Pacific
Northwest

NATIONAL LABORATORY

PNNL-XXXXX

FIC Vulnerability Profile

Provided by Shamrock Cyber
May 2022

Ryan Bays

Josh Bigler
Angie Chastain
Paul Francik
Catie Himes
Emma Lancaster
Danielle Nodine
Patrick O’Connell
Aaron Phillips
Shawn Ricketts
Garret Seppala
Torri Simmons
Chance Younkin

PNNL-32881 ENERGY

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

fran887
Text Box
PNNL-32881

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312
ph: (800) 553-NTIS (6847)
email: orders@ntis.gov <https://www.ntis.gov/about>
Online ordering: http://www.ntis.gov

mailto:reports@adonis.osti.gov
https://www.ntis.gov/about
http://www.ntis.gov/

PNNL-XXXXX

FIC Vulnerability Profile

May 2022

Ryan Bays

Josh Bigler
Angie Chastain
Paul Francik
Catie Himes
Emma Lancaster
Danielle Nodine
Patrick O’'Connell
Aaron Phillips
Shawn Ricketts
Garret Seppala
Torri Simmons
Chance Younkin

Prepared for

the U.S. Department of Energy
under Contract
DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

PNNL-XXXXX

Contents
L7 0] 01 (=Y 01 £ RS i
Acronyms and Abbreviations, and Terms of Referencecccccceiiii iii
1.0 1] (oo 11 T3 1T o 1
1.1 Purpose of a Vulnerability Profileccuumieiiiii e 1
1.2 Shamrock Cyber Analysis ... 1
2.0 Static Analysis Security Testing (SAST) Profile ... 2
3.0 @7 o 1117 o PO EERRR 7
Appendix A Brief on Consequence-Based ANalySiscc.uvviiiiieeiiiiciiiiiieeee e A1
Appendix B Brief on Threat-Based ANalySiScooiiiiiiiiiiiceieece e B.1
Appendix C Brief on Security-Based Developmentccooeoiii CA1
Appendix D Full Checkmarx Scan Resultscccco D.1
Figures
Figure 1. Shamrock Cyber ServiCes. ... 1
Figure 2. The CBA leaf of Shamrock Cyber. ... A1
Figure 3. The TBA leaf of Shamrock Cyber. ..., B.1
Figure 4. Lockheed Martin's methodology. ..o B.1
Figure 5. The CIA TFIad. et e e e e eeaeeeas B.1
Figure 6. The SBD leaf of Shamrock Cyber. ... CA1
Tables
Table 1. Static Analysis Security Testing RESUILS.............uuuiiiiieiccccccccccccccccccccce e, 2

Contents

https://pnnl.sharepoint.com/teams/SecureSoftwareCentralTeam/Shared%20Documents/General/Outreach/Shamrock%20Cyber%20Workshop/FIC%20Vulnerability%20Profile/FIC%20Vulnerability%20Profile_v1.0.docx#_Toc102599783
https://pnnl.sharepoint.com/teams/SecureSoftwareCentralTeam/Shared%20Documents/General/Outreach/Shamrock%20Cyber%20Workshop/FIC%20Vulnerability%20Profile/FIC%20Vulnerability%20Profile_v1.0.docx#_Toc102599784
https://pnnl.sharepoint.com/teams/SecureSoftwareCentralTeam/Shared%20Documents/General/Outreach/Shamrock%20Cyber%20Workshop/FIC%20Vulnerability%20Profile/FIC%20Vulnerability%20Profile_v1.0.docx#_Toc102599785
https://pnnl.sharepoint.com/teams/SecureSoftwareCentralTeam/Shared%20Documents/General/Outreach/Shamrock%20Cyber%20Workshop/FIC%20Vulnerability%20Profile/FIC%20Vulnerability%20Profile_v1.0.docx#_Toc102599786
https://pnnl.sharepoint.com/teams/SecureSoftwareCentralTeam/Shared%20Documents/General/Outreach/Shamrock%20Cyber%20Workshop/FIC%20Vulnerability%20Profile/FIC%20Vulnerability%20Profile_v1.0.docx#_Toc102599787

PNNL-XXXXX

Acronyms and Abbreviations, and Terms of Reference

CIA Confidentiality, Integrity, Availability
CSRF Cross-Site Request Forgery
IDDIL-ATC Identify Assets, Define the Attack Surface, Decompose the System,

Identify Attack Vectors, List the Threat Actors, Analysis & Assessment,
Triage, Controls

OSA Open-Source Analysis

PNNL Pacific Northwest National Laboratory

SAST Static Analysis Security Testing

STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, Denial of
Service, Elevation of Privilege

TBA Threat-Based Analysis

T™MT Threat Modeling Tool

Acronyms and Abbreviations, and Terms of Reference iii

1.0 Introduction

The FIC team is engaged with Pacific
Northwest National Laboratory’s
(PNNL’s) Shamrock Cyber Team to
provide cybersecurity analyses of the FIC
software. Shamrock offers both Threat-
Based Analysis services and Secure
Software Development services, as
defined in Figure 1. These services are
ultimately used to understand and
mitigate threats against software and to
reduce vulnerabilities in software, thus
improving overall cybersecurity and
informing decision makers. Shamrock’s

PNNL-XXXXX

Consequence Based Analysis — analyzes the
abuse, misuse, and hazards that determine risks

of developing and deploying a system. The
result is a dossier outlining the consequence-
based analysis.

Threat Based Software Analysis — determines
and prioritizes threats against the system and
recommends mitigations. The result is a Threat
Profile that contains a threat model, threat
findings, and mitigations.

Security Based Development — applies security
best practices to the system development life
cycle. This includes secure design, secure

Secure Software Development services, ~ Lmplementation, and security testing.
specifically Static Analysis Security Testing Figure 1. Shamrock Cyber services.
(SAST) and Open-Source Analysis (OSA), produced this Vulnerability Profile.

1.1 Purpose of a Vulnerability Profile

The purpose of this Vulnerability Profile is to provide concise, clear actions that the FIC team
can take to reduce vulnerabilities in the application code itself. Vulnerability Profiles are based
on automated vulnerability scans, which can be performed at the programming stage as well as
the testing stage of the software development life cycle. They are designed to be completed
regularly during software development, with the intent of eliminating vulnerabilities before
deploying in a production environment.

1.2 Shamrock Cyber Analysis

The Vulnerability Profile is based on a commercial off-the-shelf vulnerability scanner called
Checkmarx,! which scans application source code for security vulnerabilities. It was adopted by
PNNL, and Shamrock Cyber uses it to perform SAST scans. Checkmarx also provides OSA,
which scans dependencies and third-party libraries used by the source code against a
knowledge base. Any libraries found in the knowledge base that are outdated or vulnerable are
listed in the results. Shamrock analyzes both SAST and OSA scan results to:

Determine if a vulnerability is valid, possibly valid, or invalid

Provide justification for this determination

Recommend possible fixes to the vulnerability

Make additional suggestions not provided by Checkmarx, such as refactoring duplicate
code, implementing best practices, checking authorization access, formatting, etc.

The Shamrock Cyber analysis is an informal code review across sections of the code near
vulnerabilities highlighted by Checkmarx. These feedback points and suggestions are
performed by a software engineer experienced in the source code language and are not part of
the Checkmarx scan. This provides additional code quality reviews that provide suggestions on
best practices to save time and effort for the FIC team.

1 https://www.checkmarx.com

Introduction 1

https://www.checkmarx.com/

PNNL-XXXXX

2.0 Static Analysis Security Testing (SAST) Profile

The details for all vulnerabilities found in the SAST scan, as well as Shamrock
recommendations, are outlined in the SAST Profile Table. This table is a concise list of
vulnerabilities found in the Checkmarx scan with the details necessary to find and fix vulnerable
code.

Table 1. Static Analysis Security Testing Results

Vulnerability Vulnerability Location Mitigation Explana
Type tion
(Checkmarx)

1 SQL_Injection The Source Line: 48 of \app \server.js Sanitize

application's input.

Destination Line: 26

\app\server\postgresQueries.js Comeleir
hod executes an SQL using
query query-
with builder
, at library.

line of

The application
constructs this SQL
query by embedding
an untrusted string
into the query without
proper sanitization.
The concatenated
string is submitted to
the database, where
it is parsed and
executed accordingly.

Static Analysis Security Testing (SAST) Profile

PNNL-XXXXX

2 Missing HSTS
Header

3 Use Of Hardco
ded_Password

Web servers without
the Strict-Transport-
Security header
expose clients to
man-in-the-middle
attacks by forcing an

initial connection over

HTTP before being
redirected to use
HTTPS. Strict-
Transport-Security
ensures the
connection will
always happen over
HTTPS.

The application uses
a hard-coded
password, allowing
database access to
anyone with access
to the source code.

Source Line: 35 of \app\server.js

Destination Line: 35 of
\app\server.js

Source Line: 7
\app\server\postgresQueries.js

Destination Line: 7
\app\server\postgresQueries.js

Consider
adding
Strict-
Transport-
Security
header in
server
configuratio
n. Validate
that
browser
receives
Strict-
Transport-
Security
header in
response
from
server.

Move the
password
out of
source
code.
Consider
using
secret
manageme
nt library or
similar
method for
managing
passwords.

Static Analysis Security Testing (SAST) Profile

PNNL-XXXXX

4 Missing_CSP_H
eader

Low

5 Client_Insecure
_Randomness

6 Potential_Clickj
acking_on_lega
cy_Browsers

Web servers without
the Strict-Transport-
Security header are
vulnerable to attacks
such as Cross-Site
Scripting.

Javascript's
Math.random()
method is not
cryptographically
secure

HTML does not
protect against
clickjacking attacks,
which could result in
a user clicking a
malicious link
unintentionally.

Source Line: 35 \app \server.js

Destination Line: 35 \app \server.js

Source Line: 68 of
\app\src\assets\DummyData.js

Destination Line: 116-119
\app\src\assets\DummyData.js

Source Line: 1 \app\distiindex.html

Destination Line: 1
\app\dist\index.html

Consider
adding
Strict-
Transport-
Security
header in
server
configuratio
n. Validate
that
browser
receives
Strict-
Transport-
Security
header in
response
from
server.

Consider
replacing
Math.rando
m() with a
cryptograp
hically
strong
random
number
generator

Add a
framebustin
g script
(see
https://chea
tsheetserie
s.owasp.or
g/cheatshe
ets/Clickjac
king_Defen
se_Cheat_
Sheet.html
#best-for-
now-
legacy-

This is
likely
low-
impact,
asitis
only
being
used to
generate
test data
in the
place of
actual
user
data.

Static Analysis Security Testing (SAST) Profile

PNNL-XXXXX

browser-
frame-
breaking-
script)
7 Client_ Hardcod A resource is being Source Line: 4 \app\dist/index.html Consider
ed_Domain loaded from a remote . . serving
) . Destination Line: 4
domain, allowing an . yichindex.htm fesources
attacker to replace its PP ' from the
contents. web server,
rather than
directing
clients to
external
URLs.
8 Potentially Vuln This parameter value Source Line: 11 \app \server.js Consider
erable_To_Csrf flows through the Destination Line: 11 \anp \server i adding a
code and is ' PP 1 CSRF
eventually used to token
access application https://level
state altering up.gitconne
functionality. This cted.com/h
ow-to-
mgy enable Cross- implement-
Site Request Forgery csrf-tokens-
(CSRF) in-express-
f867c9e95a
f0
9 React Deprecat The Source Line: 59 \app\srclindex.jsx Consider
ed ReactDOM.render() Destination Line: 59 re_placmg
is deprecated \aoo\srclindex i with
pp\src\index.jsx updated
React
rendering
methods.
10 React Deprecat The Source Line: 28 Consider
ed ReactDOM.render() \app\src\components\Header.jsx replacing
's deprecated Destination Line: 28 m:tgated
\app\src\components\Header.jsx React
rendering
methods.

Static Analysis Security Testing (SAST) Profile

PNNL-XXXXX

11 Log Forging

Method app.post at Source Line: 48 of \app\server.js

line 48 of app\Server, . vination Line: 49,50
s gets user input from \app\server.js

element body. This
element’s value flows
through the code
without being
properly sanitized or
validated and is
eventually used in
writing an audit log
in, .then at

line 49 of app\server.j
s. This may enable
Log Forging.

Either
sanitize
user input
before
writing to
log or avoid
writing user
data to log.

Likely
false
positive,
as data
is being
written
to
browser
console
log, not
a log file
(and
therefor
e will not
be able
to
corrupt
log file
that will
be
process
ed later)

Static Analysis Security Testing (SAST) Profile

PNNL-XXXXX

3.0 Conclusion

This Vulnerability Profile is delivered with the intention of highlighting areas of concern based off
code scans of the FIC software that will be incorporated into the final system to ensure the
confidentiality, integrity, and availability of flagpole installation data for both employees and the
public. The order of importance in addressing vulnerabilities and their impact on the provided
code was based on the CIA prioritization of (1) Confidentiality, (2) Integrity, and (3) Availability.
After analyzing the codebase through an automated process (Checkmarx) and manual review, a
total of 1 high, 3 medium, 6 low, and 1 informative vulnerabilities were found to be of potential
consequence.

The vulnerability of most concern would be Vulnerability 1: SQL Injection, which involves
embedding an untrusted string into a query without proper sanitization. If the user input is not
sanitized and validated, this vulnerability could allow an attacker or user to exploit the database
and read files for which they are not authorized or modify the database. This would affect
confidentiality. This vulnerability can be remediated by validating/sanitizing all user input and
using whitelisting for valid input.

This Vulnerability Profile provides a set of vulnerability remediations that can be applied to the
application code of the FIC team immediately. By doing so, the cost of finding and fixing
vulnerabilities in production is drastically reduced. The contents of this Vulnerability Profile will
inform software developers and software testers before deployment, thus reducing the cost of
finding and fixing vulnerabilities in production.

This effort leads to more secure software and better-understood security, and the FIC team is to
be commended for their rigorous approach to employing cybersecurity in their products.

Conclusion 7

https://owasp.org/www-community/attacks/SQL_Injection

PNNL-XXXXX

Appendix A Brief on Consequence-Based Analysis

The Shamrock Cyber Team uses Consequence-Based Analysis (CBA) to assess risk to mission
or business operations. Figure 1, shows the three categories of CBA, each of which is
composed of three elements: a system function, a negative

outcome, and a technical capability that, through the system

function, enables the negative outcome. The elements, when r
present and combined in a system have the potential to impart " &

harm to some part of the system, its operation, its mission, or Cases Hazard
its stakeholders. The negative outcome is a plausible o
consequence of something going wrong with the system or its

operation. The technical element is the link that could

transform normal operations into the identified negative
outcome. Each of these cases is constructed as follows:

Abuse Case — damage caused by intentional acts of an
adversary
¥ Adversaries and their Motives (A&M) — who wants to
do damage and why
¥ Functional Use Element (FUE) -- what the system does

Figure 2. The CBA leaf of

¥ Functional Abuse Element (FAE) — the harmful Shamrock Cyber.
outcome
% Technical Abuse Element (TAE) — how the system can be “hacked” intentionally

Misuse Case — damage caused by unintentional acts and human error
¥ Mistakes and Misbehavior (M&M) — foreseeable user mistakes or misuse
¥ Functional Use Element (FUE) — what the system does
% Functional Misuse Element (FME) — the harmful outcome
% Technical Misuse Element (TME) — how the system errors when misused

Hazard Case — damage caused by non-human events in the system’s operating environment
¥ Environmental Events (EE) — something that occurs naturally in the environment
¥ Functional Use Element (FUE) — what the system does
% Functional Hazard Element (FHE) — harmful outcome)
¥ Technical Hazard Element (THE) — how the system could malfunction due to a hazard

The Shamrock Cyber team engages with customers (owners, operators, and other
stakeholders) to understand system operations, use cases, and missions. The team also
gathers stakeholders’ unacceptable mission outcomes and conditions. From this, plausible
scenarios are derived that could lead to unacceptable consequences. Assessments for threats
and vulnerabilities are then either gathered or performed and used to build the various “cases.”
The Shamrock Cyber team engages customers as needed throughout the process.

When analysis is complete, narratives such as Adversary Dossiers are developed to explain in
simple, non-technical terms, the risks and consequences those risks can have on stakeholder
equities. This allows greater stakeholder access to risk assessment and management
processes and discussions. At the same time, each case is directly linked to one or more
technical elements which directs system security and defense personnel in the identification,
design, and implementation of security controls, vulnerability remediations, or risk mitigations

Brief on Consequence-Based Analysis A1

PNNL-XXXXX

Appendix B Brief on Threat-Based Analysis

The Shamrock Cyber team combines three stages of Threat-Based Analysis (TBA), as shown in
Figure 2. TBA utilizes portions of Lockheed Martin's IDDIL-
ATC methodology (Figure 3) to perform threat analysis.

Shamrock optimizes IDDIL-ATC for more cost-effective, 2 s
time-efficient results that lead to immediately actionable ﬂma.}_’\?’? ¥
controls. Using the Lockheed Martin nomenclature, Models =%% Threat
Shamrock actually begins with Decompose the System. Findings

To accomplish this, Shamrock often requests that Usage
Narratives be written by members of the project team. The
narratives provide the Shamrock team with valuable
context in simple, non-jargon terms. With this context, the
next step is to develop a set of use cases and data flow Threat
diagrams that represent the system. Generally, the assets
and the attack surface can be identified using these
diagrams, thus addressing the Identify Assets and Define

Mitigations

Figure 3. The TBA leaf of

* Identify Assets Shamrock Cyber.

* Define the Attack Surface the Attack Surface steps. From there,

* Decompose the System Discovery Shamrock attempts to List Threat

« |dentify Attack Vectors Actors, but this is not yet a rigorous

e List Threat Actors exercise. The use cases, abuse cases,

« Analysis & Assessment and data flow diagrams represent the_

* Triage } - Shamrock Cyber Threat Model, which
TIRSTOR is the foundation for developing the

* Controls Threat Profile.

Fiaure 4. Lockheed Martin's methodoloav.

Shamrock asks the project team to set an initial expectation of threat priority based on
Confidentiality, Integrity, and Availability (CIA). The CIA Triad (see Figure 4) is a commonly
used cybersecurity model.

The Shamrock Cyber team uses the data flow diagrams Confidentiality

as input to Microsoft’'s Threat Modeling Tool (TMT). The

TMT is a free download that comes with standard threat |

templates used by Shamrock. The TMT reads the

diagrams and uses the templates to provide initial

Analysis and Assessment as well as Triage results.

The TMT also uses Microsoft's STRIDE model to p —

categorize threats. The initial results from the TMT are

then analyzed by Shamrock subject matter experts to L Avaliapinty
complete the Shamrock Cyber Threat Findings for : :
review by the project team. Figure 5. The CIA triad.

With the Threat Findings in hand, Shamrock goes back to the project team to collaboratively
analyze and determine mitigations (Controls). When this exercise is complete, the Shamrock
Cyber team organizes the information into the final product, the Shamrock Cyber Threat
Profile.

Brief on Threat-Based Analysis B.1

PNNL-XXXXX

Appendix C Brief on Security-Based Development

The Shamrock Cyber Team is establishing Security-
Based Development (SBD) best practices in the areas
depicted in Figure 5. While Shamrock will at some point Security Secure
offer Secure Design and Security Test services, the Test Design
current focus is on Secure Implementation. For
Shamrock, secure implementation of software combines
Static Application Security Testing (SAST) and Open-
Source Analysis (OSA). SAST involves scanning source S
code to identify known vulnerabilities, while OSA entails Implementation i
scanning 3" party software developed outside the project
team. The objective of Shamrock cyber secure
implementation is to use a SAST scan and possibly an
OSA scan to perform an analysis that eliminates false positives, Figure 6. The SBD leaf
summarizes the vulnerabilities, and makes recommendations. of Shamrock Cyber.
The result of this analysis enables the software development

team to prioritize vulnerabilities and address them in order of priority.

Shamrock Cyber makes use of Checkmarx, a commercial software scanning tool adopted by
PNNL, that performs both SAST and OSA scanning. The Shamrock process is a
straightforward set of steps:

1. Receive source code

The source code comes from the customer development team in the form of a zip file or
a URL to a code repository The source code will be used as input to the Checkmarx
scanner.

2. Execute a Checkmarx SAST scan

Every file contained in software (from the repo or the zip file) will be scanned and the
results form the foundation for Shamrock Cyber analysis.

3. Execute a Checkmarx OSA scan

Dependency libraries will be scanned by Checkmarx, and vulnerable libraries along with
out-of-date libraries will be documented, forming the foundation for Shamrock analysis.

4. Analyze SAST scan results

The results of Shamrock analysis of SAST go into the final report.
5. Analyze OSA scan results

The results of Shamrock analysis of OSA go into the final report

When this process is complete, the Shamrock Cyber team organizes the information into the
final product, the Shamrock Cyber Vulnerability Profile.

Brief on Security-Based Development C.1

PNNL-XXXXX

Appendix D Full Checkmarx Scan Results

The Vulnerability Profile is derived from a source code scan by the Checkmarx SAST tool. The
full, unaltered scan produced by the Checkmarx scanner is provided in this appendix. The scan
results are comprehensive and include details from several standards such as OWASP, NIST,
and FISMA. Details in the scan results can be useful to further understand the vulnerabilities
and to gain insight into the details of the scan itself. However, the Vulnerability Profile contains
all “action items” for fixing vulnerabilities. And the scan results are provided as extra information.

Full Checkmarx Scan Results D.1

Project Name

Scan Start

Preset

Scan Time

Lines Of Code Scanned
Files Scanned

Report Creation Time

Online Results

Team

Checkmarx Version
Scan Type

Source Origin
Density

Visibility

Severity

FIC

Friday, March 11, 2022 11:38:48 AM
Checkmarx Default

00h:00m:36s
9257
22

Tuesday, March 15, 2022 1:28:51 PM

FIC Scan Report

v, CHECKMARX

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=

1025
PNNL
9.4.3

Full
LocalPath

2/1000 (Vulnerabilities/LOC)

Public

Filter Settings

Included: High, Medium, Low, Information

Excluded: None
Result State

Included: To Verify, Not Exploitable, Confirmed, Urgent, Proposed Not Exploitable

Excluded: None

Assigned to
Included: All

Categories
Included:

Uncategorized
Custom

PCIDSS v3.2.1

OWASP Top 102013

FISMA 2014
NIST SP 800-53

OWASP Top 102017

OWASP Mobile Top 10
2016

ASD STIG 4.10
OWASP Top 10 API
OWASP Top 10 2010
OWASP Top 10 2021

Excluded:

Uncategorized
Custom

PCIDSS v3.2.1
OWASP Top 10 2013
FISMA 2014

All
All
All
All
All
All
All
All

All
All
All
All

None
None
None
None

None

PAGE 1 OF 54

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025

NIST SP 800-53
OWASP Top 10 2017

OWASP Mobile Top 10
2016

ASD STIG 4.10
OWASP Top 10 API
OWASP Top 10 2010

OWASP Top 10 2021
Results Limit

Results limit per query was set to 50

Selected Queries

None
None

None

None
None
None

None

Selected queries are listed in Result Summary

PAGE 2 OF 54

v, CHECKMARX

(¥ CHECKMARX

Result Summary Most Vulnerable Files

Lk . server.js
. postgresQueries.js

. DummyData.js

- BERx
. index html
N7

i

I High 2353 %
[Medium

- Low

e

BEEY %

index.jsx

2353 %

Top 5 Vulnerabilities

Client Inzecure Randomness

React Deprecated

Log Forging

Mizzing HSTS Header

SEL Injection

PAGE 3 OF 54

(¥, CHECKMARX

Scan Summary - OWASP Top 10 2017

Further details and elaboration about vulnerabilities and risks can be found at: OWASP Top 10 2017

Threat Weakness Weakness Technical Business Issues Best Fix

Chiimgey Agent Syl Prevalence Detectability Impact Impact Found Locations

- App. .
A2-Broken App.

COMMON AVERAGE - App. Specific 0 0

Authentication Specific

A3-Sensitive — App. AVERAGE AVERAGE p. Specific 1 1
Data Exposure Specific
A4-XML A
External Entities sp.fc} e AVERAGE COMMON pp. Specific 0 0
(XXE) P
A5-Broken App. .
Access Control* Specific AVERAGE COMMON AVERAGE p. Specific 0 0
A6-Security App. .
Misconfiguration = Specific MODERATE App. Specific ! !
A7-Cross-Site App. .
A8-Insecure App. .
e . DIFFICULT COMMON AVERAGE App. Specific 0 0

Deserialization Specific
A9-Using
Components with - App. AVERAGE AVERAGE ~ MODERATE App. Specific 6 3
Known Specific
Vulnerabilities
A10-Insufficient A
Logging & PP AVERAGE DIFFICULT MODERATE App. Specific 0 0

o Specific
Monitoring

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

PAGE 4 OF 54

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2017

_a— ~

v, CHECKMARX

Scan Summary - OWASP Top 10 2021

Best Fix
Category Issues Found Locations
Al-Broken Access Control* 1 1
A2-Cryptographic Failures 4 1
A3-Injection*® 1 1
Ad4-Insecure Design 0 0
A5-Security Misconfiguration 0 0
A6-Vulnerable and Outdated Components 2 2
A7-1dentification and Authentication Failures 3 3
AS8-Software and Data Integrity Failures*® 1 1
A9-Security Logging and Monitoring Failures 2 1
A10-Server-Side Request Forgery 0 0

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

PAGE 5 OF 54

(¥, CHECKMARX

Scan Summary - OWASP Top 10 2013

Further details and elaboration about vulnerabilities and risks can be found at: OWASP Top 10 2013

Cateeo Threat Attack Weakness Weakness Technical Business Issues Best Fix
gory Agent Vectors Prevalence Detectability Impact Impact Found Locations
EXTERNAL,
o INTERNAL,
Al-Injection ADMIN COMMON AVERAGE ALL DATA 1 1
USERS
iz;frgge“ﬁ . EXTERNAL, AFFECTED
an‘; seessic:n ° INTERNAL AVERAGE AVERAGE DATA AND 0 0
USERS FUNCTIONS
Management
TTOSS=oIe " AVERAGE MODERATE = DATA AND 0 0
Scripting (XSS)* ADMIN SYSTEM
USERS
A4-Insecure
. ; SYSTEM EXPOSED
Direct Object USERS COMMON MODERATE DATA 0 0
References*
->ecunty ’ COMMON MODERATE = AND 0 0
Misconfiguration ADMIN SYSTEM
USERS
EXTERNAL,
INTERNAL,
A6-Sensitive ADMIN EXPOSED
Data Exposure USERS. DIFFICULT UNCOMMON AVERAGE DATA 0 0
USERS
BROWSERS
A7-Missing EXTERNAL, EXPOSED
Function Level INTERNAL COMMON AVERAGE MODERATE DATA AND 0 0
Access Control USERS FUNCTIONS
AB8-Cross-Site USERS AFFECTED
Request Forgery pp Swcrne AVERAGE COMMON MODERATE DATA AND 0 0
(CSRF)* FUNCTIONS
Componts with | USERS, AFFECTED
P ’ AVERAGE DIFFICULT MODERATE DATA AND 0 0
Known AUTOMATED FUNCTIONS
Vulnerabilities TOOLS
A10-Unvalidated USERS AFFECTED
Redirects and BROWSERs AVERAGE DIFFICULT MODERATE DATA AND 0 0
Forwards FUNCTIONS

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

PAGE 6 OF 54

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013

—

v, CHECKMARX

Scan Summary - PCI DSS v3.2.1

Best Fix
Category Issues Found Locations
PCIDSS (3.2.1) - 6.5.1 - Injection flaws - particularly SQL injection 1 1
PCIDSS (3.2.1) - 6.5.2 - Buffer overflows 0 0
PCIDSS (3.2.1) - 6.5.3 - Insecure cryptographic storage 0 0
PCI DSS (3.2.1) - 6.5.4 - Insecure communications 0 0
PCIDSS (3.2.1) - 6.5.5 - Improper error handling 0 0
PCIDSS (3.2.1) - 6.5.7 - Cross-site scripting (XSS) 0 0
PCI DSS (3.2.1) - 6.5.8 - Improper access control 0 0
PCIDSS (3.2.1) - 6.5.9 - Cross-site request forgery* 0 0
PCI DSS (3.2.1) - 6.5.10 - Broken authentication and session management 0 0

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

PAGE 7 OF 54

v, CHECKMARX

Scan Summary - FISMA 2014

Issues Best Fix

Category Description Found Locations

Organizations must limit information system access to
authorized users, processes acting on behalf of authorized
Access Control users, or devices (including other information systems) 0 0
and to the types of transactions and functions that
authorized users are permitted to exercise.

Organizations must: (i) create, protect, and retain
information system audit records to the extent needed to
enable the monitoring, analysis, investigation, and
reporting of unlawful, unauthorized, or inappropriate
information system activity; and (ii) ensure that the
actions of individual information system users can be
uniquely traced to those users so they can be held
accountable for their actions.

Audit And Accountability

Organizations must: (i) establish and maintain baseline
configurations and inventories of organizational
information systems (including hardware, software,
firmware, and documentation) throughout the respective
system development life cycles; and (ii) establish and
enforce security configuration settings for information
technology products employed in organizational
information systems.

Configuration Management

Organizations must identify information system users,
processes acting on behalf of users, or devices and
Identification And Authentication authenticate (or verify) the identities of those users, 1 1
processes, or devices, as a prerequisite to allowing access
to organizational information systems.

Organizations must: (i) protect information system
media, both paper and digital; (ii) limit access to
Media Protection information on information system media to authorized 4 1
users; and (iii) sanitize or destroy information system
media before disposal or release for reuse.

Organizations must: (i) monitor, control, and protect
organizational communications (i.e., information
transmitted or received by organizational information
systems) at the external boundaries and key internal
System And Communications Protection boundaries of the information systems; and (ii) employ 0 0
architectural designs, software development techniques,
and systems engineering principles that promote effective
information security within organizational information
systems.

Organizations must: (i) identify, report, and correct
information and information system flaws in a timely
manner; (ii) provide protection from malicious code at
System And Information Integrity* appropriate locations within organizational information 3 2
systems; and (iii) monitor information system security
alerts and advisories and take appropriate actions in
response.

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

PAGE 8 OF 54

o

(¥, CHEBCKMARX

Scan Summary - NIST SP 800-53

Best Fix
Category Issues Found Locations
AC-12 Session Termination (P2) 0 0
AC-3 Access Enforcement (P1) 0 0
AC-4 Information Flow Enforcement (P1) 0 0
AC-6 Least Privilege (P1) 0 0
AU-9 Protection of Audit Information (P1) 2 1
CM-6 Configuration Settings (P2) 0 0
IA-5 Authenticator Management (P1) 0 0
1A-6 Authenticator Feedback (P2) 0 0
1A-8 Identification and Authentication (Non-Organizational Users) (P1) 0 0
SC-12 Cryptographic Key Establishment and Management (P1) 0 0
SC-13 Cryptographic Protection (P1) 0 0
SC-17 Public Key Infrastructure Certificates (P1) 0 0
SC-18 Mobile Code (P2) 1 1
SC-23 Session Authenticity (P1)* 0 0
SC-28 Protection of Information at Rest (P1) 5 2
SC-4 Information in Shared Resources (P1) 0 0
SC-5 Denial of Service Protection (P1) 0 0
SC-8 Transmission Confidentiality and Integrity (P1) 1 1
SI-10 Information Input Validation (P1)* 1 1
SI-11 Error Handling (P2) 0 0
SI-15 Information Output Filtering (P0)* 0 0
SI-16 Memory Protection (P1) 0 0

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

PAGE 9 OF 54

v, CHECKMARX

Scan Summary - OWASP Mobile Top 10 2016

Descripti Issues Best Fix
Category eseription Found Locations
This category covers misuse of a platform feature or
failure to use platform security controls. It might include
Android intents, platform permissions, misuse of
Mi-Improper Platform Usage TouchID, the Keychain, or some other security control 0 0
that is part of the mobile operating system. There are
several ways that mobile apps can experience this risk.
M2-Insecure Data Storage This category covers insecure data storage and 0 0

unintended data leakage.

This category covers poor handshaking, incorrect SSL
M3-Insecure Communication versions, weak negotiation, cleartext communication of 0 0
sensitive assets, etc.

This category captures notions of authenticating the end
user or bad session management. This can include:
-Failing to identify the user at all when that should be
required

-Failure to maintain the user's identity when it is required
-Weaknesses in session management

M4-Insecure Authentication

The code applies cryptography to a sensitive information
asset. However, the cryptography is insufficient in some
way. Note that anything and everything related to TLS or
MS5-Insufficient Cryptography SSL goes in M3. Also, if the app fails to use 0 0
cryptography at all when it should, that probably belongs
in M2. This category is for issues where cryptography
was attempted, but it wasnt done correctly.

This is a category to capture any failures in authorization
(e.g., authorization decisions in the client side, forced
browsing, etc.). It is distinct from authentication issues
(e.g., device enrolment, user identification, etc.).
M6-Insecure Authorization If the app does not authenticate users at all in a situation 0 0
where it should (e.g., granting anonymous access to some
resource or service when authenticated and authorized
access is required), then that is an authentication failure
not an authorization failure.

This category is the catch-all for code-level
implementation problems in the mobile client. That's
distinct from server-side coding mistakes. This would
M7-Client Code Quality capture things like buffer overflows, format string 0 0
vulnerabilities, and various other code-level mistakes
where the solution is to rewrite some code that's running
on the mobile device.

This category covers binary patching, local resource
modification, method hooking, method swizzling, and
dynamic memory modification. Once the application is
delivered to the mobile device, the code and data
resources are resident there. An attacker can either

M8-Code Tampering directly modify the code, change the contents of memory 0 0
dynamically, change or replace the system APIs that the
application uses, or modify the application's data and
resources. This can provide the attacker a direct method
of subverting the intended use of the software for
personal or monetary gain.

This category includes analysis of the final core binary to

determine its source code, libraries, algorithms, and other

assets. Software such as IDA Pro, Hopper, otool, and

other binary inspection tools give the attacker insight into

M9-Reverse Engineering the inner workings of the application. This may be used 0 0

to exploit other nascent vulnerabilities in the application,

as well as revealing information about back end servers,

cryptographic constants and ciphers, and intellectual

property.

Often, developers include hidden backdoor functionality

M10-Extrancous Functionality or other internal development security controls that are

PAGE 10 OF 54

—

v, CHECKMARX

not intended to be released into a production
environment. For example, a developer may accidentally
include a password as a comment in a hybrid app.
Another example includes disabling of 2-factor
authentication during testing.

PAGE 11 OF 54

(¥, CHECKMARX

Scan Summary - Custom

Best Fix
Category Issues Found Locations
Must audit 0 0
Check 0 0
Optional 0 0

PAGE 12 OF 54

v, CHECKMARX

Scan Summary - ASD STIG 4.10

Best Fix
Catego Issues Found .
gory Locations
APSC-DV-000640 - CAT II The application must provide audit record generation capability for the renewal of 0 0
session IDs.
APSC-DV-000650 - CAT II The application must not write sensitive data into the application logs. 0 0
APSC-DV-000660 - CAT II The application must provide audit record generation capability for session timeouts. 0 0
APSC-DV-000670 - CAT II The application must record a time stamp indicating when the event occurred. 0 0
APSC-DV-000680 - CAT II The application must provide audit record generation capability for HTTP headers 0 0
including User-Agent, Referer, GET, and POST.
APSC-DV-000690 - CAT II The application must provide audit record generation capability for connecting system 0 0
IP addresses.
APSC-DV-000700 - CAT II The application must record the username or user ID of the user associated with the 0 0
event.
APSC-DV-000710 - CAT II The application must generate audit records when successful/unsuccessful attempts to 0 0
grant privileges occur.
APSC-DV-000720 - CAT II The application must generate audit records when successful/unsuccessful attempts to 0 0
access security objects occur.
APSC-DV-000730 - CAT II The application must generate audit records when successful/unsuccessful attempts to 0 0
access security levels occur.
APSC-DV-000740 - CAT II The application must generate audit records when successful/unsuccessful attempts to 0 0
access categories of information (e.g., classification levels) occur.
APSC-DV-000750 - CAT II The application must generate audit records when successful/unsuccessful attempts to 0 0
modify privileges occur.
APSC-DV-000760 - CAT II The application must generate audit records when successful/unsuccessful attempts to 0 0
modify security objects occur.
APSC-DV-000770 - CAT II The application must generate audit records when successful/unsuccessful attempts to 0 0
modify security levels occur.
APSC-DV-000780 - CAT II The application must generate audit records when successful/unsuccessful attempts to 0 0
modify categories of information (e.g., classification levels) occur.
APSC-DV-000790 - CAT II The application must generate audit records when successful/unsuccessful attempts to 0 0
delete privileges occur.
APSC-DV-000800 - CAT II The application must generate audit records when successful/unsuccessful attempts to 0 0
delete security levels occur.
APSC-DV-000810 - CAT II The application must generate audit records when successful/unsuccessful attempts to 0 0
delete application database security objects occur.
APSC-DV-000820 - CAT II The application must generate audit records when successful/unsuccessful attempts to 0 0
delete categories of information (e.g., classification levels) occur.
APSC-DV-000830 - CAT II The application must generate audit records when successful/unsuccessful logon 0 0
attempts occur.
APSC-DV-000840 - CAT II The application must generate audit records for privileged activities or other system- 0 0
level access.
APSC-DV-000850 - CAT II The application must generate audit records showing starting and ending time for user 0 0
access to the system.
APSC-DV-000860 - CAT II The application must generate audit records when successful/unsuccessful accesses to 0 0
objects occur.
APSC-DV-000870 - CAT II The application must generate audit records for all direct access to the information 0 0
system.
APSC-DV-000880 - CAT II The application must generate audit records for all account creations, modifications, 0 0
disabling, and termination events.
APSC-DV-000910 - CAT II The application must initiate session auditing upon startup. 0 0
APSC-DV-000940 - CAT II The application must log application shutdown events. 0 0

PAGE 13 OF 54

APSC-DV-000950 - CAT II The application must log destination IP addresses.
APSC-DV-000960 - CAT II The application must log user actions involving access to data.
APSC-DV-000970 - CAT II The application must log user actions involving changes to data.

APSC-DV-000980 - CAT II The application must produce audit records containing information to establish when
(date and time) the events occurred.

APSC-DV-000990 - CAT II The application must produce audit records containing enough information to establish
which component, feature or function of the application triggered the audit event.

APSC-DV-001000 - CAT II When using centralized logging; the application must include a unique identifier in
order to distinguish itself from other application logs.

APSC-DV-001010 - CAT II The application must produce audit records that contain information to establish the
outcome of the events.

APSC-DV-001020 - CAT II The application must generate audit records containing information that establishes the
identity of any individual or process associated with the event.

APSC-DV-001030 - CAT II The application must generate audit records containing the full-text recording of
privileged commands or the individual identities of group account users.

APSC-DV-001040 - CAT II The application must implement transaction recovery logs when transaction based.

APSC-DV-001050 - CAT II The application must provide centralized management and configuration of the content
to be captured in audit records generated by all application components.

APSC-DV-001070 - CAT II The application must off-load audit records onto a different system or media than the
system being audited.

APSC-DV-001080 - CAT II The application must be configured to write application logs to a centralized log
repository.

APSC-DV-001090 - CAT II The application must provide an immediate warning to the SA and ISSO (at a
minimum) when allocated audit record storage volume reaches 75% of repository maximum audit record storage

capacity.

APSC-DV-001100 - CAT II Applications categorized as having a moderate or high impact must provide an
immediate real-time alert to the SA and ISSO (at a minimum) for all audit failure events.

APSC-DV-001110 - CAT II The application must alert the ISSO and SA (at a minimum) in the event of an audit
processing failure.

APSC-DV-001120 - CAT II The application must shut down by default upon audit failure (unless availability is an
overriding concern).

APSC-DV-001130 - CAT II The application must provide the capability to centrally review and analyze audit
records from multiple components within the system.

APSC-DV-001140 - CAT II The application must provide the capability to filter audit records for events of interest
based upon organization-defined criteria.

APSC-DV-001150 - CAT II The application must provide an audit reduction capability that supports on-demand
reporting requirements.

APSC-DV-001160 - CAT II The application must provide an audit reduction capability that supports on-demand
audit review and analysis.

APSC-DV-001170 - CAT II The application must provide an audit reduction capability that supports after-the-fact
investigations of security incidents.

APSC-DV-001180 - CAT II The application must provide a report generation capability that supports on-demand
audit review and analysis.

APSC-DV-001190 - CAT II The application must provide a report generation capability that supports on-demand
reporting requirements.

APSC-DV-001200 - CAT II The application must provide a report generation capability that supports after-the-fact
investigations of security incidents.

APSC-DV-001210 - CAT II The application must provide an audit reduction capability that does not alter original
content or time ordering of audit records.

APSC-DV-001220 - CAT II The application must provide a report generation capability that does not alter original
content or time ordering of audit records.

APSC-DV-001250 - CAT II The applications must use internal system clocks to generate time stamps for audit
records.

APSC-DV-001260 - CAT II The application must record time stamps for audit records that can be mapped to
Coordinated Universal Time (UTC) or Greenwich Mean Time (GMT).

APSC-DV-001270 - CAT II The application must record time stamps for audit records that meet a granularity of one

PAGE 14 OF 54

v, CHECKMARX

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

v, CHECKMARX

second for a minimum degree of precision.

APSC-DV-001280 - CAT II The application must protect audit information from any type of unauthorized read

0 0
access.
APSC-DV-001290 - CAT II The application must protect audit information from unauthorized modification. 0 0
APSC-DV-001300 - CAT II The application must protect audit information from unauthorized deletion. 0 0
APSC-DV-001310 - CAT II The application must protect audit tools from unauthorized access. 0 0
APSC-DV-001320 - CAT II The application must protect audit tools from unauthorized modification. 0 0
APSC-DV-001330 - CAT II The application must protect audit tools from unauthorized deletion. 0 0
APSC-DV-001340 - CAT II The application must back up audit records at least every seven days onto a different 0 0
system or system component than the system or component being audited.
APSC-DV-001570 - CAT II The application must electronically verify Personal Identity Verification (PIV) 0 0
credentials.
APSC-DV-001350 - CAT II The application must use cryptographic mechanisms to protect the integrity of audit 0 0
information.
APSC-DV-001360 - CAT II Application audit tools must be cryptographically hashed. 0 0
APSC-DV-001370 - CAT II The integrity of the audit tools must be validated by checking the files for changes in 0 0
the cryptographic hash value.
APSC-DV-001390 - CAT II The application must prohibit user installation of software without explicit privileged 0 0
status.
APSC-DV-001410 - CAT II The application must enforce access restrictions associated with changes to application 0 0
configuration.
APSC-DV-001420 - CAT II The application must audit who makes configuration changes to the application. 0 0

APSC-DV-001430 - CAT II The application must have the capability to prevent the installation of patches, service
packs, or application components without verification the software component has been digitally signed using a 0 0
certificate that is recognized and approved by the orga

APSC-DV-001440 - CAT II The applications must limit privileges to change the software resident within software
libraries.

APSC-DV-001460 - CAT II An application vulnerability assessment must be conducted. 0 0

APSC-DV-001480 - CAT II The application must prevent program execution in accordance with organization-
defined policies regarding software program usage and restrictions, and/or rules authorizing the terms and conditions 0 0
of software program usage.

APSC-DV-001490 - CAT II The application must employ a deny-all, permit-by-exception (whitelist) policy to allow

the execution of authorized software programs. 0 0
APSC-DV-001500 - CAT II The application must be configured to disable non-essential capabilities. 0 0
APSC-DV-001510 - CAT II The application must be configured to use only functions, ports, and protocols permitted 0 0
to it in the PPSM CAL.

APSC-DV-001520 - CAT II The application must require users to reauthenticate when organization-defined 0 0
circumstances or situations require reauthentication.

APSC-DV-001530 - CAT II The application must require devices to reauthenticate when organization-defined 0 0
circumstances or situations requiring reauthentication.

APSC-DV-001540 - CAT I The application must uniquely identify and authenticate organizational users (or 0 0
processes acting on behalf of organizational users).

APSC-DV-001550 - CAT II The application must use multifactor (Alt. Token) authentication for network access to 0 0
privileged accounts.

APSC-DV-001560 - CAT II The application must accept Personal Identity Verification (PIV) credentials. 0 0
APSC-DV-001580 - CAT II The application must use multifactor (e.g., CAC, Alt. Token) authentication for network 0 0
access to non-privileged accounts.

APSC-DV-001590 - CAT II The application must use multifactor (Alt. Token) authentication for local access to 0 0
privileged accounts.

APSC-DV-001600 - CAT II The application must use multifactor (e.g., CAC, Alt. Token) authentication for local 0 0
access to non-privileged accounts.

APSC-DV-001610 - CAT II The application must ensure users are authenticated with an individual authenticator 0 0
prior to using a group authenticator.

APSC-DV-001620 - CAT II The application must implement replay-resistant authentication mechanisms for 0 0

network access to privileged accounts.

PAGE 15 OF 54

v, CHECKMARX

APSC-DV-001630 - CAT II The application must implement replay-resistant authentication mechanisms for

network access to non-privileged accounts. 0 0
APSC-DV-001640 - CAT II The application must utilize mutual authentication when endpoint device non-
L .) . 0 0

repudiation protections are required by DoD policy or by the data owner.
APSC-DV-001650 - CAT II The application must authenticate all network connected endpoint devices before 0 0
establishing any connection.
APSC-DV-001660 - CAT II Service-Oriented Applications handling non-releasable data must authenticate endpoint

. . 0 0
devices via mutual SSL/TLS.
APSC-DV-001670 - CAT II The application must disable device identifiers after 35 days of inactivity unless a 0 0
cryptographic certificate is used for authentication.
APSC-DV-001680 - CAT I The application must enforce a minimum 15-character password length. 0 0
APSC-DV-001690 - CAT II The application must enforce password complexity by requiring that at least one upper- 0 0
case character be used.
APSC-DV-001700 - CAT II The application must enforce password complexity by requiring that at least one lower- 0 0
case character be used.
APSC-DV-001710 - CAT II The application must enforce password complexity by requiring that at least one 0 0
numeric character be used.
APSC-DV-001720 - CAT II The application must enforce password complexity by requiring that at least one special 0 0
character be used.
APSC-DV-001730 - CAT II The application must require the change of at least 8 of the total number of characters 0 0
when passwords are changed.
APSC-DV-001740 - CAT I The application must only store cryptographic representations of passwords. 1 1
APSC-DV-001850 - CAT I The application must not display passwords/PINs as clear text. 0 0
APSC-DV-001750 - CAT I The application must transmit only cryptographically-protected passwords. 0 0
APSC-DV-001760 - CAT II The application must enforce 24 hours/1 day as the minimum password lifetime. 0 0
APSC-DV-001770 - CAT 1I The application must enforce a 60-day maximum password lifetime restriction. 0 0
APSC-DV-001780 - CAT II The application must prohibit password reuse for a minimum of five generations. 0 0
APSC-DV-001790 - CAT II The application must allow the use of a temporary password for system logons with an 0 0
immediate change to a permanent password.
APSC-DV-001795 - CAT II The application password must not be changeable by users other than the administrator 0 0
or the user with which the password is associated.
APSC-DV-001800 - CAT II The application must terminate existing user sessions upon account deletion. 0 0
APSC-DV-001820 - CAT I The application, when using PKI-based authentication, must enforce authorized access 0 0
to the corresponding private key.
APSC-DV-001830 - CAT II The application must map the authenticated identity to the individual user or group 0 0
account for PKI-based authentication.
APSC-DV-001870 - CAT II The application must uniquely identify and authenticate non-organizational users (or 0 0
processes acting on behalf of non-organizational users).
APSC-DV-001810 - CAT I The application, when utilizing PKI-based authentication, must validate certificates by 0 0

constructing a certification path (which includes status information) to an accepted trust anchor.

APSC-DV-001840 - CAT II The application, for PKI-based authentication, must implement a local cache of
revocation data to support path discovery and validation in case of the inability to access revocation information via 0 0
the network.

APSC-DV-001860 - CAT II The application must use mechanisms meeting the requirements of applicable federal

laws, Executive Orders, directives, policies, regulations, standards, and guidance for authentication to a 0 0
cryptographic module.

APSC-DV-001880 - CAT II The application must accept Personal Identity Verification (PIV) credentials from other 0 0
federal agencies.

APSC-DV-001890 - CAT II The application must electronically verify Personal Identity Verification (PIV) 0 0
credentials from other federal agencies.

APSC-DV-002050 - CAT II Applications making SAML assertions must use FIPS-approved random numbers in the 0 0
generation of SessionIndex in the SAML element AuthnStatement.

APSC-DV-001900 - CAT II The application must accept FICAM-approved third-party credentials. 0 0
APSC-DV-001910 - CAT II The application must conform to FICAM-issued profiles. 0 0
APSC-DV-001930 - CAT II Applications used for non-local maintenance sessions must audit non-local maintenance 0 0

PAGE 16 OF 54

and diagnostic sessions for organization-defined auditable events.

APSC-DV-000310 - CAT III The application must have a process, feature or function that prevents removal or
disabling of emergency accounts.

APSC-DV-001940 - CAT II Applications used for non-local maintenance sessions must implement cryptographic
mechanisms to protect the integrity of non-local maintenance and diagnostic communications.

APSC-DV-001950 - CAT II Applications used for non-local maintenance sessions must implement cryptographic
mechanisms to protect the confidentiality of non-local maintenance and diagnostic communications.

APSC-DV-001960 - CAT II Applications used for non-local maintenance sessions must verify remote disconnection
at the termination of non-local maintenance and diagnostic sessions.

APSC-DV-001970 - CAT II The application must employ strong authenticators in the establishment of non-local
maintenance and diagnostic sessions.

APSC-DV-001980 - CAT II The application must terminate all sessions and network connections when non-local
maintenance is completed.

APSC-DV-001995 - CAT II The application must not be vulnerable to race conditions.

APSC-DV-002000 - CAT II The application must terminate all network connections associated with a
communications session at the end of the session.

APSC-DV-002010 - CAT II The application must implement NSA-approved cryptography to protect classified
information in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and
standards.

APSC-DV-002020 - CAT II The application must utilize FIPS-validated cryptographic modules when signing
application components.

APSC-DV-002030 - CAT II The application must utilize FIPS-validated cryptographic modules when generating
cryptographic hashes.

APSC-DV-002040 - CAT II The application must utilize FIPS-validated cryptographic modules when protecting
unclassified information that requires cryptographic protection.

APSC-DV-002150 - CAT II The application user interface must be either physically or logically separated from data
storage and management interfaces.

APSC-DV-002210 - CAT II The application must set the HTTPOnly flag on session cookies.
APSC-DV-002220 - CAT II The application must set the secure flag on session cookies.
APSC-DV-002230 - CAT I The application must not expose session IDs.

APSC-DV-002240 - CAT I The application must destroy the session ID value and/or cookie on logoff or browser
close.

APSC-DV-002250 - CAT II Applications must use system-generated session identifiers that protect against session
fixation.

APSC-DV-002260 - CAT II Applications must validate session identifiers.
APSC-DV-002270 - CAT II Applications must not use URL embedded session IDs.
APSC-DV-002280 - CAT II The application must not re-use or recycle session IDs.

APSC-DV-002290 - CAT II The application must use the Federal Information Processing Standard (FIPS) 140-2-
validated cryptographic modules and random number generator if the application implements encryption, key
exchange, digital signature, and hash functionality.

APSC-DV-002300 - CAT II The application must only allow the use of DoD-approved certificate authorities for
verification of the establishment of protected sessions.

APSC-DV-002310 - CAT I The application must fail to a secure state if system initialization fails, shutdown fails, or
aborts fail.

APSC-DV-002320 - CAT II In the event of a system failure, applications must preserve any information necessary
to determine cause of failure and any information necessary to return to operations with least disruption to mission
processes.

APSC-DV-002330 - CAT II The application must protect the confidentiality and integrity of stored information
when required by DoD policy or the information owner.

APSC-DV-002340 - CAT II The application must implement approved cryptographic mechanisms to prevent
unauthorized modification of organization-defined information at rest on organization-defined information system
components.

APSC-DV-002350 - CAT II The application must use appropriate cryptography in order to protect stored DoD
information when required by the information owner or DoD policy.

APSC-DV-002360 - CAT II The application must isolate security functions from non-security functions.

APSC-DV-002370 - CAT II The application must maintain a separate execution domain for each executing process.

PAGE 17 OF 54

v, CHECKMARX

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
4 1
0 0
0 0
0 0
1 1
0 0
0 0
0 0
0 0

v, CHECKMARX

APSC-DV-002380 - CAT II Applications must prevent unauthorized and unintended information transfer via shared

0 0
system resources.
APSC-DV-002390 - CAT II XML-based applications must mitigate DoS attacks by using XML filters, parser 0 0
options, or gateways.
APSC-DV-002400 - CAT II The application must restrict the ability to launch Denial of Service (DoS) attacks 0 0
against itself or other information systems.
APSC-DV-002410 - CAT II The web service design must include redundancy mechanisms when used with high- 0 0
availability systems.
APSC-DV-002420 - CAT II An XML firewall function must be deployed to protect web services when exposed to 0 0
untrusted networks.
APSC-DV-002610 - CAT II The application must remove organization-defined software components after updated 0 0
versions have been installed.
APSC-DV-002440 - CAT I The application must protect the confidentiality and integrity of transmitted information. 1 1

APSC-DV-002450 - CAT II The application must implement cryptographic mechanisms to prevent unauthorized
disclosure of information and/or detect changes to information during transmission unless otherwise protected by 0 0
alternative physical safeguards, such as, at a minimum, a Prot

APSC-DV-002460 - CAT II The application must maintain the confidentiality and integrity of information during

. . 0 0
preparation for transmission.
APSC-DV-002470 - CAT II The application must maintain the confidentiality and integrity of information during 0 0
reception.
APSC-DV-002480 - CAT II The application must not disclose unnecessary information to users. 0 0
APSC-DV-002485 - CAT I The application must not store sensitive information in hidden fields. 0 0
APSC-DV-002490 - CAT I The application must protect from Cross-Site Scripting (XSS) vulnerabilities. 1 1
APSC-DV-002500 - CAT II The application must protect from Cross-Site Request Forgery (CSRF) vulnerabilities.* 0 0
APSC-DV-002510 - CAT I The application must protect from command injection. 0 0
APSC-DV-002520 - CAT II The application must protect from canonical representation vulnerabilities. 0 0
APSC-DV-002530 - CAT II The application must validate all input. 0 0
APSC-DV-002540 - CAT I The application must not be vulnerable to SQL Injection. 1 1
APSC-DV-002550 - CAT I The application must not be vulnerable to XML-oriented attacks. 0 0
APSC-DV-002560 - CAT I The application must not be subject to input handling vulnerabilities.* 2 1
APSC-DV-002570 - CAT II The application must generate error messages that provide information necessary for 0 0
corrective actions without revealing information that could be exploited by adversaries.
APSC-DV-002580 - CAT II The application must reveal error messages only to the ISSO, ISSM, or SA. 0 0
APSC-DV-002590 - CAT I The application must not be vulnerable to overflow attacks. 0 0
APSC-DV-002630 - CAT II Security-relevant software updates and patches must be kept up to date. 0 0
APSC-DV-002760 - CAT II The application performing organization-defined security functions must verify correct 0 0
operation of security functions.
APSC-DV-002900 - CAT II The ISSO must ensure application audit trails are retained for at least 1 year for 0 0
applications without SAMI data, and 5 years for applications including SAMI data.
APSC-DV-002770 - CAT II The application must perform verification of the correct operation of security functions:

. .. 0 0

upon system startup and/or restart; upon command by a user with privileged access; and/or every 30 days.
APSC-DV-002780 - CAT III The application must notify the ISSO and ISSM of failed security verification tests. 0 0
APSC-DV-002870 - CAT II Unsigned Category 1A mobile code must not be used in the application in accordance 0 0

with DoD policy.

APSC-DV-002880 - CAT II The ISSO must ensure an account management process is implemented, verifying only
authorized users can gain access to the application, and individual accounts designated as inactive, suspended, or 0 0
terminated are promptly removed.

APSC-DV-002890 - CAT I Application web servers must be on a separate network segment from the application

and database servers if it is a tiered application operating in the DoD DMZ. 0 0
APSC-DV-002910 - CAT II The ISSO must review audit trails periodically based on system documentation 0 0
recommendations or immediately upon system security events.

APSC-DV-002920 - CAT II The ISSO must report all suspected violations of IA policies in accordance with DoD 0 0
information system IA procedures.

APSC-DV-002930 - CAT II The ISSO must ensure active vulnerability testing is performed. 0 0

PAGE 18 OF 54

APSC-DV-002980 - CAT II New IP addresses, data services, and associated ports used by the application must be
submitted to the appropriate approving authority for the organization, which in turn will be submitted through the
DoD Ports, Protocols, and Services Management (DoD PPS

APSC-DV-002950 - CAT II Execution flow diagrams and design documents must be created to show how deadlock
and recursion issues in web services are being mitigated.

APSC-DV-002960 - CAT II The designer must ensure the application does not store configuration and control files
in the same directory as user data.

APSC-DV-002970 - CAT II The ISSO must ensure if a DoD STIG or NSA guide is not available, a third-party
product will be configured by following available guidance.

APSC-DV-002990 - CAT II The application must be registered with the DoD Ports and Protocols Database.
APSC-DV-002990 - CAT II The application must be registered with the DoD Ports and Protocols Database.

APSC-DV-002995 - CAT II The Configuration Management (CM) repository must be properly patched and STIG
compliant.

APSC-DV-003000 - CAT II Access privileges to the Configuration Management (CM) repository must be reviewed
every three months.

APSC-DV-003010 - CAT II A Software Configuration Management (SCM) plan describing the configuration
control and change management process of application objects developed by the organization and the roles and
responsibilities of the organization must be created and maintained.

APSC-DV-003020 - CAT II A Configuration Control Board (CCB) that meets at least every release cycle, for
managing the Configuration Management (CM) process must be established.

APSC-DV-003030 - CAT II The application services and interfaces must be compatible with and ready for IPv6
networks.

APSC-DV-003040 - CAT II The application must not be hosted on a general purpose machine if the application is
designated as critical or high availability by the ISSO.

APSC-DV-003050 - CAT II A disaster recovery/continuity plan must exist in accordance with DoD policy based on
the applications availability requirements.

APSC-DV-003060 - CAT II Recovery procedures and technical system features must exist so recovery is performed
in a secure and verifiable manner. The ISSO will document circumstances inhibiting a trusted recovery.

APSC-DV-003070 - CAT II Data backup must be performed at required intervals in accordance with DoD policy.

APSC-DV-003080 - CAT II Back-up copies of the application software or source code must be stored in a fire-rated
container or stored separately (offsite).

APSC-DV-003090 - CAT II Procedures must be in place to assure the appropriate physical and technical protection
of the backup and restoration of the application.

APSC-DV-003100 - CAT II The application must use encryption to implement key exchange and authenticate
endpoints prior to establishing a communication channel for key exchange.

APSC-DV-003110 - CAT I The application must not contain embedded authentication data.

APSC-DV-003120 - CAT I The application must have the capability to mark sensitive/classified output when
required.

APSC-DV-003130 - CAT III Prior to each release of the application, updates to system, or applying patches; tests
plans and procedures must be created and executed.

APSC-DV-003150 - CAT II At least one tester must be designated to test for security flaws in addition to functional
testing.

APSC-DV-003140 - CAT II Application files must be cryptographically hashed prior to deploying to DoD
operational networks.

APSC-DV-003160 - CAT III Test procedures must be created and at least annually executed to ensure system
initialization, shutdown, and aborts are configured to verify the system remains in a secure state.

APSC-DV-003170 - CAT II An application code review must be performed on the application.
APSC-DV-003180 - CAT III Code coverage statistics must be maintained for each release of the application.
APSC-DV-003190 - CAT II Flaws found during a code review must be tracked in a defect tracking system.

APSC-DV-003200 - CAT II The changes to the application must be assessed for IA and accreditation impact prior to
implementation.

APSC-DV-003210 - CAT II Security flaws must be fixed or addressed in the project plan.
APSC-DV-003215 - CAT III The application development team must follow a set of coding standards.

APSC-DV-003220 - CAT III The designer must create and update the Design Document for each release of the
application.

PAGE 19 OF 54

v, CHECKMARX

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

v, CHECKMARX

APSC-DV-003230 - CAT II Threat models must be documented and reviewed for each application release and

updated as required by design and functionality changes or when new threats are discovered. 0 0
APSC-DV-003235 - CAT II The application must not be subject to error handling vulnerabilities. 0 0
APSC-DV-003250 - CAT I The application must be decommissioned when maintenance or support is no longer 0 0
available.

APSC-DV-003236 - CAT II The application development team must provide an application incident response plan. 0 0
APSC-DV-003240 - CAT I All products must be supported by the vendor or the development team. 0 0
APSC-DV-003260 - CAT III Procedures must be in place to notify users when an application is decommissioned. 0 0
APSC-DV-003270 - CAT II Unnecessary built-in application accounts must be disabled. 0 0
APSC-DV-003280 - CAT I Default passwords must be changed. 0 0
APSC-DV-003330 - CAT II The system must alert an administrator when low resource conditions are encountered. 0 0
APSC-DV-003285 - CAT II An Application Configuration Guide must be created and included with the application. 0 0
APSC-DV-003290 - CAT II If the application contains classified data, a Security Classification Guide must exist 0 0
containing data elements and their classification.

APSC-DV-003300 - CAT II The designer must ensure uncategorized or emerging mobile code is not used in 0 0
applications.

APSC-DV-003310 - CAT II Production database exports must have database administration credentials and sensitive 0 0
data removed before releasing the export.

APSC-DV-003320 - CAT II Protections against DoS attacks must be implemented. 0 0
APSC-DV-003340 - CAT III At least one application administrator must be registered to receive update 0 0
notifications, or security alerts, when automated alerts are available.

APSC-DV-003360 - CAT III The application must generate audit records when concurrent logons from different 0 0
workstations occur.

APSC-DV-003345 - CAT III The application must provide notifications or alerts when product update and security 0 0
related patches are available.

APSC-DV-003350 - CAT II Connections between the DoD enclave and the Internet or other public or commercial 0 0
wide area networks must require a DMZ.

APSC-DV-003400 - CAT II The Program Manager must verify all levels of program management, designers, 0 0
developers, and testers receive annual security training pertaining to their job function.

APSC-DV-000010 - CAT II The application must provide a capability to limit the number of logon sessions per 0 0
user.

APSC-DV-000060 - CAT II The application must clear temporary storage and cookies when the session is 0 0
terminated.

APSC-DV-000070 - CAT II The application must automatically terminate the non-privileged user session and log 0 0
off non-privileged users after a 15 minute idle time period has elapsed.

APSC-DV-000080 - CAT II The application must automatically terminate the admin user session and log off admin 0 0
users after a 10 minute idle time period is exceeded.

APSC-DV-000090 - CAT II Applications requiring user access authentication must provide a logoff capability for 0 0
user initiated communication session.

APSC-DV-000100 - CAT III The application must display an explicit logoff message to users indicating the reliable 0 0
termination of authenticated communications sessions.

APSC-DV-000110 - CAT II The application must associate organization-defined types of security attributes having 0 0
organization-defined security attribute values with information in storage.

APSC-DV-000120 - CAT II The application must associate organization-defined types of security attributes having 0 0
organization-defined security attribute values with information in process.

APSC-DV-000130 - CAT II The application must associate organization-defined types of security attributes having 0 0
organization-defined security attribute values with information in transmission.

APSC-DV-000160 - CAT II The application must implement DoD-approved encryption to protect the confidentiality 0 0
of remote access sessions.

APSC-DV-000170 - CAT II The application must implement cryptographic mechanisms to protect the integrity of 0 0
remote access sessions.

APSC-DV-000190 - CAT I Messages protected with WS_Security must use time stamps with creation and 0 0
expiration times.

APSC-DV-000180 - CAT II Applications with SOAP messages requiring integrity must include the following 0 0

message elements:-Message ID-Service Request-Timestamp-SAML Assertion (optionally included in messages) and

PAGE 20 OF 54

v, CHECKMARX

all elements of the message must be digitally signed.

APSC-DV-000200 - CAT I Validity periods must be verified on all application messages using WS-Security or
SAML assertions.

APSC-DV-000210 - CAT II The application must ensure each unique asserting party provides unique assertion ID
references for each SAML assertion.

APSC-DV-000220 - CAT II The application must ensure encrypted assertions, or equivalent confidentiality
protections are used when assertion data is passed through an intermediary, and confidentiality of the assertion data 0 0
is required when passing through the intermediary.

APSC-DV-000230 - CAT I The application must use the NotOnOrAfter condition when using the

SubjectConfirmation element in a SAML assertion. 0 0
APSC-DV-000240 - CAT I The application must use both the NotBefore and NotOnOrAfter elements or 0 0
OneTimeUse element when using the Conditions element in a SAML assertion.
APSC-DV-000250 - CAT II The application must ensure if a OneTimeUse element is used in an assertion, there is

. . . . 0 0
only one of the same used in the Conditions element portion of an assertion.
APSC-DV-000260 - CAT II The application must ensure messages are encrypted when the SessionIndex is tied to 0 0
privacy data.
APSC-DV-000290 - CAT II Shared/group account credentials must be terminated when members leave the group. 0 0
APSC-DV-000280 - CAT II The application must provide automated mechanisms for supporting account 0 0
management functions.
APSC-DV-000300 - CAT II The application must automatically remove or disable temporary user accounts 72 hours 0 0
after account creation.
APSC-DV-000320 - CAT III The application must automatically disable accounts after a 35 day period of account 0 0
inactivity.
APSC-DV-000330 - CAT II Unnecessary application accounts must be disabled, or deleted. 0 0
APSC-DV-000420 - CAT II The application must automatically audit account enabling actions. 0 0
APSC-DV-000340 - CAT II The application must automatically audit account creation. 0 0
APSC-DV-000350 - CAT II The application must automatically audit account modification. 0 0
APSC-DV-000360 - CAT II The application must automatically audit account disabling actions. 0 0
APSC-DV-000370 - CAT II The application must automatically audit account removal actions. 0 0
APSC-DV-000380 - CAT III The application must notify System Administrators and Information System Security 0 0
Officers when accounts are created.
APSC-DV-000390 - CAT III The application must notify System Administrators and Information System Security 0 0
Officers when accounts are modified.
APSC-DV-000400 - CAT III The application must notify System Administrators and Information System Security 0 0
Officers of account disabling actions.
APSC-DV-000410 - CAT III The application must notify System Administrators and Information System Security 0 0
Officers of account removal actions.
APSC-DV-000430 - CAT III The application must notify System Administrators and Information System Security 0 0
Officers of account enabling actions.
APSC-DV-000440 - CAT II Application data protection requirements must be identified and documented. 0 0
APSC-DV-000520 - CAT II The application must audit the execution of privileged functions. 0 0
APSC-DV-000450 - CAT II The application must utilize organization-defined data mining detection techniques for 0 0
organization-defined data storage objects to adequately detect data mining attempts.
APSC-DV-000460 - CAT I The application must enforce approved authorizations for logical access to information 0 0
and system resources in accordance with applicable access control policies.
APSC-DV-000470 - CAT II The application must enforce organization-defined discretionary access control policies 0 0
over defined subjects and objects.
APSC-DV-000480 - CAT II The application must enforce approved authorizations for controlling the flow of 0 0
information within the system based on organization-defined information flow control policies.
APSC-DV-000490 - CAT II The application must enforce approved authorizations for controlling the flow of
. . . L . . . 0 0
information between interconnected systems based on organization-defined information flow control policies.
APSC-DV-000500 - CAT II The application must prevent non-privileged users from executing privileged functions 0 0
to include disabling, circumventing, or altering implemented security safeguards/countermeasures.
APSC-DV-000510 - CAT I The application must execute without excessive account permissions. 0 0

PAGE 21 OF 54

APSC-DV-000530 - CAT I The application must enforce the limit of three consecutive invalid logon attempts by a
user during a 15 minute time period.

APSC-DV-000560 - CAT III The application must retain the Standard Mandatory DoD Notice and Consent Banner
on the screen until users acknowledge the usage conditions and take explicit actions to log on for further access.

APSC-DV-000540 - CAT II The application administrator must follow an approved process to unlock locked user
accounts.

APSC-DV-000550 - CAT III The application must display the Standard Mandatory DoD Notice and Consent Banner
before granting access to the application.

APSC-DV-000570 - CAT III The publicly accessible application must display the Standard Mandatory DoD Notice
and Consent Banner before granting access to the application.

APSC-DV-000580 - CAT III The application must display the time and date of the users last successful logon.

APSC-DV-000630 - CAT II The application must provide audit record generation capability for the destruction of
session IDs.

APSC-DV-000590 - CAT II The application must protect against an individual (or process acting on behalf of an
individual) falsely denying having performed organization-defined actions to be covered by non-repudiation.

APSC-DV-000600 - CAT II For applications providing audit record aggregation, the application must compile audit
records from organization-defined information system components into a system-wide audit trail that is time-
correlated with an organization-defined level of tolerance

APSC-DV-000610 - CAT II The application must provide the capability for organization-identified individuals or
roles to change the auditing to be performed on all application components, based on all selectable event criteria
within organization-defined time thresholds.

APSC-DV-000620 - CAT II The application must provide audit record generation capability for the creation of
session IDs.

v, CHECKMARX

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

PAGE 22 OF 54

—

v, CHECKMARX

Scan Summary - OWASP Top 10 API

Best Fix

Category Issues Found Locations

API1-Broken Object Level Authorization

(=)

API2-Broken Authentication
API3-Excessive Data Exposure

API4-Lack of Resources and Rate Limiting
API5-Broken Function Level Authorization
API6-Mass Assignment

API7-Security Misconfiguration
API8-Injection

API9-Improper Assets Management

S O O O o o o o o o
S O O o o o o o <o

API10-Insufficient Logging and Monitoring

PAGE 23 OF 54

_a— ~

v, CHECKMARX

Scan Summary - OWASP Top 10 2010

Best Fix
Category Issues Found Locations
Al-Injection* 0 0
A2-Cross-Site Scripting (XSS) 0 0
A3-Broken Authentication and Session Management 0 0
A4-Insecure Direct Object References 0 0
A5-Cross-Site Request Forgery (CSRF) 0 0
A6-Security Misconfiguration® 1 1
AT7-Insecure Cryptographic Storage 4 1
AS8-Failure to Restrict URL Access 0 0
A9-Insufficient Transport Layer Protection 0 0
A10-Unvalidated Redirects and Forwards 0 0

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

PAGE 24 OF 54

RGSUltS DlStrlbuthn By Status First scan of the project

a— -

v, CHECKMARX

High Medium Low Information Total
New Issues 1 1 13 0 15
Recurrent Issues 0 0 0 0 0
Total 1 1 13 0 15
Fixed Issues 0 0 0 0 0
12
New Scan
Previous Scan
g
£
3
]
High Medium Lo Information
Results Distribution By State
High Medium Low Information Total
To Verify 1 1 13 0 15
Not Exploitable 0 0 0 0 0
Confirmed 0 0 0
Urgent 0 0 0
Propoged Not ; v ; v v
Exploitable
Total 1 1 13 0 15
Result Summary
Vulnerability Type Occurrences Severity
SQL Injection 1
Missing HSTS Header 1
Client Insecure Randomness 4
Log Forging 2
React Deprecated 2
Client Hardcoded Domain 1
Missing CSP Header 1
Potential Clickjacking on Legacy Browsers 1
Potentially Vulnerable To Csrf 1

PAGE 25 OF 54

Use Of Hardcoded Password

10 Most Vulnerable Files
High and Medium Vulnerabilities

File Name
app/server.js
app/server/postgresQueries.js

PAGE 26 OF 54

(¥, CHECKMARX

Issues Found
2
1

v, CHECKMARX

Scan Results Details

SQL Injection

PCIDSS v3.2.1: PCI DSS (3.2.1) - 6.5.1 - Injection flaws - particularly SQL injection

OWASP Top 10 2013: Al-Injection

FISMA 2014: System And Information Integrity

NIST SP 800-53: SI-10 Information Input Validation (P1)

OWASP Top 10 2017: Al-Injection

ASD STIG 4.10: APSC-DV-002540 - CAT I The application must not be vulnerable to SQL Injection.
OWASP Top 10 2021: A3-Injection

Description
SQL Injection\Path 1:

Severity High

Result State To Verify

Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat
hid=1

Status New

Detection Date 3/11/2022 11:39:24 AM

The application's insertInstallationPermit method executes an SQL query with insertStatement, at line 19 of
app/server/postgresQueries.js. The application constructs this SQL query by embedding an untrusted string into the query
without proper sanitization. The concatenated string is submitted to the database, where it is parsed and executed
accordingly.

An attacker would be able to inject arbitrary syntax and data into the SQL query, by crafting a malicious payload and
providing it via the input body; this input is then read by the app.post method at line 47 of app/server.js. This input then
flows through the code, into a query and to the database server - without sanitization.

This may enable an SQL Injection attack.

Source Destination

File app/server.js app/server/postgresQueries.js
Line 48 26
Object body insertStatement
Code Snippet
File Name app/server.js
Method app.post('/api/addPermit', function (req, res) {

48. insertInstallationPermit (req.body)

Y

File Name app/server/postgresQueries.js
Method function insertInstallationPermit(permit) {

26. return postgresPool.query(insertStatement) ;

PAGE 27 OF 54

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=1
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=1

v, CHECKMARX

Missing HSTS Header

ASD STIG 4.10: APSC-DV-002440 - CAT I The application must protect the confidentiality and integrity of transmitted
information.

OWASP Top 10 2010: A6-Security Misconfiguration

OWASP Top 10 2021: A7-Identification and Authentication Failures

Description
Missing HSTS Header\Path 1:

Severity Medium

Result State To Verify

Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat
hid=2

Status New

Detection Date 3/11/2022 11:39:24 AM

The web-application does not define an HSTS header, leaving it vulnerable to attack.

Source Destination
File app/server.js app/server.js
Line 35 35
Object send send
Code Snippet
File Name app/server.js
Method app.get('/api/getPermit', function (req, res) {

éé:. return res.send('addPermit') ;

Client Insecure Randomness

FISMA 2014: Media Protection

NIST SP 800-53: SC-28 Protection of Information at Rest (P1)

OWASP Top 10 2017: A9-Using Components with Known Vulnerabilities

ASD STIG 4.10: APSC-DV-002290 - CAT II The application must use the Federal Information Processing Standard
(FIPS) 140-2-validated cryptographic modules and random number generator if the application implements encryption,
key exchange, digital signature, and hash functionality.

OWASP Top 10 2010: A7-Insecure Cryptographic Storage

OWASP Top 10 2021: A2-Cryptographic Failures

Description
Client Insecure Randomness\Path 1:

Severity Low

Result State To Verify

Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025 &pat
hid=3

Status New

Detection Date 3/11/2022 11:39:24 AM

PAGE 28 OF 54

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=2
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=2
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=3
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=3

v, CHECKMARX

Method getRandomNumberBetweenOAnd at line 67 of app/src/assets/DummyData.js uses a weak method random to
produce random values. These values might be used as personal identifiers, session tokens or cryptographic input;
however, due to their insufficient randomness, an attacker may be able to derive their value.

Source Destination

File app/src/assets/DummyData.js app/src/assets/DummyData.js
Line 68 116
Object random getRandomAddress
Code Snippet
File Name app/src/assets/DummyData.js
Method function getRandomNumberBetween0And(max) {

éé:. return Math.ceil ((Math.random() * max)) - 1;

A

File Name app/src/assets/DummyData.js
Method function makeRandomlInstallationPermit() {

iié: const contact = getRandomAddress() ;

Client Insecure Randomness\Path 2:

Severity Low

Result State To Verify

Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat
hid=4

Status New

Detection Date 3/11/2022 11:39:24 AM

Method getRandomNumberBetween0And at line 67 of app/src/assets/DummyData.js uses a weak method random to
produce random values. These values might be used as personal identifiers, session tokens or cryptographic input;
however, due to their insufficient randomness, an attacker may be able to derive their value.

Source Destination
File app/src/assets/DummyData.js app/src/assets/DummyData.js
Line 68 117
Object random getRandomAddress
Code Snippet
File Name app/src/assets/DummyData.js
Method function getRandomNumberBetween0And(max) {
éé:. return Math.ceil ((Math.random() * max)) - 1;
Y
File Name app/src/assets/DummyData.js
Method function makeRandomlInstallationPermit() {

PAGE 29 OF 54

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=4
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=4

v, CHECKMARX

117. const installation = getRandomAddress ([contact.index]);

Client Insecure Randomness\Path 3:

Severity Low

Result State To Verify

Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat
hid=5

Status New

Detection Date 3/11/2022 11:39:24 AM

Method getRandomNumberBetween0And at line 67 of app/src/assets/DummyData.js uses a weak method random to
produce random values. These values might be used as personal identifiers, session tokens or cryptographic input;
however, due to their insufficient randomness, an attacker may be able to derive their value.

Source Destination

File app/src/assets/DummyData.js app/src/assets/DummyData.js
Line 68 118
Object random getRandomAddress
Code Snippet
File Name app/src/assets/DummyData.js
Method function getRandomNumberBetween0And(max) {

68. return Math.ceil ((Math.random() * max)) - 1;

Y

File Name app/src/assets/DummyData.js
Method function makeRandomlInstallationPermit() {

118. const contractor = getRandomAddress ([contact.index,

installation.index]);

Client Insecure Randomness\Path 4:

Severity Low

Result State To Verify

Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat
hid=6

Status New

Detection Date 3/11/2022 11:39:24 AM

Method getRandomNumberBetween0And at line 67 of app/src/assets/DummyData.js uses a weak method random to
produce random values. These values might be used as personal identifiers, session tokens or cryptographic input;
however, due to their insufficient randomness, an attacker may be able to derive their value.

Source Destination
File app/src/assets/DummyData.js app/src/assets/DummyData.js
Line 68 119
Object random getRandomAddress

PAGE 30 OF 54

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=5
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=5
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=6
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=6

v, CHECKMARX

Code Snippet

File Name app/src/assets/DummyData.js
Method function getRandomNumberBetween0And(max) {
68. return Math.ceil ((Math.random() * max)) - 1;
Y
File Name app/src/assets/DummyData.js
Method function makeRandomlInstallationPermit() {
119. const electrician = getRandomAddress ([contact.index,

installation.index, contractor.index]);

React Deprecated

OWASP Top 10 2017: A9-Using Components with Known Vulnerabilities
OWASP Top 10 2021: A6-Vulnerable and Outdated Components

Description
React Deprecated\Path 1:

Severity Low

Result State To Verify

Online Results https://cxmanager.pnl.2ov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat
hid=8

Status New

Detection Date 3/11/2022 11:39:24 AM

Method ReactDOM.render in app/src/index.jsx, at line 59, calls an obsolete API, render. This has been deprecated, and
should not be used in a modern codebase.

Source Destination
File app/src/index.jsx app/src/index.jsx
Line 59 59
Object render render
Code Snippet
File Name app/src/index.jsx
Method ReactDOM.render(

59. ReactDOM.render (

React Deprecated\Path 2:

Severity Low

Result State To Verify

Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat
hid=9

PAGE 31 OF 54

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=8
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=8
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=9
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=9

v, CHECKMARX

Status New
Detection Date 3/11/2022 11:39:24 AM

Method Header in app/src/components/Header.jsx, at line 6, calls an obsolete API, CxAssociativeArray dc8fb2be. This
has been deprecated, and should not be used in a modern codebase.

Source Destination
File app/src/components/Header.jsx app/src/components/Header.jsx
Line 28 28
Object CxAssociativeArray dc8fb2be CxAssociativeArray dc8fb2be
Code Snippet
File Name app/src/components/Header.jsx
Method export default function Header() {

éé:.

Log Forging

FISMA 2014: System And Information Integrity

NIST SP 800-53: AU-9 Protection of Audit Information (P1)

OWASP Top 10 2017: Al-Injection

ASD STIG 4.10: APSC-DV-002560 - CAT I The application must not be subject to input handling vulnerabilities.
OWASP Top 10 2021: A9-Security Logging and Monitoring Failures

Description
Log Forging\Path 1:

Severity Low

Result State To Verify

Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat
hid=11

Status New

Detection Date 3/11/2022 11:39:24 AM

Method app.post at line 47 of app/server.js gets user input from element body. This element’s value flows through the
code without being properly sanitized or validated, and is eventually used in writing an audit log in .then at line 49 of
app/server.js.

This may enable Log Forging.

Source Destination
File app/server.js app/server.js
Line 48 49
Object body log
Code Snippet
File Name app/server.js
Method app.post(‘/api/addPermit', function (req, res) {

PAGE 32 OF 54

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=11
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=11

v, CHECKMARX

48. insertInstallationPermit (req.body)

¥
File Name app/server.js
Method .then(res => console.log(res.rows[0]))
éé:. .then(res => console.log(res.rows[0]))
Log Forging\Path 2:
Severity Low
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat
hid=12
Status New
Detection Date 3/11/2022 11:39:24 AM

Method app.post at line 47 of app/server.js gets user input from element body. This element’s value flows through the
code without being properly sanitized or validated, and is eventually used in writing an audit log in .catch at line 50 of
app/server.js.

This may enable Log Forging.

Source Destination

File app/server.js app/server.js
Line 48 50
Object body error
Code Snippet
File Name app/server.js
Method app.post(‘/api/addPermit', function (req, res) {

4é:. insertInstallationPermit (req.body)

Y

File Name app/server.js
Method .catch(e => console.error(e.stack));

éé: .catch(e => console.error (e.stack));

Client Hardcoded Domain

NIST SP 800-53: SC-18 Mobile Code (P2)

ASD STIG 4.10: APSC-DV-002490 - CAT I The application must protect from Cross-Site Scripting (XSS)
vulnerabilities.

OWASP Top 10 2021: A8-Software and Data Integrity Failures

PAGE 33 OF 54

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=12
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=12

v, CHECKMARX

Description
Client Hardcoded Domain\Path 1:

Severity Low

Result State To Verify

Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat
hid=7

Status New

Detection Date 3/11/2022 11:39:24 AM

The JavaScript file imported in https://static2.sharepointonline.com/files/fabric/office-ui-fabric-
core/11.0.0/css/fabric.min.css in app/dist/index.html at line 4 is from a remote domain, which may allow attackers to
replace its contents with malicious code.

Source Destination

File app/dist/index.html app/dist/index.html

Line 4 4

Object https://static2.sharepointonline.com/files/fabric/offi https://static2.sharepointonline.com/files/fabric/offi
ce-ui-fabric-core/11.0.0/css/fabric.min.css ce-ui-fabric-core/11.0.0/css/fabric.min.css

Code Snippet

File Name app/dist/index.html

Method <link rel="stylesheet" href="https://static2.sharepointonline.com/files/fabric/office-ui-fabric-

core/11.0.0/css/fabric.min.css" />

4. <link rel="stylesheet"
href="https://static2.sharepointonline.com/files/fabric/office-ui-
fabric-core/11.0.0/css/fabric.min.css" />

Potential Clickjacking on Legacy Browsers

FISMA 2014: Configuration Management

NIST SP 800-53: SC-8 Transmission Confidentiality and Integrity (P1)

ASD STIG 4.10: APSC-DV-002330 - CAT II The application must protect the confidentiality and integrity of stored
information when required by DoD policy or the information owner.

Description
Potential Clickjacking on Legacy Browsers\Path 1:

Severity Low

Result State To Verify

Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat
hid=10

Status New

Detection Date 3/11/2022 11:39:24 AM

The application does not protect the web page app/dist/index.html from clickjacking attacks in legacy browsers, by using
framebusting scripts.

Source Destination
File app/dist/index.html app/dist/index.html
Line 1 1

PAGE 34 OF 54

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=7
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=7
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=10
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=10

Object < <

Code Snippet
File Name app/dist/index.html
Method <IDOCTYPE html>

1. <!DOCTYPE html>

Missing CSP Header

OWASP Top 10 2017: A6-Security Misconfiguration
OWASP Top 10 2021: A7-Identification and Authentication Failures

Description
Missing CSP Header\Path 1:

v, CHECKMARX

Severity Low

Result State To Verify

Online Results https://cxmanager.pnl.2ov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat
hid=13

Status New

Detection Date 3/11/2022 11:39:24 AM

A Content Security Policy is not explicitly defined within the web-application.

Source Destination
File app/server.js app/server.js
Line 35 35
Object send send
Code Snippet
File Name app/server.js
Method app.get('/api/getPermit', function (req, res) {

éé:. return res.send('addPermit');

Potentially Vulnerable To Csrf

OWASP Top 10 2021: A1-Broken Access Control

Description
Potentially Vulnerable To Csrf\Path 1:

Severity Low

Result State To Verify

Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat
hid=14

Status New

PAGE 35 OF 54

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=13
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=13
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=14
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=14

v, CHECKMARX
Detection Date 3/11/2022 11:39:24 AM
Method express at line 11 of app/server.js gets a parameter from a user request from app. This parameter value flows

through the code and is eventually used to access application state altering functionality. This may enable Cross-Site
Request Forgery (CSRF).

Source Destination
File app/server.js app/server.js
Line 11 11
Object app app
Code Snippet
File Name app/server.js
Method const app = express();

ii:. const app = express();

Use Of Hardcoded Password

FISMA 2014: Identification And Authentication

NIST SP 800-53: SC-28 Protection of Information at Rest (P1)

OWASP Top 10 2017: A3-Sensitive Data Exposure

ASD STIG 4.10: APSC-DV-001740 - CAT I The application must only store cryptographic representations of
passwords.

OWASP Top 10 2021: A7-Identification and Authentication Failures

Description
Use Of Hardcoded Password\Path 1:

Severity Low

Result State To Verify

Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat
hid=15

Status New

Detection Date 3/11/2022 11:39:24 AM

The application uses the hard-coded password "postgres" for authentication purposes, either using it to verify users'
identities, or to access another remote system. This password at line 7 of app/server/postgresQueries.js appears in the
code, implying it is accessible to anyone with source code access, and cannot be changed without rebuilding the
application.

Source Destination
File app/server/postgresQueries.js app/server/postgresQueries.js
Line 7 7
Object "postgres" password
Code Snippet
File Name app/server/postgresQueries.js
Method password: process.env.POSTGRES PASSWORD || 'postgres',

PAGE 36 OF 54

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=15
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=15

v, CHECKMARX

7. password: process.env.POSTGRES PASSWORD || 'postgres',

SQL Injection

Risk

What might happen

An attacker could directly access all of the system's data. The attacker would likely be able to steal any sensitive information stored
by the system, including private user information, credit card details, proprietary business data, and any other secret data. Likewise,
the attacker could possibly modify or erase existing data, or even add new bogus data. In some scenarios, it may even be possible to
execute code on the database.

In addition to disclosing or altering confidential information directly, this vulnerability might also be used to achieve secondary
effects, such as bypassing authentication, subverting security checks, or forging a data trail.

Further increasing the likelihood of exploit is the fact that this flaw is easy for attackers to find, and easy to exploit.

Cause

How does it happen

The application stores and manages data in a database, by submitting a textual SQL query to the database engine for processing. The
application creates the query by simple string concatenation, embedding untrusted data. However, there is no separation between data
and code; furthermore, the embedded data is neither checked for data type validity nor subsequently sanitized. Thus, the untrusted
data could contain SQL commands, or modify the intended query. The database would interpret the altered query and commands as
if they originated from the application, and execute them accordingly.

Note that an attacker can exploit this vulnerability either by modifying the URL, or by submitting malicious data in the user input or
other request fields.

General Recommendations
How to avoid it
o Validate all untrusted data, regardless of source. Validation should be based on a whitelist: accept only data fitting a
specified structure, rather than reject bad patterns.
e In particular, check for:
o Data type
o Size
o Range
o Format
o Expected values.
Restrict access to database objects and functionality, according to the Principle of Least Privilege.
Do not use dynamically concatenate strings to construct SQL queries.
Prefer using DB Stored Procedures for all data access, instead of ad-hoc dynamic queries.
Instead of unsafe string concatenation, use secure database components such as parameterized queries and object bindings
(for example, commands and parameters).
o Alternatively, an even better solution is to use an ORM library, in order to pre-define and encapsulate the allowed
commands enabled for the application, instead of dynamically accessing the database directly. In this way the code plane
and data plane should be isolated from each other.

Source Code Examples

JavaScript
SQL Injection in "id" Parameter

app.get ('/profile/address', function(req, res) {
var id = reqg.query.id;
connection.query ('SELECT * FROM users WHERE id=' + id, function(err,results) {
var user = results[0];

PAGE 37 OF 54

(v, CHECKMARX

if (user)

res.render ('address', {address: user.address})
else
res.render ('addressNotFoundErrorPage') ;

SQL Query Uses Parameterized Queries to Avoid SQL Injection

app.get ('/profile/address', function(req, res) {

var id = req.query.id;

connection.query('SELECT * FROM users WHERE id=?', [id], function(err,results) {
var user = results([0];
if (user)

res.render ('address', {address: user.address})

else
res.render ('addressNotFoundErrorPage') ;

PAGE 38 OF 54

v, CHECKMARX

Missing HSTS Header

Risk

What might happen
Failure to set an HSTS header and provide it with a reasonable "max-age" value of at least one year may leave users vulnerable to
Man-in-the-Middle attacks.

Cause

How does it happen

Many users browse to websites by simply typing the domain name into the address bar, without the protocol prefix. The browser will
automatically assume that the user's intended protocol is HTTP, instead of the encrypted HTTPS protocol.

When this initial request is made, an attacker can perform a Man-in-the-Middle attack and manipulate it to redirect users to a
malicious web-site of the attacker's choosing. To protect the user from such an occurence, the HTTP Strict Transport Security
(HSTS) header instructs the user's browser to disallow use of an unsecure HTTP connection to the the domain associated with the
HSTS header.

Once a browser that supports the HSTS feature has visited a web-site and the header was set, it will no longer allow communicating
with the domain over an HTTP connection.

Once an HSTS header was issued for a specific website, the browser is also instructed to prevent users from manually overriding and
accepting an untrusted SSL certificate for as long as the "max-age" value still applies. The recommended "max-age" value is for at
least one year in seconds, or 31536000.

General Recommendations
How to avoid it
o Before setting the HSTS header - consider the implications it may have:
o Forcing HTTPS will prevent any future use of HTTP, which could hinder some testing
o Disabling HSTS is not trivial, as once it is disabled on the site, it must also be disabled on the browser

Set the HSTS header either explicitly within application code, or using web-server configurations.

Ensure the "max-age" value for HSTS headers is set to 31536000 to ensure HSTS is strictly enforced for at least one year.

Include the "includeSubDomains" to maximize HSTS coverage, and ensure HSTS is enforced on all sub-domains under the

current domain

o Note that this may prevent secure browser access to any sub-domains that utilize HTTP; however, use of HTTP is
very severe and highly discouraged, even for websites that do not contain any sensitive information, as their
contents can still be tampered via Man-in-the-Middle attacks to phish users under the HTTP domain.

Once HSTS has been enforced, submit the web-application's address to an HSTS preload list - this will ensure that, even if a

client is accessing the web-application for the first time (implying HSTS has not yet been set by the web-application), a

browser that respects the HSTS preload list would still treat the web-application as if it had already issued an HSTS header.

Note that this requires the server to have a trusted SSL certificate, and issue an HSTS header with a maxAge of 1 year

(31536000)

o Note that this query is designed to return one result per application. This means that if more than one vulnerable response
without an HSTS header is identified, only the first identified instance of this issue will be highlighted as a result. If a
misconfigured instance of HSTS is identified (has a short lifespan, or is missing the "includeSubDomains" flag), that result
will be flagged. Since HSTS is required to be enforced across the entire application to be considered a secure deployment of
HSTS functionality, fixing this issue only where the query highlights this result is likely to produce subsequent results in
other sections of the application; therefore, when adding this header via code, ensure it is uniformly deployed across the
entire application. If this header is added via configuration, ensure that this configuration applies to the entire application.

o Note that misconfigured HSTS headers that do not contain the recommended max-age value of at least one year or the
"includeSubDomains" flag will still return a result for a missing HSTS header.

Source Code Examples

JavaScript
Using Helmet with Express

var express = require ('express')
var helmet = require('helmet')

PAGE 39 OF 54

(v, CHECKMARX

"includeSubDomains", as a bulilt-in header

var app = express()
app.use (helmet ())

Using Explicit HSTS Package - Built into Helmet, So Either '"HSTS' or 'Helmet' Can Be Used

var hsts = require('hsts')

app.use (hsts ({

maxAge: 31536000,

includeSubDomains: true // Also enabled by default
}))

Explicitly Setting HSTS Header in Code

res.setHeader ("Strict-Transport-Security", "max-age=31536000; includeSubDomains") ;

PAGE 40 OF 54

v, CHECKMARX

Client Insecure Randomness

Risk

What might happen

Random values are often used as a mechanism to prevent malicious users from knowing or predicting a given value, such as a
password, encryption key, or session identifier. Depending on what this random value is used for, an attacker would be able to
predict the next numbers generated, or previously generated values, based on sources often used to derive certain randomness;
however, while they may seem random, large statistical samples would demonstrate that they are insufficiently random, producing a
much smaller space of possible "random" values than a truly random sample would. This could enable an attacker to derive or guess
this value, and thus hijack another user's session, impersonate another user, or crack an encryption key (depending on what the
pseudo-random value was used for).

Cause

How does it happen

The application uses a weak method of generating pseudo-random values, such that other numbers could be determined from a
relatively small sample size. Since the pseudo-random number generator used is designed for statistically uniform distribution of
values, it is approximately deterministic. Thus, after collecting a few generated values, it would be possible for an attacker to
calculate past or future values.

Specifically, if this pseudo-random value is used in any security context, such as one-time passwords, keys, secret identifiers or salts
- an attacker would likely be able to predict the next value generated and steal it, or guess a previously generated value and spoof its
original intent.

General Recommendations
How to avoid it
o Always use a cryptographically secure pseudo-random number generator, instead of basic random methods, particularly
when dealing with a security context
o Use the cryptorandom generator that is built-in to your language or platform, and ensure it is securely seeded. Do not seed
the generator with a weak, non-random seed. (In most cases, the default is securely random).
e Ensure you use a long enough random value, thus making brute-force attacks unfeasible.

Source Code Examples

JavaScript
Use of Math.Random() To Generate A Random Number Between MIN And MAX

var randomValue = Math.floor (Math.Random() * MAX RANGE - MIN RANGE + 1) + MIN RANGE;

Use of CSPRNG To Generate a Random Uint32Array

var sessionlId = new Uint32Array (10);
window.crypto.getRandomValues (sessionId) ;

PAGE 41 OF 54

—

v, CHECKMARX

Client Hardcoded Domain

Risk

What might happen

An externally imported Javascript file may leave users vulnerable to attack - if the Javascript's host is compromised, if
communications with the host are intercepted or if the host itself is not trustworthy, then the contents of the Javascript file may
change to have malicious code, which could result in a Cross-Site Scripting (XSS) attack.

Cause

How does it happen

Javascript files can be imported dynamically from remote hosts when they are embedded into HTML. However, this reliance on a
remote host for these scripts may diminish security, as web-application's users are only ever as secure as the remote host serving
these Javascript files.

General Recommendations

How to avoid it

Where possible, host all script files locally, rather than remotely. Ensure that locally hosted 3rd party script files are constantly
updated and maintained.

Source Code Examples

JavaScript
Remote Importation of A Script File

<script src="https://example.com/scripts/jquery.js" />

Local Importation of A Script File

<script src="/scripts/jquery.js" />

PAGE 42 OF 54

—

v, CHECKMARX

React Deprecated

Risk

What might happen

Referencing deprecated modules can cause an application to be exposed to known vulnerabilities, that have been publicly reported
and already fixed. A common attack technique is to scan applications for these known vulnerabilities, and then exploit the application
through these deprecated versions. However, even if deprecated code is used in a way that is completely secure, its very use and
inclusion in the code base would encourage developers to re-use the deprecated element in the future, potentially leaving the
application vulnerable to attack, which is why deprecated code should be eliminated from the code-base as a matter of practice.

Note that the actual risk involved depends on the specifics of any known vulnerabilities in older versions.

Use of a deprecated API on client code may leave users vulnerable to browser-based attacks; this is exacerbated by the fact client-
side code is available to any attacker with client access, who may be able to trivially detect use of this deprecated API.

Cause

How does it happen

The application references code elements that have been declared as deprecated. This could include classes, functions, methods,
properties, modules, or obsolete library versions that are either out of date by version, or have been entirely deprecated. It is likely
that the code that references the obsolete element was developed before it was declared as obsolete, and in the meantime the
referenced code was updated.

General Recommendations
How to avoid it
o Always prefer to use the most updated versions of libraries, packages, and other dependancies.
¢ Do not use or reference any class, method, function, property, or other element that has been declared deprecated.

Source Code Examples

JavaScript
ReactJS - Using a Deprecated Method to Interact with DOM

Obtain Year via Deprecated JavaScript Method

var d = new Date();
var year = d.getYear();

Obtain Year via a Supported JavaScript Method

var d = new Date();
var year = d.getFullYear();

PAGE 43 OF 54

(¥, CHECKMARX

Invoking a Deprecated Function, Denoted Using JSDoc

/** @deprecated */
function myOldFunction () {

/* Code that is deprecated */
]

myOldFunction () ;

PAGE 44 OF 54

v, CHECKMARX

Potential Clickjacking on Legacy Browsers

Risk

What might happen

Clickjacking attacks allow an attacker to "hijack" a user's mouse clicks on a webpage, by invisibly framing the application, and
superimposing it in front of a bogus site. When the user is convinced to click on the bogus website, e.g. on a link or a button, the
user's mouse is actually clicking on the target webpage, despite being invisible.

This could allow the attacker to craft an overlay that, when clicked, would lead the user to perform undesirable actions in the

vulnerable application, e.g. enabling the user's webcam, deleting all the user's records, changing the user's settings, or causing
clickfraud.

Cause

How does it happen

The root cause of vulnerability to a clickjacking attack, is that the application's web pages can be loaded into a frame of another
website. The application does not implement a proper frame-busting script, that would prevent the page from being loaded into
another frame. Note that there are many types of simplistic redirection scripts that still leave the application vulnerable to
clickjacking techniques, and should not be used.

When dealing with modern browsers, applications mitigate this vulnerability by issuing appropriate Content-Security-Policy or X-
Frame-Options headers to indicate to the browser to disallow framing. However, many legacy browsers do not support this feature,
and require a more manual approach by implementing a mitigation in Javascript. To ensure legacy support, a framebusting script is
required.

General Recommendations
How to avoid it
Generic Guidance:

e Define and implement a a Content Security Policy (CSP) on the server side, including a frame-ancestors directive. Enforce
the CSP on all relevant webpages.

o If certain webpages are required to be loaded into a frame, define a specific, whitelisted target URL.

o Alternatively, return a "X-Frame-Options" header on all HTTP responses. If it is necessary to allow a particular webpage to
be loaded into a frame, define a specific, whitelisted target URL.

o For legacy support, implement framebusting code using Javascript and CSS to ensure that, if a page is framed, it is never
displayed, and attempt to navigate into the frame to prevent attack. Even if navigation fails, the page is not displayed and is
therefore not interactive, mitigating potential clickjacking attacks.

Specific Recommendations:

o Implement a proper framebuster script on the client, that is not vulnerable to frame-buster-busting attacks.

o Code should first disable the UI, such that even if frame-busting is successfully evaded, the Ul cannot be clicked.
This can be done by setting the CSS value of the "display" attribute to "none" on either the "body" or "html" tags.
This is done because, if a frame attempts to redirect and become the parent, the malicious parent can still prevent
redirection via various techniques.

o Code should then determine whether no framing occurs by comparing self === top; if the result is true, can the Ul
be enabled. If it is false, attempt to navigate away from the framing page by setting the top.location attribute to
self.location.

Source Code Examples

JavaScript
Clickjackable Webpage

<html>
<body>

<button onclick="clicked() ;">
Click here if you love ducks
</button>
</body>

PAGE 45 OF 54

(v, CHECKMARX

</html>

Bustable Framebuster

!= window.top.location) {

<html>
<head>
<script>
if (window.self.location
window.top.location = window.self.location;
}
</script>
</head>
<body>
<button onclick="clicked() ;">
Click here if you love ducks
</button>
</body>
</html>
Proper Framebusterbusterbusting

<html>
<head>
} </style>

<style> html {display
<script>
if (self === top) {
document.documentElement.style.display =

none;
'block’;

}
else {
top.location = self.location;

}
</script>

</head>

<body>
<button onclick="clicked() ;">
Click here if you love ducks

</button>
</body>

</html>

PAGE 46 OF 54

_a— ~

v, CHECKMARX

Log Forging
Risk
What might happen

An attacker could engineer audit logs of security-sensitive actions and lay a false audit trail, potentially implicating an innocent user
or hiding an incident.

Cause

How does it happen

The application writes audit logs upon security-sensitive actions. Since the audit log includes user input that is neither checked for
data type validity nor subsequently sanitized, the input could contain false information made to look like legitimate audit log data,

General Recommendations
How to avoid it
1. Validate all input, regardless of source. Validation should be based on a whitelist: accept only data fitting a specified
structure, rather than reject bad patterns. Check for:
o Data type
o Size
o Range
o Format
o Expected values
2. Validation is not a replacement for encoding. Fully encode all dynamic data, regardless of source, before embedding it in
logs.
3. Use a secure logging mechanism.

Source Code Examples

JavaScript
Passing Unsanitized Values to HAPI server.log()
var id = request.query["id"];
try {
var val = tryGetByIld(id); // Assume this throws an exception if "id" is not found
catch (err) {
server.log(['error','id'],id); // Log unsanitized values, which could also not be
anitized downstream, and could contain
Passing Sanitized Values to HAPI server.log()
var id = request.query["id"];
try {
var val = tryGetById(id); // Assume this throws an exception if "id" is not found
catch(err) {
server.log(['error', 'id'],encodeURI (id)); // encodeURI () is a sufficient sanitizer for
CRLF, as it URL-encodes the line break characte

PAGE 47 OF 54

(¥, CHECKMARX

PAGE 48 OF 54

v, CHECKMARX

Missing CSP Header

Risk

What might happen

The Content-Security-Policy header enforces that the source of content, such as the origin of a script, embedded (child) frame,
embedding (parent) frame or image, are trusted and allowed by the current web-page; if, within the web-page, a content's source does
not adhere to a strict Content Security Policy, it is promptly rejected by the browser. Failure to define a policy may leave the
application's users exposed to Cross-Site Scripting (XSS) attacks, Clickjacking attacks, content forgery and more.

Cause

How does it happen

The Content-Security-Policy header is used by modern browsers as an indicator for trusted sources of content, including media,
images, scripts, frames and more. If these policies are not explicitly defined, default browser behavior would allow untrusted content.
The application creates web responses, but does not properly set a Content-Security-Policy header.

General Recommendations

How to avoid it

Explicitly set the Content-Security-Policy headers for all applicable policy types (frame, script, form, script, media, img etc.)
according to business requirements and deployment layout of external file hosting services. Specifically, do not use a wildcard, '*', to
specify these policies, as this would allow content from any external resource.

The Content-Security-Policy can be explicitly defined within web-application code, as a header managed by web-server
configurations, or within <meta> tags in the HTML <head> section.

Source Code Examples

JavaScript
Setting The CSP Header Explicitly

app.use (function (req, res, next) {
res.setHeader ("Content-Security-Policy", "script-src 'self'");
return next ();

1)

PAGE 49 OF 54

v, CHECKMARX

Potentially Vulnerable To Csrf

Risk

What might happen

An attacker could cause the victim to perform any action for which the victim is authorized, such as transferring funds from the
victim’s account to the attacker’s. The action will be logged as being performed by the victim, in the context of their account, and
potentially without their knowledge that this action has occurred.

Cause

How does it happen

The application performs some action that modifies database contents, based purely on HTTP request content, and does not require
per-request renewed authentication (such as transaction authentication or a synchronizer token), instead relying solely on session
authentication. This means that an attacker could use social engineering to cause a victim to browse to a link which contains a
transaction request to the vulnerable application, submitting that request from the user's browser. Once the application receives the
request, it would trust the victim’s session, and would perform the action. This type of attack is known as Cross-Site Request Forgery
(CSREF).

A Cross-Site Request Forgery attack relies on the trust between a server and an authenticated client. By only validating the session,
the server ensures that a request has emerged from a client's web-browser. However, any website may submit GET and POST
requests to other websites, to which the browser will automatically add the session token if it is in a cookie. This cross-site request
can then be trusted as arriving from the user's browser, but does not validate that it was their intent was to make this request.

In some cases, XSRF protection functionality exists in the application, but is either not implemented, or explicitly disabled.

General Recommendations
How to avoid it
Mitigating CSRF requires an additional layer of authentication that is built into the request validation mechanism. This mechanism
would attach an additional token that only applies to the given user; this token would be available within the user's web-page, but will
not be attached automatically to a request from a different website (e.g. not stored in a cookie). Since the token is not automatically
attached to the request, and is not available to the attacker, and is required by the server to process the request, it would be
completely impossible for the attacker to fill in a valid cross-site form that contains this token.
Many platforms offer built-in CSRF mitigation functionality which should be used, and perform this type of token management
under the hood. Alternatively, use a known or trusted library which adds this functionality.
If implementing CSRF protection is required, this protection should adhere to the following rules:
e Any state altering form (Create, Update, Delete operations) should enforce CSRF protection, by adding an CSRF token to
every state altering form submission on the client.
¢ An CSRF token should be generated, and be unique per-user per-session (and, preferably, per request).
e The CSRF token should be inserted into the client side form, and be submitted to the server as part of the form request. For
example, it could be a hidden field in an HTML form, or a custom header added by a Javascript request.
e The CSRF token in the request body or custom header must then be verified as belonging to the current user by the server,
before a request is authorized and processed as valid.
Always rely on best practices when using XSRF protection - always enable built-in functionality or available libraries where
possible.
When using application-wide XSRF protection, never explicitly disable or subvert XSRF protection for specific functionality unless
said functionality has been thoroughly verified to not require XSRF protection.

Source Code Examples

JavaScript
Applying 'csurf' Library to HTML Forms in Express

app.get ('/profile/email/edit', (req, res) => {

<h1>Change E-Mail Form</h1>

PAGE 50 OF 54

(v, CHECKMARX

<form action="/profile/email/edit" method="POST">
<input id="email" name="email" type="text" />
<input id="email" name="verify _email" type="text" />
<input type="submit" value="0k" />
<input type="hidden" name="_csrf" value="s{req.csrfToken () }" />
</form>
)i
1)
// If the csrf token in the request body is not equal to the synchronizer token, the POST
request will be rejected, and this method will not trigger
app.post ('/profile/email/edit', (req, res) => {

// Authenticate user session
// Update email address

PAGE 51 OF 54

o

(¥, CHEBCKMARX

Use Of Hardcoded Password

Risk

What might happen

Hardcoded passwords expose the application to password leakage. If an attacker gains access to the source code, she will be able to
steal the embedded passwords, and use them to impersonate a valid user. This could include impersonating end users to the
application, or impersonating the application to a remote system, such as a database or a remote web service.

Once the attacker succeeds in impersonating the user or application, she will have full access to the system, and be able to do
anything the impersonated identity could do.

Cause

How does it happen

The application codebase has string literal passwords embedded in the source code. This hardcoded value is used either to compare to
user-provided credentials, or to authenticate downstream to a remote system (such as a database or a remote web service).

An attacker only needs to gain access to the source code to reveal the hardcoded password. Likewise, the attacker can reverse
engineer the compiled application binaries, and easily retrieve the embedded password. Once found, the attacker can easily use the
password in impersonation attacks, either directly on the application or to the remote system.

Furthermore, once stolen, this password cannot be easily changed to prevent further misuse, unless a new version of the application is
compiled. Moreover, if this application is distributed to numerous systems, stealing the password from one system automatically
allows a class break in to all the deployed systems.

General Recommendations
How to avoid it
¢ Do not hardcode any secret data in source code, especially not passwords.
o In particular, user passwords should be stored in a database or directory service, and protected with a strong password hash
(e.g. berypt, scrypt, PBKDF2, or Argon2). Do not compare user passwords with a hardcoded value.
e Sytem passwords should be stored in a configuration file or the database, and protected with strong encryption (e.g. AES-
256). Encryption keys should be securely managed, and not hardcoded.

Source Code Examples

JavaScript
Hardcoded Account Password

var username = request.body.username;

var password = request.body.password;

var admin username = "admin";

var admin password = "S5up3r53cr3t";

if (username == admin username && password == admin password) {
else {

Authenticating by Querying the Database with Credentials

var username = request.body.username;
var password = secureHashImplementation (request.body.password) ;

connection.query ('SELECT * FROM users WHERE name=? AND hashed password=?', [username,
password], function(err,results) {
if (error) {

PAGE 52 OF 54

(v, CHECKMARX

// handle error
}
if (results.length == 1)
// Authenticate
}
)

{

PAGE 53 OF 54

Scanned Languages

Language
JavaScript
VbScript

Common

Hash Number

9095271965336651

0386000544005133

0318477963775793

PAGE 54 OF 54

—

v, CHECKMARX

Change Date
1/14/2022
12/9/2021

1/14/2022

Pacific Northwest
National Laboratory

902 Battelle Boulevard
P.O. Box 999

Richland, WA 99354
1-888-375-PNNL (7665)

www.pnnl.gov

http://www.pnnl.gov/

	FIC Vulnerability Profile_v1.0
	Contents
	Figures
	Tables
	Acronyms and Abbreviations, and Terms of Reference
	1.0 Introduction
	1.1 Purpose of a Vulnerability Profile
	1.2 Shamrock Cyber Analysis

	2.0 Static Analysis Security Testing (SAST) Profile
	3.0 Conclusion
	Appendix A Brief on Consequence-Based Analysis
	Appendix B Brief on Threat-Based Analysis
	Appendix C Brief on Security-Based Development
	Appendix D Full Checkmarx Scan Results

	FIC Checkmarx Scan
	Result Summary
	0_SQL Injection
	1_Missing HSTS Header
	2_Client Insecure Randomness
	4_React Deprecated
	6_Log Forging
	3_Client Hardcoded Domain
	5_Potential Clickjacking on Legacy Brows
	7_Missing CSP Header
	8_Potentially Vulnerable To Csrf
	9_Use Of Hardcoded Password
	0D_SQL Injection
	1D_Missing HSTS Header
	2D_Client Insecure Randomness
	3D_Client Hardcoded Domain
	4D_React Deprecated
	5D_Potential Clickjacking on Legacy Brow
	6D_Log Forging
	7D_Missing CSP Header
	8D_Potentially Vulnerable To Csrf
	9D_Use Of Hardcoded Password

	PNNL report back page

