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Abstract

Computer vision and deep learning tools that advance the ability to establish processing-
structure-property-performance (PSPP) relations are presented. The Bayesian binning method
for image segmentation enables quantitative analysis of microstructural features in an
automated way, while the analysis of shapes and relative orientation of these features reveals
local deformation maps indicative of both, material flow and residual stresses due to materials
processing. The deep learning method leads to the previous knowledge agnostic mapping of
empirically observed microstructural zones in friction stir welding (FSW) process and synthetic
microstructure generation capability that is statistically equivalent to experimentally collected
data.
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Summary

The processing—structure—properties—performance (PSPP) relationship is a guiding principle for
development and improvement of advanced materials, processes and manufacture. The
specific goal of this project was to ascertain processing—structure—properties—performance
relationship via mechanistic understanding and merit descriptors of the well performing friction-
deformation alloy processing of solid materials coupled with exploitation of sparse data machine
learning techniques.

Advanced materials processing and/or manufacturing processes allow for tuning of many
parameters that control the end properties of fabricated materials and components, which in
turn are driven by multiple, complex and convoluted scientific laws at various spatial and
temporal hierarchies with often unknown figures of merit. Any predictive PSPP capability that
relies on intuition and trial and error becomes an intractable problem without the proposed
holistic materials informatics approach.

The material processing experiments in laboratory are essential for all research. The capability
developed through this research will move us from the trial and error and subject matter expert
input in designing the experiments to achieve our goals to the ability to maximize information
about materials properties based on a bare minimum of processing runs and model
discriminators. Developed methods and tools will be transferable to other development cases.
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1.0 Introduction

Materials Processing-Structure-Property-Performance (PSPP) relationships are at the center of
efforts to develop fit-for-purpose materials and advance the technology. Establishing these
relationships is the main challenge of materials research and discovery, whether it is directed to
understanding underlying physics of existing materials or to unlocking the potential of new
materials and materials processing [1, 2, 3, 4].

Friction stir welding (FSW) is one such solid state materials processing method that joins materials
parts together [5, 6, 7] The idea behind the process is rather simple: a non-consumable rotating
tool is plunged into and advanced through abutment of parent materials. The tool consists of a
shoulder and a pin, as depicted in Figure 1. After plunging, the tool shoulder motion generates
frictional heat causing the materials to soften and deform plastically while the advancing rotating
pin is stirring softened materials together. The result is formation of a solid-state bonds and
materials joining.

Reducing a risk of failure at the joints is a major challenge in the engineering design. The points
of failure in the joints are predominantly due to the internal and external stresses placed on the
joints and due to the loss of improved microstructural features of advanced alloys when subjected
to high temperatures and high plastic deformation in joining processes [8, 9]. The FSW impact on
the microstructure formed at the joints is significant. Microstructural features contain key
information about both, processing history and future performance. Quantifying the changes in
microstructure and distribution of local (residual) stresses at the FSW joints is of paramount
importance to enhance product design functionality based on material specific properties.

In the past, methods have focused on quantitative characterization and mathematical
representation of microstructure geometric features, such as grains, voids, precipitates, and
dislocations. Methods focused on finding amounts, numbers, and sizes of these features [10, 11]
include the segmentation of digital micrographs [12] and the two-point statistics analysis [13]. The
analysis has been chiefly focused on the individual representative image and interpretation of
microstructural features. However, numerous challenges remained due to the complex stochastic
nature of microscopic images, as well as sensitivities of these microstructure images to local
changes in temperature and plastic deformation stresses. Recently, deep learning techniques
have been tested as to address these challenges [4, 14, 15, 16, 17].

FSW RETREITING SIDE

SEM SAMPLE SEM IMAGES
IMAGES GRID

Figure 1 lllustration of FSW experimental set up and SEM images data acquisition strategy. The
FSW tool geometry is shown on the top of welded sample with arrows showing its rotational and
translation direction.

We present a systematic approach, agnostic to prior knowledge, for identifying different FSW
processing zones and microstructure salient stress features by harnessing power of deep learning
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and newly developed computer vision analyses. We apply our approach to experimentally
acquired scanning electron microscopy (SEM) image data and concurrently generated synthetic
and statistically equivalent images. The integration of machine learning with materials research
creates new avenues for addressing problems in experimental and theoretical materials science
[18].

To study microstructural features imparted by the FSW processing we performed (a) the FSW
process to form AA7175 joining with two sets of processing parameters to keep a shoulder
temperature at 425 °C and 500 °C, (b) SEM data acquisition at the cross sectional area of the
weld, (c) electron dispersive spectroscopy (EDS) for chemical composition insights, (d) a
computer vision analysis to quantify most prominent microscopic features and identify local
stresses in material due to processing, and (e) a machine learning method that leads to the
identification of unique zones with distinct microstructural features.

Introduction 2
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2.0 Methods and Results

2.1 Friction stir welding experimental details

The material used in this study is AA7175-T79 aluminum alloy. AA7175-T79 was chosen because
its balanced tensile strength, stress corrosion resistance, fracture toughness, and its significance
in aerospace and automotive applications. The commercially available 1.1-inch-thick metal sheets
were joined using the friction stir welding method with set of welding parameters that led to the
temperatures at the FSW tool shoulder of 425 °C and 500 °C.

The FSW tool consists of convex shoulder (36 mm diameter) and conical pin (17.3 mm diameter
near shoulder and 8.5° taper angle). The shoulder and pin were featured with three scrolls (9 mm
pitch machined with 2 mm diameter ball end mill) and threads (1.42 mm pitch with 0.76mm depth
machined). The pin thread was also interrupted with three flats having the machined depth of 1.2
mm. All the welds were performed using temperature-controlled algorithm by modulating the
spindle torque of the FSW machine at the Pacific Northwest National Laboratory [27]. Therefore,
the tool rotational speed was a response variable which was typically ranging within 705 RPM
and 260+10 RPM to maintain the commanded shoulder temperature of 425°C and 500°C,
respectively. In addition, the tool geometric configurations at a constant 1.5° tool tilt angle facilitate
similar shoulder contact condition with commanded forge force (in the vertical direction) of 66.7
kN and 62.3 kN during the FSW processing at 425°C and 500°C shoulder temperatures. The
welding speed for this study was kept constant at 76.2 mm/min. The joined plates were cut by
water jet to obtain the cross sections of welded samples. We avoided a band saw method to
prevent introduction of heat that could have an impact on the final microstructure.

Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS)

The SEM is excellent method for characterization of alloy microstructures, because the necessary
sample preparation and image acquisition are relatively quick and simple [19]. The weld cross
section specimens were initially polished in a Struers Tegramin-30 semi-automated polisher by
grit SiC paper using water as a lubricant, followed by increasingly fine DiaDuo-2 water-based
diamond suspension grind with decreasing amount of pressure. In the next step, samples were
polished with Struers OP-S Colloidal Silica solution (0.25 micron), followed by a vibratory polisher
with a blue colloidal silica solution (0.08 micron). Samples were subsequently rinsed with water,
scrubbed with cotton ball, sprayed with ethanol, and dried with compressed air between all steps.
The SEM images were acquired on the grid on the samples as depicted in Figure 1. Electron-
excited X-ray microanalysis was performed in the scanning electron microscope with energy-
dispersive X-ray spectrometry (EDS) on a representative SEM sample to gain insights in the
elemental constituents of prominent secondary (intermetallic) phases features observed on all the
images. For the reference, the chemical composition of AA7175 alloy is given in the Table 1.

Table 1 AA7175 alloy chemical composition

Elements | Si | Fe Cu Mn Mg Cr Zn Ti | Other | Al
Weight 015(0.2(12-20({01|21-2.0|0.18-028 |51 —101|3 x|rest
% 6.1 0.5

2.2 Computer Vision
Computer vision aims to create algorithmic tools that can process, analyze, and draw conclusions

from visual data. The SEM visual data contains the structural information in a form of point by
point (i.e., pixel by pixel) strength of the secondary electrons signal. The secondary electrons are
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knocked out by the focused beam of primary electrons raster over the surface of the specimen.
Our implementation of computer vision enables systematic and consistent examination and
extraction of local morphologies of most prominent features in images. We use this information to
quantitatively interpret material flow and residual stresses across the FSW processed cross
section. The data collection workflow and strategy are depicted in Figure 1.

(a2) 5| (b2)

O~ N W E BB N

0.0 02 04 06 o8 10 10

¥ X o Y )
Normalized pixel intensities Normalized pixel intensities

| -
04 06 08
ormalized pixel intensities

Figure 2 SEM image data processing to extract most prominent features indicative of material
flow and distribution of residual stresses. a and b are 425°C and 500°C representative samples.
1. Raw images 2. Raw image histograms 3. Exposure adjusted pre-processed images 4.
Histograms of pre-processed images in blue and Bayesian non-uniform three bin histogram 5.
The watershed images 6. Images delineating contours about bright phases in blue and dark
phases in red.

Figure 2 illustrates steps in data pre-processing and computer vision approach to extract most
prominent features for two example samples, obtained at 425°C and 500°C, respectively. The raw
data images of the two samples are shown in panels (a1) and (b1), while raw image histograms
are shown in panels (a2) and (b2), respectively. The raw images are pre-processed to enhance
exposure by setting the gamma exposure parameter for each image at the value corresponding
to the maximum of its histogram and by subsequent equalization of exposure using the adaptive
histogram method. The processed images are shown in panels (a3) and (b3), and their
histograms in panels (a4) and (b4), respectively. To separate visibly prominent features at the
tails of pixel intensity histograms, we use an optimal non-uniform binning of image intensity data
based on Bayesian method [20]. The bins are shown in red lines in panels (a4) and (b4), and
overlayed with conventional uniform binned image histogram shown in blue. This is in contrast
with the known watershed methods [21, 22], which use arbitrary cutoff to group similar features.
The edges of middle bin in Bayesian histogram are used in a watershed method that leads to the
zones (white, black, and light gray) shown in panels (a5) and (b5). We process these images
using computer vision contours fitting method. The contours of white features are shown in blue
and contours of black features in red in panels (a6) and (b6) in Figure 2. The advantage of our
systematic and image specific method that uses Bayesian bins segmentation is the ability to
automate analysis over the whole data set (thousands of images). Furthermore, with information
about each image contour, we can proceed to quantify number, sizes, and shapes of these

Methods and Results 4
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features. For each white feature contour, with area bigger then 0.25 um (to exclude possible
colloidal silica particle that may remain after polishing), and each black feature contour with at
least 6 points, we compute the feature aspect ratio by fitting a line through data, computing a line
perpendicular to it, and determining the contour dimensions along these directions. The aspect
ratio is computed as ratio of longer to shorter dimension (a spherical feature having an aspect
ratio of 1). Next, the angle of longer dimension with the edge of the image is computed. An
average of both, aspect ratios and angles, was computed for every image to examine if feature
correlations with material flow or residual stresses is contained in these salient features.
Assuming that differences in aspect ratios and orientation of secondary phases are caused by
the plastic deformation imparted by the FSW tool motion, we create the distribution of deformation
field for the 425°C sample as shown in Figure 3a. The directions of arrows in Figure 3a correspond
to the average angles for each image in the grid and the arrow lengths correspond to each white
feature aspect ratio. Figure 3b and 3c shows the stress field for the 500°C sample for data grid at
the center of the weld and close to the tool shoulder. Since 425°C sample grid was taken over the
whole half of the advancing side cross section, careful examination of Figure 3a and comparison
with the tool shape shown in Figure 1, indicates that the deformation in microstructural features
is consistent with intuitively expected material flow and local residual stresses. The data for 500°C
sample were collected at the fragments of the FSW cross section. Figure 3b shows the
deformation field influenced by the tool shoulder while Figure 3c shows the change in the
deformation field at the edge of the tool. This unique insight into the material flow characteristics
is of practical importance to for optimal tool design and to obtain high structural efficiency welds

[6].
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Figure 3 Deformation field extracted via computer vision from the morphology and orientation of
bright secondary phase plotted over the grid of points images were collected. A 425 °C image grid,
b. 500 °C close to shoulder image grid, c. 500 °C center of weld image grid.

The chemical composition of these most prominent features is examined using the EDS
technique.

Figure 5(a) shows EDS elemental analysis of the boxed region in Figure 5(b). In comparison with
the alloy matrix, a type brighter in color than the matrix and a type darker in color than the matrix
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are distinguished as bright and dark particulates. The bright particulates contain Al, Cu, Fe as
primary elements while dark particulates have Zn, Si and Mg as major elements along with a
“small” amount of oxygen. Figure 5(c) depicts the image segmentation used to quantify size and shape
of these particulate features at the surface of the sample. The dark and bright metallic secondary phases are
identified in green and violet by the Bayesian bins method, filtering out features with surface area less than
0.25um?” The smaller secondary phase particulates are congregated, and they delineate grains along the
grain boundaries. They are shown in red and blue in Figure 5(c), bordering the grains of matrix aluminum
alloy.

=

Figure 4 (a) EDS cF]emicaI compoéition analysis J(b) the forcus boxed area forr the EDS analysis
(c) The Bayesian method extracted bright and dark particulates

Table 2 summarizes numbers of particulates normalized per 1 nm* and the fraction of total surface of all
images they cover for both processing temperatures. Figure 5 shows the distribution of particles sizes with
respect to their computed sizes. The number of bright particulates is larger at the higher processing
temperature and the area covered by bright particulates is more than doubled at 500°C compared to 425°C
processing temperature. The number of dark particulates is also larger at the higher processing temperature
while the total area covered is comparable between two processing conditions.

Table 2 Summury of quantitative analysis of prominent dark and bright features for 425°C
and 500°C samples.

Sample Processing Particulate Number of particulates Particulate area (% of total sample
Temperature per 1 nm? area)

425°C Dark 787.5 0.099

425°C Bright 23661 0.365

500°C Dark 1466.7 0.082

500°C Bright 38731 0.852

Methods and Results 6
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Figure 5 Log-log hystogram of the (a) dark parrticulates andd (b) bright particulates distribution
with respect to their sizes.

2.3 Machine Learning
231 Data Preprocessing

Figure 1 illustrates SEM data collection strategy at the cross section of FSW samples. The size
compressed raw data, as collected, is provided in the supplementary material. The data for the
425 °C sample were collected over uniform grid of points at the advancing side of FSW cross
section, while the data for the 500 °C sample were collected on a grid at the center of sample and
close to the FSW shoulder area. Upon manual inspection, seven raw images were removed from
425 °C data set due to obvious SEM apparatus problems, while 500 °C raw data set was used in
its entirety. Overall, image quality with respect to focus, contrast, and detail in raw data, required
some image augmentation to improve image exposure and contrast. The SEM collected raw data
images have thre identical channels that were converted to gray scale images, without loss of
information. The data set for machine learning was formed by extracting the 512 by 512 pixels
images from raw data images without overlap. Intensities of these images were rescaled in 2-
98% range to enhance image contrast and the images were resized subsequently to 256 by 256
pixels. The final machine learning input data sets had 5,544 images for the 425 °C sample and
2540 images for the 500 °C sample. Visual inspection of both data sets lead to identification of
distinct microstructural features and textures as depicted in Figure 6 and Figure 7. Five distinct
classes of images in the 425 °C data set were singled out, while only two classes were visually
distinct in the 500 °C data set. We have annotated up to 60 representative images in each class
for both data sets. The data annotation was done by randomly selecting images from data sets
and assigning the class labels manually based on the image similarity to classes depicted in
Figure 6 and Figure 7. Altogether, 5.4% and 4.7% of data in 425 °C and 500 °C data sets were
labeled, respectively.

Methods and Results 7
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Figure 6 Example images showing morphological differences among SEM data sampled on the
grid of 425 °C processes alloy

Figure 7 Example images showing morphological differences among SEM data sampled on the
grid of 500 °C processes alloy

Methods and Results 8
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2.3.2 Semi-supervised Generative Adversarial Network

Semi-supervised generative adversarial network (s-GAN) model [23, 24] was chosen to map out
empirically suggested FSW zones reported in [5, 6]. The model was chosen to address both, a
modest size of unlabeled data set and a small number of manually labeled examples. Our s-GAN
model takes advantage of unlabeled data to learn image features and train an image generator
model in an unsupervised manner via a discriminator model. The unsupervised discriminator is
binary classifier trained to distinguish examples of data from dataset from those generated by the
generator model. A classifier model is simultaneously trained to predict a class label of a real
image via supervised discriminator model [25, 26]. The model is illustrated in Figure 8, and model
architecture details are included in supplementary material (Figure 13).

" LABELED
SEM IMAGES

{X, 4} /
I D(X, Xg, %, &)

Plyl {X UX;}}

&

UNLABELED
SEM IMAGES
)

Plx| (X U X;}}

AN Pxlo)

¥ GENRATED

Figure 8. An illustration of the classifier model used in this work.

Generative modeling has been proven to be a good strategy to augment small or missing-data
data sets with synthetic data to improve deep neural networks model performance [16, 23]. The
generative model in our study is a convolutional neural network (CNN) model G (Z, x, 6g). The
model function G (Z, x, 6c) takes Z, a vector of arbitrary dimension with random values, as an
input feature and it generates plausible microstructure example features Xg. It is conditioned to
learn a probability P (X | x) of microstructure features X (Xg) given its class x (real or generated
image) through updates of model parameters 6¢ by optimizing the cost function:

J6) = =231 [yD1og(6(X D, 0)) + (1~ y©) log(1 — 6(x©,8))]
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The SEM microstructure samples X, drawn from the labeled and unlabeled data set, as well as
generated images Xg are fed into a discriminator model D (X, Xg, %, Op). The discriminator model
is also a CNN. It combines two classifiers. One is conditioned to learn likelihood P (x | {X U Xg})
that given set of learned features are either from SEM images dataset or generated by generator.
The other classifier is conditioned to learn likelihood P (¢ | {X U Xg}) that the image belongs to
one of {¢} classes. The P (x | {X U Xg}) probabilities are passed as feedback to generator to
improve feature learning and generate more realistic images.

The images created by the generator model grouped into the classes {y¢} are illustrated in the
Figure 9 for the 425 °C sample and Figure 10 for 500 °C sample. The figures show images that
may not be the highest probability for class results to illustrate the specific features that G model
is learning.

Figure 9 Generated images showing learned morphological features corresponding to labeled
classes for SEM data sampled on the grid of 425 °C processes alloy shown in Figure 6.

Methods and Results 10
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Figure 10 Generated images showing learned morphological features corresponding to labeled
classes for SEM data sampled on the grid of 500 °C processes alloy shown in Figure 7.

Semi supervised GAN models are difficult to train due to concurrent optimization of multiple cost
functions. The performance of trained models is shown in Figure 11. The cost functions of these
models are converging to constant values due to the adversarial nature of generator and
discriminator models, while the cost function of the classifier is converging to zero.

—— Discriminator Model: Real Data
—— Discriminator Model: Synthetic Data
—— Generator Model

—— Classsifier Model

Cost function

0 2000 4000 6000 8000 10000 12000 14000
Steps

Figure 11 The models performance as the convergence of cost functions with the progression of
model training.

The model accuracy with respect to the size of labeled data is shown in Table 3. The model
ability to predict the class of an image increases with increasing size of the labeled dataset.

Methods and Results 11
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Table 3 The prediction of image class accuracy with respect to varying size of labeled

data.
Labeled data (% of all data set) Accuracy of Classifier (%) Data Set (classes)
1.35 84.0 425 °C (5)
2.7 90.3 425 °C (5)
5.4 92.5 425°C (5)
2.8 97.2 500 °C (2)
5.5 98.1 500 °C (2)

2.3.3 s-GAN predictions

We use trained models to predict classes of images in the unlabeled data set. For illustration,
Figure 12 shows the color-coded predicted classes for images assembled in the same grid as in
the one where SEM data were acquired. The white, green, red, blue, and magenta in Figure 12a
correspond to the classes of images selected to resemble a, b, ¢, d, and e microstructural features
presented in Figure 6 for 425 °C processed sample. The green and red in Figure 12b correspond
to the classes selected to resemble images shown in a and b in Figure 7 for 500 °C processed
sample. The details of the two grids are shown in the supplementary material section (Figure 14
and Figure 15).

b)

Flgure 12 The predlcted classes speC|aI dlstrlbutlon over the grid of SEM images. (a) the data for
425 °C with five distinct classes (b) the data for 500 °C sample with two distinct classes. The
accuracy of prediction is given in %. The missing images on the grid are shown in gray.

Our s-GAN model classification based on ~ 5% of labeled images, selected randomly from data
set, maps out to the five distinct zones as shown in Figure 12a. Typically, at least three major
different microstructure zones are observed at joining region commonly referenced as a stir
nugget zone (SN), a thermo-mechanically affected zone (TMAZ), and a heat affected zone (HAZ)

Methods and Results 12
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[5]. The microstructure of FSW zones depends on details of the tool design, the rotational and
translational speeds and characteristics of the materials being joined. The tool and processing
parameters are designed to heat working pieces just below the melting point to enable material
flow and create welds with good mechanical properties. The stir nugget zone is the area
trespassed by the rotating tool. This is the most severely deformed zone with dynamically
recrystallized equiaxed micro grains, which are smaller than micro grains in other zones. The blue
and magenta zones in Figure 12a correspond to the SN zone. The TMAZ zone reflects the effect
of stirring close to the tool edge together with visible grain deformation due to material flow and
local frictional heat. The effect of the tool shoulder is also evident in the broadening of this zone.
Our model has mapped this zone in red (Figure 12a). The HAZ is also in the proximity of the tool
edge. Its microstructure resembles the microstructure of the base material with elongated grain
features but evident precipitates at the grain boundaries. This zone is mapped by the model as
shown in green in Figure 12a. The white region in the same figure is dominated by the base
material microstructural features. Data collected for the 500°C processed sample have revealed
two distinct zones with apparent zone boundary obtained with higher accuracy models (Figure
12b). The zones correspond to the TMAZ mapped out in green and HAZ mapped out in red.

Methods and Results 13
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3.0 Conclusions

We studied correlation of processing parameters and microstructural features in friction stir
welding (FSW) process. We presented novel approach for segmentation analysis of
microstructures and deep learning semi supervised generative adversarial network s-GAN
model for identifying the FSW zones without prior knowledge or empirical input about the zones.
The benefits of our computational approach are threefold: First, Bayesian binning for
determining segmentation thresholds enables automated analysis, which accurately estimates
sizes, shapes, and number of prominent microstructural features. Second, the model allows
mapping of the local residual deformation fields that are indicative of material flow and a likely
indicator of residual stresses distribution over the cross-section of weld. Finally, the use of
adversarial criterion in s-GAN model enables the generator to capture microstructural features
implicitly and generate statistically equivalent synthetic images. At the same time, the
discriminator model predicts the labeled classes trained with minimal amount of labeled data.
The predicted classes map into empirically suggested FSW zones with an impressive
performance. Developed methods and results have direct impact on the advancing the ability to
establish quantitative PSPP relationships.

Conclusions
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Appendix A — Supplementary Information

The details of s-GAN model architecture are shown in Figure 13.

PNNL-32875

a) b)

Layer (type) Output Shape Param # Layer (type) Output Shape Param #
input_1 (InputLayer) [ (None, 256, 256, 1)] 0 input_2 (InputLayer) [ (None, 384)] 0
conv2d (Conv2D) (None, 128, 128, 24) 240 dense_1 (Dense) (None, 24576) 9461760
leaky re_lu (LeakyReLU) (None, 128, 128, 24) 0 leaky re lu_4 (LeakyReLU) (None, 24576) 0
conv2d_1 (Conv2D) (None, 64, 64, 24) 5208 reshape (Reshape) (None, 32, 32, 24) 0
leaky_re_lu_1 (LeakyReLU) (None, 64, 64, 24) 0 conv2d_transpose (Conv2DTran (None, 64, 64, 24) 9240
conv2d_2 (Conv2D) (None, 32, 32, 24) 5208 leaky_re_lu_5 (LeakyReLU) (None, 64, 64, 24) 0
leaky_re_lu_2 (LeakyReLU) (None, 32, 32, 24) 0 conv2d_transpose_l (Conv2DTr (None, 128, 128, 24) 9240
conv2d_3 (Conv2D) (None, 16, 16, 24) 5208 leaky_re_lu_6 (LeakyReLU) (None, 128, 128, 24) 0
leaky_re_lu_3 (LeakyReLU) (None, 16, 16, 24) 0 conv2d_transpose_2 (Conv2DTr (None, 256, 256, 24) 9240
flatten (Flatten) (None, 6144) 0 leaky re lu 7 (LeakyReLU) (None, 256, 256, 24) 0
dropout (Dropout) (None, 6144) 0 conv2d_4 (Conv2D) (None, 256, 256, 1) 24577
dense (Dense) (None, 5) 30725

activation (Activation) (None, 5) 4]

Figure 13 The s-GAN model architecture details a. generator model b. discriminator model

The grid points and corresponding low-resolution images at its points were shown in Figures 14
and 15 for 425 °C, and 500 °C samples respectively.

Figure 14 The summary of images taken at the cross section of FSW sample. The recorded
temperature at the surface of weld sample was 425°C
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Figure 15 The summary of images taken at the cross section of FSW sample at the tool pin
affected area. The recorded temperature at the surface of weld sample was 500°C.
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