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Abstract

Light sheet microscopy has made possible the high temporal and spatial 3D imaging of both
fixed and live biological tissue, with samples as large as the entire mouse brain. However,
segmentation and quantification of that data remains a time-consuming manual process.
Machine learning methods promise the possibility of automating this process. This study seeks
to advance the performance of prior models through the application of refinements such as
transfer learning.
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Summary

Light-sheet fluorescence microscopy is an important tool in understanding how the functional
brain states are achieved and how they are modulated by experience, genetics, and
pharmacological agents require a reference map of the structural connections between neurons.
Technical challenges remain to make this high resolution data meaningful for connectome
research, specifically: 1) to stitch together aligned serial sections to construct a 3D image
volume; 2) to efficiently annotate voxels of interest (for example, labeling the content as
belonging to the axon of a particular neuron); and, 3) registering landmarks in an image volume
with a reference atlas so that data from multiple studies might be compared in the same
coordinate space (Tyson and Margrie, 2021).

TrailMap (Tissue Registration and Automated Identification of Light-sheet Microscope Acquired
Projectomes), a 3D U-net model developed for axon segmentation, provides an opportunity to
exploit the benefits of transfer learning specifically from other images in this domain (Friedmann
et al., 2020). This study endeavored to combine the model optimization benefits of the nnU-Net
framework with the domain-specific transfer learning capabilities of TrailMap by comparing the
performance in identifying axons in mouse brain slices using the standard settings from the
TrailMap package (Friedmann et al., 2020) against the pre-processing and network adjustment
suggested by nnU-Net (Isensee et al., 2019). The model will be fine-tuned with our own labeled
images, once they are entirely available.

Fine-tuning did not improve the model’s accuracy. However, we only have one cube with 160
slices, which includes 5 labeled slices. When it’s divided into training and testing data, each
dataset only has 2-3 labeled slices. Hopefully when more labeled data become available, the
models will improve with fully fine-tuning on the entire dataset. Technologies such as TrailMap
contribute to the growing effort to develop templates to integrate data across multiple non-
disruptive 3-dimensional image modalities, combining insights from light-sheet microscopy and
MRI into a common coordinate framework (Perens et al., 2022). Such co-registration is
essential for studying disease progression, developing effective therapies, translating findings
into clinical procedures, for example, delivering brain site-specific drugs and implanting
electrodes precisely for recording or stimulation.

While the work in this study demonstrates improvements in the ability to automate axon
segmentation, the problem of complete mapping of neuronal structures into a co-registered
system will likely require many structure-specific solutions in the short-term. The segmentation
of tightly packed neurites will not benefit from an adaptive enhancement of the signal-to-noise
ratios and may require other kinds of algorithmic slights of hand to feign higher resolution (Zhou
et al., 2022).
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1.0 Introduction

Understanding how functional brain states are achieved and how they are modulated by
experience, genetics, and pharmacological agents require a reference map of the structural
connections between neurons. Such a map will facilitate research into brain disorders but will
also generate insights into the information processing mechanisms of healthy brains. Such is
the goal of the Mouse and Human Connectome Projects (Bargmann and Marder, 2013; Sporns,
2011; Zingg et al., 2014).

Light-sheet fluorescence microscopy (LSFM) is an important tool in this discovery process.
Based on wide-field fluorescence technologies, LSFM enables direct visualization of cellular
structure on a scale of a few micrometers. It introduced the use of intrinsic optical sectioning
capabilities by automating the movement of a sample through a single plane sheet of light. The
resulting fluorescence is detected by an orthogonal-placed camera. By illuminating only a thin
section of tissue with each pass, photobleaching of the tissue is minimized, yielding a more
intense and complete fluorescence signal. Another important advancement associated with
LSFM is optical tissue clearing. Through the use of organic solvents, lipid removal, or immersion
in refractive index matching solutions, brain tissue is rendered effectively transparent, allowing
greater contrast of the labeled fluorescent structures, including in a living brain (Girkin and
Carvalho, 2018; Olarte et al., 2018; Santi, 2011)

Technical challenges remain to make this high resolution data meaningful for connectome
research, specifically: 1) to stitch together aligned serial sections to construct a 3D image
volume; 2) to efficiently annotate voxels of interest (for example, labeling the content as
belonging to the axon of a particular neuron); and, 3) registering landmarks in an image volume
with a reference atlas so that data from multiple studies might be compared in the same
coordinate space (Tyson and Margrie, 2021). Annotating a volume of images is a labor and
time-intensive process that can be subjective due to fatigue-related errors and inhomogeneities
in the intensity of stained structures resulting in significant variability between experimenters.
The number of images slices that yield a complete volume range from several dozen to well
over ten thousand, depending on the microscopy system, species, and orientation of the
sectioning method (Agarwal et al., 2018; Kasthuri et al., 2015). A complete dataset of high-
resolution data for a whole brain can be on the order of a terabyte, limiting analysis algorithms
to those that do not require the full volume of data to be loaded into runtime memory (Seiriki et
al., 2017).

Computational methods to automatically stitch, segment, annotate, and register meaningful
information in images have made enormous strides in the past decade. Early methods tended to
rely on thresholding, clustering, edge detection, region growing, or curve propagation (Kaur and
Kaur, 2014; Zhang, 2006). A significant break-through came in 2015 with the development of a
class of convolutional networks (CNNs) that use symmetric contractive and expansive passes
over augmented data samples. Such an approach allowed for a balance between localization
and context, as well as a robustness to deformations and variance within the examples from
which the network learned. The first such class of these networks, U-Net, won the ISBI (IEEE
International Symposium on Biomedical Imaging) cell tracking challenge that year by a wide
margin Ronneberger et al. (2015). This success yielded a plethora of new U-Net architectures
and approaches intended to refine and build on this advancement, but also to address some of
the limitations. In particular, CNNs require that their hyperparameters be tuned to obtain optimal
performance, which can be considerably time consuming. And secondly, the problem of a
sufficient number of hand-annotated datasets with which to train the CNN remains.

Introduction 1
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Network models require optimization because experimental data significantly varies with respect
to class ratios, image size, image generation, image pre- and post-processing methods, network
architecture, data augmentation, learning rate, and loss functions. nnU-Net (no-new-U-Net)
sought to address this issue by establishing a framework with a baseline against which
optimizations for model performance might be compared and a methodology for the systematic
tuning of parameters against that baseline (Isensee et al., 2019). First fixed parameters values,
which will stay constant regardless of the dataset, are set by evaluating model performance
while systemically modifying the parameter values for 10 medical segmentation datasets. These
parameters include the learning rate and loss function. Secondly, some parameters are
discovered experimentally with every run, and these are set by evaluation of cross-validation
performance. These experimentally found parameters include the post-processing configuration.
Finally, parameters whose optimal value will depend on the dataset, are found with heuristic
rules depending on the “fingerprint” of the dataset, which includes details such as image size,
voxel spacing, and class balance.

Transfer learning can be a useful method in which the features learned from another domain
with a richly annotated dataset are used to segment a new smaller dataset outside of the
original domain (Caruana, 1994). Perhaps the best known pre-trained object detection model,
AlexNet, was initially trained on over 1 million training images from an extensively studied
dataset, ImageNet. Transfer learning leverages all of the features learned from those millions of
images as a starting place for reasoning in a new setting with fewer labeled images (Krizhevsky
et al., 2012).

TrailMap (Tissue Registration and Automated Identification of Light-sheet Microscope Acquired
Projectomes), a 3D U-net model developed for axon segmentation, provides an opportunity to
exploit the benefits of transfer learning specifically from other images in this domain (Friedmann
et al., 2020). The Trailmap model was trained with 36 patches of a labeled brain volume
containing axons of 100 - 300 voxels per dimensions, and 40 patches containing imaging
artifacts and backgound, all with 3 - 10 labeled xy planes per patch. Model evaluation accounts
for sparsely labeled images (such that only every 80 to 180 um slice are being labeled) by
masking unlabeled slices. Edges of axons are generated within the code; the misclassification
of edges is devalued in calculating loss compared to the misclassification of axons, ensuring
that a false positive within one pixel of the axon is not strongly penalized, thereby minimizing the
effect of pixel-size differences in expert labeling.

This study endeavored to combine the model optimization benefits of the nnU-Net framework
with the domain-specific transfer learning capabilities of TrailMap by comparing the performance
in identifying axons in mouse brain slices using the standard settings from the TrailMap package
(Friedmann et al., 2020) against the pre-processing and network adjustment suggested by nnU-
Net (Isensee et al., 2019). As we wish to keep the innovative features of Trailmap (e.g., sparse
labeling, edges generation, network weights from pretraining), we will adjust only the
parameters that can be changed without changing the network architecture (ex. the number of
down-sampling operations). Our modified version of Trailmap will adopt nnU-Net’s approach to
data augmentation, patch size selection, data sampling, learning rate, and inference method.
The model will be fine-tuned with our own labeled images.

Introduction 2
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2.0 Materials and Methods

Labeled Image Generation
Labeled images for fine tuning the model were obtained according to the following procedure.

[* The following is template text; PNNL is waiting for a response from OHSU collaborators to
correct the steps with their specific procedures.]

“All animal procedures followed animal care guidelines approved by the Oregon Health Science
University’s Animal Research Committee. Mice were transferred to a stereotaxic apparatus
where they were maintained under 2% isoflurane in oxygen. Following a small skin incision, a
dental drill was used to drill through the skulls above the injection targets. For collateralization
mapping, 300uL of Addgene was injected unilaterally into either left NAc (AP: 1.3, ML: -1.0, DV:
4.7), left VTA (AP: -3.3, ML: 0.4, DV: -445 4.5), or right PL (AP: 1.8, ML: -0.5, DV: -2.3). For
topographical mapping of the origin of each projection type, mice were injected with 300uL of
cholera toxin subunit B of Fluorogold at the same coordinates.

Mice were transcardially perfused with phosphate-buffered saline (PBS) followed by 4%
paraformaldehyde (PFA) in PBS. Brains were dissected, post-fixed in 4% PFA for 12-24h and
placed in 30% sucrose for 24—48 hours. Sections were then stained with chicken anti-GFP in
0.3% PBST containing 3% donkey serum overnight at 4°C. The following day, sections were
washed 3x5min in PBS and then stained with secondary antibody in 0.3% PBST containing 5%
donkey serum for 2 hours at room temperature.

Mouse brains were collected and processed based on the published Adipo-Clear protocol with
slight modifications. Brains were hemisected approximately 1mm past midline and postfixed
overnight in 4% PFA at 4°C. To dehydrate samples, a gradient of washes in MeOH:H20 (20%,
40%, 60% and 80%) were conducted for 30min each, followed by 3x100% MeOH for 30min, 1h,
then 1.5h. The next day, samples were washed in 100% DCM 2x1h each. Samples were then
cleared in 100% DBE (dibenzyl ether). DBE was changed after 4h. Samples were stored in DBE
in a dark place at room temperature. Imaging took place at least 24h after clearing.

Brain samples were imaged on a light-sheet microscope (Ultramicroscope Il, LaVision Biotec)
equipped with a sSCMOS camera (Andor Neo) and a 2x/0.5 NA objective lens (MVPLAPO 2x)
equipped with a 6 mm working distance dipping cap. Image stacks were acquired at 0.8x optical
zoom using Inspector Microscope v285 controller software. We imaged using 488-nm (laser
power 20%) and 640-nm (laser power 50%) lasers. The samples were scanned with a step-size
of 3 um using the continuous light-sheet scanning method with the included contrast adaptive
algorithm for the 640-nm channel (20 acquisitions per plane), and without horizontal scanning
for the 488-nm channel. The images were then annotated by hand.”

The images used in this study are 160 pixel in the x, y, and z direction. Every 20" section is
annotated manually, starting at the 15" slice. After the expert annotation, the images were
processed with Trailmap’s axon edge annotator scirp to provide the edge labels. These images
were subsequently used for training and testing of the modified TrailMap/nnU-Net model (Figure

1),
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Figure 1. Example of a labeled slice of data

2.1 Hybrid Model Development

211 Data Augmentation

Data augmentation is the process of increasing the amount of training data by generating new
instances from existing data, thereby reducing the tendency of a model to overfit. Common
techniques include a combination of affine transformations such as scaling, rotation, reflection,
and shearing.

TrailMap contains functions for generating augmented data using scaling and rotation. nnU-Net
uses a Python package, Batchgenerators, for augmentation that additional included elastic and
spatial transformations (Isensee et al., 2020). With a few modifications, these additional
augmentation methods were included in our updated version of into the TrailMap code.

The script for augmentation allows the user to decide what percentage of images will have each
type of transformation applied. In addition, the user can adjust the degree of transformation by
setting the range the variables for each of the rotations, which are sampled randomly from a
uniform distribution for each image. The images are generated by a Tensorflow generator
during the training, which creates new images for each “step” (batch size) of the epoch. 720
training patches and 180 test patches were created.

An illustration of the spatial transformations on a input patch and labels can be seen in Figure 2.

It includes an artificial line to illustrate that the patch input and label remain correctly mapped to
each other after the transformation.

Materials and Methods 4
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Original Image Chunk Original Label Chunk
Artificial Line Artificial Line

Transformed Image Chunk Transformed Label Chunk
Artificial Line Artificial Line

Figure 2. Data Augmentation: The results of spatial transformations (bottom rows) on the image
input and output with a line added to illustrate the transformations, created with the
TrailMap starting data

21.2 Architecture

The architecture of a model describes the number, size, and kinds of layers, as well as their
connectivity patterns. Because we are fine-tuning a pre-trained TrailMap model, we are
constrained to the architecture of that model.

21.3 Patch Size

Patch size in a convolutional neural network refers to a patch of an image retaining local context
in an operation. This differs from a kernel or filter, which is used in a convolutional operation to
obtain a weighted average of pixel values.

nnU-Net seeks to use the largest patch that will run within the computational environment. nnU-
Net determines patch size by the maximum size that can be processed within a GPU constraint.
The increasing patch size is accompanied with changes in the network architecture (Isensee et
al., 2019). TrailMap uses a standard input of 64 pixels for the images and 36 pixels for the
labels.

Trailmap is based on U-net, which allows variable input sizes. Therefore, without changing the
model architecture, we can change the input size. In our incorporation of the nnU-net code into
the Trailmap, we will use the largest patch can also be manually determined by incrementally
increasing the patch size until a memory error is thrown. Our current sample of data is too small
to dramatically increase the input size, but we plan to increase the input size when we receive
more data.

Materials and Methods 5
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21.4 Data Sampling

TrailMap uses 3D patches from the training data to create the training dataset and 3D patches
from the validation data to create the validation dataset. These patches are randomly obtained
from the larger 3D training tif file. In our case, the training tif file is 160 pixel for each axis, while
the 3D patches used in the training dataset are each 64 pixels for each axis. nnU-Net
oversamples the 3D patches from areas in the full training image with foreground features
(Isensee et al., 2019). The foreground features for our study are the axon, which are indicated in
the labeled data. The nnU-Net code for oversampling simply selects from a subset of data with
the foreground image instead of all the data and is straightforward to include in the TrailMap
code.

2.1.5 Overlapping Windows

Both nnU-net and Trailmap use sliding windows for inference. The difference between the two
models lies in whether their sliding windows overlap: TrailMap uses non-overlapping sliding
windows for inference, with the exception of the edge cases where overlapping tiles ensure the
entire image is used even when the image dimensions are not evenly divisible by the patch
dimensions. nnU-net uses overlapping sliding windows. The sliding windows the same size in
both cases. We might except an increased performance with overlapping windows as the no
voxel will be predicted using only a window where it is on the edge of the window.

Our modified TrailMap code uses the same logic and the same Gaussian matrix function as
nnU-Net. Each overlapping patch is multiplied by a Gaussian matrix before being added to the
predicted image. Each resulting predicted values is then divided by the sum of the Gaussian
multipliers used at that location in the image. The value at each voxel at the end is a weighted
sum, with the weights representing the centrality of the voxel of each patch. The logic for this
method is that predictions at the edges of patches will be less accurate due to edges having
less surrounding information and thus should be weighted less.

It's important to note that implementing the Gaussian function even without an overlap changes
predictions on the edge cases. To compensate for this, a weighted sum is applied when multiple
predictions occur for one voxel, regardless of the predicted value of the center tiles.

2.1.6 Learning rate

The learning rate in a neural network controls how quickly the model changes to incorporate the
new patterns being presented. A rate that is too slow will progress very slowly, however; a rate
that is too high can cause unstable behavior.

TrailMap uses a fixed learning rate, while nnU-Net uses an adaptive rate that decreases when
there is a prolonged period of no improvement to the validation loss. It's straight-forward to
reduce the learning rate after a metric has stopped improving with a built-in Pytorch learning-
rate scheduler.

The TrailMap had a learning rate of .001. For nnU-net we used the ReduceLROnPlateau
callback to reduce the learning rate once the model stops improving.

Materials and Methods 6
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21.7 Fine-tuning the modified model
We used 100 epochs at batch-sizes of 6. At each epoch, 720 training patches and 180 test

patches were run. The training and test data was created by splitting the labeled cube in half on
the z-axis. We used Adam as the optimizer and used cross-entropy as the loss function.

Materials and Methods 7
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3.0 Results

We predicted the neural segmentation for the test dataset using the original model, the fine-
tuned model using the TrailMap code, and the fine-tuned model using the TrailMap code with
the nnU-Net augmentation. We used adjusted accuracy, axon precision and axon recall as
performance metrics. The recall was the higher than the precision for all groups, with the largest
difference between the fine-tuned model with nnU-Net adjustments (99.1% recall and 50%
precision. The original model resulted in the highest precision and accuracy while the fine-tuned
model with nnU-net adjustments has the highest recall (Table 1).

Table 1. Accuracy and Precision

nnU-net
Original Fine-
Metrics Fine-Tuned Tuned Overlap - Fine-Tuned
Adjusted Accuracy 91.8% 91.5% 87.2% 88.7%
Axon Precision 64.1% 61.4% 50.0% 61.5%
Axon Recall 81.4% 89.5% 99.1% 30.2%

Results

The visualizations of the predictions of the models using the original model, the fine-tuned
model using the TrailMap code, and the fine-tuned model using the TrailMap code with the nnU-
Net augmentation shows a dense predicted axon label (Figure 3).

Predicted Image Predicted Image Predicted Image
Original Model Fine-tuned nnUnet Fine-tuned

Figure 3. Data Inference: The results of inference using the original model, the fine-tuned
model and the fine-tuned model with nnU-Net augmentation

The Gaussian overlapping did not improve results. Figure 4 shows inference with an overlap at
0% and 66% of the patch width. With a 66% width overlap for inference, the results appear
patchy.



Results

Default Inference Modified Inference Modified Inference
No overlap Overlap at 0% Overlap at 66%

Figure 4. Data Inference

PNNL-33353
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4.0 Discussion

Fine-tuning did not improve the model’s accuracy. However, we only have one cube with 160
slices, which includes 6 labeled slices. When it’s divided into training and testing data, each
dataset only has 3 labeled slices. Hopefully when we have more data, the models will improve
with fine-tuning. The images of the predicted axons also look too dense with axons.

We would also hope with more data that the nnU-Net augmentation will improve the accuracy of
the model. The increase in performance with data augmentation is sometimes explained by the
transformations mimicking the possible real-life transformations. For example, a study using
mammogram images justified elastic deformation by the natural elastic deformation of a
mammogram imaging process (Castro et al., 2018). It's possible that the neural imaging
process also adds deformations, and that the most useful elastic deformation would be one
mimics the real-life elastic transformation. Calculating or estimating this would be beyond the
scope of this paper, but we will experiment with a range of standard deviations for the Gaussian
kernel of the transformation.

When there is an overlap, it seems the Gaussian makes the predictions worse. A possible
explanation for this is that TrailMap already has a unique solution to the problem of predicting
edge cases. TrailMap models are trained with an image and label pairing where the label has its
edges cropped off and the inference is likewise already predicted in patches where the image
patch is bigger than the label patch. This means that the input images overlap but the label
patches do not. This might be why the improvements were Gaussian were not needed and, in
fact, decreased performance. From Figure 4, an overlap at 66% of the patch lead to fragmented
neurons.

Technologies such as TrailMap contribute to the growing effort to develop templates to
integrate data across multiple non-disruptive 3-dimensional image modalities, combining
insights from light-sheet microscopy and MRI into a common coordinate framework (Perens et
al., 2022). Such co-registration is essential for studying disease progression, developing
effective therapies, translating findings into clinical procedures, for example, delivering brain
site-specific drugs and implanting electrodes precisely for recording or stimulation.

While the work in this study demonstrates improvements in the ability to automate axon
segmentation, the problem of complete mapping of neuronal structures into a co-registered
system will likely require many structure-specific solutions in the short-term. The segmentation
of tightly packed neurites will not benefit from an adaptive enhancement of the signal-to-noise
ratios and may require other kinds of algorithmic slights of hand to feign higher resolution
(Zhou et al., 2022).

Discussion 10
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