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Abstract 

The performance of Fortran 2008 DO CONCURRENT (DC) relative to OpenACC and 

OpenMP target offloading (OTO) with different compilers is studied for the GAMESS quantum 

chemistry application. Specifically, DC and OTO are used to offload the Fock build, which is a 

computational bottleneck in most quantum chemistry codes, to GPUs. The DC Fock build 

performance is studied on NVIDIA A100 and V100 accelerators and compared with the OTO 

versions compiled by the NVIDIA HPC, IBM XL and Cray Fortran compilers. The results show 

that DC can speed up the Fock build by 3.0x compared with the OTO model. With similar 

offloading efforts, DC is a compelling programming model for offloading Fortran applications to 

GPUs. 

 

i E-mail: mark@si.chem.msg.iastate.edu 



2 

 

  



3 

 

1. Introduction  

Quantum chemistry (QC) calculations play an important role in understanding complex chemical 

phenomena such as reaction mechanisms, chemical reactivity, and many other properties. 

However, their high computational costs have been a bottleneck of QC applications. Many 

developments have been accomplished to overcome these challenges over the past two decades, 

both in terms of new theory development and computer algorithms to take advantage of new 

hardware1. Since most supercomputers and workstations are now equipped with several 

accelerators on each CPU compute node, many efforts have been invested to made QC codes 

available for use on these systems. Among these efforts, accelerating QC codes on general 

purpose Graphics Processing Units (GPGPUs or GPU for short) are becoming particularly 

prominent.2–6 

A few popular QC codes have been ported onto GPUs .These include Terachem2, QUICK3, 

and GAMESS/LibCChem,7 and more are planned to be released8. Of the aforementioned QC 

packages, most utilize the CUDA programming model specialized for NVIDIA GPUs. With 

other vendors investing in GPUs, it is important to enable QC codes on a variety of GPU 

architectures. Consequently, many scientific software packages have turned to the directive 

OpenACC and OpenMP programming model as a portable and productive alternative to CUDA9–

11. At the same time, a GPU version of the DO CONCURRENT (DC) construct in the Fortran 

2008 standard has been enabled by NVIDIA. The present work compares the performance of 

directive-based programming models, such as OpenMP and OpenACC with that of DC within 

GAMESS, a popular QC package. A focus here is on offloading the Fock build, a 

computationally demanding component of most QC methods. The Fock build consists of the 
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computation of four-index two-electron repulsion integrals (ERIs) as well as their digestion into 

a Fock matrix. Many methods and algorithms have been developed for efficient evaluation of 

ERIs12. For example, in GAMESS, ERIs can be calculated by the Pople-Hehre (PH)13, 

McMurchie-Davidson14, Rys quadrature15,16, and ERIC17 methods depending on the specific 

types of ERIs. Efforts to accelerate all GAMESS ERI packages have been ongoing based on an 

OpenMP target programming model.5 In this paper, the GPU offloading focuses on the method 

containing mixed Pople-Hehre and McMurchie-Davidson recurrence relations. 

2. Background 

A. GPU Programming Models 

The first widely used programming model for GPUs was CUDA C, introduced by NVIDIA in 

2007. CUDA Fortran was released by the Portland Group in 2009, thereby facilitating GPU 

programming directly from Fortran for the first time. OpenACC, released in 2011, provided a set 

of directives that supported parallel programming across a range of platforms, including GPUs. 

In 2013, OpenMP also added multi-platform directive support for GPUs. The Fortran 2008 

standard added a construct called DO CONCURRENT (DC), which allows application 

developers to instruct compilers that some form of loop-level parallelism can be exploited. 

However, implementations were limited to CPU vector and thread parallelism. In 2020, NVIDIA 

released support for a GPU feature for the DC construct in the NVIDIA HPC Fortran compiler 

(NVHPC Fortran). 

Currently, at least three compilers (Intel, Cray and NVHPC) support DC. Both Intel and Cray 

Fortran compilers can map DC to vector and thread parallelism in a similar manner to the “omp 



5 

 

parallel do simd” OpenMP directive. The NVHPC Fortran compiler supports DC in a  

similar manner to the “acc parallel loop” OpenACC directive. With NVHPC, DC 

iterations can be mapped to both CPU and GPU threads and can take advantage of the vector 

parallelism. 

Since GPUs have their memory distinct from the CPU (host) memory, each compiler needs a 

way to make data accessible to the GPU when generating GPU parallel code. For NVHPC 

Fortran, allocatable arrays are treated as CUDA managed memory, which is accessible to both 

CPUs and GPUs on the same node18. Furthermore, developers can also explicitly manage the 

data locality using other mechanisms, such as omp and acc directives (e.g., “!$omp shared” 

and “!$omp private” in OpenMP programming model). 

B. Hartree-Fock method 

A major goal of QC programs is to solve the Schrodinger equation. An analytic solution for the 

Schrodinger equation is only available for the simplest systems (e.g., one-electron systems). For 

all other molecular systems, the Schrodinger equation has to be solved numerically utilizing 

many approximations. One such fundamental approximation is the Hartree-Fock (HF) method, 

which can recover 99% of the total energy and is often the first step for QC calculations. Many 

correlation methods can be developed on top of the HF method to recover the remaining 1% of 

the energy and to improve the accuracy of the computations. Therefore, accelerating the HF 

method is an important starting point for wave function-based method development. 
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In the HF method, the N-body wave function is approximated by a determinant of one-

electron functions, called molecular orbitals (MO). Each MO  {𝜓!(𝑟)} is approximated by a 

linear combination of atomic orbitals (AO) '𝜙"(𝑟)): 

𝜓!(𝑟) =+𝜙"(𝑟)𝐶"!

#

"

 (1) 

The MO coefficients {𝐶"!} are obtained by minimizing the energy of the system, thereby 

requiring computations of 4-index 2-electron repulsion integrals (ERI), which comprise a 

bottleneck of the HF method: 

(𝜇𝜈|𝜆𝜎) = 2𝑑𝑟$𝑑𝑟%𝜙"(𝑟$)𝜙&(𝑟$)𝑟$%'$𝜙((𝑟%)𝜙)(𝑟%) (2)  

In Eq. (2), r1 and r2 refer to the coordinates of electrons 1 and 2, respectively. When doing a 

HF calculation, a user needs to define the geometry of a molecular system as well as a basis set. 

A basis set contains a set of known Gaussian-like primary functions pre-contracted to form AO 

basis functions, to which the Fock operator is applied. A contracted basis function {𝜙"(𝑟)}	 is 

defined in eq. (3), in which 𝐿, 𝑑"* and {𝜒*} are the contraction length, the contraction 

coefficients and Gaussian-like primitive functions, respectively. 𝑅+ and 𝑅, are the centers on 

which the basis and the primitive functions, respectively, are located. 

𝜙"(𝑟 − 𝑅+) = +𝑑"*𝜒*(𝛼*" , 𝑟 − 𝑅,)
-

*.$

 (3) 
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An AO basis function can be classified based on its angular momentum. For example, AOs 

with angular momenta of 0, 1, 2 and 3 are called s, p, d and f orbitals, respectively. They are 

formed by contracting corresponding primitive functions. For instance, the 1𝑠, 2𝑝/ and 3𝑑/0 

primitive functions are defined as follows19 

𝜒$1(𝛼, 𝑟) = @
8𝛼2

𝜋2
!

𝑒'34" 
(4) 

𝜒%*#(𝛼, 𝑟) = @
128𝛼5

𝜋2
!

𝑥𝑒'34" 
(5) 

𝜒26#$(𝛼, 𝑟) = @
2048𝛼7

𝜋2
!

𝑥𝑦𝑒'34" 
(6) 

In eqs. (4)-(6), the numbers 1, 2, 3 in the superscripts 1𝑠, 2𝑝/ and 3𝑑/0 are AO principle 

quantum numbers representing the atomic energy levels. The factor {𝛼} is the orbital exponent 

which governs the spatial extent of the orbital. The order of the polynomial factor (e.g., 0, 1 and 

2 for the factors 1, 𝑥, and 𝑥𝑦 in the 1𝑠, 2𝑝/ and 3𝑑/0 functions) corresponds to the orbital 

angular momentum. The s-type function with a 0th order polynomial factor has 0th order 

degeneracy; i.e., there is a single linearly independent s-type basis function for each AO energy 

level. The p-type basis function with a 1st order polynomial factor has 1st order degeneracy; i.e., 

there are three linearly independent (degenerate) basis functions (𝑝/, 𝑝0 and 𝑝8) for each AO 

energy level. Similarly, there are six linearly independent (degenerate) d-type basis functions 

(𝑑//, 𝑑00, 𝑑88, 𝑑/0, 𝑑/8 and 𝑑08) at each AO energy level. 
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 ERIs of higher angular momentum basis functions have increasing computational 

complexity. Usually, to achieve meaningful chemical results for the lighter elements in the 

Periodic Table, it is important to use basis sets that contain up to at least d	functions. This work 

focuses on the performance of ERIs containing d-type basis functions.  

In GAMESS, ERIs that contain d functions are calculated using the SPD and RYS packages. 

The SPD package is based on mixed Pople-Hehre and McMurchie-Davidson recurrence 

relations20. The RYS package is based on the numerical Rys quadrature method15,16. In this 

paper, the newly developed SPD algorithm and its respective parallelization schemes are 

discussed in the context of DC. 

3. Algorithms 

An ERI (𝜇𝜈|𝜆𝜎) is a linear combination of the primitive ERIs, which are 4-index integrals of 

primitive (basis) functions, (𝜒*𝜒9|𝜒4𝜒1): 

(𝜇𝜈|𝜆𝜎) = + 𝑑"*𝑑&9𝑑(4𝑑)1(𝜒*𝜒9|𝜒4𝜒1)
-%,-",-&,-!

*941

 (7) 

To efficiently compute ERIs over primitive functions, primitive functions which share the 

same orbital exponents, are grouped into shells. For instance, a d-shell contains all d-type 

primitive functions used to construct six basis functions dxx, dyy, dzz, dxy, dyz and dxz. For some 

cases, when the orbital exponent of s and p-type functions are the same, they are grouped 

together and called an L-shell in order to reduce the computational effort. 
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The default algorithm to evaluate ERIs in GAMESS is to iterate over four shells. All primary 

integrals in a group of four shells, called a quartet, are computed together facilitating 

intermediate arrays to be shared among them. Figure 1a shows an MPI/OpenMP implementation 

of ERIs in GAMESS. The outermost loop iterations ish are distributed over MPI ranks, whereas 

the inner loop iterations jsh and ksh are fused together using collapse clause and parallelized 

with OpenMP. Both MPI and OpenMP layers use dynamic load balancing schemes21. 

For d-shell ERIs, the structure in Figure 1a computes 15 types of quartets including (sssd), 

(sspd), ... (dddd). These ERIs differ in the count of floating-point operations (FLOP) and the size 

of intermediates, which can introduce workload imbalance. Such an effect can be reduced by 

employing dynamic load balance schemes in both work distribution to MPI ranks and OpenMP 

threads. However, dynamic scheduling is, on the one hand, not available in the OpenMP target; 

on the other hand, the computational cost and memory differences associated with different ERI 

types will likely lead to thread divergence that will ruin GPU performance. To take advantage of 

the massive parallelization offered by the GPUs, the CPU algorithm (Figure 1a) needs to be 

restructured.  
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Figure 1. (a) MPI/OpenMP implementation of ERIs in GAMESS; (b) quartet sorting and 
screening for GPU offloading; (c) quartet offloading using OpenMP; and (d) quartet offloading 
using DC. 

 

The code restructuring includes multiple steps as shown in Figure 1b-e. Figure 1b 

summarizes quartet preparation steps.  First, all shells in a given input molecule are sorted into S, 

P, D groups (e.g., the S group contains only s-type basis functions). Second, these shells are 

coupled into different pair types, e.g., ss, sp, ..., dd. Next, these pairs are coupled to form quartets 

of the same types, e.g., (ss|sd),	(ss|pd)	up to (dd|dd). Quartets of each type are first screened 

using the Schwarz inequality, to avoid computing ERIs that will be smaller than a chosen 

cutoff22. Quartets that have significant values above the chosen cutoff are sent to the GPUs for 

computation.  

In Figure 1c, quartets obtained from preparation steps (Figure 1b) are distributed over teams 

and then over GPU threads for actual computation using the “!$omp target teams 

distribute parallel do”. This is an example of the OpenMP kernels currently 

Commented [PBQ[L1]: As reviewer suggested, I think we 
should either remove all arrows 

Commented [AM2R1]: done 
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developed and implemented in GAMESS. The details of the algorithm are presented in 

references6,23.   

In Figure 1e, the DC equivalent of OpenMP target kernels is obtained by simply replacing the 

DO-ENDDO construct by the DO CONCURRENT-ENDDO construct. In a similar manner, 

OpenACC kernels (Figure 1d) can directly be derived from the OpenMP kernels by replacing the 

“!$omp target teams distribute parallel do” by a “!$acc parallel 

loop” directive, and “!$omp private” is replaced with “!$acc private”. The 

performance of DC kernels will be compared, herein, to the baseline OpenMP kernels and their 

equivalent OpenACC implementations across compilers that currently support GPU offloading. 

4. Compiling ERI kernels 

OpenMP GPU, OpenACC and DC ERI kernels discussed in Section 3 and Figure 1 are compiled 

using flags and GPUs shown in Table I. In Table I, DC ERI kernels using the nvfortran compiler 

(NVHPC/22.5) on A100 GPUs are denoted DC-A100; OpenACC kernels using the nvfortran 

compiler on A100 GPUs are denoted ACC-A100; OpenMP kernels using the nvfortran compiler 

on the A100 are denoted OMP(nvfortran)-A100; OpenMP kernels using the Cray compiler on 

the A100 are denoted OMP(cce)-A100. OpenMP kernels on the V100 using the nvfortran and xlf 

compilers are denoted OMP(nvfortran)-V100 and OMP(xlf)-V100. 

Table I. Compiler flags for ERI kernels 

Kernel Compiler flags 

DC-A100 -i8 -fast -mcmodel=medium -stdpar=gpu -target=gpu -gpu=cc80 -
Minfo=acc -gpu=managed 

ACC-A100 -i8 -fast -mcmodel=medium -acc -target=gpu -gpu=cc80 -gpu=managed 
OMP(nvf)-A100 -i8 -fast -mcmodel=medium -mp -target=gpu -gpu=cc80 -gpu=managed 

Commented [PBQ[L3]: If it is not too hard to do, we 
should add another pseudo code for OpenACC kernel 

Commented [AM4R3]: Added  

Commented [PBQ[L5]: Melisa: could you fill the table? 
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OMP(cce)-A100 -O3 -h omp -hnoacc -DSETDEVICEID -sinteger64 -haccel=nvidia80 

OMP(xlf)-V100 

-qsuffix=f=f90 -qfree=f90 -c -O2 -qsmp=omp -qoffload -
qxlf90=autodealloc -q64 -qintsize=8 

        -qarch=pwr9 -qtune=pwr9 -qflag=W:W -qhalt=W -qspillsize=2500 -
qnosave  

 

5. Results 

A. Offloading ERI kernels with DC 

ERI kernels offloaded by DC are shown in Figure 1e. These kernels were compiled with the flag 

“-stdpar=gpu -mp -target=gpu -gpu=cc80 -gpu=managed” on the Perlmutter24 

supercomputer with A100 GPUs as shown in the second row of Table I. The performance of 

these ERI kernels was studied by computing the closed shell restricted Hartree-Fock (RHF) 

energy for clusters of 64 and 128 water molecules with the correlation consistent cc-pVDZ25 and 

Pople 6-31G(d)26 basis sets, both of which are frequently used in QC calculations.  

The wall times of the five kernels INT0002, INT0112, INT0102, INT0222, and INT1222 are 

shown in columns 5 (before optimization) and 6 (after optimization) inTable II. The main 

optimization for DC kernels is loop unrolling. The numbers 0, 1 and 2 are the angular momentum 

values of the s, p and d basis functions, respectively. Therefore, the kernel INT0002 contains 

three s	and	one d	shells, whereas the kernel INT1222 kernels contains one p	(or L) and three d 

shells. 

 
 
Table II. Performance of selected DC kernels before and after compiler-driven optimization. 
Some speedups are (under N/A) are not reported since the overall timing for the optimized kernel 
is very small and would not reflect the speedup accurately.  
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Molecule Basis Set Kernel Number of 
quartets 

Before 
optimization 

(s) 

After 
optimization (s) Speedup 

(H2O)64 

6-31G(d) 

INT0002 31,906,009 0.35 0.09 3.88 
INT0112 15,236,334 1.76 0.15 11.70 
INT0102 15,236,334 1.82 0.14 13.00 
INT0222 393,097 0.33 0.03 10.00 
INT1222 172,891 0.39 0.05 7.80 

cc-pVDZ 

INT0002 102,844,898 0.72 0.19 3.79 
INT0112 53,286,090 4.71 0.27 17.40 
INT0102 53,286,090 6.14 0.28 21.90 
INT0222 388,113 0.3 0.003 N/A 
INT1222 158,090 0.37 0.005 N/A 

(H2O)128 

6-31G(d) 

INT0002 81,844,551 1.0 0.23 4.34 
INT0112 71,173,873 7.73 0.44 17.60 
INT0102 71,173,873 8.47 0.43 19.70 
INT0222 1,637,228 1.34 0.10 13.40 
INT1222 806,825 1.77 0.20 8.85 

cc-pVDZ 

INT0002 268,907,047 3.17 0.82 3.87 
INT0112 246,223,301 28.4 1.28 22.2 
INT0102 246,223,301 20.1 1.02 19.7 
INT0222 1,366,689 1.02 0.08 12.80 
INT1222 531,868 1.10 0.11 10.0 

 

The wall time (see columns 5 and 6, Table II) of a kernel is determined by both the 

complexity of the kernel and the number of quartets in that kernel. Kernels with higher angular 

momentum will have higher complexity, which will require higher FLOP counts and larger 

intermediate arrays. For example, the intermediate array that stores integrals in the kernel 

INT0002 has the size of six double precision elements, whereas the size needed for the same 

array in the INT1222 kernel is 4 ∗ 6 ∗ 6 ∗ 6 = 864 double precision elements, where the 4 

represents the L (s+p) shell and the 6 represents the d shell. Therefore, the wall time required to 

process the simplest kernel INT0002 is the smallest. 

On the other hand, since the number of quartets in the high and low angular momentum 

kernels INT0222 and INT1222 are significantly less than that of the intermediate kernels 

Commented [PBQ[L7]: As pointed out by the reviewer 
the number in red of this table is not consistent with red 
numbers in Table IV. I guess this is the result numerical 
noise between one to another run. I think Melisa can pick 
one, or averaging a couple of runs for both tables. 

Commented [AM8R7]: Did average of 3 runs! 
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INT0112, and INT0102 (see column 4, Table II), the wall times required to evaluate the 

INT0112 and INT0102 are the largest. 

 
Figure 2. (a) original code block with CONTINUE label; and (b) manual loop unrolling to 
achieve performance 

 
The DC ERI kernels are further inspected by using the -Minfo compiler flag that can 

display the compiler invocations. With the additional compiler flag, one can see that kernels 

using a Fortran CONTINUE label (e.g., see the code block in Figure 2a) causes the nvfortran 

compiler to parallelize loops across CUDA threads as opposed to running them sequentially (see 

the first row of Table III). The warning message Loop parallelized across CUDA 

threads(32) collapse(2) in the first row of Table III suggests that many individual 

loops inside the DC region were offloaded to the GPU instead of the desired outcome of having 

the main DC outer loop spread across the CUDA threads. Offloading loops inside the DC region 

led to unsatisfactory performance results (Table II, column 5). The structure of these non-

optimized code blocks is shown in Figure 2a. Further code optimization restructured these code 

blocks, specifically, by unrolling the loops according to the compiler suggestions (Table III, top) 

to lead to optimized code (Figure 2b), thereby achieving significant speedups when compared to 

the non-optimized version (Table II, columns 6-7). It is an NVIDIA Fortran compiler bug that 

does not automatically unroll loops containing Fortran ‘CONTINUE’ statements.  
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Table III. Output of the -Minfo compiler flag before and after manual loop unrolling 

non-optimized kernel 
message 

Generating NVIDIA GPU code (Loop parallelized across 
CUDA thread blocks). Loop parallelized across CUDA 
threads(32) collapse(2) 

optimized kernel 
message 

Generating NVIDIA GPU code (Loop parallelized across 
CUDA thread blocks, CUDA threads(128)). Loop run 
sequentially 

 

Once the CONTINUE labels were removed from the kernel source code and all the loops were 

manually unrolled (e.g., see the code block in Figure 2b), the -Minfo flag output was changed 

(see the second row of Table III) to reflect the generation of NVIDIA GPU code with the outer 

DC loop parallelized across CUDA blocks and threads. All other loops inside the DC region will 

be executed sequentially. Such changes have significantly improved the performance of the DC 

ERI kernels. Results for these optimized kernels are shown in columns 6 and 7, Table II. The 

observed speedups range from 3.79x to 27.6x. Due to their small workload, the low (INT0002) 

and high (INT0222 and INT1222) angular momentum kernels speedups are ~3.8-4.34x and 7.8-

13.4x, respectively. The low workload of INT0002 is due to the low complexity of low angular 

momentum basis functions, whereas the low workload of high angular momentum kernels 

INT0222 and INT1222 is due to their small numbers of quartets (see column 4, Table II). For 

large workload kernels INT0112, INT0102, due to huge numbers of quartets, the speedup is 

greater, ranging from ~17.4-27.6x. This DC optimization will be applied to all 15 d-type ERI 

kernels in the next sections. 

B. Relative performance of DC, OpenMP and OpenAcc offloading 
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In this section, the performance of ERI kernels offloaded to GPUs using different directive-based 

programing models, compilers and GPUs is studied. The three programming models are DC, 

OpenMP and OpenACC. Three compilers are used: nvfortran, cce, and xlf. Two GPUs are used 

i) the A100 with 40 GB RAM on Perlmutter24 at the National Energy Research Scientific 

Computing Center ( NERSC), ii) the V100 with 16 GB RAM on Summit27 at Oak Ridge 

National Laboatory. The RHF energy calculations for a cluster of 128 water molecules with the 

correlation consistent basis set cc-pVDZ is used as a test system. For all runs with nvfortran 

compiler, the number of teams and threads (for OpenMP results) and the number of gangs and 

number of workers (for OpenACC results) is set by the compiler as it resulted in best 

performance. For all runs with cray compiler, the number of teams and threads was varied for 

integral kernels and launch details are reported in Table V. For all runs with xlf compiler, the 

number of teams is set to 160 and the number of threads is set to 8. All results are summarized in 

Table IV. 

Table IV. Wall time (s) of ERI kernels for RHF energy calculations of a 128-molecule water 
cluster using different offloading models, compilers and GPUs (1 GPU/calculation). 

Kernel DC, AMD-
Milan CPU DC-A100 ACC-

A100 
OMP(nvf)-

A100 
OMP(cce)-

A100 
OMP(nvf)-

V100 
OMP(xlf)

-V100 
INT0002 2.94 0.82 0.70 1.91 1.55 1.54 60.1 
INT0112 7.54 1.28 1.77 2.85 3.24 4.35 160.1 
INT0102 3.15 1.02 1.13 3.14 3.41 3.63 170.8 
INT0222 0.46 0.08 0.006 0.006 0.009 0.20 6.61 
INT1222 1.13 0.11 0.51 0.50 0.20 0.58 23.6 

Total 15.22 3.31 4.12 8.41 8.41 10.3 421.2 

 

Calculations with DC ERI kernels using the nvfortran compiler (NVHPC/22.5) on A100 

GPUs are denoted DC-A100. The results are shown in column 3, Table IV. As discussed in 



17 

 

previous sections, for water cluster calculations, the wall time of the kernel INT0112 is the 

largest (e.g., 1.38 s), whereas other kernels are much smaller and are all below 1.0 (s). The DC-

A100 wall times will be used as the reference to compare with other directive-based models, 

compilers and GPUs. 

Calculations with OpenACC kernels using the nvfortran compiler on A100 GPUs are denoted 

ACC-A100. The results are shown in column 4, Table IV. The optimized DC source code was 

directly converted to OpenACC with the specification “acc parallel loop”. The 

OpenACC wall times for most ERI kernels are almost identical to those of DC except for the 

INT0112 and INT1222, for which the ACC-A100 is slower. Overall, the speedup of the DC-

A100 is about 1.30x relative to the ACC-A100. 

Calculations with OpenMP kernels using the nvfortran compiler on the A100 are denoted 

OMP(nvfortran)-A100. The results are shown in column 5, Table IV. The OpenMP 

implementation has also benefited from the optimized DC kernels (e.g., removing the 

CONTINUE label and manually unrolling loops). The results show that DC outperforms the 

OpenMP target offload in all cases. Particularly, for large workload kernels INT0112, INT0102, 

DC is 2-3.27x faster. Overall, the DC-A100 is 2.67x faster than the OMP(nvfortran)-A100. 

Calculations with OpenMP kernels using the Cray compiler on the A100 are denoted 

OMP(cce)-A100. The results are shown in column 6, Table IV. Tests for this section were 

performed with the Cray CCE 14.0.1 compiler. The following modules were loaded: 

cudatoolkit/11.7, craype-accel-nvidia80, craympich/8.1.17, cray-libsci/21.08.1.2, PrgEnv-

cray/8.3.3. To successfully execute on the A100 GPUs with CCE compiler, the simd clause and 
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the number of teams and threads must be provided. Overall, the DC-A100 is 2.66x faster than 

OMP(cce)-A100. 

Calculations with OpenMP kernels on the V100 using the nvfortran and xlf compilers are 

denoted OMP(nvfortran)-V100 and OMP(xlf)-V100, respectively. The results are shown in 

columns 7 and 8 in Table IV. In comparison with the xlf, the nvfortran implementation provides 

much better performance on the V100. This is because OMP(xlf) performs best when a large 

number of OpenMP teams and a small number of threads is used resulting in a small number of 

CUDA grids. Overall, OMP(nvfortran)-V100 is about 40.8x faster than OMP(xlf)-V100. With 

the same compiler nvfortran and OpenMP model, shifting from V100 (i.e., OMP(nvfortran)-

V100) to A100 (i.e., OMP(nvfortran)-A100) can speed up calculations by 1.22x. 

In Table IV column 1 additional CPU multicore DC calculations were carried out as a 

reference. A full Perlmutter node (2 64-core AMD Milan CPUs) was used. Compilation flag for 

CPU execution of DC was changed to ”-stdpar=multicore”. Results reported in Table IV 

suggest a ~4.60x speedup of DC-GPU code versus DC-CPU code on a single A100 GPU.  

As noted above, the optimal performance for OpenMP and OpenACC kernels using 

nvfortran compiler was achieved without specifying the size of the CUDA grid. Note that DC 

implementation does not allow for manual specification of the CUDA grid; that is, there is no 

user control to specify GPU parallelism apriori. Therefore, the CUDA grid being launched for 

each of the programming models is different and is briefly summarized in Table V.  

Table V. Total CUDA grid sizes of ERI kernels for RHF energy calculations of a 128-molecule 
water cluster using different offloading models and compilers on A100 GPUs (1 
GPU/calculation). 
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Kernel DC-A100 ACC-A100 OMP(nvf)-A100 OMP(cce)-A100 
INT0002 65,535 65,535 3,007,114 159,744  
INT0112 65,535 65,535 1,838,231 159,744 
INT0102 65,535 65,535 2,667,516 114,688 
INT0222 32,690 32,690 32,690 159,744  
INT1222 22,693 22,693 22,693 16,384 

 

Nvfortran compiler chooses the number of threads per block to be 128 by default as optimal for 

NVIDIA-based GPUs. For OpenACC and DC kernels, grid sizes are identical likely due to the 

fact that DC implementation is based on OpenACC. For integral kernels that require more 

memory (INT0222, INT1222) the CUDA grid is significantly smaller. For OpenMP-based 

kernels, while the same INT0222 and INT1222 kernels have small CUDA grids, INT0002, 

INT0102, and INT0112 kernels have significantly more CUDA thread blocks. In fact, the 

smaller the kernel (INT0002), the larger the number of CUDA thread blocks launched. This 

configuration results in most optimal performance for OpenMP-based kernels; the authors 

hypothesize the choice of the CUDA grid by the compiler depends on the total number of 

quartets of type INT0002 that are needed to be evaluated. There number of INT0002 type 

integrals necessary to be computed is larger than the number of INT0222 or INT1222 type 

integrals on the order of ~1000x due to the fact that there are more s-type functions in the basis 

set. For cray compiler on A100 GPUs, the number of teams and threads were varied to achieve 

best performance. For instance, for INT0002, INT0112, INT0102, and INT0222, a combination 

of 832 or 896 teams and 128 and 192 and 128 threads per team yielded optimal results whereas 

for INT1222 kernel, 128 teams and 128 threads per team resulted in best performance. Hence, 

due to a significantly smaller CUDA grid launched by the OpenMP kernels using cce compiler, 
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performance of these kernels is worse when compared to OpenMP kernels launched using 

nvfortran compiler.  

In summary, the DC-A100 can be used as a compelling alternative to the directive-based 

approaches. On the same A100, DC outperforms OpenMP with nvfortran and cce compilers. 

OpenACC and DC perform similarly. However, while OpenACC is specialized for NVIDIA 

GPUs, DC is a standard construct in Fortran 2008, which is currently supported  by Fortran 

compilers to achieve CPU parallelism and is rapidly gaining accelerator support by a variety of 

compilers28.  

C. Application to Chemistry 

In this section, the newly developed DC and OpenMP GPU kernels are compared to the existing 

threaded CPU code in GAMESS. Optimizations discussed in Sections 4A and 4B are applied to 

all 15 d-type ERI kernels. The full GAMESS application was compiled on the Perlmutter 

supercomputer with the nvfortran compiler and Cray MPI for both the OpenMP CPU and 

OpenMP GPU and DC GPU versions. Table VI shows the full Fock build wall times for a cluster 

of 128 water molecules with the 6-31G(d) basis set for the OpenMP CPU code (column 1), the 

OpenMP GPU code (column 2), and the DC GPU code (column 3). 

Table VI. Wall time to solution (s) of a cluster of 128 water molecules with the 6-31G(d) basis 
set using one A100 GPU.  

Model OpenMP CPU OpenMP GPU DC GPU 

Fock build 44.0 34.3 11.4 
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The OpenMP CPU calculation was executed with one MPI rank and 64 threads that 

effectively utilize the entire 64-core AMD EPYC CPU. The total wall time recorded is 44.0 

seconds. Both OpenMP and DC GPU calculations were run with one MPI rank on one A100 

GPU. The total Fock build times for the OpenMP and DC GPU are 34.3 and 11.4 (s), 

respectively. In summary, the DC GPU is 3.0x faster than the OpenMP GPU and 3.89x faster 

than the corresponding OpenMP CPU. In future implementations, MPI parallelism will be added 

to both DC and OpenMP kernels to enable multi-GPU execution. Most importantly, the results 

shown in Table VI demonstrate the practical applicability of DC kernels to accelerate scientific 

applications such as GAMESS. 

5. Concluding remarks 

In this work, new integral kernels based on OpenMP and the Fortran ‘DO CONCURRENT’ 

(DC) clause were developed in GAMESS for accelerated quantum chemistry calculations. 

Implementations using DC were compared to directive-based approaches such as OpenMP and 

OpenACC. While OpenMP remains a portable approach to running GPU-accelerated codes, the 

performance of standard Fortran parallelism can provide an important alternative for a broad 

range of legacy quantum chemistry packages. DC can speed up full HF calculations by 3.0x 

relative to equivalent directive based models. In addition, OpenMP kernels are significantly sped 

up by employing new nvfortran and cce compilers relative to the mature xlf compiler. Provided 

small code differences between the DC, OpenMP, and OpenACC models, preprocessor 

conditions can be employed to enable DC when an NVIDIA GPU is used; other directive-based 

models can be enabled when other GPUs (e.g., AMD, Intel) are used. It remains an open 

challenge to create truly portable OpenMP kernels. Currently, one needs to tweak not only the 
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OpenMP directives for different compilers (e.g., the need to add simd for the CCE compiler, 

varying numbers of teams and threads), but also some modification of the source codes to 

achieve the best performance. From this perspective, DC could serve as a potential replacement 

to directive-based approaches as part of the Fortran standard. Nevertheless, OpenMP can provide 

more directives to support, for instance, data transfer and asynchronicity that might continue 

outperforming the DC model. 
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