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Abstract
The performance of Fortran 2008 DO CONCURRENT (DC) relative to OpenACC and

OpenMP target offloading (OTO) with different compilers is studied for the GAMESS quantum
chemistry application. Specifically, DC and OTO are used to offload the Fock build, which is a
computational bottleneck in most quantum chemistry codes, to GPUs. The DC Fock build
performance is studied on NVIDIA A100 and V100 accelerators and compared with the OTO
versions compiled by the NVIDIA HPC, IBM XL and Cray Fortran compilers. The results show
that DC can speed up the Fock build by 3.0x compared with the OTO model. With similar
offloading efforts, DC is a compelling programming model for offloading Fortran applications to

GPUs.
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1. Introduction

Quantum chemistry (QC) calculations play an important role in understanding complex chemical
phenomena such as reaction mechanisms, chemical reactivity, and many other properties.
However, their high computational costs have been a bottleneck of QC applications. Many
developments have been accomplished to overcome these challenges over the past two decades,
both in terms of new theory development and computer algorithms to take advantage of new
hardware'. Since most supercomputers and workstations are now equipped with several
accelerators on each CPU compute node, many efforts have been invested to made QC codes
available for use on these systems. Among these efforts, accelerating QC codes on general
purpose Graphics Processing Units (GPGPUs or GPU for short) are becoming particularly

prominent.?¢

A few popular QC codes have been ported onto GPUs .These include Terachem?, QUICK?,
and GAMESS/LibCChem,” and more are planned to be released®. Of the aforementioned QC
packages, most utilize the CUDA programming model specialized for NVIDIA GPUs. With
other vendors investing in GPUs, it is important to enable QC codes on a variety of GPU
architectures. Consequently, many scientific software packages have turned to the directive
OpenACC and OpenMP programming model as a portable and productive alternative to CUDA®-
11, At the same time, a GPU version of the DO CONCURRENT (DC) construct in the Fortran
2008 standard has been enabled by NVIDIA. The present work compares the performance of
directive-based programming models, such as OpenMP and OpenACC with that of DC within
GAMESS, a popular QC package. A focus here is on offloading the Fock build, a

computationally demanding component of most QC methods. The Fock build consists of the
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computation of four-index two-electron repulsion integrals (ERIs) as well as their digestion into
a Fock matrix. Many methods and algorithms have been developed for efficient evaluation of
ERIs!2. For example, in GAMESS, ERIs can be calculated by the Pople-Hehre (PH)',
McMurchie-Davidson'4, Rys quadrature!>!¢, and ERIC!'7 methods depending on the specific
types of ERIs. Efforts to accelerate all GAMESS ERI packages have been ongoing based on an
OpenMP target programming model.’ In this paper, the GPU offloading focuses on the method

containing mixed Pople-Hehre and McMurchie-Davidson recurrence relations.
2. Background
A. GPU Programming Models

The first widely used programming model for GPUs was CUDA C, introduced by NVIDIA in
2007. CUDA Fortran was released by the Portland Group in 2009, thereby facilitating GPU
programming directly from Fortran for the first time. OpenACC, released in 2011, provided a set
of directives that supported parallel programming across a range of platforms, including GPUs.
In 2013, OpenMP also added multi-platform directive support for GPUs. The Fortran 2008
standard added a construct called DO CONCURRENT (DC), which allows application
developers to instruct compilers that some form of loop-level parallelism can be exploited.
However, implementations were limited to CPU vector and thread parallelism. In 2020, NVIDIA
released support for a GPU feature for the DC construct in the NVIDIA HPC Fortran compiler

(NVHPC Fortran).

Currently, at least three compilers (Intel, Cray and NVHPC) support DC. Both Intel and Cray

Fortran compilers can map DC to vector and thread parallelism in a similar manner to the “omp



parallel do simd” OpenMP directive. The NVHPC Fortran compiler supports DC in a
similar manner to the “acc parallel loop” OpenACC directive. With NVHPC, DC
iterations can be mapped to both CPU and GPU threads and can take advantage of the vector

parallelism.

Since GPUs have their memory distinct from the CPU (host) memory, each compiler needs a
way to make data accessible to the GPU when generating GPU parallel code. For NVHPC
Fortran, allocatable arrays are treated as CUDA managed memory, which is accessible to both
CPUs and GPUs on the same node'®. Furthermore, developers can also explicitly manage the
data locality using other mechanisms, such as omp and acc directives (e.g., “! Somp shared”

and “!Somp private” in OpenMP programming model).
B. Hartree-Fock method

A major goal of QC programs is to solve the Schrodinger equation. An analytic solution for the
Schrodinger equation is only available for the simplest systems (e.g., one-electron systems). For
all other molecular systems, the Schrodinger equation has to be solved numerically utilizing
many approximations. One such fundamental approximation is the Hartree-Fock (HF) method,
which can recover 99% of the total energy and is often the first step for QC calculations. Many
correlation methods can be developed on top of the HF method to recover the remaining 1% of
the energy and to improve the accuracy of the computations. Therefore, accelerating the HF

method is an important starting point for wave function-based method development.



In the HF method, the N-body wave function is approximated by a determinant of one-
electron functions, called molecular orbitals (MO). Each MO {y;(r)} is approximated by a

linear combination of atomic orbitals (AO) {¢u (T)}:

K

d}i(r) = Z ¢u (T)Cm- (D

The MO coefficients {C,;} are obtained by minimizing the energy of the system, thereby
requiring computations of 4-index 2-electron repulsion integrals (ERI), which-comprise a

bottleneck of the HF method:
(Wv|doy = j drydryy (1) by (11)12 P2 (72) Do (T2) )

In Eq. (2), 11 and 2 refer to the coordinates of electrons 1 and 2, respectively. When doing a
HF calculation, a user needs to define the geometry of a molecular system as well as a basis set.
A basis set contains a set of known Gaussian-like primary functions pre-contracted to form AO
basis functions, to which the Fock operator is applied. A contracted basis function {¢, (r)} is
defined in eq. (3), in which L, d,;, and {,,} are the contraction length, the contraction
coefficients and Gaussian-like primitive functions, respectively. R, and Rp are the centers on

which the basis and the primitive functions, respectively, are located.

L
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An AO basis function can be classified based on its angular momentum. For example, AOs
with angular momenta of 0, 1, 2 and 3 are called s, p, d and f orbitals, respectively. They are
formed by contracting corresponding primitive functions. For instance, the 1s, 2p, and 3d,,,

primitive functions are defined as follows'

@
rren = e
) 3
, +[128a5 ©)
X pX(a‘r) = 77:3 xe~ar
(6)

3d +[2048a’ —ar?
X,y = 3 xye

In egs. (4)-(6), the numbers 1, 2, 3 in the superscripts 1s, 2p, and 3d,, are AO principle
quantum numbers representing the atomic energy levels. The factor {a} is the orbital exponent
which governs the spatial extent of the orbital. The order of the polynomial factor (e.g., 0, 1 and
2 for the factors 1, x, and xy in the 1s, 2p, and 3d,,, functions) corresponds to the orbital
angular momentum. The s-type function with a 0™ order polynomial factor has 0™ order
degeneracy; i.e., there is a single linearly independent s-type basis function for each AO energy
level. The p-type basis function with a 1% order polynomial factor has 1 order degeneracys; i.e.,
there are three linearly independent (degenerate) basis functions (py, p, and p,) for each AO
energy level. Similarly, there are six linearly independent (degenerate) d-type basis functions

(dyxs dyy, dzz, dyy, dy; and d,,;) at each AO energy level.

7



ERIs of higher angular momentum basis functions have increasing computational
complexity. Usually, to achieve meaningful chemical results for the lighter elements in the
Periodic Table, it is important to use basis sets that contain up to at least d functions. This work

focuses on the performance of ERIs containing d-type basis functions.

In GAMESS, ERIs that contain d functions are calculated using the SPD and RYS packages.
The SPD package is based on mixed Pople-Hehre and McMurchie-Davidson recurrence
relations?. The RYS package is based on the numerical Rys quadrature method!>!¢. In this
paper, the newly developed SPD algorithm and its respective parallelization schemes are

discussed in the context of DC.

3. Algorithms

An ERI (uv|Ao) is a linear combination of the primitive ERIs, which are 4-index integrals of

primitive (basis) functions, (¥pxqlXrXs):

Lq,Ly,L3,Ly

(#VMJ): Z dpdyqdardos UpXqlXrXs) (@)

To efficiently compute ERIs over primitive functions, primitive functions which share the
same orbital exponents, are grouped into shells. For instance, a d-shell contains all d-type
primitive functions used to construct six basis functions dxx, dyy, dzz, dxy, dyz and dx.. For some
cases, when the orbital exponent of s and p-type functions are the same, they are grouped

together and called an L-shell in order to reduce the computational effort.



The default algorithm to evaluate ERIs in GAMESS is to iterate over four shells. All primary
integrals in a group of four shells, called a quartet, are computed together facilitating
intermediate arrays to be shared among them. Figure 1a shows an MPI/OpenMP implementation
of ERIs in GAMESS. The outermost loop iterations is# are distributed over MPI ranks, whereas
the inner loop iterations jsh and ksh are fused together using collapse clause and parallelized

with OpenMP. Both MPI and OpenMP layers use dynamic load balancing schemes?!.

For d-shell ERIs, the structure in Figure 1a computes 15 types of quartets including (sssd),
(sspd), ... (dddd). These ERIs differ in the count of floating-point operations (FLOP) and the size
of intermediates, which can introduce workload imbalance. Such an effect can be reduced by
employing dynamic load balance schemes in both work distribution to MPI ranks and OpenMP
threads. However, dynamic scheduling is, on the one hand, not available in the OpenMP target;
on the other hand, the computational cost and memory differences associated with different ERI
types will likely lead to thread divergence that will ruin GPU performance. To take advantage of
the massive parallelization offered by the GPUs, the CPU algorithm (Figure 1a) needs to be

restructured.



a) OpenMP parallel

do ish = 1,nshell
!$omp parallel do
schedule(dynamic)
collapse(2)
do jsh = 1, ish
do ksh = 1, ish
do 1sh = 1,ksh
Iscreening
Icompute ints
ldigest ints

b) Example sorting & screening

Ipre-sorting

Iget the #of s,p,d shells
n_s_shl, n_p_shl, n_d_shl
Icouple bra,ket of the same
angular momenta

Iscreening

(ss| - perform screening
Idd) - perform screening
do iijj = 1, (ssl

do kk11 = 1, Idd)

c) Example OpenMP kernel

d) Example OpenACC kernel

e) Example DC kernel

Ipre-sorting,screening
1$omp target teams
distribute parallel do&
1$omp shared() &

1$omp private()

do iquart = 1, ssdd_quarts
'recover shell index
ish=IDX(s_sh)
jsh=IDX(s_sh)
ksh=IDX(d_sh)
1sh=IDX(d_sh)

Ipre-sorting,screening
1$acc parallel loop&
1$acc copyin() &

1$acc private()

do iquart = 1,
ssdd_quarts

Irecover shell index
ish=IDX(s_sh)
jsh=IDX(s_sh)
ksh=IDX(d_sh)

Ipre-sorting, screening

DO CONCURRENT
(iquart=1:ssdd_quarts)&
SHARED() LOCALQ)
Irecover shell index
ish=IDX(s_sh)
jsh=IDX(s_sh)
ksh=IDX(d_sh)
1sh=IDX(d_sh)

enddo IDX(nquarts_screened) Icompute ints 1sh=IDX(d_sh) Icompute ints
enddo enddo ldigest ints Icompute ints Idigest ints
enddo Enddo enddo Idigest ints enddo
!$omp end parallel do Ipass significant ints to GPU '$omp end target teams enddo
enddo distribute parallel do
[Figure ll. (a) MPI/OpenMP implementation of ERIs in GAMESS; (b) quartet sorting and [Commented [PBQL1]: As reviewer suggested, I think we
screening for GPU offloading; (c) quartet offloading using OpenMP; and (d) quartet offloading

using DC.

The code restructuring includes multiple steps as shown in Figure 1b-e. Figure 1b

should either remove all arrows

)

( commented [AM2R1]: done

)

summarizes quartet preparation steps. First, all shells in a given input molecule are sorted into S,

P, D groups (e.g., the S group contains only s-type basis functions). Second, these shells are

coupled into different pair types, e.g., Ss, Sp, ..., dd. Next, these pairs are coupled to form quartets

of the same types, e.g., (ss|sd), (ss|pd) up to (dd|dd). Quartets of each type are first screened

using the Schwarz inequality, to avoid computing ERIs that will be smaller than a chosen

cutoff??. Quartets that have significant values above the chosen cutoff are sent to the GPUs for

computation.

In Figure 1c, quartets obtained from preparation steps (Figure 1b) are distributed over teams

and then over GPU threads for actual computation using the “! Somp target teams

distribute parallel do”. Thisis an example of the OpenMP kernels currently
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developed and implemented in GAMESS. The details of the algorithm are presented in

references®?3.

In Figure le, the DC equivalent of OpenMP target kernels is obtained by simply replacing the
DO-ENDDO construct by the DO CONCURRENT-ENDDO construct. In a similar manner,

OpenACC kernels\ (Figure 1d) can directly be derived from the OpenMP kernels by replacing the

“lSomp target teams distribute parallel do”bya“!$acc parallel
loop” directive, and “! $omp private” isreplaced with “!$acc private”. The
performance of DC kernels will be compared, herein, to the baseline OpenMP kernels and their

equivalent OpenACC implementations across compilers that currently support GPU offloading.

4. Compiling ERI kernels

OpenMP GPU, OpenACC and DC ERI kernels discussed in Section 3 and Figure 1 are compiled
using flags and GPUs shown in Table I. In Table I, DC ERI kernels using the nvfortran compiler
(NVHPC/22.5) on A100 GPUs are denoted DC-A100; OpenACC kernels using the nvfortran
compiler on A100 GPUs are denoted ACC-A100; OpenMP kernels using the nvfortran compiler
on the A100 are denoted OMP(nvfortran)-A100; OpenMP kernels using the Cray compiler on
the A100 are denoted OMP(cce)-A100. OpenMP kernels on the V100 using the nvfortran and xIf

compilers are denoted OMP(nvfortran)-V100 and OMP(x1f)-V100.

Table I. Compiler flags for ERI kernels

Kernel Compiler flags

-18 -fast -mcmodel=medium -stdpar=gpu -target=gpu -gpu=cc80 -
DC-A100 .
Minfo=acc -gpu=managed

ACC-A100 -18 -fast -mcmodel=medium -acc -target=gpu -gpu=cc80 -gpu=managed

OMP(nvf)-A100 | -i8 -fast -mcmodel=medium -mp -target=gpu -gpu=cc80 -gpu=managed
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OMP(cce)-A100 -O3 -h omp -hnoacc -DSETDEVICEID -sinteger64 -haccel=nvidia80
-gsuffix=f=190 -qfree=f90 -c -O2 -qgsmp=omp -qoffload -
gxIf90=autodealloc -q64 -qintsize=8
-qarch=pwr9 -qtune=pwr9 -qflag=W:W -qhalt=W -qspillsize=2500 -
gnosave

OMP(xIf)-V100

S. Results
A. Offloading ERI kernels with DC

ERI kernels offloaded by DC are shown in Figure 1e. These kernels were compiled with the flag
“.stdpar=gpu -mp -target=gpu -gpu=cc80 -gpu=managed” on the Perlmutter’
supercomputer with A100 GPUs as shown in the second row of Table 1. The performance of
these ERI kernels was studied by computing the closed shell restricted Hartree-Fock (RHF)
energy for clusters of 64 and 128 water molecules with the correlation consistent cc-pVDZ?® and

Pople 6-31G(d)?® basis sets, both of which are frequently used in QC calculations.

The wall times of the five kernels INT0002, INT0112, INT0102, INT0222, and INT1222 are
shown in columns 5 (before optimization) and 6 (after optimization) inTable II. The main
optimization for DC kernels is loop unrolling. The numbers 0, 1 and 2 are the angular momentum
values of the s, p and d basis functions, respectively. Therefore, the kernel INT0002 contains
three s and one d shells, whereas the kernel INT1222 kernels contains one p (or L) and three d

shells.

Table II. Performance of selected DC kernels before and after compiler-driven optimization.
Some speedups are (under N/A) are not reported since the overall timing for the optimized kernel
is very small and would not reflect the speedup accurately.
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Number of Before After
Molecule Basis Set Kernel optimization N Speedup
quartets ) optimization (s)
INT0002 31,906,009 0.35 0.09 3.88
INTO112 15,236,334 1.76 0.15 11.70
6-31G(d) INT0102 15,236,334 1.82 0.14 13.00
INT0222 393,097 0.33 0.03 10.00
(H:20)64 INT1222 172,891 0.39 0.05 7.80
INT0002 102,844,898 0.72 0.19 3.79
INTO112 53,286,090 4.71 0.27 17.40
cc-pvVDZ INT0102 53,286,090 6.14 0.28 21.90
INT0222 388,113 0.3 0.003 N/A
INT1222 158,090 0.37 0.005 N/A
INT0002 81,844,551 1.0 0.23 4.34
INTO112 71,173,873 7.73 0.44 17.60
6-31G(d) INT0102 71,173,873 8.47 0.43 19.70
INT0222 1,637,228 1.34 0.10 13.40
(H20)12 INT1222 806,825 1.77 0.20 8.85
INT0002 268,907,047 3.17 0.82 3.87
INTO112 246,223,301 28.4 1.28 22.2
‘CC'PVDZ‘ INT0102 246,223,301 20.1 1.02 19.7 Commented [PBQ[L7]: As pointed out by the reviewer
INT0222 1,366,689 1.02 0.08 12.80 the number in red of this table is not consistent with red
INT1222 531,868 1.10 0.11 10.0 numbers in Table IV. I guess this is the result numerical

The wall time (see columns 5 and 6, Table II) of a kernel is determined by both the

complexity of the kernel and the number of quartets in that kernel. Kernels with higher angular

momentum will have higher complexity, which will require higher FLOP counts and larger
intermediate arrays. For example, the intermediate array that stores integrals in the kernel
INTO0002 has the size of six double precision elements, whereas the size needed for the same

array in the INT1222 kernel is 4 * 6 * 6 * 6 = 864 double precision elements, where the 4

represents the L (s+p) shell and the 6 represents the d shell. Therefore, the wall time required to

process the simplest kernel INT0002 is the smallest.

On the other hand, since the number of quartets in the high and low angular momentum

kernels INT0222 and INT1222 are significantly less than that of the intermediate kernels
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INTO112, and INT0102 (see column 4, Table II), the wall times required to evaluate the

INTO112 and INT0102 are the largest.

(a)

DO 130 I=4,6
DO 130 J=1,6

Q(J,I) = Q(J,I)*const
130 CONTINUE

2

(b)

Q(1,4) = Q(1,4)*const
Q(2,4) = Q(2,4)*const
Q(3,4) = Q(3,4)*const
Q(4,4) = Q(4,4)*const
Q(5,4) = Q(5,4)*const
Q(6,4) = Q(6,4)*const

Q(1,5) = Q(1,5)*const
Q(2,5) = Q(2,5)*const
Q(3,5) = Q(3,5)*const
Q(4,5) = Q(4,5)*const
Q(5,5) = Q(5,5)*const
Q(6,5) = Q(6,5)*const

Q(1,6) = Q(1,6)*const
Q(2,6) = Q(2,6)*const
Q(3,6) = Q(3,6)*const
Q(4,6) = Q(4,6)*const
Q(5,6) = Q(5,6)*const
Q(6,6) = Q(6,6)*const

Figure 2. (a) original code block with CONTINUE label; and (b) manual loop unrolling to

achieve performance

The DC ERI kernels are further inspected by using the ~-Minfo compiler flag that can

display the compiler invocations. With the additional compiler flag, one can see that kernels

using a Fortran CONTINUE label (e.g., see the code block in Figure 2a) causes the nvfortran

compiler to parallelize loops across CUDA threads as opposed to running them sequentially (see

the first row of Table III). The warning message Loop parallelized across CUDA

threads (32) collapse (2) in the first row of Table III suggests that many individual

loops inside the DC region were offloaded to the GPU instead of the desired outcome of having

the main DC outer loop spread across the CUDA threads. Offloading loops inside the DC region

led to unsatisfactory performance results (Table II, column 5). The structure of these non-

optimized code blocks is shown in Figure 2a. Further code optimization restructured these code

blocks, specifically, by unrolling the loops according to the compiler suggestions (Table 111, top)

to lead to optimized code (Figure 2b), thereby achieving significant speedups when compared to

the non-optimized version (Table II, columns 6-7). It is an NVIDIA Fortran compiler bug that

does not automatically unroll loops containing Fortran ‘CONTINUE’ statements.
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Table II1. Output of the -Minfo compiler flag before and after manual loop unrolling

non-optimized kernel Generating NVIDIA GPU code (Loop parallelized across
message CUDA thread blocks). Loop parallelized across CUDA
threads (32) collapse(2)

optimized kernel Generating NVIDIA GPU code (Loop parallelized across
message CUDA thread blocks, CUDA threads(128)). Loop run
sequentially

Once the CONTINUE labels were removed from the kernel source code and all the loops were
manually unrolled (e.g., see the code block in Figure 2b), the -Minfo flag output was changed
(see the second row of Table III) to reflect the generation of NVIDIA GPU code with the outer
DC loop parallelized across CUDA blocks and threads. All other loops inside the DC region will
be executed sequentially. Such changes have significantly improved the performance of the DC
ERI kernels. Results for these optimized kernels are shown in columns 6 and 7, Table II. The
observed speedups range from 3.79x to 27.6x. Due to their small workload, the low (INT0002)
and high (INT0222 and INT1222) angular momentum kernels speedups are ~3.8-4.34x and 7.8-
13.4x, respectively. The low workload of INT0002 is due to the low complexity of low angular
momentum basis functions, whereas the low workload of high angular momentum kernels
INT0222 and INT1222 is due to their small numbers of quartets (see column 4, Table II). For
large workload kernels INT0112, INT0102, due to huge numbers of quartets, the speedup is
greater, ranging from ~17.4-27.6x. This DC optimization will be applied to all 15 d-type ERI

kernels in the next sections.

B. Relative performance of DC, OpenMP and OpenAcc offloading
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In this section, the performance of ERI kernels offloaded to GPUs using different directive-based
programing models, compilers and GPUs is studied. The three programming models are DC,
OpenMP and OpenACC. Three compilers are used: nvfortran, cce, and xIf. Two GPUs are used
i) the A100 with 40 GB RAM on Perlmutter?* at the National Energy Research Scientific
Computing Center ( NERSC), ii) the V100 with 16 GB RAM on Summit?’ at Oak Ridge
National Laboatory. The RHF energy calculations for a cluster of 128 water molecules with the
correlation consistent basis set cc-pVDZ is used as a test system. For all runs with nvfortran
compiler, the number of teams and threads (for OpenMP results) and the number of gangs and
number of workers (for OpenACC results) is set by the compiler as it resulted in best
performance. For all runs with cray compiler, the number of teams and threads was varied for
integral kernels and launch details are reported in Table V. For all runs with xIf compiler, the
number of teams is set to 160 and the number of threads is set to 8. All results are summarized in

Table IV.

Table IV. Wall time (s) of ERI kernels for RHF energy calculations of a 128-molecule water
cluster using different offloading models, compilers and GPUs (1 GPU/calculation).

e | DC T e | Al | O | ONFC: [OMFE OECD
INT0002 2.94 0.82 0.70 1.91 1.55 1.54 60.1
INTO112 7.54 1.28 1.77 2.85 3.24 4.35 160.1
INTO0102 3.15 1.02 1.13 3.14 3.41 3.63 170.8
INT0222 0.46 0.08 0.006 0.006 0.009 0.20 6.61
INT1222 1.13 0.11 0.51 0.50 0.20 0.58 23.6
Total 15.22 3.31 4.12 8.41 8.41 10.3 421.2

Calculations with DC ERI kernels using the nvfortran compiler (NVHPC/22.5) on A100

GPUs are denoted DC-A100. The results are shown in column 3, Table IV. As discussed in
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previous sections, for water cluster calculations, the wall time of the kernel INT0112 is the
largest (e.g., 1.38 s), whereas other kernels are much smaller and are all below 1.0 (s). The DC-
A100 wall times will be used as the reference to compare with other directive-based models,

compilers and GPUs.

Calculations with OpenACC kernels using the nvfortran compiler on A100 GPUs are denoted
ACC-A100. The results are shown in column 4, Table IV. The optimized DC source code was
directly converted to OpenACC with the specification “acc parallel loop”. The
OpenACC wall times for most ERI kernels are almost identical to those of DC except for the
INTO112 and INT1222, for which the ACC-A100 is slower. Overall, the speedup of the DC-

A100 is about 1.30x relative to the ACC-A100.

Calculations with OpenMP kernels using the nvfortran compiler on the A100 are denoted
OMP(nvfortran)-A100. The results are shown in column 5, Table IV. The OpenMP
implementation has also benefited from the optimized DC kernels (e.g., removing the
CONTINUE label and manually unrolling loops). The results show that DC outperforms the
OpenMP target offload in all cases. Particularly, for large workload kernels INT0112, INT0102,

DC is 2-3.27x faster. Overall, the DC-A100 is 2.67x faster than the OMP(nvfortran)-A100.

Calculations with OpenMP kernels using the Cray compiler on the A100 are denoted
OMP(cce)-A100. The results are shown in column 6, Table IV. Tests for this section were
performed with the Cray CCE 14.0.1 compiler. The following modules were loaded:
cudatoolkit/11.7, craype-accel-nvidia80, craympich/8.1.17, cray-libsci/21.08.1.2, PrgEnv-

cray/8.3.3. To successfully execute on the A100 GPUs with CCE compiler, the simd clause and
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the number of teams and threads must be provided. Overall, the DC-A100 is 2.66x faster than

OMP(cce)-A100.

Calculations with OpenMP kernels on the V100 using the nvfortran and xIf compilers are
denoted OMP(nvfortran)-V100 and OMP(x1f)-V100, respectively. The results are shown in
columns 7 and 8 in Table IV. In comparison with the xIf, the nvfortran implementation provides
much better performance on the V100. This is because OMP(x1f) performs best when a large
number of OpenMP teams and a small number of threads is used resulting in a small number of
CUDA grids. Overall, OMP(nvfortran)-V100 is about 40.8x faster than OMP(x1f)-V100. With
the same compiler nvfortran and OpenMP model, shifting from V100 (i.e., OMP(nvfortran)-

V100) to A100 (i.e., OMP(nvfortran)-A100) can speed up calculations by 1.22x.

In Table IV column 1 additional CPU multicore DC calculations were carried out as a
reference. A full Perlmutter node (2 64-core AMD Milan CPUs) was used. Compilation flag for
CPU execution of DC was changed to “-stdpar=multicore”. Results reported in Table IV

suggest a ~4.60x speedup of DC-GPU code versus DC-CPU code on a single A100 GPU.

As noted above, the optimal performance for OpenMP and OpenACC kernels using
nvfortran compiler was achieved without specifying the size of the CUDA grid. Note that DC
implementation does not allow for manual specification of the CUDA grid; that is, there is no
user control to specify GPU parallelism apriori. Therefore, the CUDA grid being launched for

each of the programming models is different and is briefly summarized in Table V.

Table V. Total CUDA grid sizes of ERI kernels for RHF energy calculations of a 128-molecule
water cluster using different offloading models and compilers on A100 GPUs (1
GPU/calculation).
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Kernel DC-A100 ACC-A100 OMP(nvf)-A100 OMP(cce)-A100
INT0002 65,535 65,535 3,007,114 159,744
INTO112 65,535 65,535 1,838,231 159,744
INT0102 65,535 65,535 2,667,516 114,688
INT0222 32,690 32,690 32,690 159,744
INT1222 22,693 22,693 22,693 16,384

Nvfortran compiler chooses the number of threads per block to be 128 by default as optimal for
NVIDIA-based GPUs. For OpenACC and DC kernels, grid sizes are identical likely due to the
fact that DC implementation is based on OpenACC. For integral kernels that require more
memory (INT0222, INT1222) the CUDA grid is significantly smaller. For OpenMP-based
kernels, while the same INT0222 and INT1222 kernels have small CUDA grids, INT0002,
INT0102, and INTO0112 kernels have significantly more CUDA thread blocks. In fact, the
smaller the kernel (INT0002), the larger the number of CUDA thread blocks launched. This
configuration results in most optimal performance for OpenMP-based kernels; the authors
hypothesize the choice of the CUDA grid by the compiler depends on the total number of
quartets of type INT0002 that are needed to be evaluated. There number of INT0002 type
integrals necessary to be computed is larger than the number of INT0222 or INT1222 type
integrals on the order of ~1000x due to the fact that there are more s-type functions in the basis
set. For cray compiler on A100 GPUs, the number of teams and threads were varied to achieve
best performance. For instance, for INT0002, INT0112, INT0102, and INT0222, a combination
of 832 or 896 teams and 128 and 192 and 128 threads per team yielded optimal results whereas
for INT1222 kernel, 128 teams and 128 threads per team resulted in best performance. Hence,

due to a significantly smaller CUDA grid launched by the OpenMP kernels using cce compiler,
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performance of these kernels is worse when compared to OpenMP kernels launched using

nvfortran compiler.

In summary, the DC-A100 can be used as a compelling alternative to the directive-based
approaches. On the same A100, DC outperforms OpenMP with nvfortran and cce compilers.
OpenACC and DC perform similarly. However, while OpenACC is specialized for NVIDIA
GPUs, DC is a standard construct in Fortran 2008, which is currently supported by Fortran
compilers to achieve CPU parallelism and is rapidly gaining accelerator support by a variety of

compilers?®.
C. Application to Chemistry

In this section, the newly developed DC and OpenMP GPU kernels are compared to the existing
threaded CPU code in GAMESS. Optimizations discussed in Sections 4A and 4B are applied to
all 15 d-type ERI kernels. The full GAMESS application was compiled on the Perlmutter
supercomputer with the nvfortran compiler and Cray MPI for both the OpenMP CPU and
OpenMP GPU and DC GPU versions. Table VI shows the full Fock build wall times for a cluster
of 128 water molecules with the 6-31G(d) basis set for the OpenMP CPU code (column 1), the

OpenMP GPU code (column 2), and the DC GPU code (column 3).

Table VI. Wall time to solution (s) of a cluster of 128 water molecules with the 6-31G(d) basis
set using one A100 GPU.

Model OpenMP CPU OpenMP GPU DC GPU

Fock build 44.0 343 11.4
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The OpenMP CPU calculation was executed with one MPI rank and 64 threads that
effectively utilize the entire 64-core AMD EPYC CPU. The total wall time recorded is 44.0
seconds. Both OpenMP and DC GPU calculations were run with one MPI rank on one A100
GPU. The total Fock build times for the OpenMP and DC GPU are 34.3 and 11.4 (s),
respectively. In summary, the DC GPU is 3.0x faster than the OpenMP GPU and 3.89x faster
than the corresponding OpenMP CPU. In future implementations, MPI parallelism will be added
to both DC and OpenMP kernels to enable multi-GPU execution. Most importantly, the results
shown in Table VI demonstrate the practical applicability of DC kernels to accelerate scientific

applications such as GAMESS.
5. Concluding remarks

In this work, new integral kernels based on OpenMP and the Fortran ‘DO CONCURRENT”
(DC) clause were developed in GAMESS for accelerated quantum chemistry calculations.
Implementations using DC were compared to directive-based approaches such as OpenMP and
OpenACC. While OpenMP remains a portable approach to running GPU-accelerated codes, the
performance of standard Fortran parallelism can provide an important alternative for a broad
range of legacy quantum chemistry packages. DC can speed up full HF calculations by 3.0x
relative to equivalent directive based models. In addition, OpenMP kernels are significantly sped
up by employing new nvfortran and cce compilers relative to the mature xIf compiler. Provided
small code differences between the DC, OpenMP, and OpenACC models, preprocessor
conditions can be employed to enable DC when an NVIDIA GPU is used; other directive-based
models can be enabled when other GPUs (e.g., AMD, Intel) are used. It remains an open

challenge to create truly portable OpenMP kernels. Currently, one needs to tweak not only the
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OpenMP directives for different compilers (e.g., the need to add simd for the CCE compiler,
varying numbers of teams and threads), but also some modification of the source codes to
achieve the best performance. From this perspective, DC could serve as a potential replacement
to directive-based approaches as part of the Fortran standard. Nevertheless, OpenMP can provide
more directives to support, for instance, data transfer and asynchronicity that might continue

outperforming the DC model.
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