errors have an equal effect on measuring a 

point’s coordinates (X, Y, Z) at any range, but have a larger effect on the standard errors of angles at 

shorter distances. This means that angles observed at short distances are subject to more error and 

should be weighted accordingly (Ghilani, 2016). The following is the full quote from Ghilani: 

We can see that short sight distances result in larger overall errors in the angles even 

though the miscentering error is the same. That is: in terms of the point’s coordinates, 

shorter sight distances have little effect on the coordinates of the stations but larger effects 

on the standard errors for the angles, which means that angles observed with short sight 

distances are subject to more error and should be weighted as such. 

Therefore, the total contribution of angular uncertainty by 𝜎𝑃 and 𝜎𝑇 is increasingly less significant with 

increased range. It has been demonstrated in laboratory testing that a Leica LTD500 laser tracker’s 

angular errors are dominated by lateral errors from 𝜎𝑃 and 𝜎𝑇 at a range of less than 2.5 meters (Meid & 

Sandwith, 2000). For ranges beyond roughly 2.5 meters (likely varying only slightly between laser 

trackers of other models), the electronic reading uncertainty of the angular encoders (𝜎𝑅) becomes the 

primary source of angular uncertainty.  



Laser Tracker Manufacturer Accuracy Specifications 

Laser tracker manufacturers specify the accuracies of their instruments in terms of maximum 

permissible error (MPE) according to ASME B89.4.19-2006 which is the American Society of Mechanical 

Engineer’s standard for the performance evaluation of laser-based spherical coordinate measurement 

systems (ASME, 2006). The International Organization for Standardization (ISO) also provides a similar 

standard for testing and publishing laser tracker MPE values in the ISO 10360-10 specification (ISO, 

2021). The specific ASME and ISO standards for laser trackers are important to reference for interpreting 

and testing laser tracker MPE values, because within the broader metrology industry (e.g. CMM 

machines) there are different standards for determining MPEs (Thompson, et al., 2021). Reported laser 

tracker MPE values cite either the ASME or ISO standard that was used for testing. Published laser 

tracker angular MPE values represent the extreme values of an error permitted by the specifications and 

are commonly interpreted to be roughly equivalent to a 3-sigma value of the laser tracker’s angular 

performance (Leica Geosystems, 2009). Leica Geosystems states that “Unless stated otherwise, all 

accuracies are Maximum Permissible Error (≈ ±3 σ), with typical accuracies being ½ MPE (or 

approximately ±1.5 σ)” (Leica Geosystems, 2009). One published empirical test determined the distance 

uncertainties of three tested laser trackers to be smaller than their corresponding MPE specifications by 

at least a factor of four (Wang, Muralikrishnan, Hernandez, Shakarji, & Sawyer, 2020). Manufacturers 

commonly include alongside their instrument’s published MPE value a “typical accuracies” value which 

is half the MPE value (FARO Technologies, Inc., 2016).  

Understanding how to interpret these MPE values is important because they are the published 

accuracy performance values available for reference when considering purchasing a particular laser 

tracker model. A particular laser tracker passes each of the 41 distinctly configured ISO 10360-10:2021 

laboratory test positions if, for each test position, 25 measurements are taken within the published MPE 

tolerances compared to a calibrated test length. However, if the errors in any of the 25 measurements 

exceed the MPE tolerance, three new measurements are permitted to be taken, of which the one with 



the most error of the three can serve as a replacement. No more than two such replacements are 

permitted for ISO acceptance (ISO, 2021). 

MPE values for angular performance are expressed in terms of the maximum permissible 

transverse error in micrometers (𝑒𝑇). The transverse error is the error “resulting from incorrectly 

determining the angular components in determining the location of a measured point” (ISO, 2021). 

Therefore, the 𝑒𝑇 value incorporates all sources of random errors (and residual systematic errors after 

calibration) including uncertainties associated with the angular encoder reading (𝜎𝑅), ATR optical 

pointing (𝜎𝑃), target centering (𝜎𝑇), and leveling (if applicable) (𝜎𝐿
2). This is why 𝑒𝑇 is commonly 

published by manufacturers with the stipulation that their most precise instrument measurement mode 

and highest grade SMRs be used for testing (Hexagon Metrology, 2012). 

Angular transverse MPE values are modeled based on the transverse error 𝑒𝑇 formula shown in 

Eq. 3 as specified in Annex D of ISO 10360-10. 

𝑒𝑇 (𝜇𝑚) = 𝐴𝑇 (𝜇𝑚) + 𝐵𝑇  (𝜇𝑚/𝑚) 𝑅 (3) 

Where 𝐴𝑇 is a constant value expressed in micrometers and 𝐵𝑇 is a dimensionless constant value 

multiplied by the range (𝑅) between the tracker and the point being measured. Manufacturers 

commonly publish their 𝑒𝑇 MPE formula in their technical specification data sheets by representing 𝐵𝑇 

as a ratio of micrometers per meter. This paper proposes associating the ISO transverse error formula 

variables in Eq. 3 with the primary error sources of laser tracker angle measurements. Specifically, the 

𝐴𝑇 term is most closely associated with the combined linear transverse offset errors of 𝜎𝑃 and 𝜎𝑇, and 

𝐵𝑇 is most closely associated with 𝜎𝑅. These associations are further explained in the following example 

of a Leica AT400 series laser tracker. 

Leica AT400 series laser trackers have a published value of 1-sigma angular encoder reading 

accuracy (𝜎𝑅) of 0.5 arcseconds which is approximately 2.4 𝜇𝑚/𝑚 (Leica Geosystems, 2010). The stated 

MPE for angular performance is 15 𝜇𝑚 + 6 𝜇𝑚/𝑚 (Hexagon Metrology, 2018). The 𝐵𝑇 term in Eq. 3 is 

primarily related to the uncertainty of the angular encoder reading (𝜎𝑅). Given a 1-sigma encoder 

reading accuracy of 2.4 𝜇𝑚/𝑚, it follows that the Leica AT400 series tracker’s 𝐵𝑇 value (6 𝜇𝑚/𝑚) is 



close to 3 times larger to represent the maximum permissible error. Similarly, the 𝐴𝑇 value (15 𝜇𝑚) is 

closely related to the combined uncertainties of 𝜎𝑃 and 𝜎𝑇 because these are offset errors that become 

less angularly significant for longer-range measurements. Also, Leica AT400 series laser trackers have an 

inclinometer with a one-sigma accuracy (𝜎𝐿) of 0.5 arcseconds (Hexagon Metrology, 2012). 

The values 𝐴𝑇 and 𝐵𝑇 in Eq. 3 represent a simplified linearized MPE modeling of the underlying 

sources of uncertainty propagated from 𝜎𝑅 , 𝜎𝑃 , and 𝜎𝑇 that contribute to the total uncertainty of 𝜎𝜃. 

The simple linear model in Eq. 3 is assumed to perform well enough at the typical ranges tested by the 

ISO and ASME standards which is implied to be beyond roughly 1.5 meters (ISO, 2021). However, a 

better model for observations at near ranges would recognize that 𝐴𝑇 and 𝐵𝑇 are approximations of 

two types of independent sources of uncertainty that would be more appropriately handled by applying 

principles of uncertainty propagation to combine the related terms 𝑎 and 𝑏 in quadrature shown in Eq. 

4. 

𝑒𝑇 (𝜇𝑚) = √(𝑎 (𝜇𝑚))2 + (𝑏 (𝜇𝑚/𝑚) 𝑅)2 (4) 

A similar treatment of converting linear specifications to a quadratic form is explained in the context of 

distance measurements by Ghilani in Eq. 7.38 of Adjustment Computations Spatial Data Analysis 

(Ghilani, 2010). 

To relate the 𝑎 and 𝑏 terms to the 𝐴𝑇 and 𝐵𝑇 values provided by the manufacturer, let 

𝑎 =  √𝐴𝑇
2 + 3𝐴𝑇𝐵𝑇 (5) 

𝑏 = 𝐵𝑇 (6) 

Defining 𝑎 in Eq. 5 sets the quadratic form in Eq. 4 equal to the linear form in Eq. 3 at 𝑅 = 1.5 𝑚 which 

is considered at the close range for testing laser tracker accuracy. Eq. 6 holds 𝑏 equal to 𝐵𝑇 to maintain 

the parity of linear and quadratic models for longer-range measurements where the angular 

contribution of 𝐴𝑇 is negligible. 



Fig. 2 compares how the transverse error (𝑒𝑇), expressed as a transverse offset in micrometers, 

increases with range consistent in both the linear model (Eq. 3) and the quadratic model (Eq. 4). Fig. 2 

also compares how the angle subtending the transverse error, in arcseconds, decreases as it approaches 

the arcseconds equivalent of the 𝐵𝑇 value for both the linear and quadratic model. At the near range of 

1.5 meters, the dominant effect on angular accuracy is the 𝐴𝑇 term. At farther ranges, the 𝐴𝑇 term 

becomes negligible and the angular accuracy becomes approximately constant, range independent, and 

dominated by the accuracy of the angular encoder reading (𝜎𝑅). Fig. 2 demonstrates how the calculated 

MPE angle is comparable between the standard linear model and this paper’s proposed quadratic model 

for the ranges typically tested by the ISO and ASME standards. However, the quadratic model deviates 

from the linear model for ranges shorter than 1.5 meters by emphasizing the contribution of transverse 

uncertainties from 𝜎𝑃 and 𝜎𝑇. 

Modeling Angular Accuracy Based on MPE Formulas 

Given a laser tracker’s 𝐴𝑇 and 𝐵𝑇 values provided by the manufacturer, consistent with Eq. 3, 

and determining 𝑎 and 𝑏 values consistent with quadratic modeling of transverse errors described in 

Fig. 2. Leica AT400 series laser tracker MPE transverse error and angle as a function of range 
(𝐴𝑇 = 15 𝜇𝑚, 𝐵𝑇 = 6 𝜇𝑚/𝑚, 𝑎 = 22 𝜇𝑚, 𝑏 = 6 𝜇𝑚/𝑚)  



Eqs. 4-6, this paper proposes unique formulas to estimate a priori 1-sigma uncertainties for azimuth and 

zenith angles (𝜎𝛼 and 𝜎𝛽) as a function of range (𝑅) and zenith angle (𝛽). Using the small angle 

approximation (dividing 𝑎 and 𝑏 terms by 𝑅 to express transverse errors in angular radian terms) the 

equation for 𝜎𝛽 is the following: 

𝜎𝛽 (𝑟𝑎𝑑) =  √
𝑎(𝜇𝑚)

3,000,000 𝑅(𝑚)

2

+
𝑏(

𝜇𝑚

𝑚
) 𝑅(𝑚)

3,000,000 𝑅(𝑚)

2

 (7) 

Which simplifies to 

𝜎𝛽 (𝑟𝑎𝑑) =  √
𝑎(𝜇𝑚)

3,000,000 𝑅(𝑚)

2

+
𝑏(

𝜇𝑚

𝑚
) 

3,000,000

2

 (8)  

Where R is the range (i.e. slope distance) from the tracker to the reflector, and the divisor 3 scales the 

MPE values (which approximate 3-sigma values) to 1-sigma. Notice that the 𝑎 term must be converted 

from a distance unit to radians by diving by the range. The units given for the 𝑏 term (𝜇𝑚/𝑚) are a 

unitless microradian value that does not need to be scaled as a function of range as shown in Eq. 8. This 

makes sense because the angular accuracy of the encoder reading (𝜎𝑅) is unaffected by the range, 

which is the primary contributor to the 𝑏 term.  

For measurements that include leveling corrections, the published MPE values are expected to 

have considered all error sources including those from the instrument’s reading of the inclination. 

Therefore, adding an inclination term to Eqs. 7 and 8 for zenith uncertainty would be considering the 

error twice and would be double counting. Leveling errors have the same small amount of effect on 

zenith angle uncertainty regardless of the steepness of observation (Ogundare, 2015). However, for 

steep observations, leveling errors impact azimuth angles by an order of magnitude greater than would 

be considered by the normal ISO and ASME testing ranges. This effect is reflected in Eq. 1. The multiplier 

factor of 𝑐𝑜𝑡(𝛽) at 𝛽 = 5° is 11.4! Because ISO and ASME evaluations do not test at such steep angles, 

this effect on azimuth angles would not be reflected in the MPE values. This is why this paper proposes 

including a leveling term for the azimuth angle uncertainty formula in Eq. 9, but not for the zenith angle 

uncertainty formula in Eqs. 7 and 8. 



The proposed equation for 𝜎𝛼 (Eq. 9) is similar to 𝜎𝛽, but it uses the horizontal distance instead 

of the slope distance to convert the 𝑎 term into radians by including sin(𝛽) in the denominator. Also, 

the inclinometer uncertainty term (𝜎𝐿) is included, if applicable, as described in Eq.1. 

𝜎𝛼 (𝑟𝑎𝑑)  = √ 𝑎(𝜇𝑚)

3,000,000 sin(𝛽) 𝑅(𝑚)

2

+
𝑏(

𝜇𝑚

𝑚
) 

3,000,000

2

+ (𝜎𝐿 (𝑟𝑎𝑑) 𝑐𝑜𝑡(𝛽))
2 (9) 

Using the horizontal distance to convert the 𝑎 term to radians is necessary for calculating 𝜎𝛼 

because horizontal offset errors of an azimuth angle are subtended by an arc with a radius equal to the 

measurement’s horizontal distance. This is especially apparent at steep angles. To illustrate this, a 19.05 

mm (0.75 inches) diameter U.S. penny held horizontally at arm’s length (0.7 m) subtends roughly 1.5° of 

a viewer’s horizontal viewing angle as shown in Fig 3. If held at arm’s length 80° above horizontal, the 

penny subtends 9° of horizontal viewing angle.  A penny held at arm’s length above a viewer’s head will 

subtend the full 360° of the viewer’s horizontal angular viewing because the horizontal distance to the 

penny is zero once it is directly overhead. This illustrates why an azimuth measurement’s horizontal 

offset errors are much larger, in angular terms, for steeper measurements. 

The azimuth angle of an observation defines the direction of the horizontal distance. 

Increasingly steeper observations will have shorter horizontal distances which will increase the azimuth 

Fig. 3. Horizontal viewing angle subtended by a penny at varying elevations 



angle’s uncertainty. If an observation is so steep that the horizontal distance is shorter than the 

combined uncertainties from lateral offset errors (𝜎𝑃 and 𝜎𝑇) then the azimuth angle becomes unstable 

and nearly meaningless. This scenario is akin to attempting to report the longitude position of the North 

Pole. This effect is reflected in Eq. 9, where 𝜎𝛼  is undefined at 𝛽 = 0°. It is also undefined at 𝛽 = 180°, but 

this scenario is not relevant since the author is unaware of existing laser trackers that can peer 

downward through their own bodies. There are several models of trackers on the market that have 

either a removable handle or a curved handle to permit vertical viewing. Because the formula for 

calculating 𝜎𝛼 proposed in this paper (Eq. 9) utilizes the small angle approximation, the formula should 

be adapted to use the arctangent function for observations with extremely short horizontal distances. 

For observations pointing at (or very near) the zenith, the horizontal distance will become shorter than 

the combined uncertainties from the lateral offset errors (𝜎𝑃 and 𝜎𝑇), and the value of 𝜎𝛼 will become 

too large to provide stochastic value to the strength of a survey network. Before the indeterminacy of 

the 𝜎𝛼 value at the zenith is encountered, the azimuth observation can be stochastically ignored by 

down-weighting it completely. In this unique case, the value of an azimuth angle is understood to 

approach a uniform distribution where any value is equally likely between 0° and 360°. 

 Fig. 4 plots Eq. 9 using 𝑎 and 𝑏 values resulting from Leica’s published 𝐴𝑇 and 𝐵𝑇 values for the 

AT400 series laser tracker at four different zenith angles.  



Fig. 5 does the same for a FARO Vantage laser tracker given the following published ASME standard 

transverse MPE values: 𝐴𝑇 = 20 𝜇𝑚,  𝐵𝑇 = 5 𝜇𝑚/𝑚 (FARO Technologies, Inc., 2016).  

Fig. 4. Modeled a priori 𝜎𝛼 values (Eq. 9) at varying zenith angles (𝛽) for a Leica AT400 
series laser tracker (a = 22 μm, b = 6 μm/m, 𝜎𝐿 = 0.5") 

Fig. 5. Modeled a priori 𝜎𝛼 values (Eq. 9) at varying zenith angles (𝛽) for a FARO 
Vantage series laser tracker (a = 26 μm, b = 5 μm/m, 𝜎𝐿 = 𝑁/𝐴) 



The Leica and FARO trackers have comparable 𝑎 and 𝑏 values, but the plots in Fig. 4 and Fig. 5 are 

noticeably different because the FARO tracker does not apply leveling compensations to the raw angular 

measurements (so the 𝜎𝐿 term is not applicable). For the FARO tracker in Fig. 5, the uncertainty of 

azimuth angles at all four zenith angles converge to roughly 0.5 arcseconds at the far range because 𝜎𝑅 

is dominant at the far range while uncertainties from transverse offset errors become insignificant. The 

plot for the Leica tracker in Fig. 4 does not have the same convergence of azimuthal uncertainty at the 

far ranges because 𝜎𝐿 becomes the dominant source of error for steep measurements at the far ranges. 

Fig. 4 and Fig. 5 demonstrate that correctly modeling uncertainties of azimuth angles as a function of 

range and zenith angle is especially significant for steep sightings and at near ranges.  

This paper’s proposed modeling of the uncertainty of azimuth and zenith angles (Eqs. 8 and 9) 

suggests using the MPE angular performance values published by the manufacturer as a starting point. 

There are limitations to modeling angular uncertainty in this way; no two laser trackers are the same 

even if each is the same model as the other and made by the same manufacturer. The performance 

values can be refined to reflect the actual performance of a particular laser tracker. The repetition of 

measurements is a good way to empirically refine 𝑎 and 𝑏 values for a pairing of a particular laser 

tracker and SMR. Chapter 4 of Precision Surveying: The Principles and Geomatics Practice by John 

Ogundare describes detailed procedures to determine the pointing accuracy (𝜎𝑃) and reading accuracy 

(𝜎𝑅) using the repetition method (Ogundare, 2015). 

A similar modeling of the azimuth angle uncertainty was proposed by John W. Dorsey-Palmateer 

in the Journal of the CMSC (Dorsey-Palmateer, 2018). The article implies that 𝜎𝛼 should be equivalent to 

𝜎𝛽/ sin(𝛽) for calculating Monte Carlo simulated uncertainty volumes for the coordinates of measured 

points. This insight is on the right track, but it does not take into account one important consideration; 

only a portion of the angular uncertainty in an azimuth angle should be divided by sin(𝛽) because the 

uncertainty of the horizontal angular encoder reading (𝜎𝑅) is unaffected by how steep the measurement 

is. Also, the article does not consider errors that may be present from leveling compensation or address 

how to relate MPE angular performance values reported from laser tracker manufacturers to determine a 



priori angular uncertainties. By taking into account the physical underlying principles of the error sources, 

this paper proposes refining the simplistic assumption that 𝜎𝛼 = 𝜎𝛽/ sin(𝛽)  and instead only applies the 

sine term to the 𝑎 value and not to the 𝑏 value as reflected in Eq. 9. 

Repeatability Test 

A simple repeatability test was done using a recently calibrated Leica AT402 laser tracker and a 

FARO Vantage laser tracker to demonstrate that azimuth angles become less accurate with increased 

steepness. The SMR used was certified to have an optical centering of ± 3 μm and sphericity of ± 3 μm. 

Four SMR positions were each measured 20 times in both faces (front sight and back sight modes) as 

shown in Fig. 6.  

For the Leica AT402, the measurements were taken with the inclinometer applying leveling 

compensations to the angular measurements. The measurements were taken at 𝛽 = 10° and 𝛽 = 90° 

with ranges of 1.5 meters and 7 meters. After each measurement, the SMR was rotated 90° in its nest 

about the line of sight to vary the offset direction of any optical centering errors in the SMR.  

Table 1 shows the sample standard deviations of the 20 azimuth and zenith angles from the Leica AT402 

and FARO Vantage laser trackers after averaging the front sight and back sight values. 

Fig. 6. Angular repeatability tests at four SMR positions 



Table 1. Sample standard deviations of azimuth and zenith measurements at 4 SMR positions 

 

The values in Table 1 show that the sample standard deviation between azimuth and zenith 

angles are comparable to each other at β = 90°. However, the azimuth angles were much less repeatable 

when viewed more steeply.  

The purpose of this paper’s repeatability test is to empirically demonstrate that steepness and 

range have a noticeable effect on the accuracy of the azimuth angle. The repeatability test is not meant 

to directly verify the true accuracy of the laser tracker—that is what the ISO and ASME standards are 

for. The repeatability of measurements only represents the rough magnitude of random errors under 

nearly identical conditions and can only loosely imply the actual size of random errors. Repeatability 

tests also say nothing about the size of systematic errors that may be present (such as biases, offsets, 

etc.) (Ridler, Lee, Martens, & Wong, 2007). Other papers, such as by Muralkrishnan et al., discuss 

methods for detecting and correcting systematic laser tracker angular measurements (Muralkrishnan, et 

al., 2010).  

Spherical to Cartesian Transformation 

 Propagating laser tracker observation uncertainties 𝜎𝐷 , 𝜎𝛼, 𝜎𝛽 to coordinate values 𝑋, 𝑌, 𝑍 of 

measured points through the spherical-to-Cartesian transformation reveals their impact 

on 𝜎𝑋, 𝜎𝑌, 𝜎𝑍. Given a laser tracker measurement where 𝐷 = Slope Distance, 𝛼 = Azimuth Angle, 𝛽 =

Laser Tracker Zenith σα @ D = 1.5 (m) σβ @ D = 1.5 (m) σα @ D = 7 (m) σβ @ D = 7 (m) 

      

Leica AT402 β = 10° σα = 10.8" σβ = 0.7" σα = 7.5" σβ = 0.4" 

Leica AT402 β = 90° σα =   0.4" σβ = 0.7" σα = 0.2" σβ = 0.3" 

      
FARO Vantage β = 10° σα =   5.3" σβ = 1.0" σα = 2.3" σβ = 0.9" 

FARO Vantage β = 90° σα =   0.2" σβ = 0.3" σα = 0.3" σβ = 0.3" 



Zenith Angle as shown in Fig. 7, the spherical-to-Cartesian coordinate transformation equations are the 

following: 

𝑋 = 𝐷 𝑠𝑖𝑛(𝛼) 𝑠𝑖𝑛(𝛽)          (10a) 

𝑌 = 𝐷 𝑐𝑜𝑠(𝛼) 𝑠𝑖𝑛(𝛽)          (10b) 

𝑍 = 𝐷 𝑐𝑜𝑠(𝛽)           (10c) 

Error Propagation 

Eqs. 11 through 16 show the steps to calculating 𝜎𝑋 , 𝜎𝑌, 𝜎𝑍 from 𝜎𝐷 , 𝜎𝛼, 𝜎𝛽. 

Putting Eqs. 10a, 10b, and 10c in matrix form: 

[

𝑓𝑋(𝐷, 𝛼, 𝛽)
𝑓𝑌(𝐷, 𝛼, 𝛽)
𝑓𝑍(𝐷, 𝛼, 𝛽)

] = [
𝑋
𝑌
𝑍
] = [

𝐷 𝑠𝑖𝑛(𝛼) 𝑠𝑖𝑛(𝛽)

𝐷 𝑐𝑜𝑠(𝛼) 𝑠𝑖𝑛(𝛽)

𝐷 𝑐𝑜𝑠(𝛽)
] 

Given a variance matrix of observations 𝐷, 𝛼, 𝛽: 

𝜮 = [

𝜎𝐷
2 0 0

0 𝜎𝛼
2 0

0 0 𝜎𝛽
2

]          (11) 

A Jacobian matrix of partial derivatives: 

𝑱 =

[
 
 
 
 
𝜕𝑓𝑋

𝜕𝐷

𝜕𝑓𝑋

𝜕𝛼

𝜕𝑓𝑋

𝜕𝛽

𝜕𝑓𝑌

𝜕𝐷

𝜕𝑓𝑌

𝜕𝛼

𝜕𝑓𝑌

𝜕𝛽

𝜕𝑓𝑍

𝜕𝐷

𝜕𝑓𝑍

𝜕𝛼

𝜕𝑓𝑍

𝜕𝛽 ]
 
 
 
 

= [

𝑠𝑖𝑛(𝛼) 𝑠𝑖𝑛(𝛽) 𝐷 𝑐𝑜𝑠(𝛼) 𝑠𝑖𝑛(𝛽) 𝐷 𝑠𝑖𝑛(𝛼) 𝑐𝑜𝑠(𝛽)

𝑐𝑜𝑠(𝛼) 𝑠𝑖𝑛(𝛽) −𝐷 𝑠𝑖𝑛(𝛼) 𝑠𝑖𝑛(𝛽) 𝐷 𝑐𝑜𝑠(𝛼) 𝑐𝑜𝑠(𝛽)

𝑐𝑜𝑠(𝛽) 0 −𝐷 𝑠𝑖𝑛(𝛽)
]  (12) 

Apply principles of error propagation: 

Instrument’s horizontal plane 

𝜷 

Reflector point    

(X, Y, Z) 

Z 

Fig. 7. Spherical to Cartesian transformation 

Y 

X 

α 



[

𝜎𝑋
2 𝜎𝑋𝜎𝑌 𝜎𝑋𝜎𝑍

𝜎𝑋𝜎𝑌 𝜎𝑌
2 𝜎𝑌𝜎𝑍

𝜎𝑋𝜎𝑍 𝜎𝑌𝜎𝑍 𝜎𝑍
2

] = 𝑱 𝜮 𝑱𝑻         (13) 

Solving for  𝜎𝑋 , 𝜎𝑌, 𝜎𝑍  

𝜎𝑋 = √𝐷2𝜎𝛼
2cos(α)2sin (β)2 + 𝐷2𝜎𝛽

2cos(β)2sin(α)2 + 𝜎𝐷
2sin(α)2sin(β)2   (14) 

𝜎𝑌 = √𝐷2𝜎𝛼
2sin(α)2sin(β)2 + 𝐷2𝜎𝛽

2cos(α)2cos(β)2 + 𝜎𝐷
2cos(α)2sin(β)2   (15) 

𝜎𝑍 = √𝐷2𝜎𝛽
2sin(β)2 + 𝜎𝐷

2cos(β)2        (16) 

Using Eqs. 14 - 16, it can be shown that the commonly used stochastic model of σα = σβ does 

not make sense at steep angles. Applying a stochastic model of 𝜎𝛼 = 𝜎𝛽 = 1" to calculate 𝜎𝑋, 𝜎𝑌, 𝜎𝑍 for 

7 simulated points, each measured at a 1.5 meter range and spaced apart by 15° vertically in the XZ 

plane, shows the flaw of this stochastic approach. 

X 

Z 

Y 

Fig. 8. Simulated measurements at a 1.5 (m) range and varying zenith angles  

 

1 



 Table 2 shows the results of applying the error propagation of the σα = σβ = 1" stochastic 

model to the simulated measurements shown in Fig. 8. 

 

Notice that Table 2 shows 𝜎𝑌 = 0 𝜇𝑚 for the near-vertical measurement at 𝛽 = 1°. (highlighted). A 

value of 𝜎𝑌 = 0 is not realistic because there should be at least several micrometers of lateral 

uncertainty present outside of the XZ plane from azimuthal pointing and target errors that should be 

represented in the Y dimension. This demonstrates that 𝜎𝛼 = 𝜎𝛽 is not a good stochastic model for 

steep measurements. 

 Table 3 shows the error propagation of the same simulated measurements in Table 2, but using 

the stochastic model proposed by this paper in Eqs. 8 and 9, assuming no leveling compensation, and 

using 𝑎 = 22 μm and 𝑏 = 5 μm/m. This model only holds 𝜎𝛼 = 𝜎𝛽 = 1" at 𝛽 = 90°. 

 

Table 3 shows 𝜎𝑌 = 7 𝜇𝑚 for the near vertical measurement at 𝛽 = 1° by weighting 𝜎𝛼 = 58" 

(highlighted). The 𝜎𝑌 values in Table 3 are more realistic than the near-zero 𝜎𝑌 values in Table 2. This 

𝜷 𝛂 𝑫 𝝈𝜷 𝝈𝛂 𝝈𝑫 𝐗 𝐘 𝐙 𝝈𝑿 𝝈𝒀 𝝈𝒁  

1° 90° 1.5 m 1” 1” 10 μm 0.026179 m 0.000000 m 1.499772 m    7 μm 0 μm 10 μm  

15° 90° 1.5 m 1” 1” 10 μm 0.388229 m 0.000000 m 1.448889 m    7 μm 2 μm 10 μm  

30° 90° 1.5 m 1” 1” 10 μm 0.750000 m 0.000000 m 1.299038 m    8 μm 4 μm   9 μm  

45° 90° 1.5 m 1” 1” 10 μm 1.060660 m 0.000000 m 1.060660 m    9 μm 5 μm   9 μm  

60° 90° 1.5 m 1” 1” 10 μm 1.299038 m 0.000000 m 0.750000 m    9 μm 6 μm   8 μm  

75° 90° 1.5 m 1” 1” 10 μm 1.448889 m 0.000000 m 0.388229 m  10 μm 7 μm   7 μm  

90° 90° 1.5 m 1” 1” 10 μm 1.500000 m 0.000000 m 0.000000 m  10 μm 7 μm   7 μm  

𝜷 𝛂 𝑫 𝝈𝜷 𝝈𝛂 𝝈𝑫 𝐗 𝐘 𝐙 𝝈𝑿 𝝈𝒀 𝝈𝒁  
1° 90° 1.5 m 1” 58” 10 μm 0.026179 m 0.000000 m 1.499772 m    7 μm  7 μm 10 μm  

15° 90° 1.5 m 1” 3.9” 10 μm 0.388229 m 0.000000 m 1.448889 m    7 μm  7 μm 10 μm  

30° 90° 1.5 m 1” 2.0” 10 μm 0.750000 m 0.000000 m 1.299038 m    8 μm  7 μm 10 μm  

45° 90° 1.5 m 1” 1.5” 10 μm 1.060660 m 0.000000 m 1.060660 m    9 μm  8 μm   9 μm  

60° 90° 1.5 m 1” 1.2” 10 μm 1.299038 m 0.000000 m 0.750000 m    9 μm  8 μm   8 μm  

75° 90° 1.5 m 1” 1.1” 10 μm 1.448889 m 0.000000 m 0.388229 m  10 μm  8 μm   7 μm  

90° 90° 1.5 m 1” 1” 10 μm 1.500000 m 0.000000 m 0.000000 m  10 μm  9 μm   7 μm  

Table 2. Error propagation from observations (𝜎𝛽, 𝜎𝛼 , 𝜎𝐷) to coordinates (𝜎𝑋, 𝜎𝑌, 𝜎𝑍)  

where 𝜎𝐷 = 10 μm and 𝜎𝛼 = 𝜎𝛽 = 1" (a common and simplistic, yet flawed stochastic model) 

Table 3. Error Propagation from observations (𝜎𝛽 , 𝜎𝛼 , 𝜎𝐷) to coordinates (𝜎𝑋 , 𝜎𝑌, 𝜎𝑍)  

where 𝜎𝐷 =10 μm and 𝜎𝛼 and 𝜎𝛽 are determined by Eq. 8 and Eq. 9 using 𝑎 = 22 μm and 𝑏 = 5 μm/m  



demonstrates that Eq. 9 better models the uncertainty of azimuth observations for steep and near-range 

measurements than more simplistic modeling approaches.  

Conclusion 

In this paper, a unique approach to modeling a priori uncertainties of laser tracker angle 

measurements based on manufacturers’ reported MPE performance values was proposed in detail. This 

approach takes into account the various sources of a spherical instrument’s angular errors and how they 

propagate to the measured coordinates of a point. A field test of laser tracker repeatability and 

simulated measurement scenarios were presented to demonstrate that the proposed modeling 

approach provides realistic results and is consistent with observable effects in real-world 

measurements. 
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