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Abstract—Current efforts to build quantum computers focus
mainly on the two-state qubit, which often involves suppressing
readily-available higher states. In this work, we break this
abstraction and synthesize short-duration control pulses for gates
on generalized d-state qudits. We present Incremental Pulse Re-
seeding, a practical scheme to guide optimal control software
to the lowest-duration pulse by iteratively seeding the optimizer
with previous results. We find a near-linear relationship between
Hilbert space dimension and gate duration through explicit pulse
optimization for one- and two-qudit gates on transmons. Our
results suggest that qudit operations are much more efficient than
previously expected in the practical regime of interest and have
the potential to significantly increase the computational power of
current hardware.

Index Terms—quantum computing, qudit, quantum optimal
control, pulse synthesis

I. INTRODUCTION

Quantum computing traditionally focuses on the realization
of noise-robust two-level systems, known as qubits. However,
in many quantum architectures, each qubit is embedded in a
much larger Hilbert space, with all other energy levels being
ignored or suppressed. Qudits, the extension of qubits to d
levels, are a promising topic of study with the potential to
increase computational power of a machine without needing
to add additional logic units. For instance, a single four-
state qudit can store the same amount of information as two
qubits, and an eight-state qudit can encode the global state of
three qubits. There are many proposed or adapted qudit-based
quantum algorithms [1]-[5] and qudit-based improvements in
quantum circuit compilation [6], [7]. The latter presents a
method of using qudits in intermediate steps of a circuit that
asymptotically reduces the required number of ancilla in a
quantum algorithm at essentially equal circuit depth.

Qudits have been studied in different experimental settings.
Both IBM [8] and Rigetti [9] have demonstrated implementa-
tions of three-level qutrits on superconducting hardware, while
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Fig. 1. For quantum optimal control tasks to realize a certain gate or
state evolution, truncated control pulses can be used as initial guesses for
optimizations of shorter duration. Since they originate from a previous
optimization, they already drive the system close to the desired objective.
In this figure, the plot on the top shows a high-fidelity pulse being truncated
to a shorter duration, and the plot on the bottom is the result of re-optimizing
this truncated pulse (achieving the same high fidelity at a shorter duration).

qudits with d = 7 states have been successfully realized using
trapped “°Ca™ ions [10].

The potential benefits of using qudits are especially im-
portant in the near-future NISQ (Noisy Intermediate-Scale
Quantum) [11] era of quantum computing, as both total qubit
count and maximum circuit depth are severely limited by
current hardware. Harnessing qudits could allow current or
near-future devices to solve larger, more useful problems
sooner than with only qubits. However, qudit gate durations
theoretically scale in O(h?) time [12], with h being the Hilbert
space dimension; this appears to limit the usefulness of higher-
dimension qudits, as experimentally achieving the previously-
mentioned decreased ancilla or gate count could require much
longer individual gate durations.

Quantum logic gates are implemented through external
control pulses, meaning that the time it takes to apply a
certain gate depends on the duration of the corresponding
control pulse. Optimal control software such as GRAPE [13]
is designed to find the most accurate control pulse for a certain
gate and duration. This means that finding the high-accuracy
pulse of shortest duration for a given gate requires many
independent optimizations at different durations. In this work,



we present the Incremental Pulse Re-seeding (IPR) scheme, a
method for repeatedly changing the pulse duration and using
previous results as new initial guesses for the optimizer, as
shown in the example in Figure 1. IPR provides improved
shortest-duration results and decreases the dependence on
random initial guesses, which is increasingly important for
larger Hilbert space dimension.

Using a transmon Hamiltonian, we apply our method to
optimizing single-qudit gates of dimension up to eight and
two-qudit gates for qudits of dimension up to four to determine
the relationship between Hilbert space dimension and shortest
gate duration. We recover the theoretical O(h?) duration
scaling but find it relatively weak for the range of dimensions
we consider, giving a promising near-linear relationship.

In Section II we discuss the basics of quantum computation
on qubits and qudits. In Section III we explain carrier wave-
based optimal control and justify the physical and compu-
tational parameters that we choose in our optimizations. In
Section IV, we introduce the Incremental Pulse Re-seeding
scheme. Finally, we present our optimized pulses and analyze
the scaling of gate duration with respect to Hilbert space
dimension in Section V.

II. BACKGROUND

A. Quantum computation with qubits

In this section, we briefly introduce quantum computation
on qubits, and then present the more general approach in-
volving qudits. For a more thorough explanation of quantum
computing, we refer the reader to [14].

The quantum counterpart to the classical bit is the qubit,
the traditional basis of quantum computation. While classical
bits can only assume values of either O or 1, qubits may exist
in a quantum superposition of the corresponding basis states

0) = H and |1) = m (1)

An arbitrary qubit state is then represented by |¢)) = «|0) +
B11), where a, 8 € C denote the complex amplitudes of the
respective basis states.

Instructions to manipulate the states of qubits are called
quantum gates. According to the laws of quantum theory, these
gates are reversible and can be represented by unitary opera-
tors. A set of commonly used gates are the Pauli operators:

0 1 0 —i 1 0
i R R RV
Here the X gate corresponds to the quantum analogue of a
NOT operation, mapping the state ) = «|0) + §]1) to
X |) = a|1) + B|0). Useful gates for creating superposition

or manipulating the relative phases of qubits are the Hadamard
gate H and the T' gate, respectively:
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Two-qubit gates involve logical operations on several qubits
at once, with the most common example being the CNOT
(controlled NOT) gate:

CNOT |q1) lg2) = lg1) lg2 @ qu) - 4

Like its classical version, this gate flips the state of the target
qubit |gz) if the control qubit |g;) is in state |1). The CNOT
gate plays a particularly important role in quantum circuits,
as it has the power to create entanglement between qubits.
Swapping the states of two qubits can be realized with a
SWAP gate:

SWAP |q1) |g2) = |g2) |q1) - )

The H, T, and CNOT gates comprise a universal gate set,
meaning any arbitrary qubit circuit can be decomposed into a
sequence of these gates.

B. From qubits to qudits

In many proposed quantum hardware systems, such as
superconducting or ion trap computers, each quantum logical
unit has an infinite spectrum of energy levels. The stan-
dard qubit abstraction suppresses the other states. Instead,
we consider d-dimensional qudits, which each consist of a
superposition of d computational basis states, expressed as

d—1
) = a0 |0) + a1 1)+ +ag1|d—1) =) axlk). (6)
k=0

In this work we consider the generalized gates [15], [16]

X4 k) = |k + 1modd)
X3 :10) ¢ [d—1),

d—1
1 - 7
Halk) = == 3wl 1), ™
d
7=0
Tylk) =w/* |K),

where wy = €”"/¢. X; maps a computational basis state to
the next higher one, and maps |d — 1) back to |0). As an
alternative generalization, X; swaps the amplitudes of the
lowest and the highest state. The generalized Hadamard gate
H, creates an equal-population superposition with different
relative phases depending on the input state. In analogy to
the qubit case, we define the T; as the fourth root of the
generalized Z, gate (where Z4|k) = wk|k)), such that it
preserves populations of the basis states but introduces phase
differences. For the above equations, the d = 2 case produces
the qubit gates as defined in (2) and (3).

Analogously, two-qudit gates can be generalized as well. For
example, the CNOT operation from (4) can be generalized to
the SUM gate [15] or other useful operations depending on
use case [6], [16]. Here we focus on the generalized qudit
SWAP gate, the straightforward extension of (5), which fully
swaps the amplitudes of two qudits.



C. Quantum optimal control

Quantum systems can be purposefully steered by applying
external control fields, which are specific to particular hard-
ware. For instance, in superconducting architectures, the state
of qubits are manipulated through analog microwave pulses.
Generally, the evolution of a quantum system is determined
by its time-dependent Hamiltonian

H(t) = Ho + Heo(t). @)

Here H( denotes the system’s intrinsic drift Hamiltonian and
He(t) = > ) fr(t)Hy denotes the control Hamiltonian, which
is typically described by control operators Hj and classical
tunable control fields f(¢). Quantum optimal control aims to
find the optimal control paths fj(t) to realize a desired state
transition or target unitary. This is achieved by repeatedly solv-
ing the Schrédinger equation and adjusting the control fields
in every iteration to minimize a certain objective function.
Different algorithms and toolboxes have been designed for this
purpose [13], [17], [18].

III. SETUP

In this section we motivate the physical and computational
parameters that we have chosen to use in our optimizations.
We also introduce the concept of control pulses parameterized
through B-splines and carrier waves, which is a key aspect of
the optimizer we use.

A. Model Hamiltonian

We consider a system based on superconducting hardware
that consists of two weakly coupled, anharmonic transmons
[19] with drift Hamiltonian

2
k
Ho = Z {wkaiak + g—a%alakak

pa 2 ©)
+ J(alag + abay).

In order to describe qudits, we typically truncate the ladder
operators aj, and aL at level d + 2. Including two additional
guard states allows us to penalize population leakage into
higher energy states, while we have found that additional guard
states beyond two provide marginal fidelity improvements
for higher computational cost. We choose realistic physical
parameters inspired by [20]: The O-1 transition frequencies
of the transmons are wy/27 = 4.914 GHz and wy/27 =
5.114 GHz, and both transmons have the same anharmonicity
&1/2m = & /2m = —0.330 GHz. They are effectively coupled
with J/27 = 3.8 MHz. While our specific results depend
explicitly on these parameters, our methods apply to systems
with very different parameters. Control of our model system is
possible through microwave drives that add or remove single
excitations, as described by

ka

To numerically solve the Schrodmger equation, it is often
helpful to slow down the time variation by applying the

)(ag + ak) (10)

rotating wave approximation. In a rotating frame with equal
angular frequency w, for both qudits, we thus obtain the full
transformed Hamiltonian

H(t) = Ho + Hel(t)

k
Z {(wk — wr)alak + galalakak]
k=1

+ J(alag + abay)

5y [r(t)(

k=1
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ar + af) + iau(t) (o — a})]

The rotating frame control functions pg(t) and gx(t) are
then related to the lab frame controls through fi(t) =
2Re{ (pk(t) + igr(t))e™rt} [17].

For the case that we want to describe only a single transmon,
we disregard the transmon at index 2 in the above equations
and restrict ourselves to a single anharmonic oscillator with
one lab frame control field f;(¢).

B. Quantum optimal control with quadratic B-splines

Jugbox [17], [21] is an open-source software package de-
signed to solve quantum optimal control problems in closed
systems under the rotating wave approximation. In this section
we briefly summarize the differences between Jugbox and
conventional optimizers such as GRAPE [13], [22]. While
algorithms like GRAPE directly adjust the value of a control
pulse at each discrete point in time, Jugbox instead parame-
terizes the pulse with B-splines. The control functions py(t)
and ¢ (t) in the rotating frame are given by a sum of Ny
carrier waves with fixed angular frequencies €2, ;, where each
carrier wave has an amplitude envelope S,(¢) that consists of
N, B-splines:

Ny Ny

7) =33 Refar o™ 1Sy (1)
j=1b=1
Ny Ny

qr(t, @) = Z Z Im{ay, e} S,(t)

j=1b=1

12)

Jugbox finds optimal pulses by adjusting the 2N;N; real
coefficients ay, j, = a,(frj)w +za,(cufl for the quantum devices
indexed by k. The collection of these design variables is
denoted by @. The benefit of this approach is that the B-
spline parameterization drastically reduces the dimensionality
of the optimal control problem, especially for long-duration
pulses, and allows carrier wave frequencies to be chosen to
specifically address the target state evolutions while avoiding
undesired transitions. Figure 2 shows an example pulse defined
by a single carrier wave and six B-splines.

The user of this tool must specify a number of physical and
numerical parameters for the optimizer, the most significant
of which are summarized in Table I and discussed in the
following subsection.
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Fig. 2. Real part of an exemplary pulse in the rotating frame, with one carrier
wave (Ny = 1). (a) Six B-splines shape the envelope of the pulse. Grey dots
mark the support of each time-local basis function. (b) The final pulse is
constructed from a single carrier wave bounded by the B-spline envelope.
With Ny > 1, the final pulse is the sum of these individual pulses with one
carrier wave.

TABLE I

IMPORTANT PARAMETERS FOR OPTIMIZING IN JUQBOX
Symbol Description
T Total pulse duration
Wr ks Rotating frame frequencies
Ho Drift Hamiltonian in the rotating frame
7—16 Control Hamiltonian in the rotating frame
Qp Carrier frequencies in the rotating frame
Ny B-spline basis functions per carrier wave
\% Target unitary gate
Amaz Bound on magnitude of B-splines
error_threshold | Goal infidelity
max_iter Maximum optimization iterations

After specifying the required parameters, Jugbox applies
gradient-based methods to minimize an objective function
consisting mainly of the trace infidelity

J=1- %'Tr{U}(d’)V}r

between the target unitary V' and the applied transformation
Ur (&), where h is the Hilbert space dimension (without guard
states). The quantum optimal control task is successful if a set
of coefficients & is found that achieves an infidelity below a
desired error threshold. Throughout this work we will also use
fidelity F' = 1—J to quantify the quality of pulses. For a given
target V, certain values of duration 7" will be too small for the
optimizer to find a high-fidelity pulse, in which case a larger
T is needed. In our work, the “gate duration” for a gate V'
refers to the shortest 7' for which the optimizer converges to
our target fidelity.

13)

C. Choosing optimization parameters

We observe that for high-dimensional quantum optimal
control problems, it is generally difficult to specify a set of
optimization parameters that guarantees finding high-fidelity
pulses. Parameters such as [V, the number of B-splines per
pulse, must be large enough to give the optimizer freedom,
while not so large as to introduce unnecessary local minima
in the highly non-convex search space. In the following
subsection, we describe and justify the decisions we made
to choose significant optimization parameters.

The carrier frequency and B-spine envelope parameteriza-
tion of the control pulse has two benefits: It reduces the

dimensionality of the pulse, and additionally allows us to
easily target the desired state transitions in the qudits by using
carrier frequencies directly corresponding to the qudit states.
In the lab frame, the Ny carrier frequencies

Q}céf?:wk‘*‘jfk’ j=0,...,d—2 (14)

correspond to the resonant frequencies of qudit k. For instance,
Q% is the frequency of the |2) — [3) transition for qudit
1. For a two-qudit gate, each control pulse includes the
complete set of 2(d — 1) carrier frequencies in order to make
use of the cross-resonance effect [23], [24], where driving
one transmon at a resonant frequency of the other transmon
triggers a state transition in the latter. We choose not to
correct these frequencies to account for the weak coupling
between the transmons, since the small corrections fall inside
the widths of the respective Fourier peaks of pulses with finite
duration. From experience, we have found that considering
all (d — 1)? true resonant frequencies significantly increases
the complexity of the problem without providing a noticeable
improvement.

Given the fixed set of 2(d — 1) lab frame carrier fre-
quencies Q}:?, we choose the average frequency as the ro-
tating frame frequency w, = (Q2b 4+ Qlab)/2 which is
equal for both qudits (the coupling term is then constant in
time, as shown in (11)). This minimizes the magnitude of
the carrier frequencies in the rotating frame, allowing the
optimizer to choose larger discrete time steps and decreasing
overall optimization run time. As an example we consider
two qutrits (d = 3). The lab frame carrier frequencies are
Qb /2m € {4.914,4.584,5.114,4.784} GHz, where the first
two correspond to the two resonant frequencies of transmon 1
and the latter two to the resonant frequencies of transmon
2. The rotating frame frequency is w,/2rm = (5.114 +
4.584)/2 GHz = 4.849 GHz. Thus, the carrier frequencies in
the rotating frame are given by Qy, ; /27 = (Q}j‘? —wy)/2m €
{0.065, —0.265, 0.265, —0.065} GHz.

The number of B-spline basis functions N, determines how
fast the pulse envelope can vary over time (see Figure 2).
While a larger number may enable shorter-duration pulses,
this will increase the dimensionality of the problem, as well as
introduce non-carrier-frequency control pulse oscillations. We
choose N, = [T/(10ns)] + 2 (where [.] denotes the nearest-
integer function) for two reasons. First, we want to maintain an
approximately constant B-spline density when varying 7' for
consistency between different optimization problems. Second,
this choice guarantees a minimum envelope rise time of around
15 ns, which is realistic in experiment [20]. The term +2
accounts for B-splines on the time domain boundaries, which
are always set to amplitude O in Jugbox’s implementation to
ensure that the final pulse starts and ends at 0.

The parameter auyax limits the amplitudes of the individual
B-splines, effectively limiting the maximum amplitude of the
final pulses. This is needed to ensure weak driving [25],
which increases the accuracy of approximate models like (11).
Additionally, limited power reduces the risk of leakage into
guard levels due to off-resonant transitions. We aim for lab



frame pulse amplitudes of at most 40 MHz and achieve this
by tuning qupay /27 = 40/(2v/2N;) MHz.

We set error_threshold, the target gate infidelity, to
10~3, corresponding to a fidelity of 99.9%. The optimization
terminates if the pulse fidelity reaches this target.

Finally, the parameter max_iter limits the number of
iterations of the optimizer if it does not terminate early due to
reaching error_threshold. This variable must be set suf-
ficiently large to ensure that the optimizer has converged very
nearly to a local minimum, and is generally set experimentally
depending on the dimension and target unitary (typically in the
range 200...1000).

IV. GATE DURATION OPTIMIZATION

In this section we describe our method for finding the
shortest-duration, high-fidelity pulse for a given target unitary.
Optimal control software generally works with a fixed pulse
duration, so finding the shortest high-fidelity pulse involves
repeated optimizations at different durations.

By default, each optimization begins with a random guess
for the coefficient vector & within some bounds for each
coefficient (typically £amax/100 or £unax/10). Due to the
non-convex nature of the optimization space, it is generally
good practice to try multiple initial guesses if the first does
not work and the fidelity seems relatively close to the goal
fidelity.

A. Naive approaches to duration optimization

We first introduce two simple approaches to finding optimal
gate durations, the exhaustive method and the binary search
method, and explain their downsides. The exhaustive process
begins at some low T = Ty, and increases 7' at a fixed
interval, running an independent random-guess optimization
for each duration, until one value of T yields a high-fidelity
pulse. While this method will work (at least for low-dimension
qudits), it is computationally inefficient, motivating the second
approach: a binary search. This method involves specifying
Thnin and 11,5 and then optimizing in a binary search pattern
within the bounds, decreasing T if optimization succeeds and
increasing if it fails (still running an independent, random-
guess optimization at each duration) until reaching the speci-
fied granularity.

While these approaches are relatively effective for small
qubit-based gates, they both have problems when transition-
ing to high-dimensional qudit gates. Larger qudit dimension
significantly increases computational cost of solving the opti-
mization, which means the exhaustive method can potentially
be very computationally expensive if the starting 7' is far below
the shortest convergent duration. The binary search method is
more efficient, but individual long-duration optimizations near
Thax Will still be quite expensive if T}, is large.

However, the more significant issue is the increased com-
plexity of the optimization space for higher qudit dimensions.
We find that random guesses become less effective at consis-
tently converging to the optimal solution for a given 7', as we
show in Section IV-D.

B. Incremental Pulse Re-seeding

We have developed an optimization scheme to address both
of these problems. The key idea is to reuse the coefficient
vector @ from failed optimizations as a seed for the next. For
example, if a pulse of duration T converges to a fidelity of
99.5%, we can reuse this pulse as the starting point for an
optimization at duration T + 9, which we find to have a better
chance of converging to 99.9% fidelity than a random guess.

Depending on the success of the optimizer to find a high-
fidelity pulse for a certain duration, our algorithm changes the
duration for the next iteration by a discrete time step and reuses
the previous pulse (by extending or truncating it to fit the new
duration) as a seed. The step size decreases as the algorithm
approaches the final solution. We therefore call this scheme
Incremental Pulse Re-seeding (IPR). The variables used in [IPR
are listed in Table II, and a flowchart of the method is shown
in Figure 3. We denote an optimized pulse as “successful” if
it has fidelity greater than our goal fidelity, and “failed” if not.

TABLE II

VARIABLES USED IN INCREMENTAL PULSE RE-SEEDING
Symbol Description
Tstart First duration tried by optimizer
step Time step to increase/decrease by
granularity Minimum step size
Aguess B-spline coefficients of initial guess pulse
error_threshold | Target infidelity

The program starts from an initial duration T, With a
random guess dguess- A flag variable found_time, which
indicates if a successful pulse has been found before, is set
to false. The optimizer then converges to a solution & with
fidelity F'. If the converged pulse is of sufficiently high fidelity,
the solution is stored as @est, the duration is stored as T} ot
and found_time is set to true. We then reduce the gate
duration by the step size and re-seed the optimizer with a
truncated version of @'yest that fits the new duration. Figure 1
shows an example of a pulse being truncated and re-optimized.

If the target fidelity is not met, but a successful pulse
has been found before, we decrease the step size and repeat
the above steps, starting from Ties; — step with dguess =
truncate(@pest). This only happens if the step size is
larger than the predefined granularity limit (in our case 1ns);
otherwise, the algorithm terminates and returns the converged
result with the shortest duration.

If the optimized pulse does not meet the target fidelity, and
no successful pulse has been found before, we increase the
duration and re-seed the optimizer with an extended version
of the previous pulse, for as long as the fidelity increases with
each optimization. If the fidelity decreases (compared to a
shorter duration) before any solution is found, we start the
entire procedure with a new random (guess. In this case we
set Titart = Thest, the duration for which fidelity was highest.

C. Example: H4 gate

As an example, we present an application of Incremental
Pulse Re-seeding to find the optimal duration of the d = 4



T := Typart
Olguess := random()
found_time := false
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(b)

o re-seed
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Thest :=T
T := T+step
Glguess := extend(a)

Did F increase

. —Yes:
from last time?

T := Thest
Qguess = random()

®

Fig. 3. The Incremental Pulse Re-seeding process. (a) The problem is initialized with a random pulse and duration guess Tstart. (b) The main optimization
function, which searches for the highest-fidelity pulse for a given duration using Jugbox, returning an optimized pulse & and a fidelity F'. (c) If an optimization
succeeds, save the duration and pulse, then decrease 71" and start from a truncated version of the successful pulse. (d) If an optimization fails but a successful
pulse has been found in the past, decrease step size and work backwards from T},.s¢ again; if step size has reached granularity, return best pulse. (e) If no
successful pulse has been found so far, but fidelity improved, mark this duration as the best so far, extend the duration, and re-seed with the extended previous
pulse. (f) If no successful pulse has been found and fidelity decreased, restart the whole process with the highest-fidelity duration and a random guess
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Fig. 4. Applying Incremental Pulse Re-seeding (IPR) to find the shortest duration for the H4 gate. (a) Visualization of attempted durations during the IPR
procedure, with the chronological order of steps indicated by the colored numbers. Green (red) arrows represent steps that did (did not) lead to meeting the
pulse target fidelity of 99.9%. Starting from Titare = 70 ns and a time step of 8 ns, three pulse extension and re-optimization steps are required before the
target fidelity is first reached at 94 ns. The duration is then reduced to 78 ns by successfully re-seeding with truncated pulses. After step 6 the time step is
halved because re-optimizing at 7" = 70 ns with the truncated pulse does not meet the target fidelity. Repeating this scheme leads to the final duration of
Tgate = 76 ns, highlighted by the star, as after step 10 the time step falls below the granularity of 1ns. (b) Plot A shows the optimized pulse after IPR step
2. A new seed for the optimization at 7" = 94 ns is generated by extending the previous result in duration (A*). At 94 ns the target fidelity is met, so the
optimized pulse is truncated (B*) and used as a seed for the second 7" = 84 ns optimization, leading to the successful result shown in C



Hadamard gate H,4 (see (7)). Figure 4(a) shows the sequence
of IPR steps, where the chronological order is given by the
numbered arrows. Red arrows represent steps that failed to
reach the target fidelity of 99.9%, while green arrows indicate
success. We start at Tg¢,,¢ = 70 ns with an initial time step size
of 8ns and a random guess for the coefficient vector &. The
fidelity of the optimized pulse falls short of the target, so IPR
extends the output pulse and uses it to seed the optimizer at a
longer duration (step 1). This occurs two more times (steps 2
and 3) before a pulse that reaches the target fidelity is found
at T' = 94ns. In step 4, this solution is then truncated and
used to revisit 7' = 86 ns. This time the optimization task is
successful, so the duration can be further decreased (step 5),
resulting in another high-fidelity pulse at 78 ns. 7' = 70 ns fails
to converge to a the target fidelity, so the time step is halved
and IPR tries 74 ns instead (step 7). After few more steps, the
minimum step granularity is reached, and Tg.te = 761ns is
found to be the shortest duration to realize the H, gate with
99.9% fidelity. It is important to note that durations 78 ns and
86 ns both initially resulted in failed optimizations, but then
succeeded when re-seeded with truncated successful pulses.

guard states
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Fig. 5. Evolution of state populations when applying the H4 pulse of shortest
duration (76 ns) to a qudit with d = 4. Every computational basis state
is transformed into superposition of all four basis states with nearly equal
population, deviations only arising from the remaining 0.1% infidelity. At all
times the populations of the guard states |4) and |5) are below 2 x 10~2 and
10795, respectively.

With the help of Figure 4(b), we take a closer look at steps
3 and 4 to explain how pulses are extended and truncated.
Initially (plot A), we have an optimized 86 ns pulse that falls
short of the target fidelity. The controls p(¢) and ¢(t) are
numerically extended by appending 8ns of idle time (zero
amplitude pulse). The number of B-spines IV} changes due to
the duration change, so we obtain the new coefficient vector
Olguess DY applying a least-squares fit according to (12) with the
new number of B-splines. The approximation introduces small
distortions, as can be seen in plot A*, because the manually
modified control functions are not perfectly realizable with
the given parameterization. The following optimization (plot

B) meets the target fidelity, so the pulse is truncated to 86 ns
and re-parameterized (plot B*). Plot C shows the converged
pulse after step 4, which successfully reaches 99.9% fidelity.
Together, the series of plots (where A and C are both at
duration 86 ns) shows how a new minimum was found after
visiting 94 ns and then revisiting 86 ns with a better guess.

Figure 5 visualizes the evolution of the basis state pop-
ulations for the shortest pulse of 76ns. It is clearly visible
how an equal-population superposition emerges in every case,
and the small imperfections at the final time come from the
remaining 0.1% infidelity. The populations of the guard states
cannot be seen because they are suppressed by multiple orders
of magnitude. This guard state suppression is achieved by
the carrier wave parameterization method, which allows us
to selectively induce state transitions.

D. Comparison with random guessing

For the Xg gate (see (7)), the IPR scheme finds a shortest-
duration pulse of 195 ns with target fidelity 99.9%. To compare
our approach with a naive approach, we run 20 random-
guess, single-duration Jugbox optimizations at every 5ns
between 180ns and 230 ns, where the components of @guess
are sampled from [—0.1laumax, 0.10max]- Figure 6 shows the
distribution of pulse fidelities achieved by this naive random
guessing across a range of durations for the same gate, with
20 random attempts at each duration.

IPR best IPR best
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Fig. 6. Distribution of naive random-guess optimizations of the Xg gate
for invididual durations between 180ns and 230 ns. Each boxplot consists
of 20 fidelities from 20 individual Jugbox optimizations, with the blue line
indicating the median value, the box indicating the middle 50% of fidelities,
and the whiskers indicating the full range of values. (a) The full data, showing
a general increase in fidelity as duration increases. (b) Focusing on the area
of interest (fidelities close to 99.9%). The IPR scheme outperforms random
guessing, finding a minimum duration of Thesy = 195 ns at 99.9% fidelity,
whereas none of the 20 random guesses at that duration reached the same
fidelity.

It is evident that there is significant variation in the naive
approach; no random-guess optimizations converged to 99.9
fidelity at 195 ns, and only 8 out of 20 random guesses con-
verged to 99.9% fidelity at 200 ns. Even for larger durations
such as 215 ns, not all guesses converged to the target fidelity.
This is clearly a problem for binary-search-based methods,
which implicitly assume that a given duration will either
always succeed or never succeed. In contrast, over ten IPR runs
(with Tytare sampled from [160, 240] ns; see Section V-A), we
find an average duration of 198.6 ns and a standard deviation
of 3.0ns. This small standard deviation given the large range



of starting times is evidence that our method is more stable
than random guessing for large Hilbert space optimizations.

V. QUDIT PULSE RESULTS

Previous work [6], [7] has shown that breaking the qubit
abstraction in quantum circuits can lead to substantially
reduced circuit complexity involving fewer ancilla, making
qudits promising candidates for quantum computation. How-
ever, these improvements can only be practical if the gate
duration overhead does not scale poorly with the Hilbert space
dimension while still maintaining high gate fidelity. In this
section we investigate this relation by explicitly constructing
short duration pulses of at least 99.9% fidelity for one- and
two-qudit gates using Incremental Pulse Re-seeding (IPR).

A. Single-qudit gates

We consider the single-qudit gates X4, X3, Hy and Ty
presented in (7) for dimensions d = 2, ..., 8. In each case we
include two guard levels to account for and suppress leakage
into higher energy states. Expecting short gate durations, we
choose Tyiart = 50ns for the qubit and qutrit (d = 3) cases,
and use the resulting shortest durations to estimate Tgiart
for higher d with a linear extrapolation. We set step to
the power of two nearest to 0.1 7.4 because this results
in integer durations. Having found durations Tj,.s; for every
dimension, we then run IPR repeatedly with starting durations
randomly chosen from [0.8 Thest, 1.2 Thest] to identify other
local minima and reduce the gate time further, as well as to
measure the uncertainty of the method.

Figure 7 shows the minimum single-qudit gate durations
found over ten IPR runs for each dimension. The durations
for the generalized gates X4, X and the Hadamard gate, Hy,
scale similarly with the qudit dimension. We suspect that the
generalized T; gate can be realized in lower time at higher
dimension compared to the others because it only causes a
change in phase, not in state populations. For this gate, we
observe that the best pulse found for d = 7 is of shorter
duration than the d = 6 pulse, when the reverse is intuitively
expected. This discrepancy suggests shorter pulses may exist
and indicates a highly complicated optimization space. The-
oretical studies [12] have shown that optimal gate durations
scale asymptotically with O(h?), where h is the dimension
of the Hilbert space. We therefore fit each sequence of data
points with a quadratic polynomial Tyyad(d) = ad? + bd + ¢
(solid grey lines) in d = h to compare our findings with
the theory. Furthermore, the layout of the data also motivates
linear regression, so we investigate the performance of a linear
model Tji(d) = bd + ¢ (dotted grey lines) as well. The fit
coefficients and their standard deviation estimates are given
in Table III, where for each gate the first line corresponds
to the linear fit and the second line to the quadratic fit. The
quality of each regression is quantified with the coefficient of
determination R2.

The near-ideal R? values for quadratic fits to Xy, X and
H, indicate that the quadratic models describe the empirical
scaling behaviors for these gates very well, which agrees with

TABLE III
LINEAR AND QUADRATIC FIT COEFFICIENTS FOR SINGLE-QUDIT GATE
DURATIONS
Gate a[ns] b[ns] c[ns] R?
X, 26.79 £ 1.16 —26.07 £6.23 0.991
1.48 £0.12 12.02 £1.18 4.93 + 2.67 1.000
X 28.64 + 1.26 —29.79 £6.78 0.990
d 1.60 £0.16 12.69 £+ 1.60 3.71 + 3.63 1.000
H 26.04 = 1.05 —24.61 £5.68 0.992
d 1.15+0.36 14.49 + 3.66 —0.36 £ 8.28 0.998
T 14.36 £ 1.37 14.36 £ 7.36 0.957
d —0.38+0.86 | 18.17 £ 8.74 6.36 £ 19.78 0.959

the theoretical predictions. However, we emphasize that linear
scaling models capture the essential behavior in this low-
dimensional regime (compared to asymptotic considerations)
in good approximation too, deviating from the duration points
by less than 5ns on average for those three gates. Barely
any difference between quadratic and linear regression is
noticeable for the T; gate, but the more scattered data points
lead to a reduced R? value and larger uncertainty. Additionally,
the fit parameter ¢ < 0 indicates an unrealistic scaling of
pulse duration because this leads to negative durations in the
limit of large d. Ty is a good case study in the interplay
between theoretical expectations and empirical realizations.
Specifically, the poor fit obtained here indicates that for many
values of d, these gate durations may overestimate the optimal
gate times.

This result of essentially linear scaling over the practical
range of qudit dimensions has promising implications for the
current era where qudit experiments have been conducted
successfully [8]-[10]. It suggests that the computational ad-
vantage single-qudit gates can provide is not outweighed by
pulse time overhead.

B. Two-qudit SWAP gate

For the two-qudit case we consider the generalized SWAP
gate, which fully swaps the state amplitudes between the
qudits. In many architectures, this is an important operation
for communication, as limited connectivity between devices
requires quantum information to be moved around repeatedly.
We apply IPR to find SWAP durations for two qudits of
dimensions 2, 3, and 4, with corresponding Hilbert space
dimensions 4, 9, and 16, respectively. We limit our analysis
to these three cases because simulating the evolution of two
qudits with d > 5 (plus guard states) becomes very resource-
expensive. We use two guard states for dimensions 2 and 3
and only one guard state for 4 due to the large Hilbert space.
As in the single-qudit case, each data point is the minimum
duration from ten IPR runs with different Ty, values.

Figure 8 shows shortest-duration results for the SWAP gate
with respect to the Hilbert space dimension h = d?. Given the
small number of points, we do not attempt a fit, but note that
the points appear nearly linear, as was the case with the single-
qudit gates. It is worth noting that fully swapping the states
of two ququarts (d = 4) is slightly less expensive (1128 ns)
than performing two sequential SWAP operations on qubits
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Fig. 7. Dependence of single-qudit gate durations from qudit dimension d. The four gates are defined in (7). Each data point shows the minimum duration of
applying Incremental Pulse Re-seeding (IPR) from ten different starting times. The unexpected discrepancy between d = 6 and d = 7 for the generalized Ty
gate suggests a highly complicated optimization space and shows that shorter pulses for some d values may be possible. For each gate the scaling of duration
with dimension d is analyzed with quadratic and linear regressions, where the latter is less accurate but captures the essential behavior in this low-dimensional

regime. The fit coefficients are presented in Table III.
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Fig. 8. Gate durations of two-qudit SWAP operations for qudit dimensions
d = 2,3,4. The horizontal axis corresponds to the dimension of the full
Hilbert space, h = d2. Due to the low number of data points, regression is
not applied, but a near-linear trend is visible.

(581 ns + 581 ns = 1162 ns). Given that a single ququart has
the same information capacity as two qubits, this represents
an efficient way of moving quantum information. Additionally,
given that the d = 4 SWAP optimization space is much more
complex than the qubit case, we expect that this duration could
be further decreased through more sampling or fine-tuning.

VI. DISCUSSION

We have presented the Incremental Pulse Re-seeding (IPR)
scheme, an efficient method for finding short-duration pulses
for quantum optimal control tasks, which performs better than
random-guess based methods for large Hilbert space gates. We
use this method together with the optimal control software
Jugbox to demonstrate that single-qudit gate duration scaling
is nearly linear for several useful gates, with dimension up to
d = 8. We also show that the two-qudit SWAP gate appears
to follow a similar trend for Hilbert space dimensions up to
d? = 16.

We emphasize that while Incremental Pulse Re-seeding
helps to make intelligent initial pulse guesses for the optimizer
during intermediate steps, it does not eliminate the possibility
of converging to a local infidelity minimum. As quantum
optimal control problems are typically underconstrained, dif-
ferent initial guesses can converge to different solutions. In
our case, this means starting IPR with different values for
Titart and dguess may result in slightly different gate durations.
However, as an example, our simulations show a relatively

small variation in gate duration of 4.69ns on average for
single-qudit gates, underlining the advantage of our algorithm.

Our results prompt several directions of future research:

e The efficiency of qudit gates motivates further explo-
ration into quantum circuits that explicitly use qudits for
computation, such as the asymptotic ancilla reductions
achieved in [6] and [7]. The computational advantages of
qudit circuits may allow NISQ devices to solve previously
intractable problems.

o In this work, we consider the generalized SWAP two-
qudit gate, which appears to scale nearly linearly for
small qudit dimension. This result encourages analysis
of duration scaling for more two-qudit gates, such as the
SUM gate (a generalization of CNOT) from [15].

o The presented results are based on a system Hamiltonian
modeling superconducting transmons. We emphasize that
our approach is not limited to this specific case and could
be directly applied to optimal control problems across a
wider class of quantum systems.

e Our optimizations use an approximate Hamiltonian in a
closed system (governed by the Schrodinger equation).
For a more accurate measure of gate duration scaling,
similar experiments are needed in an open system, where
errors can be modeled more realistically. This can be
achieved by describing the dynamics with the GKSL
master equation [26], [27]. In addition, benchmarking
the performance of qudit pulses on actual noisy quantum
architectures would help to investigate the accuracy of
models employed. Optimizing control pulses to specifi-
cally mitigate the increased sources of errors from oper-
ating on higher energy levels may lead to making qudit
computation practical.

Overall, our work highlights the potential of qudit-based
computation in the future and provides an effective method
for finding short-duration qudit pulses. We find high-fidelity
pulses of low duration for both one- and two-qudit gates with
nearly linear scaling in the hardware-practical regime, suggest-
ing that qudit computation can offer significantly increased
efficiency compared to qubit-only circuits.
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