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Abstract

Strategies for multiple-level parallelizations of quantum-mechanical calculations are
discussed, with an emphasis on using groups of workers for performing parallel tasks.
These parallel programming models can be used for a variety ab initio quantum
chemistry approaches, including the fragment molecular orbital method and
replica-exchange molecular dynamics. Strategies for efficient load balancing on
problems of increasing granularity are introduced and discussed. A 4-level
parallelization is developed based on a multi-level hierarchical grouping, and a high
parallel efficiency is achieved on the Theta supercomputer using 131,072 OpenMP
threads.

1. Introduction

Quantum-mechanical (QM) methods * can be used for describing various

physicochemical properties in molecular systems. Boosting scalability and efficiency of
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QM methods is challenging due to the non-uniform granularity of work, for example,
electron repulsion integrals (ERIS) computed in terms of atomic basis functions. There
is a variety of massively parallel QM programs, such as NWChem,?> NTChem,?
OpenFMO,* Smash,®> and Molcas® to name just a few.

A message passing interface (MPI) library optimized for a particular hardware
can be used for parallelizing QM code. MPI can be combined with OpenMP in a hybrid
parallel programming model, in which MPI handles multiple nodes efficiently while
OpenMP uses CPU cores in each node. OpenMP can create and destroy teams of
lightweight threads with low overhead, which can share memory reducing its footprint

compared with the use of private replicated memory in MPI.

In a parallel QM computation, the entire set of compute nodes is
conventionally used to process one task after another. There are, however, scenarios in
QM calculations, where multiple loosely connected tasks can be done nearly
independently. Typical examples of such tasks are numerical gradient and
fragment-based QM methods.” In a fragment-based method, computing single point
energy of fragments one by one using all nodes is not the most efficient approach. A
large speedup can be gained by distributing these relatively independent tasks over

groups of compute processes. For instance, by using groups, an fragment molecular



orbital (FMO) energy calculation of (H20)256 was accelerated by a factor of 93. 8

The independent nature of computational tasks facilitates localizing
communications within groups of workers, and tasks are distributed among these groups.
Such a group-based model can be implemented using a communicator splitting
inherently available in MPI, which has been used in various quantum chemistry
programs, for example, in ABINIT-MP®10 efficiently ported to the K and Fugaku®?

supercomputers.

The use of groups can lead to a significant benefit in performance. However,
there are also particular problems that arise due to the load balancing of tasks of
different sizes. In this paper, a 4-level parallelization technique is developed that can
significantly improve load balance and enhance computational efficiency on massively

parallel computers.

2. Methodology

Many QM methods implemented in general atomic and molecular electronic structure
systems (GAMESS)*415 are parallelized on both CPUs and GPUs!171818 |n this

work, mainly CPU parallelizations are described, but GPU usage is also briefly covered



separately. For clarity, the definition of terms used in this paper is provided in Table 1.

Table 1. Definition of terms.

Term

Definition

Physical node

A computing unit containing one or more processors, such as a
single standalone Unix computer.

Logical node A fraction of resources (CPU cores) in a physical node.

DDI The parallel library used in GAMESS. Loosely speaking,
DDI=MPI and DDI=(socket library) are the two most commonly
seen implementations, but there are others (DDI=ARMCI).?°

DDI process An instance of a program running in parallel with other likewise
instances. Each DDI process has its own resources (files,
network connections, and memory).

DDI rank A serial number identifying a DDI process.

Data server process

A DDI process running GAMESS executable that serves data
(shared arrays) to compute processes and handles their parallel
operations.

Compute process

A DDI process running GAMESS executable that does QM
calculations, so it is also called a worker.

Thread A lightweight process executing a particular parallel task,
spawned by a DDI process.

Group A set of DDI processes doing a parallel task together. Although
customarily the group size refers to compute processes only, in
fact, a group includes both compute processes and data servers.

Scope A span of DDI processes over which a parallel operation is

executed; group, world, and universe and the main scopes.

2.1 Load balancing

Load balancing refers to dividing work among DDI processes and/or OpenMP threads.




With a multi-level parallelization, work can be divided among groups at various levels.

In GAMESS, there are two main strategies, static (SLB) and dynamic (DLB)
load balancings, which are chosen by setting the value of the BALTYP keyword to SLB
or DLB. In the SLB, work is divided according to a predefined index, irrespective of the
actual progress. As a result, many workers finishing ahead of others have to wait at a
synchronization point. In the DLB, each worker asks for the next task whenever it is

idle. Despite the extra bookkeeping cost,, DLB is usually the more efficient.

Besides the SLB and the DLB, there is a more sophisticated preoptimized work
load balancing scheme, known as heuristic static load balancing (HSLB).?! In HSLB,
work indices are assigned based on a procedure optimizing the predicted cost of tasks.
modeled by a polynomial of the number of basis functions M. However, the cost may
not be a simple function of M, and also depend on the polarizing environment that can
affect the number of self-consistent field (SCF) iterations. HSLB does not use dynamic
counters, which may be costly on massively parallel computers. Instead, HSLB uses

static load balancing, with a group division designed with the aid of external programs.

The load balancing can be more complex when heterogeneous computers are

used, as in grid computing. Here, an efficient load balancing scheme should take into



account not only the task size but also the computational capability of workers.??

Machine learning techniques can be used to improve load balancing.??

It is advantageous to mix SLB and DLB schemes in the semi-dynamic load
balancing (SDLB),?* used for a set of tasks, when few tasks are expensive, and the rest
are cheap. Examples are fragment-based computations of a large solute with small
solvent molecules, or a large ligand bound to a protein divided into small amino acid
residues. Another scenario is when some fragments use a QM method with a very large
computational cost. This occurs in fragment-based multiconfiguration SCF (MCSCF)?®
and time-dependent density functional theory (DFT), TDDFT,? where only one
fragment is computed with these high scaling methods, and the rest are treated with
much cheaper Hartree-Fock (HF) or DFT. SDLB is chosen in GAMESS by setting the
BALTYP value to DLB. In addition, LOADGR defines the number of static groups and

LOADBF sets the size of tasks considered large.?’

For the case when tasks have very different cost, it is efficient to use large
groups for expensive tasks, and small groups for small tasks. The DLB scheme is not
efficient in this case because there is no guarantee that expensive tasks are assigned to

large groups. In SDLB, SLB is used to assign large tasks to large groups statically, while



DLB is used for a dynamic distribution of small tasks over small groups. After finishing

their tasks, SLB groups switch to DLB and processing the remaining small tasks.

2.2 One-level parallelizations

One-level parallelization corresponds to the most simple, flat model of parallelization in
which there is just one set of workers assigned to do tasks one by one.

2.2.1 Distributed Data Interface

The distributed data interface (DDI)?® is used in GAMESS as a front end hiding
specific parallel library details from the use of parallel functionality in QM calculations.
DDI can be implemented based on a native socket library or MPI. Almost all QM
methods in GAMESS are parallelized using DDI. DDI offers a flat one-level
parallelization when all nodes work together as one team. In DDI, two processes are
typically executed per core, one doing calculations and another doing parallel
communications (data server). The number of compute processes used in DDI is set in
the running script rungms, passed to the kickoff program (ddikick for sockets and
mpirun for MPI).

2.2.2 OpenMP

There were two independent OpenMP implementations?®**° of GAMESS in private

versions prior to the first official release of OpenMP. Although OpenMP can be used as



a one-level parallelization (one compute process spawns multiple threads), such runs are
a particular case of a more general two-level parallelization, described below. The
number of OpenMP threads is defined by setting the value to the OMP NUM THREADS
variable in the running script rungms.

2.3 Two-level parallelizations

A two-level parallelization can be achieved either by using groups of DDI processes or
in a hybrid DDI/OpenMP model.

2.3.1 Generalized distributed data interface

world

group 0 group A-1

Figure 1. 2-level parallelization in GDDI/2 for dividing all nodes (world) into K groups.
Workers are shown as blue boxes. The master process in each group is in a red box.
Tasks assigned to groups are labeled as FI.

Generalized distributed data interface (GDDI)8 was developed to enable a two-level
parallelization, so it is denoted by GDDI/2. GDDI is a modification of DDI, where

compute nodes can be divided into an arbitrary number of groups N, by setting



NGROUP=N. Groups are assigned suitable computational tasks such as individual
water molecules in a water droplet. Within each group, work is distributed among
compute processes (Figure 1).

It is possible to create groups of equal size (e.g., the same number of compute
processes), or groups of customized sizes (with the MANNOD keyword in $GDDI
listing the size of each group). The customized group setting can take into account
various physical node sizes in heterogeneous computing.

To overcome a limitation of GDDI that only whole nodes are divided into
groups, it is possible to split physical nodes into logical nodes. These logical nodes may
then be divided into groups. For example, by listing a node twice with a halved number
of cores, two logical nodes can be created. For MPI, alternatively, logical node splitting
can be done inside DDI by an environmental variable DDI LOGICAL NODE SIZE.

One of the main features of DDI is to provide handling of distributed arrays
allocated across multiple compute nodes. GDDI also supports distributed arrays in the
scope of DDI ranks in a group (referred to as a group communication), or DDI ranks
across all groups (a world communication). Parallel operations such as a global sum or a
broadcast, can be performed in the scope of a group or among all groups (world).

The load balancing in GDDI takes place in the world or group scope. In the



world scope, fragments (or molecules) are distributed over groups. In the group scope

(the load balancing controlled by the keyword BALTYP in the group $SYSTEM), work

is divided among compute processes in each group. The load balancing at the world

level (controlled by BALTYP in $GDDI) is handled by the data server of the lowest

rank. In massively parallel environments with a huge number of tasks, this bookkeeping

creates a heavy burden on the data server process, which can slow down the whole

calculation.

To deal with this problem, an improved scheme of DLB can be used, in which

an index of a global counter refers to blocks of tasks rather than single tasks. The size of

the block of tasks is chosen with the keyword NUMDLB. The number of global counter

requests is thus reduced by a factor of NUMDLB.

Applications of GDDI/2 are summarized in Table 2. They encompass a variety

of methods featuring a granularity of tasks suitable for a two-level parallelization.
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Table 2. Two-level parallelization of QM methods using GDDI/2.2

Method Upper level References
Fragment molecular orbital (FMO) fragments 31,32
Effective fragment molecular orbital (EFMO) fragments 33,34
Replica-exchange molecular dynamics (REMD) replicas 35
Umbrella sampling molecular dynamics (USMD) | windows 35
Replica-exchange umbrella sampling (REUS) replicas 36
Numerical gradients shifted molecules 8
Vibrational self-consistent field (VSCF) molecules on a grid | 37,38
VeraChem method 2 (VM2) conformers 39
Divide-and-conquer (DC) subsystems 40
Dynamic nucleation theory (DNT) Monte-Carlo chains | 41,42

2 A lower levels task is usually an integral batch.

2.3.2 One-level parallelization using GDDI

A one-level parallelization can be carried out using DDI. There are two other ways to

perform one-level parallelization in GAMESS using a particular running mode of

GDDI/2, denoted by GDDI/1. The first one (one-core groups) is to use N groups

consisting of a single compute process created with NGROUP=N. The second way

(split group) is to use a single group in GDDI, splitting it internally (NGROUP=1

NSUBGR=-1), so that each process behaves as if it is an independent group. These

GDDI/1 running modes are often used for FMO based density-functional tight-binding

(DFTB) calculations,**#* where it is advantageous to use a single compute process per

fragment.
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The two GDDI/1 models have usually a very similar performance, but a
different handling of OS limitations (of the maximum number of processes etc). Of the
two, the split group model is usually the better one.

2.3.3 DDI/OpenMP

An alternative way of doing a two-level parallelization is offered by a combination of
DDI with OpenMP. The socket-based DDI cannot be properly used with OpenMP, so
DDI/OpenMP usually means MP1/OpenMP.

The MPI version of DDI with the multiple type of thread safety (controlled by
the MPI THREAD MULTIPLE environmental variable in a running script) can be used
with OpenMP. DDI/OpenMP enables a two-level parallelization, where DDI compute
processes are used for coarse-grained work distributions, while threads in OpenMP are
used for actual computations.

A typical use of DDI/OpenMP is for nested loops. Figure 2a shows an outline
of a parallel ERI evaluation. The outermost loop is distributed over DDI processes (lines
1 and 2) using either SLB or DLB, while inner loops are processed by OpenMP threads
(lines 3-5). The inner loops are usually merged into a single flat loop for a more
efficient work distribution. In OpenMP, rectangular loops can automatically be merged

using the collapse clause (e.g., collapse(2) in Line 3).
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8 o DO LSH = 1,LMOD
9 CALL ERI(ISH,JSH,KSH,LSH)
BN ENDDO
ININE - ENDDO
Lz ENDDO
13 ‘ENDDO
(b)
1 I Single layer loop

CALL TASK(ITI)

TDO IT=1,NTASKS
ENDDO

oy o W D

I Distribute over DDI compute processes
DO ICHUNK=1,NCHUNKS
|Somp parallel do schedule (dynamic)
= DO ITI=NTASK START, NTASK END
CALL TASK(II)
- ENDDO
-ENDDO

-]

= O W W

=
[

Figure 2. Two-level DDI/OpenMP parallelization implementation for (a) nested loop
and (b) single loop in lines 2-4 is replaced by lines 6-12. The DDI parallelization is
hidden (shown schematically as comments in green color). The OpenMP parallelization
is shown explicitly in red color.

One-layer loops can also be treated in a similar approach by dividing the loop
into chunks and distributing chunks over DDI processes. Each chunk is then computed
by OpenMP threads. Figure 2b shows a transformation of a single loop in DDI/OpenMP.

The original single-layer loop is in lines 1-4, and the transformed loop is in lines 6-12.
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In the transformed loop, NTASKS iterations are split into NCHUNKS, so that each

chunk contains a number of iterations from NTASK_START to NTASK_END. The

transformed loop becomes a regular nested loop. In DDI/OpenMP, the outer

NCHUNKS is distributed over DDI processes (Lines 6 and 7), and the inner loop is

parallelized by OpenMP (Lines 8 and 9).

In DDI/OpenMP, there are two layers of load balancing. The load balancing at

the DDI level is chosen by BALTYP in $SYSTEM. The load balancing in OpenMP can

be static, dynamic, and guided (the latter means dynamic with an automatically adjusted

chunk size). The dynamic schedule (lines 3 and 8 in Figure 2a and 2b, respectively) is

usually the most efficient scheme. When an OpenMP schedule is not hardwired in the

code, the default is usually the static scheme. The OpenMP schedule can also be

controlled by an environmental variable OMP_SCHEDULE set in the running script.

The OpenMP parallelization in GAMESS is summarized in Table 3.

Table 3. Methods in GAMESS parallelized with DDI/OpenMP

Method References
Hartree-Fock 45

Density functional theory (DFT) 46
Resolution of the identity MP2 (RI-MP2) 47,48
Resolution of the identity coupled-cluster (RI-CC) | 49
Polarizable continuum model (PCM) 50
Effective fragment potential (EFP) 15
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2.4 Three-level parallelizations

2.4.1 GDDI/3

universe

world 0 world Z-1
s
e ~3
g 3 ks X .
group 0 group K—1 group 0 group K-1

58

geometry L+1 geometry 2L

Figure 3. 3-level parallelization in GDDI/3 for a semi-numerical FMO Hessian. GDDI/3
divides all nodes (universe) into L worlds, each of which is further divided into K
groups. Workers are shown as blue boxes. Workers whose lowest rank in each group are

circled in red. Fragments tasks assigned to groups are labeled as FI.

A general GDDI/n model for an n-level parallelization was developed® for QM

problems of appropriate granularity. In practice, n=2 are n=3 are commonly used. In

GDDI/3, the whole set of nodes is referred to as the universe, divided into N
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GDDI/2-like worlds, which are further split into M groups using NGROUP=N

NSUBGR=M.

A three-level parallelization (Figure 3) is useful for calculations with an

appropriate structure of tasks. Their applications are listed in Table 4. It should be noted

that a semi-numerical FMO Hessian requires recalculating the whole system for each

shifted atom, because of the many-body polarization effects. In particular, the use of

GDDI/3 is essential for computations of minimum energy crossing (MEX) of two spin

surfaces with FMO. The GDDI/3 automatically resolves the problem of storing

electronic states for two spin multiplicities of each fragment, which results in an

unstable SCF convergence in the GDDI/2 model because the densities are overwritten

when multiplicity changes.

Table 4. Three-level parallelization of QM methods using GDDI/3.

FMO Method Upper level Middle level | Lower level Refs
semi-numerical Hessians | shifted molecules | fragments integral batches | 30
minimum energy crossing | spin states fragments integral batches | 51

Similarly to the use of GDDI/2 for a one-level parallelization, the GDDI/3

model can be reduced to a two-level parallelization, with group sizes of 1. Such reduced

model is sometimes employed in semi-numerical FMO-DFTB Hessians.
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2.4.2 GDDI/2+OpenMP

OpenMP can be combined with GDDI/2 providing a way to do a three-level

parallelization, as summarized in Table 5. At the highest level, fragments are distributed

over groups. QM computations of each fragment are carried out by threads spawned by

compute processes in these groups. Work distribution within each group of compute

processes and threads is similar to the description in section 2.3.3.

In GDDI/2+OpenMP, the logical node size (Table 1) is usually set to one, i.e.,

each group contains a single compute process). The number of threads spawned by each

compute process can be set by users using an environmental variable

OMP_NUM_THREADS.

Table 5. Three-level parallelization of QM methods using GDDI1/2+OpenMP.

Method Upper level | Middle level Low level References
FMO-RHF fragments | Outermost loop? Inner loops 50
FMO-RI-MP2 | fragments | Outermost loop Inner loops 30,47,48

(or chunks of loop) | (or tasks in a chunk

FMO-DFT fragments | Chunks of grid Points in a chunk 46

2 Loops are over atomic orbitals in integrals of a fragment.

2.5 Four-level parallelization GDDI/3+OpenMP

GDDI/3 can be combined with OpenMP, resulting in a 4-level parallelization, developed

in this work (Figure 4).
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Figure 4. Schematic 4-level parallelization in GDDI/3+OpenMP.
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As a demonstration, GDDI/3+OpenMP is applied to a semi-numerical Hessian
computed with FMO-RI-MP2/cc-pVDZ for a cluster of 64 water molecules (H20)s4,
divided into 64 fragments (one water molecule per fragment). Water clusters continue to
fascinate us,®>°*>* and they can be used to describe water-air interface effects.>® The
water cluster geometry was optimized using FMO2-DFTB3/D3(BJ)**® method with
30b parameters.5” The semi-numerical Hessian was calculated by doubly differentiating
analytic energy gradients,*®°® which require 64 X 3 X 3 X 2=1152 single point gradients.

Calculations were carried out using 256, 512, and 1024 Knights Landing
(KNL) nodes on the Theta supercomputer at Argonne National Laboratory. One KNL
node has 64 physical cores.

The adopted grouping strategies and the corresponding wall-clock timings are
summarized in Table 6. In order to define the numbers of worlds and groups, whose
product is equal to the number of DDI compute processes, physical nodes were divided

into logical nodes. For instance, each 64-core KNL node can be divided into 16 logical
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nodes, with each with one DDI rank allotted 4 cores. Two threads are spawned for each

physical core introducing a total of 8 threads for each DDI rank. With 256 KNL nodes,

the logical node setup results in 256 X 16=4096 DDI ranks. These ranks can be divided

into 64 worlds, each world has 64 groups (64 X 64=4096).

With this setup, 64 shifted geometries are computed simultaneously (one per

world). For each geometry, the gradient for a fragment is calculated using one DDI rank

assigned 8 OpenMP threads. The total number of threads used for this calculation is

32,768.

Table 6. 4-level parallelization strategy.

Nodes Worlds per Groups per Ranks per | Threads per | Threads,
universe world ? group? rank total

256 64 64,64 11 8 32,768

512 128 64,64 11 8 65,536

1024 128 64,128 2,1 8 131,072

& Listed separately for fragments and their pairs.

The wall-clock timings and speed-ups relative to the 256-node calculations are

shown in Figure 5. The parallel efficiency of about 88% is obtained on 131,072

OpenMP threads. Some loss of performance (~12%) is attributed to the small size of
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fragments, where the amount of work does not scale sufficiently well when the number

of threads is too large.

Comparing the original 3-level parallelization with the 4-level scheme

developed in this work, a speed-up of 4.6 is obtained (Table 7). It is attributed to the

efficient use of the extra level of parallelization. It may be expected that some

improvement could be obtained for both 3 and 4-level parallelizations by varying the

parameters (the number of worlds and groups) not fully explored because of the limited

CPU time allocation.

Table 7. Comparison of 3 and 4-level parallelization schemes on 256 nodes of Theta,
for (H20)es computed with FMO2-R1-MP2/cc-pVDZ.

Parallelization level worlds | Groups per | Ranks per Threads Timing,
world? group? per rank sec
3 (GDDI/2+OpenMP) - 64,256 4,1 64 28178.1°
4 (GDDI/3+OpenMP) 64 64,64 1,1 8 6015.9

2 Listed separately for fragments and pairs.

b Estimated for 1152 offsets from 339 computed offsets that took 8292 sec.
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Figure 5. Wall-clock time and parallel speed-up for a semi-numerical Hessian of (H20)s4 computed with FMO-RI-MP2/cc-pVDZ on

Theta (the ideal scaling is shown as the red line).
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2.6 Multi-level parallelization on GPUs

GPU can be used for parallelizing QM tasks using GAMESS interfaced with libCChem
based on CUDA. ° In the sense of multi-level parallelization, such MPI+CUDA usage
may be characterized as a 2-level model (1-level if MPI is not relevant). A number of
QM calculations in GAMESS can be parallelized in this way. *°

Another possibility is to use an OpenMP type of offloading of calculations to
GPUs. *° In the sense of a multi-level parallelization, such usage can be characterized as
other examples of OpenMP usage described above.

The use of GDDI/2-like parallelization based on MPI combined with GPUs has
been recently reported (GDDI/2+CUDA), *° which may be characterized as a 3-level
parallelization, similar conceptually to GDDI/2+OpenMP described above.

2.7 Comparative discussion of multi-level parallelizations

An important comparison is that of GDDI/(n-1)+OpenMP with GDDI/n. The former has
several important advantages and some disadvantages. Namely, GDDI/(n-1)+OpenMP
can be used for more types of calculations than GDDI/n because there are many general
QM methods with sufficient granularity for n=2 (Table 5), but only two specialized
tasks for n=3 (Table 4). DDI/OpenMP can be used for almost any QM method in

GAMESS, whereas GDDI/2+OpenMP can be employed for a limited set of QM
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methods. The use of OpenMP reduces the memory footprint because the number of
executables loaded in memory is determined by the number of DDI ranks.

There is another very important advantage of using OpenMP. With it, the
number of data servers is greatly reduced, freeing up CPU for more computations. For
example, consider a DDI run on 2 nodes consisting of 8 cores, where 16 compute
processes and 16 data servers are executed. For DDI/OpenMP, executed as 1 DDI
process per node, there are only 2 data servers, a reduction by the factor of 8. Although
some early attempts to exclude data servers were successful,?® they continue to be
employed.

The disadvantages of using OpenMP are mainly limited to the lack of OpenMP
parallelization for many methods in GAMESS. When OpenMP code is not available,
only the parallelization among DDI processes is effective, resulting in a poor usage of
CPU for these steps. In addition, some methods in GAMESS coded with older
programming models may simply fail to work when compiled with OpenMP.

2.8. Multi-level parallelization of fragment-based many-body expansions

The parallelization of FMQO®:326! or EFMO33.34 is challenging due to the use of

many-body expansions (MBE)®*® in these and many other fragment-based methods,7

resulting in the need to compute conglomerates of fragments (pairs, triples, quadruples,
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etc). Each step in these calculations has a very different number of tasks. In MBE
truncated at 3-body terms, the total energy E is contributed from the energy of
fragments (E, ), their pairs (AE,, ), and, optionally, trimers (AE,, ) :
N N N
E=)E +D> AE, + D AE (1)

= 1~ 155K

Even though the number of pairs and trimers can be linearized by the dimer
and trimer cutoff approximations RESDIM ¢4 and RITRIM®, respectively, the
multiplicative prefactors determining the number of fragments, dimers and triples as a
function of the number of fragments N are different. Consequently, the number of tasks
and their sizes are different for fragments, their pairs, and triples, which require a
different parallelization strategy for each of these steps.

In practice, the number of groups in GDDI/2 can be set via the NGRFMO
keyword in $FMOPRP, listing the number of groups for each step in the calculations,
replacing a single group count NGROUP in $GDDI. Likewise, a manual group
definition, as used in SDLB, has to be done separately for each step, controlled by
MANNOD in $FMOPRP as a continuous list for all steps, replacing a single list

MANNOD in $GDDI.

24



2.9. Massively parallel calculations on supercomputers

Multi-level parallelization in GAMESS has a high efficiency suitable for massively

parallel calculations on supercomputers. Some of these calculations on CPUs are

summarized in Table 8. With a GDDI/2+CUDA-like parallelization, FMO-RI-MP2

calculations on Summit were done on 27,600 GPUs with a spectacular efficiency.*®

Table 8. Use of multi-level parallelization on CPU-based supercomputers.

Supercomputer | CPU  cores | parallelization Method Reference
used
K computer 196,608 | GDDI/2+OpenMP | FMO-RI-MP2 30
Intrepid 131,072 | GDDI/2 FMO-MP2 65
Mira 262,144 | GDDI/2 FMO-RHF 66
Stampede?2 8,704 | GDDI/2+OpenMP | FMO-RHF 50
Theta 131,072 | GDDI/2+OpenMP | FMO-RHF 50
Theta 65,536 | GDDI/3+OpenMP | FMO-RI-MP2 | This work

In addition to big computers, GAMESS can be used for big data applications.
Several all-atom QM calculations of systems containing more than one million atom
calculations were reported.®”-%8 Such applications became possible as a result of

combing many efforts in improving the efficiency of GAMESS: file-less execution and

linearization of required memory.?’
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3. Application

The FMO-MP2 Hessian results obtained with a 4-level GDDI/3+OpenMP
parallelization on Theta as described above were processed with the partition analysis of
vibrational energy (PAVE).®®° The total vibrational zero-point energy (ZPE) was
decomposed into the contributions of individual water molecules. The results are shown
in Figure 6. It can be seen that there is some variation in ZPE depending on the local

environment in the water droplet.
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Figure 6. Zero point energy of individual water molecules in (H20)s4 at the level of

FMO-RI-MP2/cc-pVDZ, obtained with PAVE.
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4. Conclusions and outlook

Parallelization strategies up to 4 levels in complexity are developed for use in
large-scale QM calculations. These techniques have been shown to improve parallel
efficiency on petascale computers. Load balancing requires special care and must be
handled separately at each level. Various approaches to static and dynamic load
balancings have been proposed and implemented.

Owing to advances in computational science outlined above, QM calculations
can now be routinely applied to large molecular systems, such as protein-ligand
complexes.”"? Efficient parallel solutions are crucial for advancing drug discovery” 7
and material science > ’® applications. Thermochemical properties obtained from
Hessian calculations can improve the estimation of binding energy and reaction
barriers.”® Semi-analytical Hessians are needed when analytic Hessians are not available,
for example, for FMO-TDDFT’’ or FMO-DFTB with periodic boundary conditions.’®

The multi-level parallelization techniques, illustrated on QM methods
implemented in GAMESS, can be applied to other scientific applications, facing similar
performance problems. In particular, the 4-level parallelization is a promising technique

that can harness high efficiency on exascale computers such as Aurora.
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