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Abstract 

 

Strategies for multiple-level parallelizations of quantum-mechanical calculations are 

discussed, with an emphasis on using groups of workers for performing parallel tasks. 

These parallel programming models can be used for a variety ab initio quantum 

chemistry approaches, including the fragment molecular orbital method and 

replica-exchange molecular dynamics. Strategies for efficient load balancing on 

problems of increasing granularity are introduced and discussed. A 4-level 

parallelization is developed based on a multi-level hierarchical grouping, and a high 

parallel efficiency is achieved on the Theta supercomputer using 131,072 OpenMP 

threads. 

 

1. Introduction 

Quantum-mechanical (QM) methods 1  can be used for describing various 

physicochemical properties in molecular systems. Boosting scalability and efficiency of 
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QM methods is challenging due to the non-uniform granularity of work, for example, 

electron repulsion integrals (ERIs) computed in terms of atomic basis functions. There 

is a variety of massively parallel QM programs, such as NWChem,2  NTChem,3 

OpenFMO,4 Smash,5 and Molcas6 to name just a few.  

A message passing interface (MPI) library optimized for a particular hardware 

can be used for parallelizing QM code. MPI can be combined with OpenMP in a hybrid 

parallel programming model, in which MPI handles multiple nodes efficiently while 

OpenMP uses CPU cores in each node. OpenMP can create and destroy teams of 

lightweight threads with low overhead, which can share memory reducing its footprint 

compared with the use of private replicated memory in MPI.  

In a parallel QM computation, the entire set of compute nodes is 

conventionally used to process one task after another. There are, however, scenarios in 

QM calculations, where multiple loosely connected tasks can be done nearly 

independently. Typical examples of such tasks are numerical gradient and 

fragment-based QM methods.7 In a fragment-based method, computing single point 

energy of fragments one by one using all nodes is not the most efficient approach. A 

large speedup can be gained by distributing these relatively independent tasks over 

groups of compute processes. For instance, by using groups, an fragment molecular 
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orbital (FMO) energy calculation of (H2O)256 was accelerated by a factor of 93. 8 

The independent nature of computational tasks facilitates localizing 

communications within groups of workers, and tasks are distributed among these groups. 

Such a group-based model can be implemented using a communicator splitting 

inherently available in MPI, which has been used in various quantum chemistry 

programs, for example, in ABINIT-MP9,10 efficiently ported to the K11 and Fugaku12 

supercomputers. 

 The use of groups can lead to a significant benefit in performance. However, 

there are also particular problems that arise due to the load balancing of tasks of 

different sizes. In this paper, a 4-level parallelization technique is developed that can 

significantly improve load balance and enhance computational efficiency on massively 

parallel computers.  

 

2. Methodology 

Many QM methods implemented in general atomic and molecular electronic structure 

systems (GAMESS)13,14,15 are parallelized on both CPUs and GPUs16,17,18,19. In this 

work, mainly CPU parallelizations are described, but GPU usage is also briefly covered 
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separately. For clarity, the definition of terms used in this paper is provided in Table 1. 

 

Table 1. Definition of terms. 

Term Definition 

Physical node  A computing unit containing one or more processors, such as a 

single standalone Unix computer. 

Logical node  A fraction of resources (CPU cores) in a physical node. 

DDI The parallel library used in GAMESS. Loosely speaking, 

DDI=MPI and DDI=(socket library) are the two most commonly 

seen implementations, but there are others (DDI=ARMCI).20 

DDI process  An instance of a program running in parallel with other likewise 

instances. Each DDI process has its own resources (files, 

network connections, and memory). 

DDI rank  A serial number identifying a DDI process. 

Data server process A DDI process running GAMESS executable that serves data 

(shared arrays) to compute processes and handles their parallel 

operations. 

Compute process  A DDI process running GAMESS executable that does QM 

calculations, so it is also called a worker. 

Thread A lightweight process executing a particular parallel task, 

spawned by a DDI process.  

Group A set of DDI processes doing a parallel task together. Although 

customarily the group size refers to compute processes only, in 

fact, a group includes both compute processes and data servers. 

Scope A span of DDI processes over which a parallel operation is 

executed; group, world, and universe and the main scopes. 

 

2.1 Load balancing 

Load balancing refers to dividing work among DDI processes and/or OpenMP threads. 
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With a multi-level parallelization, work can be divided among groups at various levels.  

In GAMESS, there are two main strategies, static (SLB) and dynamic (DLB) 

load balancings, which are chosen by setting the value of the BALTYP keyword to SLB 

or DLB. In the SLB, work is divided according to a predefined index, irrespective of the 

actual progress. As a result, many workers finishing ahead of others have to wait at a 

synchronization point. In the DLB, each worker asks for the next task whenever it is 

idle. Despite the extra bookkeeping cost,, DLB is usually the more efficient. 

Besides the SLB and the DLB, there is a more sophisticated preoptimized work 

load balancing scheme, known as heuristic static load balancing (HSLB).21 In HSLB, 

work indices are assigned based on a procedure optimizing the predicted cost of tasks. 

modeled by a polynomial of the number of basis functions M. However, the cost may 

not be a simple function of M, and also depend on the polarizing environment that can 

affect the number of self-consistent field (SCF) iterations. HSLB does not use dynamic 

counters, which may be costly on massively parallel computers. Instead, HSLB uses 

static load balancing, with a group division designed with the aid of external programs.  

The load balancing can be more complex when heterogeneous computers are 

used, as in grid computing. Here, an efficient load balancing scheme should take into 
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account not only the task size but also the computational capability of workers.22 

Machine learning techniques can be used to improve load balancing.23 

It is advantageous to mix SLB and DLB schemes in the semi-dynamic load 

balancing (SDLB),24 used for a set of tasks, when few tasks are expensive, and the rest 

are cheap. Examples are fragment-based computations of a large solute with small 

solvent molecules, or a large ligand bound to a protein divided into small amino acid 

residues. Another scenario is when some fragments use a QM method with a very large 

computational cost. This occurs in fragment-based multiconfiguration SCF (MCSCF)25 

and time-dependent density functional theory (DFT), TDDFT, 26  where only one 

fragment is computed with these high scaling methods, and the rest are treated with 

much cheaper Hartree-Fock (HF) or DFT. SDLB is chosen in GAMESS by setting the 

BALTYP value to DLB. In addition, LOADGR defines the number of static groups and 

LOADBF sets the size of tasks considered large.27 

For the case when tasks have very different cost, it is efficient to use large 

groups for expensive tasks, and small groups for small tasks. The DLB scheme is not 

efficient in this case because there is no guarantee that expensive tasks are assigned to 

large groups. In SDLB, SLB is used to assign large tasks to large groups statically, while 
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DLB is used for a dynamic distribution of small tasks over small groups. After finishing 

their tasks, SLB groups switch to DLB and processing the remaining small tasks. 

2.2 One-level parallelizations 

One-level parallelization corresponds to the most simple, flat model of parallelization in 

which there is just one set of workers assigned to do tasks one by one. 

2.2.1 Distributed Data Interface 

The distributed data interface (DDI)28 is used in GAMESS as a front end hiding 

specific parallel library details from the use of parallel functionality in QM calculations. 

DDI can be implemented based on a native socket library or MPI. Almost all QM 

methods in GAMESS are parallelized using DDI. DDI offers a flat one-level 

parallelization when all nodes work together as one team. In DDI, two processes are 

typically executed per core, one doing calculations and another doing parallel 

communications (data server). The number of compute processes used in DDI is set in 

the running script rungms, passed to the kickoff program (ddikick for sockets and 

mpirun for MPI). 

2.2.2 OpenMP 

There were two independent OpenMP implementations29,30 of GAMESS in private 

versions prior to the first official release of OpenMP. Although OpenMP can be used as 
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a one-level parallelization (one compute process spawns multiple threads), such runs are 

a particular case of a more general two-level parallelization, described below. The 

number of OpenMP threads is defined by setting the value to the OMP_NUM_THREADS 

variable in the running script rungms. 

2.3 Two-level parallelizations 

A two-level parallelization can be achieved either by using groups of DDI processes or 

in a hybrid DDI/OpenMP model. 

2.3.1 Generalized distributed data interface 

 

Figure 1. 2-level parallelization in GDDI/2 for dividing all nodes (world) into K groups. 

Workers are shown as blue boxes. The master process in each group is in a red box. 

Tasks assigned to groups are labeled as FI. 

 

Generalized distributed data interface (GDDI)8 was developed to enable a two-level 

parallelization, so it is denoted by GDDI/2. GDDI is a modification of DDI, where 

compute nodes can be divided into an arbitrary number of groups N, by setting 
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NGROUP=N. Groups are assigned suitable computational tasks such as individual 

water molecules in a water droplet. Within each group, work is distributed among 

compute processes (Figure 1). 

It is possible to create groups of equal size (e.g., the same number of compute 

processes), or groups of customized sizes (with the MANNOD keyword in $GDDI 

listing the size of each group). The customized group setting can take into account 

various physical node sizes in heterogeneous computing. 

To overcome a limitation of GDDI that only whole nodes are divided into 

groups, it is possible to split physical nodes into logical nodes. These logical nodes may 

then be divided into groups. For example, by listing a node twice with a halved number 

of cores, two logical nodes can be created. For MPI, alternatively, logical node splitting 

can be done inside DDI by an environmental variable DDI_LOGICAL_NODE_SIZE. 

One of the main features of DDI is to provide handling of distributed arrays 

allocated across multiple compute nodes. GDDI also supports distributed arrays in the 

scope of DDI ranks in a group (referred to as a group communication), or DDI ranks 

across all groups (a world communication). Parallel operations such as a global sum or a 

broadcast, can be performed in the scope of a group or among all groups (world). 

The load balancing in GDDI takes place in the world or group scope. In the 
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world scope, fragments (or molecules) are distributed over groups. In the group scope 

(the load balancing controlled by the keyword BALTYP in the group $SYSTEM), work 

is divided among compute processes in each group. The load balancing at the world 

level (controlled by BALTYP in $GDDI) is handled by the data server of the lowest 

rank. In massively parallel environments with a huge number of tasks, this bookkeeping 

creates a heavy burden on the data server process, which can slow down the whole 

calculation. 

 To deal with this problem, an improved scheme of DLB can be used, in which 

an index of a global counter refers to blocks of tasks rather than single tasks. The size of 

the block of tasks is chosen with the keyword NUMDLB. The number of global counter 

requests is thus reduced by a factor of NUMDLB. 

Applications of GDDI/2 are summarized in Table 2. They encompass a variety 

of methods featuring a granularity of tasks suitable for a two-level parallelization. 
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Table 2. Two-level parallelization of QM methods using GDDI/2.a 

Method Upper level References 

Fragment molecular orbital (FMO) fragments 31,32 

Effective fragment molecular orbital (EFMO) fragments 33,34 

Replica-exchange molecular dynamics (REMD) replicas 35 

Umbrella sampling molecular dynamics (USMD) windows 35 

Replica-exchange umbrella sampling (REUS) replicas 36 

Numerical gradients shifted molecules 8 

Vibrational self-consistent field (VSCF) molecules on a grid 37,38 

VeraChem method 2 (VM2) conformers 39 

Divide-and-conquer (DC) subsystems 40 

Dynamic nucleation theory (DNT) Monte-Carlo chains 41,42 

a A lower levels task is usually an integral batch. 

 

2.3.2 One-level parallelization using GDDI 

A one-level parallelization can be carried out using DDI. There are two other ways to 

perform one-level parallelization in GAMESS using a particular running mode of 

GDDI/2, denoted by GDDI/1. The first one (one-core groups) is to use N groups 

consisting of a single compute process created with NGROUP=N. The second way 

(split group) is to use a single group in GDDI, splitting it internally (NGROUP=1 

NSUBGR=-1), so that each process behaves as if it is an independent group. These 

GDDI/1 running modes are often used for FMO based density-functional tight-binding 

(DFTB) calculations,43,44 where it is advantageous to use a single compute process per 

fragment.  
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The two GDDI/1 models have usually a very similar performance, but a 

different handling of OS limitations (of the maximum number of processes etc). Of the 

two, the split group model is usually the better one. 

2.3.3 DDI/OpenMP 

An alternative way of doing a two-level parallelization is offered by a combination of 

DDI with OpenMP. The socket-based DDI cannot be properly used with OpenMP, so 

DDI/OpenMP usually means MPI/OpenMP. 

The MPI version of DDI with the multiple type of thread safety (controlled by 

the MPI_THREAD_MULTIPLE environmental variable in a running script) can be used 

with OpenMP. DDI/OpenMP enables a two-level parallelization, where DDI compute 

processes are used for coarse-grained work distributions, while threads in OpenMP are 

used for actual computations.  

A typical use of DDI/OpenMP is for nested loops. Figure 2a shows an outline 

of a parallel ERI evaluation. The outermost loop is distributed over DDI processes (lines 

1 and 2) using either SLB or DLB, while inner loops are processed by OpenMP threads 

(lines 3-5). The inner loops are usually merged into a single flat loop for a more 

efficient work distribution. In OpenMP, rectangular loops can automatically be merged 

using the collapse clause (e.g., collapse(2) in Line 3). 
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(a) 

 

(b) 

 

Figure 2. Two-level DDI/OpenMP parallelization implementation for (a) nested loop 

and (b) single loop in lines 2-4 is replaced by lines 6-12. The DDI parallelization is 

hidden (shown schematically as comments in green color). The OpenMP parallelization 

is shown explicitly in red color. 

 

One-layer loops can also be treated in a similar approach by dividing the loop 

into chunks and distributing chunks over DDI processes. Each chunk is then computed 

by OpenMP threads. Figure 2b shows a transformation of a single loop in DDI/OpenMP. 

The original single-layer loop is in lines 1-4, and the transformed loop is in lines 6-12. 



14 

 

In the transformed loop, NTASKS iterations are split into NCHUNKS, so that each 

chunk contains a number of iterations from NTASK_START to NTASK_END. The 

transformed loop becomes a regular nested loop. In DDI/OpenMP, the outer 

NCHUNKS is distributed over DDI processes (Lines 6 and 7), and the inner loop is 

parallelized by OpenMP (Lines 8 and 9). 

In DDI/OpenMP, there are two layers of load balancing. The load balancing at 

the DDI level is chosen by BALTYP in $SYSTEM. The load balancing in OpenMP can 

be static, dynamic, and guided (the latter means dynamic with an automatically adjusted 

chunk size). The dynamic schedule (lines 3 and 8 in Figure 2a and 2b, respectively) is 

usually the most efficient scheme. When an OpenMP schedule is not hardwired in the 

code, the default is usually the static scheme. The OpenMP schedule can also be 

controlled by an environmental variable OMP_SCHEDULE set in the running script. 

The OpenMP parallelization in GAMESS is summarized in Table 3. 

 

Table 3. Methods in GAMESS parallelized with DDI/OpenMP 

Method References 

Hartree-Fock 45 

Density functional theory (DFT) 46 

Resolution of the identity MP2 (RI-MP2) 47,48 

Resolution of the identity coupled-cluster (RI-CC) 49 

Polarizable continuum model (PCM) 50 

Effective fragment potential (EFP) 15 
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2.4 Three-level parallelizations 

2.4.1 GDDI/3 

 

Figure 3. 3-level parallelization in GDDI/3 for a semi-numerical FMO Hessian. GDDI/3 

divides all nodes (universe) into L worlds, each of which is further divided into K 

groups. Workers are shown as blue boxes. Workers whose lowest rank in each group are 

circled in red. Fragments tasks assigned to groups are labeled as FI. 

 

A general GDDI/n model for an n-level parallelization was developed30 for QM 

problems of appropriate granularity. In practice, n=2 are n=3 are commonly used. In 

GDDI/3, the whole set of nodes is referred to as the universe, divided into N 
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GDDI/2-like worlds, which are further split into M groups using NGROUP=N 

NSUBGR=M.  

A three-level parallelization (Figure 3) is useful for calculations with an 

appropriate structure of tasks. Their applications are listed in Table 4. It should be noted 

that a semi-numerical FMO Hessian requires recalculating the whole system for each 

shifted atom, because of the many-body polarization effects. In particular, the use of 

GDDI/3 is essential for computations of minimum energy crossing (MEX) of two spin 

surfaces with FMO. The GDDI/3 automatically resolves the problem of storing 

electronic states for two spin multiplicities of each fragment, which results in an 

unstable SCF convergence in the GDDI/2 model because the densities are overwritten 

when multiplicity changes. 

 

Table 4. Three-level parallelization of QM methods using GDDI/3. 

FMO Method Upper level Middle level Lower level Refs 

semi-numerical Hessians shifted molecules fragments integral batches 30 

minimum energy crossing  spin states fragments integral batches 51 

 

Similarly to the use of GDDI/2 for a one-level parallelization, the GDDI/3 

model can be reduced to a two-level parallelization, with group sizes of 1. Such reduced 

model is sometimes employed in semi-numerical FMO-DFTB Hessians. 
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2.4.2 GDDI/2+OpenMP 

 OpenMP can be combined with GDDI/2 providing a way to do a three-level 

parallelization, as summarized in Table 5. At the highest level, fragments are distributed 

over groups. QM computations of each fragment are carried out by threads spawned by 

compute processes in these groups. Work distribution within each group of compute 

processes and threads is similar to the description in section 2.3.3.  

In GDDI/2+OpenMP, the logical node size (Table 1) is usually set to one, i.e., 

each group contains a single compute process). The number of threads spawned by each 

compute process can be set by users using an environmental variable 

OMP_NUM_THREADS.  

 

Table 5. Three-level parallelization of QM methods using GDDI/2+OpenMP. 

Method Upper level Middle level Low level References 

FMO-RHF fragments Outermost loopa Inner loops 50 

FMO-RI-MP2 fragments Outermost loop 

(or chunks of loop) 

Inner loops  

(or tasks in a chunk 

30,47,48 

 FMO-DFT fragments Chunks of grid Points in a chunk 46 

a Loops are over atomic orbitals in integrals of a fragment. 

 

2.5 Four-level parallelization GDDI/3+OpenMP 

GDDI/3 can be combined with OpenMP, resulting in a 4-level parallelization, developed 

in this work (Figure 4).  
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Figure 4. Schematic 4-level parallelization in GDDI/3+OpenMP. 

As a demonstration, GDDI/3+OpenMP is applied to a semi-numerical Hessian 

computed with FMO-RI-MP2/cc-pVDZ for a cluster of 64 water molecules (H2O)64, 

divided into 64 fragments (one water molecule per fragment). Water clusters continue to 

fascinate us,52,53,54 and they can be used to describe water-air interface effects.55 The 

water cluster geometry was optimized using FMO2-DFTB3/D3(BJ)43,56 method with 

3ob parameters.57 The semi-numerical Hessian was calculated by doubly differentiating 

analytic energy gradients,48,58 which require 64×3×3×2=1152 single point gradients.  

Calculations were carried out using 256, 512, and 1024 Knights Landing 

(KNL) nodes on the Theta supercomputer at Argonne National Laboratory. One KNL 

node has 64 physical cores.  

 The adopted grouping strategies and the corresponding wall-clock timings are 

summarized in Table 6. In order to define the numbers of worlds and groups, whose 

product is equal to the number of DDI compute processes, physical nodes were divided 

into logical nodes. For instance, each 64-core KNL node can be divided into 16 logical 
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nodes, with each with one DDI rank allotted 4 cores. Two threads are spawned for each 

physical core introducing a total of 8 threads for each DDI rank. With 256 KNL nodes, 

the logical node setup results in 256×16=4096 DDI ranks. These ranks can be divided 

into 64 worlds, each world has 64 groups (64×64=4096).  

With this setup, 64 shifted geometries are computed simultaneously (one per 

world). For each geometry, the gradient for a fragment is calculated using one DDI rank 

assigned 8 OpenMP threads. The total number of threads used for this calculation is 

32,768.  

 

Table 6. 4-level parallelization strategy. 

Nodes Worlds per 

universe 

Groups per 

world a 

Ranks per 

group a 

Threads per 

rank 

Threads, 

total 

256 64 64,64 1,1 8 32,768 

512 128 64,64 1,1 8 65,536 

1024 128 64,128 2,1 8 131,072 

a Listed separately for fragments and their pairs. 

 

The wall-clock timings and speed-ups relative to the 256-node calculations are 

shown in Figure 5. The parallel efficiency of about 88% is obtained on 131,072 

OpenMP threads. Some loss of performance (~12%) is attributed to the small size of 
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fragments, where the amount of work does not scale sufficiently well when the number 

of threads is too large. 

Comparing the original 3-level parallelization with the 4-level scheme 

developed in this work, a speed-up of 4.6 is obtained (Table 7). It is attributed to the 

efficient use of the extra level of parallelization. It may be expected that some 

improvement could be obtained for both 3 and 4-level parallelizations by varying the 

parameters (the number of worlds and groups) not fully explored because of the limited 

CPU time allocation. 

 

Table 7. Comparison of 3 and 4-level parallelization schemes on 256 nodes of Theta, 

for (H2O)64 computed with FMO2-RI-MP2/cc-pVDZ. 

Parallelization level worlds Groups per 

worlda 

Ranks per 

groupa 

Threads 

per rank 

Timing, 

sec 

3 (GDDI/2+OpenMP) - 64,256 4,1 64 28178.1b 

4 (GDDI/3+OpenMP) 64 64,64 1,1 8 6015.9 

a Listed separately for fragments and pairs. 
b Estimated for 1152 offsets from 339 computed offsets that took 8292 sec. 
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Figure 5. Wall-clock time and parallel speed-up for a semi-numerical Hessian of (H2O)64 computed with FMO-RI-MP2/cc-pVDZ on 

Theta (the ideal scaling is shown as the red line). 
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2.6 Multi-level parallelization on GPUs 

GPU can be used for parallelizing QM tasks using GAMESS interfaced with libCChem 

based on CUDA. 15 In the sense of multi-level parallelization, such MPI+CUDA usage 

may be characterized as a 2-level model (1-level if MPI is not relevant). A number of 

QM calculations in GAMESS can be parallelized in this way. 15 

Another possibility is to use an OpenMP type of offloading of calculations to 

GPUs. 15 In the sense of a multi-level parallelization, such usage can be characterized as 

other examples of OpenMP usage described above.  

 The use of GDDI/2-like parallelization based on MPI combined with GPUs has 

been recently reported (GDDI/2+CUDA), 59 which may be characterized as a 3-level 

parallelization, similar conceptually to GDDI/2+OpenMP described above. 

2.7 Comparative discussion of multi-level parallelizations 

An important comparison is that of GDDI/(n-1)+OpenMP with GDDI/n. The former has 

several important advantages and some disadvantages. Namely, GDDI/(n-1)+OpenMP 

can be used for more types of calculations than GDDI/n because there are many general 

QM methods with sufficient granularity for n=2 (Table 5), but only two specialized 

tasks for n=3 (Table 4). DDI/OpenMP can be used for almost any QM method in 

GAMESS, whereas GDDI/2+OpenMP can be employed for a limited set of QM 
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methods. The use of OpenMP reduces the memory footprint because the number of 

executables loaded in memory is determined by the number of DDI ranks.  

 There is another very important advantage of using OpenMP. With it, the 

number of data servers is greatly reduced, freeing up CPU for more computations. For 

example, consider a DDI run on 2 nodes consisting of 8 cores, where 16 compute 

processes and 16 data servers are executed. For DDI/OpenMP, executed as 1 DDI 

process per node, there are only 2 data servers, a reduction by the factor of 8. Although 

some early attempts to exclude data servers were successful,20 they continue to be 

employed. 

 The disadvantages of using OpenMP are mainly limited to the lack of OpenMP 

parallelization for many methods in GAMESS. When OpenMP code is not available, 

only the parallelization among DDI processes is effective, resulting in a poor usage of 

CPU for these steps. In addition, some methods in GAMESS coded with older 

programming models may simply fail to work when compiled with OpenMP. 

2.8. Multi-level parallelization of fragment-based many-body expansions 

 The parallelization of FMO60,32,61 or EFMO33,34 is challenging due to the use of  

many-body expansions (MBE)62,63 in these and many other fragment-based methods,7  

resulting in the need to compute conglomerates of fragments (pairs, triples, quadruples, 
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etc). Each step in these calculations has a very different number of tasks. In MBE 

truncated at 3-body terms, the total energy E is contributed from the energy of 

fragments ( IE ), their pairs ( IJE ), and, optionally, trimers ( IJKE ) : 

 


=

++=
N

KJI

IJK

N

JI
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N

I

I EEEE
1

   (1) 

 

 Even though the number of pairs and trimers can be linearized by the dimer 

and trimer cutoff approximations RESDIM 64  and RITRIM31, respectively, the 

multiplicative prefactors determining the number of fragments, dimers and triples as a 

function of the number of fragments N are different. Consequently, the number of tasks 

and their sizes are different for fragments, their pairs, and triples, which require a 

different parallelization strategy for each of these steps.  

 In practice, the number of groups in GDDI/2 can be set via the NGRFMO 

keyword in $FMOPRP, listing the number of groups for each step in the calculations, 

replacing a single group count NGROUP in $GDDI. Likewise, a manual group 

definition, as used in SDLB, has to be done separately for each step, controlled by 

MANNOD in $FMOPRP as a continuous list for all steps, replacing a single list 

MANNOD in $GDDI. 
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2.9. Massively parallel calculations on supercomputers 

Multi-level parallelization in GAMESS has a high efficiency suitable for massively 

parallel calculations on supercomputers. Some of these calculations on CPUs are 

summarized in Table 8. With a GDDI/2+CUDA-like parallelization, FMO-RI-MP2 

calculations on Summit were done on 27,600 GPUs with a spectacular efficiency.59 

 

Table 8. Use of multi-level parallelization on CPU-based supercomputers. 

Supercomputer CPU cores 

used 

parallelization Method Reference 

K computer 196,608 GDDI/2+OpenMP FMO-RI-MP2 30 

Intrepid 131,072 GDDI/2 FMO-MP2 65 

Mira 262,144 GDDI/2 FMO-RHF 66 

Stampede2 8,704 GDDI/2+OpenMP FMO-RHF 50 

Theta 131,072 GDDI/2+OpenMP FMO-RHF 50 

Theta 65,536 GDDI/3+OpenMP FMO-RI-MP2 This work 

 

In addition to big computers, GAMESS can be used for big data applications. 

Several all-atom QM calculations of systems containing more than one million atom 

calculations were reported.67 , 68  Such applications became possible as a result of 

combing many efforts in improving the efficiency of GAMESS: file-less execution and 

linearization of required memory.27 
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3. Application 

The FMO-MP2 Hessian results obtained with a 4-level GDDI/3+OpenMP 

parallelization on Theta as described above were processed with the partition analysis of 

vibrational energy (PAVE).69,70 The total vibrational zero-point energy (ZPE) was 

decomposed into the contributions of individual water molecules. The results are shown 

in Figure 6. It can be seen that there is some variation in ZPE depending on the local 

environment in the water droplet. 

 

 

Figure 6. Zero point energy of individual water molecules in (H2O)64 at the level of 

FMO-RI-MP2/cc-pVDZ, obtained with PAVE. 
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4. Conclusions and outlook 

Parallelization strategies up to 4 levels in complexity are developed for use in 

large-scale QM calculations. These techniques have been shown to improve parallel 

efficiency on petascale computers. Load balancing requires special care and must be 

handled separately at each level. Various approaches to static and dynamic load 

balancings have been proposed and implemented.  

Owing to advances in computational science outlined above, QM calculations 

can now be routinely applied to large molecular systems, such as protein-ligand 

complexes.71,72 Efficient parallel solutions are crucial for advancing drug discovery73,74 

and material science 75 , 76  applications. Thermochemical properties obtained from 

Hessian calculations can improve the estimation of binding energy and reaction 

barriers.70 Semi-analytical Hessians are needed when analytic Hessians are not available, 

for example, for FMO-TDDFT77 or FMO-DFTB with periodic boundary conditions.78 

The multi-level parallelization techniques, illustrated on QM methods 

implemented in GAMESS, can be applied to other scientific applications, facing similar 

performance problems. In particular, the 4-level parallelization is a promising technique 

that can harness high efficiency on exascale computers such as Aurora. 
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