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1. Project Rationale

The electric power grid is a complex critical infrastructure that forms the lifeline of modern society,
and its secure and reliable operation is of paramount importance to national security and economic well-
being. However, recent findings documented in authoritative sources indicate the threat of cyber-based
attacks growing in numbers and sophistication. However, securing the grid against stealthy cyber-
attacks is a challenging task due to legacy nature of the infrastructure coupled with dynamic nature of
threat landscape and ever growing sophistication of the adversaries. Additionally, the grid’s attack
surface continues to grow with the increased dependence on digital communications and control that
now extends to each consumer through smart meters and distributed energy resources. Unfortunately,
this expansive surface increases the grid’s vulnerability and further exposes critical control systems in
both substations and control centers.

To respond to this emerging need, we had successfully assembled an interdisciplinary team with
academic- industry partnership to successfully conduct research, development, evaluation,
demonstration, and commercialization of attack surface reduction tools, whose goal is to significantly
reduce the cyber attack surface in the North American power grid. Our proposed project was a
synergistic collaborative effort leveraging the synergistic expertise of the team members across power
systems, cyber security and CPS security, testbeds, field deployments and demonstration, and
successful commercialization. The team consisted of leading experts from two major universities —
lowa State University, Washington State University — complemented by reputed researchers from two
DOE national laboratories — Pacific Northwest National Lab, and Argonne National Lab, one major
utility vendor GE Global Research, and one utility partner — Cedar Falls Utilities (CFU). The team
members have proven track record of successful academic-industry collaboration in interdisciplinary
R&D projects, and bring onboard some of the best state-of-the-art testbed resources, industry-grade
SCADA/EMS/DMS environment for experimentation and field demonstration.

2. Technical Approach

The following are the specific tasks have been successfully completed two phases (2016-2020).

Phase I:

Task 1: Developed and implemented a robust Project Management and Data Management Plan, coupled
with a well thought out Risk Mitigation Plan.

Task 2.1: Developed a comprehensive framework that continually assesses and autonomously reduces the
attack surface for the power grid control environment spanning across substations, control center and the
SCADA network to significantly reduce the risks of cyber attacks.

Task 2.2: Developed attack surface analysis techniques, metrics, and tools that assess the attack surface at
multiple levels including the control center, substations, and the SCADA network.

Task 2.3: Developed attack surface reduction techniques and tools that dynamically reduce attack surface
and hence increase attacker’s cost without interfering in the critical functions of the system.

Task 2.4: Prototyped, implemented, and quantitatively evaluated/validated the techniques and tools on a
realistic industrial CPS security testbed environment by leveraging the unique resources of the team.




Task 3: Developed Commercialization plan to transition the developed tools into power system industry
stakeholders for a broader adoption by leveraging the expertise of our industrial members.

Phase I1:
Task 4: Completed Field demonstration, verification, and evaluation of the effectiveness of the attack

surface analysis and reduction techniques on a realistic utility testbed environment. This also involved the
development of realistic scenarios, sound metrics, data sets, evaluation criteria, and documentation.

3. Relevance to real-world scernarios

The recent cyber attack that targeted the Ukrainian power grid demonstrates the need for
techniques to reduce system attack surfaces. This incident demonstrated pervasive vulnerabilities
found within modern power systems, where critical control centers present a major attack target
and whose compromise can directly cause a major blackout. The interconnectivity of these critical
systems with corporate networks, neighboring utilities/ISO, remote substations, and increasingly
deployment of smart meters and non- utility owned DERs will present an increased level of risk
from future attacks. The proposed tasks will make modern power systems more resilient to
sophisticated attacks, such as those exhibited in Ukraine. The following table identifies how the
proposed tasks are aligned to prevent against pragmatic real-world threats such as those observed
from the Ukraine incident 2015.

Ukraine Attack Element Proposed Research Tasks
1) Compromise Corporate Attack Surface Analysis Metrics and Tools [Task 2.2]
Network

2) Accessed SCADA Network | Network-based Moving Target Defense (MTD) in Substation
Networks [Task 2.3.2]

3) Infect Control Center Anomaly Detection for EMS/DMS Network Application through
Machine-learning @ Control Center [Task 2.3.3]

4) Inject Malicious Breaker CPS-based MTD @ Substations [Task 2.3.1]

Commands

4. Metrics and Performance Evaluation

The project included evaluation plans and associated metrics to provide evidence that the proposed
techniques achieve their intended objectives and will transition to field demonstration and industry
adoption. The evaluation plan includes benchmarks for the security, performance, fidelity, and
reliability of the proposed technologies. Evaluations wwas be performed within cyber-physical security
testbeds at ISU, WSU, GE-GR which provided realistic environments with Hardware-In-the-Loop
power system simulations and SCADA/EMS/DMS software platforms. Furthermore, the second phase
of the project showcased field demonstration and testing within Cedar Falls Utilities (CFU) power
distribution grid environment and also integrating some of the attack reduction tools/analysis within GE
Energy Management System (EMS) platform, and also OSI-Soft adopting attack surface analysis tool
(Attack Host Analyzer) within their software development environment.



5. Outcomes and Impacts

The project had significantly advanced the state-of-the-art research and practice in improving the
cybersecurity of our nation’s power grid infrastructure against cyber threats. In particular, the
proposed, designed, and deployed attack surface analysis and reduction algorithms and tools have
contributed to significantly reducing the exposure and risk of the devices, substations, and the
integrated SCADA/EMS/ DMS grid environment to cyber threat. Strong demonstration and
evaluation techniques have verified the feasibility of the developed techniques on realistic cyber-
physical testbeds and utility’s real grid environment (CFU) and collaborative research and
evaluation of attack surface reduction techniques (for wide-are monitoring and control) within a
vendor (GE) EMS platform.

5.1 Distributed IDS Design, Implementation and Field Demonstration

A distributed, network-based IDS architecture (shown in Fig 1) was developed and deployed in the CFU
network. The IDS Master (at Control Center) that collects all the alerts from the IDS Sensor nodes
deployed at various substations, and visualizes those alerts on the Sguil dashboard, was deployed within
the control center. There were 5 sensor nodes that were deployed at various locations where substations
are present to detect alerts on the substation network traffic. Of the 5 sensor nodes, one was dedicated for
testing purposes on a lab network that had a DNP3 device installed to simulate the actual network traffic.
All the sensors trigger on the rule sets that are configured within them and send the alerts to the IDS
Master. The alerts are propagated to the Master from the sensors using SSH. Having the sensor VMs
communicate to the Master through SSH is a prerequisite for this IDS architecture to work.
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Figure 1: Architecture of Distributed IDS Deployment in CFU Distribution Grid Network

The tech transfer activity had its own challenges, a few of which are mentioned below: (1) Automating
deployment of sensor-specific rules at individual sensors; (2) Dynamic behavior of analog measurement
response packets as a result of change events reported; (3) Presence of CRC checksum for every 16 bytes;
(4) Testing validity of analog measurement rules in the production network without injecting penetration



testing attack scripts. This report details the tech transfer activity on IDS for DNP3 communication
protocol between lowa State University and Cedar Falls Utility carried out during the fall 2020. This field
deployment showcased the successful deployment IDS architecture, the different IDS rule categories
(network rules, status measurement rules, and analog measurement rules) and the various test phases that
were carried out and displayed the triggered intrusions or anomalies at the IDS Master running at the
Control Center.

5.2 Summary of Key Research Publications resulted from this Project

[1] P. Wang, M. Govindarasu, “Multi-Agent based Attack-Resilient System Integrity Protection for
Smart Grid,” IEEE Trans. on Smart Grid, vol. 11, no. 4, pp. 3447-3456, July 2020.

Abstract: Most System Integrity Protection (SIP) schemes deployed in smart gird today are centralized
functions relying on wide-area communication. The highly centralized implementation makes SIP
susceptible to the single point of failure induced by cyber attacks. In this paper, we present a novel multi-
agent based design to enhance the cyber resilience of SIP while focusing on augmenting its situational
awareness and self-adaptiveness. Specifically, we have investigated data-driven anomaly detection and
adaptive load rejection within the decentralized SIP set-up. After attaining a comprehensive taxonomy of
operation states of a power grid as a cyber-physical system, we are able to convert the anomaly detection
to a multi-class classification problem. A supervised learning algorithm, named as Support Vector
Machine embedded Layered Decision Tree (SVMLDT), is proposed as a possible solution. Anomaly
detection is carried out by every agent separately, but the final decision depends on the consensus among
all interconnected agents. Besides, we propose an adaptive load rejection strategy to mitigate the Denial
of Service (DoS) attacks targeting the load shedding scheme. A real load rejection SIP scheme adopted by
Salt River Project is modified to fit in the IEEE 39-bus model as a study case. Experiment results show
that the proposed SIP can detect anomalous grid operation states and then adjust its remedial actions
accordingly to adapt to the under-attack situations.

[2] G. Ravikumar, M. Govindarasu, “Anomaly Detection and Mitigation for Wide-Area Damping
Control using Machine Learning,” IEEE Trans. on Smart Grid, Early Access, 2020.

Abstract: In an interconnected multi-area power system, wide area measurement based damping
controllers are used to damp out inter-area oscillations, which jeopardize grid stability and constrain the
power flows below to their transmission capacity. The effect of wide-area damping control (WADC)
significantly depends on both power and cyber systems. At the cyber system layer, an adversary can
inflict the WADC process by compromising either measurement signals, control signals or both. Stealthy
and coordinated cyber-attacks may bypass the conventional cybersecurity measures to disrupt the
seamless operation of WADC. This paper proposes an anomaly detection (AD) algorithm using
supervised Machine Learning and a model based logic for mitigation. The proposed AD algorithm
considers measurement signals (input of WADC) and control signals (output of WADC) as input to
evaluate the type of activity such as normal, perturbation (small or large signal faults), attack and
perturbation-and-attack. Upon anomaly detection, the mitigation module tunes the WADC signal and sets
the control status mode as either wide-area mode or local mode. The proposed anomaly detection and
mitigation (ADM) module works in-line with the WADC at the control center for attack detection on both
measurement and control signals and eliminates the need for ADMs at the geographically distributed
actuators. We consider coordinated and primitive data-integrity attack vectors such as pulse, ramp, relay-
trip and replay attacks. The performance of the proposed ADM algorithms was evaluated under these
attack vector scenarios on a testbed environment for 2-area 4-machine power system. The ADM module
shows effective performance with 96.5% accuracy to detect anomalies.



[3] V. K. Singh and M. Govindarasu, “A Cyber-Physical Anomaly Detection for Wide-Area Protection
using Machine Learning,” IEEE Trans. on Smart Grid, Early Access, 2021.

Abstract: Wide-area protection scheme (WAPS) provides system-wide protection by detecting and
mitigating small and large-scale disturbances that are difficult to resolve using local protection schemes.
As this protection scheme is evolving from a substation-based distributed remedial action scheme
(DRAS) to the control center-based centralized RAS (CRAS), it presents severe challenges to their
cybersecurity because of its heavy reliance on an insecure grid communication, and its compromise
would lead to system failure. This paper presents an architecture and methodology for developing a
cyber-physical anomaly detection system (CPADS) that utilizes synchrophasor measurements and
properties of network packets to detect data integrity and communication failure attacks on measurement
and control signals in CRAS. The proposed machine leaning-based methodology applies a rules-based
approach to select relevant input features, utilizes variational mode decomposition (VMD) and decision
tree (DT) algorithms to develop multiple classification models, and performs final event identification
using a rules-based decision logic. We have evaluated the proposed methodology of CPADS using the
IEEE 39 bus system for several performance measures (accuracy, recall, precision, and F-measure) in a
cyber-physical testbed environment. Our experimental results reveal that the proposed algorithm (VMD-
DT) of CPADS outperforms the existing machine learning classifiers during noisy and noise-free
measurements while incurring an acceptable processing overhead.

[4] G. Ravikumar, B. Hyder, J. Rajan Babu, K. Khanna, M. Govindarasu, and M. Parashar, “CPS
Testbed Architectures for WAMPAC using Industrial Substation and Control Center Platforms and
Attack-Defense Evaluation,” 5 pages, IEEE PES General Meeting, 2021.

Abstract: Advanced persistent threats and cyberattacks can impact wide-area monitoring, protection, and
control (WAMPAC) system operation. Many cyber-physical system (CPS) testbeds have been developed
for attack-defense experimentation and attack-resiliency tools evaluation for WAMPAC, but they are
limited to a simulation-and-emulation based environment. This paper presents a quasi-realistic CPS
attack-defense testbed based framework for WAMPAC applications using the industrial substation and
control center platforms such as eTerra integrated with the hardware-in-the-loop CPS smart grid testbed
available at lowa State University. The proposed framework includes various combinations of industry-
grade substation and control center platforms, communication topologies, real-time digital simulators, and
a novel cyber-physical distributed intrusion-and-anomaly detection system (D-IADS) for WAMPAC
applications. The D IADS includes a master at the control center and geographically distributed sensor
devices at each substation. Each D-1ADS sensor deployed at a substation or control center network
monitors ingress and egress traffic, detect intrusions, and dispatch alerts to the D-IADS master. The D-
IADS master centrally monitors and analyze the alerts and controls D-IADS sensors. We considered an
EMP60 synthetic CPS grid as a case study to demonstrate the framework and proposed D-IADS for
WAMPAC applications against cyberattack vectors such as Man-in-the-Middle DNP3 attack, denial-of-
service, and data-integrity attacks.

[5] V. K. Singh and M. Govindarasu, “A Novel Architecture for Attack-Resilient Wide-Area Protection
and Control System in Smart Grid,” Resilience Week Symposium (RWS), 5 pages, 2020.

Abstract: Wide-area protection and control (WAPAC) systems are widely applied in the energy
management system (EMS) that rely on a wide-area communication network to maintain system stability,
security, and reliability. As technology and grid infrastructure evolve to develop more advanced WAPAC
applications, however, so do the attack surfaces in the grid infrastructure. This paper presents an attack-
resilient system (ARS) for the WAPAC cybersecurity by seamlessly integrating the network intrusion
detection system (NIDS) with intrusion mitigation and prevention system (IMPS). In particular, the
proposed NIDS utilizes signature and behavior-based rules to detect attack reconnaissance,



communication failure, and data integrity attacks. Further, the proposed IMPS applies state transition-
based mitigation and prevention strategies to quickly restore the normal grid operation after cyberattacks.
As a proof of concept, we validate the proposed generic architecture of ARS by performing experimental
case study for wide-area protection scheme (WAPS), one of the critical WAPAC applications, and
evaluate the proposed NIDS and IMPS components of ARS in a cyber-physical testbed environment. Our
experimental results reveal a promising performance in detecting and mitigating different classes of
cyberattacks while supporting an alert visualization dashboard to provide an accurate situational
awareness in real-time.

[6] S. Mohan, G. Ravikumar, and M. Govindarasu, “Distributed Intrusion Detection System using
Semantic-based Rules for SCADA in Smart Grid,” IEEE Transmission and Distribution (T&D)
Conference, 5 pages, 2020.

Abstract: Cyber-physical system (CPS) security for the smart grid enables secure communication for the
SCADA and wide area measurement system data. Power utilities world-wide use various SCADA
protocols, namely DNP3, Modbus, and IEC 61850, for the data exchanges across substation field devices,
remote terminal units (RTUs), and control center applications. Adversaries may exploit compromised
SCADA protocols for the reconnaissance, data exfiltration, vulnerability assessment, and injection of
stealthy cyberattacks to affect power system operation. In this paper, we propose an efficient algorithm to
generate robust rule sets. We integrate the rule sets into an intrusion detection system (IDS), which
continuously monitors the DNP3 data traffic at a substation network and detects intrusions and anomalies
in real-time. To enable CPS-aware wide-area situational awareness, we integrated the methodology into
an open-source distributed-IDS (D-IDS) framework. The D-IDS facilitates central monitoring of the
detected anomalies from the geographically distributed substations and to the control center. The
proposed algorithm provides an optimal solution to detect network intrusions and abnormal behavior.
Different types of IDS rules based on packet payload, packet flow, and time threshold are generated.
Further, IDS testing and evaluation is performed with a set of rules in different sequences. The detection
time is measured for different IDS rules, and the results are plotted. All the experiments are conducted at
Power Cyber Lab, lowa State University, for multiple power grid models. After successful testing and
evaluation, knowledge and implementation are transferred to field deployment.

[7]1 J. Ulrich, J. Drahos, and M. Govindarasu, “A symmetric address translation approach for a
network layer moving target defense to secure power grid networks,” Resilience Week (RWS), pp. 163-
169, 2017.

Abstract: This paper will suggest a robust method for a network layer Moving Target Defense (MTD)
using symmetric packet scheduling rules. The MTD is implemented and tested on a Supervisory Control
and Data Acquisition (SCADA) network testbed. This method is shown to be efficient while providing
security benefits to the issues faced by the static nature of SCADA networks. The proposed method is an
automated tool that may provide defense in depth when be used in conjunction with other MTDs and
traditional security devices.

[8] V. Kumar Singh, S. P. Callupe, and M. Govindarasu, “Testbed-Based Evaluation of SIEM Tool for
Cyber Kill Chain Model in Power Grid SCADA System,” North American Power Symposium (NAPS),
6 pages, 20109.

Abstract: Development of a smarter electric grid necessitates addressing the associated cyber security
challenges. Since the interdependence between the legacy grid infrastructure and advanced information
technology is growing rapidly, there are numerous ways advanced, motivated, and persistent attackers can
affect the SCADA based critical infrastructure. Hence, developing a security information and event
management (SIEM) is crucial for securing the SCADA power system. This paper presents the



application of Security Onion (SecOn) to develop the network security monitoring (NSM) and intrusion
detection system (IDS) in the context of SCADA cyber physical security. Initially, we have applied a
cyber kill-chain model to demonstrate the different stages of attacks and associated mechanisms. Later,
the rule based IDS (RIDS) is developed using Snort IDS, and tested in the cyber-physical SCADA
environment. Furthermore, we have evaluated its performance in terms of accuracy and detection latency.
Our experimental results reveal that the SecOn tool is efficient in monitoring and detecting attacks within
an acceptable time frame with a high accuracy rate.

[9] V. Kumar Singh, H. Ebrahem, and M. Govindarasu, “Decision Tree Based Anomaly Detection for
Remedial Action Scheme in Smart Grid using PMU Data,” 5 pages, IEEE PES General Meeting,
August 2018.

Abstract: The advanced and persistent cyber threats facing the critical infrastructure such as the smart
grid are exponentially rising which require sophisticated defense strategy. Remedial Action Scheme
(RAYS), also known as Special Protection Scheme (SPS), relies on the interconnected cyber physical
system for automated protection which is exposed to the multitude of vulnerabilities. In this paper, we
propose an innovative approach to develop an Intelligent Remedial Action Scheme (IRAS) which can
detect and distinguish cyber attacks from the physical disturbances in smart grid and later take smart
corrective actions as required to minimize the impact on system reliability and economy. Specifically, we
have proposed the decision tree based anomaly detection methodology which can distinguish between the
normal tripping during power line faults and malicious tripping attack on the physical relays in the
context of RAS. The classification model is developed using differential features of voltage and current
phasors. Next, as a proof of concept, we have implemented and validated the proposed methodology in
cyber physical environment at lowa State’s PowerCyber testbed. Finally, the proposed methodology is
tested on modified IEEE 39 bus system in offline and real-time mode. Our experimental results show that
the proposed method is efficient in detecting attacks and performing corrective actions within an
acceptable time frame.

[10] P. Wang and M. Govindarasu, “Anomaly Detection for Power System Generation Control based
on Hierarchical DBSCAN,” North American Power Symposium (NAPS), 6 pages, 2018.

Abstract: The generation level of a generator in power grid is under control of multiple control loops
such as governor action, Automatic Generation Control (AGC), and manual control. These control loops
are vulnerable to cyber attacks and could become potential targets for the malicious adversary. In this
paper, we investigated the detection of abnormal generation controls induced by cyber attacks. One data-
driven anomaly detection methodology is presented based on the behavior conformity of generation units
located in the same balancing authority. A semi supervised clustering algorithm with Hierarchical
Density based Spatial Clustering of Application with Noise (HDBSCAN) is proposed for the detection
model training. In our previous work, we obtained a synthetic dataset that covers scenarios including
normal operation, generation control under ramp attack, switching attack, AGC integrity attacks, etc. and
it is used to evaluate the proposed clustering algorithm. Experimental results show that the proposed
algorithm provides better detection accuracy than K-means clustering and can distinguish not only
between normal and abnormal generation controls but also among various anomaly scenarios.

[11] V. Kumar Singh, H. Ebrahem, and M. Govindarasu “Security Evaluation of Two Intrusion
Detection Systems in Smart Grid SCADA Environment,” North American Power Symposium (NAPS),
6 pages, 2018.

Abstract: The increased complexity and interconnectivity of SCADA infrastructure in the power system
have exposed it to the multitude of vulnerabilities. There is a growing emphasis towards developing an
efficient intrusion detection system (IDS) to strengthen the security of the SCADA control system. This is



a research-in-progress paper which presents the application of two anomaly-based intrusion detection
systems (AbIDS) in detecting the stealthy cyber-attack on the SCADA control system. We have applied
the IDS tools Snort and Bro, in designing the IDS and later, compared their performances in terms of
detection rate and latency in the alert packets with a motive of selecting better IDS for the SCADA
security. Specifically, the timing-based rule is applied to identify the malicious packets based on the high
temporal frequency in the network traffic. For the case study, we have implemented the SCADA based
protection scheme which performs an autonomous protection to mitigate the system disturbances. We first
implemented the stealthy cyber-attack which compromised the SCADA controller followed by data
integrity attack on the system generator. Next, we perform the impact analysis during the attack followed
by performance evaluation of IDS tools. Our experimental results show that the IDS tools are efficient in
detecting cyber-attacks within an acceptable time frame for different sizes of network packets.

[12] V. Kumar Singh, M. Govindarasu, “Evaluation of Anomaly Detection for Wide-Area Protection
Using Cyber Federation Testbed,” 5 pages, IEEE PES General Meeting, August 20109.

Abstract: Cyber physical security research for smart grid is currently one of the nation’s top R&D
priorities. The existing vulnerabilities in the legacy grid infrastructure make it particularly susceptible to
countless cyber-attacks. There is a growing emphasis towards building interconnected, sophisticated
federated testbeds to perform realistic experiments by allowing the integration of geographically-
dispersed resources in the dynamic cyber-physical environment. In this paper, we present a cyber
(network) based federation testbed to validate the performance of an anomaly detector in context of a
Wide Area Protection (WAP) security. Specifically, we have utilized the resources available at the lowa
State University Power Cyber (ISU PCL) Laboratory to emulate the substation and local center networks;
and the US Army Research Laboratory (ARL); to emulate the regional control center network. Initially,
we describe a hardware-in-the loop based experimental setup for implementing data integrity attacks on
an IEEE 39 bus system. We then perform network packet analysis focusing on latency and bandwidth as
well as evaluate the performance of a decision tree based anomaly detector in measuring its ability to
identify different attacks. Our experimental results reveal the computed wide area network latency;
bandwidth requirement for minimum packet loss; and successful performance of the anomaly detector.
Our studies also highlight the conceptual architecture necessary for developing the federated testbed,
inspired by the NASPI network.

[13] G. Ravikumar, A. Nicklaus, and M. Govindarasu, “Cyber-Physical Smart Light Control System
Integration with Smart Grid using Zigbee,” IEEE Innovative Smart Grid Technology (ISGT)
Symposium, 5 pages, 2020.

Abstract: This paper presents a hardware-in-the-loop cyber-physical system architecture design to
monitor and control smart lights connected to the active distribution grid. The architecture uses Zigbee-
based (IEEE 802.15.4) wireless sensor networks and publish-subscribe architecture to exchange
monitoring and control signals between smart-light actuators (SLAs) and a smartlight central controller
(SLCC). Each SLA integrated into a smart light consists of a Zigbee-based endpoint module to send and
receive signals to and from the SLCC. The SLCC consists of a Zigbee-based coordinator module, which
further exchanges the monitoring and control signals with the active distribution management system over
the TCP/IP communication network. The monitoring signals from the SLAs include light status,
brightness level, voltage, current, and power data, whereas, the control signals to the SLAs include light
intensity, turn ON, turn OFF, standby, and default settings. We have used our existing hardware-in-the-
loop (HIL) cyber-physical system (CPS) security SCADA testbed to process signals received from the
SLCC and respond suitable control signals based on the smart light schedule requirements, system
operation, and active distribution grid dynamic characteristics. We have integrated the proposed cyber-
physical smart light control system (CPSLCS) testbed to our existing HIL CPS SCADA testbed. We use
the integrated testbed to demonstrate the efficacy of the proposed algorithm by real-time performance and



10

latency between the SLCC and SLAs. The experiments demonstrated significant results by 100% real-
time performance and and low latency while exchanging data between the SLCC and SLAs.

[14] V. Kumar Singh, A. Ozen, and M. Govindarasu, “A hierarchical multiagent-based anomaly
detection for wide-area protection in smart grid,” 6 pages, Resilience Week (RWS), 2018.

Abstract: Future smart grid capabilities provide assurance to expand the advanced information and
communication technologies to evolve into densely interconnected cyber physical system. Remedial
Action Scheme (RAS), widely used for wide-area protection, relies on the interconnected networks and
data sharing devices, which are exposed to the multitude of vulnerabilities. This paper presents our
proposed approach to developing multi-agent based RAS scheme against the system aware stealthy
cyber-attacks. Specifically, we propose the two-level hierarchical architecture which consists of
distributed local RAS controllers (RAScs) as local agents, operating at different zones/ areas, which are
constantly monitored by an overseer, the central agent. The local controllers receive local and randomly
changing outside zonal measurements and cyclically forwards to the overseer. The overseer identifies the
corrupted controller using the anomaly detection algorithm which processes the measurements coming
from the local controllers, compute measurement errors using local and outside zonal measurements,
perform validation checks, and finally detect anomalies based on the two-step verification. Next, as a
proof of concept, we have implemented and validated the proposed methodology in cyber physical
environment at lowa State’s PowerCyber testbed. We have also implemented the coordinated attack
vectors which involve corrupting the local controller and later performing stealthy attacks on the system’s
generator. We have evaluated its performance during the online testing in terms of detection rate and
latency. The experimental results show that it is efficient in detecting different classes of attacks,
including ramp and pulse attacks.

[15] G. Ravikumar, B. Hyder, and M. Govindarasu, “Efficient Modeling of HIL Multi-Grid System for
Scalability & Concurrency in CPS Security Testbed,” North American Power Symposium (NAPS), 6
pages, 2019.

Abstract: Cyber-event-triggered power grid blackout compels utility operators to intensfy cyber-aware
and physics-constrained recovery and restoration process. Recently, coordinated cyber attacks on the
Ukrainian grid witnessed such a cyber-event triggered power system blackout. Various cyber-physical
system (CPS) testbeds have attempted with multitude designs to analyze such interdependent events and
evaluate remedy measures. However, resource constraints and modular integration designs have been
significant barriers while modeling large-scale grid models (scalability) and multi-grid isolated models
(concurrency) under a single real-time execution environment for the hardware-in-the-loop (HIL) CPS
security testbeds. This paper proposes a meticulous design and effective modeling for simulating large-
scale grid models and multi-grid isolated models in a HIL real-time digital simulator environment
integrated with industry-grade hardware and software systems. We have used our existing HIL CPS
security testbed to demonstrate scalability by the real time performance of a Texas-2000 bus US
synthetic grid model and concurrency by the real-time performance of simultaneous ten IEEE-39 bus grid
models and an IEEE-118 bus grid model. The experiments demonstrated significant results by 100%
real time performance with zero overruns, low latency while receiving and executing control signals
from SEL Relays via IEC-61850 protocol and low latency while computing and transmitting grid data
streams including stability measures via IEEE C37.118 synchrophasor data protocol to SEL Phasor Data
Concentrators.
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[16] Philip Hart, Sowmya Acharya, Honggang Wang, “Coherency-Based Detection Algorithm for
Synchrophasor Cyberattacks, North American Power Symposium (NAPS), 6 pages, 2019.

Abstract: The wide area monitoring system (WAMS) is critical for power system situational awareness,
but represents a growing cybersecurity vulnerability. Malicious adversaries may seek to compromise one
or more PMUs in order to effect control decisions that unnecessarily disrupt typical grid operations. One
example of a particularly pernicious attack vector is the spoofing or replaying of a fault event using one or
more compromised PMUs. This work documents the development and validation of a coherency-based
cyberattack detection algorithm that integrates a sliding-window singular value decomposition (SVD)
with physics-based partitioning analysis to achieve accurate classification of events. Special consideration
is given to discerning a sophisticated fault-replay or fault spoofing attack from actual faults. A software-
based cybersecurity testbed has been developed for rigorous testing of the algorithm. The algorithm is
further validated using simulated synchrophasor datasets obtained from a MinniWECC 63-bus test
system. Results show that the algorithm can successfully detect fault replay attacks even when over half
of the PMUs are compromised.

[17] Pengyuan Wang, Honggang Wang, Philip Hart, Xian Guo, and Kaveri Mahapatra, “Application
of Chebyshev’s Inequality in Online Anomaly Detection Driven by Streaming PMU Data,”’ 5 pages,
IEEE PES General Meeting, August 2020.

Abstract: The day-to-day operation of modern power systems is highly reliant on prompt and adequate
situational-awareness. This can be achieved via various system monitoring functions such as anomaly
detection, in which static thresholds are commonly utilized to distinguish the normal and the abnormal
system states. However, a predetermined static threshold usually lacks the flexibility to adapt to
unobserved scenarios. In this paper, we propose two self-adaptive synchrophasor data driven anomaly
detection approaches based on Chebyshev’s Inequality. The proposed approaches have been evaluated
with Kundur’s 2- area system and Mini-WECC system. Experimental results verify that the proposed
approaches can dynamically adapt to unprecedented scenarios, and detect anomalous events with lower
false alarm rate compared to static threshold based detection.

5.3 Technical Report from GE Global Research

The rest of this document contains GE-GR’s final technical report for this project.
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1 Phase I: WAMS Algorithm Development and Evaluation

1.1 Introduction and Motivation

Widespread deployment of phasor measurement units (PMUs) in the transmission system has been instru-
mental in achieving unprecedented levels of situational awareness. Synchrophasor data from PMUs in the
Wide Area Monitoring System (WAMS) facilitates the operation of a growing number of control room Energy
Management System (EMS) tools, including, but not limited to, rapid and robust linear state estimation, on-
line monitoring of voltage stability, and analysis of poorly-damped oscillations. However, since important
control decisions are executed based on input from this monitoring system, synchrophasor measurements
represent a large and growing cybersecurity vulnerability. It is conceivable that an adversary with malicious
intent will seek to compromise one or more PMUs in order to effect control decisions that unnecessarily
disrupt typical grid operations. For a system targeted by a malicious entity, the systems attack surface is
comprised of (i) methods, (ii) channels, and (iii) data items [1]. Historically, attack surface metrics have
been proposed that exhaustively quantify these elements and weight them according to potential impact
on system operation. In context of the power grid, the control center and its EMS applications and control
infrastructure comprise the system to be defended by the proposed algorithm. WAMS synchrophasor mea-
surements, standardized according to IEEE C37.118.1, provide a key channel for illicit entry of the malicious
adversary into the control center.

1.2 Objective

The objective of this work is to successfully develop and validate an online cyberattack detection algorithm
for synchrophasor data that reduces the attack surface of the control center and its WAMS-dependent soft-
ware applications. This work focuses, in particular, on developing an online tool that detects cyberattacks
on the physical layer of the WAMS network, i.e. the content within the synchrophasor measurements. It is
assumed that any information technology (IT) and operational technology (OT) cyber defense mechanisms
have been compromised by the adversary, and that the content of the synchrophasor measurements, pos-
sibly including voltage & current phasors and/or frequency from one or more PMUs, has been altered by a
malicious adversary in order to negatively impact power systems operation. A strong emphasis has been
placed on the capability of the algorithm to discern actual physical fault events (e.g., short circuits, line
faults, etc.) from spoofed synchrophasor that mimics fault-like behavior, including replay attacks or spoofed
fault signals.

Figure 1 shows a high-level overview of the developed algorithm. Whether implemented as a component
of the phasor data concentrator (PDC) data quality reporting service or as a preconditioning step within
WAMS applications at the control center, the algorithm is intended to operate nearly autonomously from
the control center and has minimal interaction with the EMS. The algorithm reduces the attack surface
of the control center by cyber-hardening a key channel into the EMS that would otherwise be available
to the malicious adversary. In this sense, the proposed algorithm differs from many other synchrophasor
cyberattack detection techniques in the literature which necessitate close interaction with the EMS tool, such
as state-estimation-based anomaly detection methods. It is assumed that the algorithm will be applied to
aggregated synchrophasor dataset from two or more PMUs. It is also assumed that at least one—but not
all-PMUs may have been compromised by the adversary.

In contrast to many other state-of-the-art, power grid cyberattack detection algorithms, the focus here is
on the measurement and control system associated with an entire power grid, rather than on the measure-
ment and control system associated with a single component (e.g., a power plant) within the power grid.
Additionally, since this attack surface reduction tool can operate autonomously on PMU channels outside

5
This document is subject to the distribution statement and notices on the cover page.



WAMS Cyberattack Detection Algorithm, GER

1.2 Objective
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of or at the extreme periphery of the EMS, communication of system information between the algorithm
and the EMS is inherently limited. Details of the power system commonly available to control room oper-
ators, such as the estimated network topology and location of sensors, generators, and loads, may not be
made continuously available to the algorithm for purposes of feature engineering and training. Therefore,
feature engineering will instead make extensive use of the known physical properties of power networks,
depending upon spatiotemporal correlations and physics-based principles that broadly apply to generic 3-
phase, sparsely-connected, reactive power grids of arbitrary size and interconnection, under various states
of time-varying load and generation.
Considering the above discussion, it is desired that the algorithm have the following characteristics:

1. High accuracy: High true positive and true negative rates for cyberattack and fault classification.

2. Autonomy: it is desired to minimize the requirement for continuous interaction between the proposed
algorithm and the EMS, and minimize the effort needed for training of the algorithm, allowing the
algorithm to conveniently reside at the PDC or at the extreme periphery of EMS applications.

3. Ease of Implementation: Due to the rarity of severe physical fault events within the power grid that can
be used for online training, complete reliance on purely data-driven methods for online training may
limit the utility of the algorithm. Due to Characteristic #2, model-based training of the algorithm using
control center data should be limited and infrequent.

1.3 Review of PMU Cyberattack Detection Techniques

The detection and elimination of bad data from synchrophasor measurements in the context of power sys-
tem state estimation has received considerable attention in literature [2]. The detection of cyberattacks
warrants dedicated approaches, as they are hard to detect using the conventional methods for detecting
bad data [3]. The survey in [4] lists different types of cyberattacks and defenses against them in the context
of power systems.

Intrusion detection techniques can be broadly classified into three categories: (i) signature-based (or
misuse-based), (ii) anomaly-based, and (iii) specification-based techniques [5]. Whereas signature-based
techniques compare the current activity to signatures of known attacks, anomaly detection focuses on
characterizing normal behavior, and seeks to identify any departures from normality. Specification-based
techniques compare ongoing events to patterns of events that have been specified, through manual ef-
fort, to be normal. Alternatively, from a different standpoint, detection techniques can also be classified
using a dichotomy of model-based versus data-driven. Model-based approaches exploit system-specific
information like network parameters and topology information in the detection algorithm, whereas the data-
driven models only rely on the characteristics of measurement data. A state-estimation based algorithm
is presented in [6] for identifying angle biases and current scaling errors in the phasor data using the aug-
mented state vector approach. These errors can arise from issues with the global positioning system (GPS),
timing circuits, instrument channels, and/or data channel scaling. Pre-processing of PMU data before state-
estimation to eliminate data quality issues is achieved with the help of Kalman filtering in [7]. The algorithm
is able to identify instances of bad data like data dropouts, repeated values and replace them with values
generated using the filter. A mathematical model of cyber-physical attacks is developed in [8] by modelling
the power system as a linear time-invariant control system. Centralized and distributed attack detection and
identification monitors are designed with the help of the proposed model. The algorithms in [6], [7], and [8]
are model-based and depend on availability of accurate models for the system under consideration. The
authors of [9] recognize the low-rank property of PMU data matrices and formulate a convex optimization
problem for the detection of data substitution attacks. The matrix factorizations and optimization render
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this data-driven algorithm computationally expensive, therefore not amenable for online attack detection.
The spatio-temporal correlations inherent in phasor measurements are exploited in [10] for online detec-
tion of bad data including cyberattacks. The bad data points are formulated as spatio-temporal outliers as
compared to other measurements, and a density-based outlier detection technique is used to detect them.
A neural network-based method is proposed in [11] which associates 108 features to each transmission
line where PMUs are installed. Deep auto-encoders tuned with normal data present higher reconstruction
errors in the presence of manipulated data, and a threshold test is used to detect the anomalies. For suc-
cessful identification, multiple such encoders monitoring small subsets of PMUs should be installed across
the network.

A cyberattack on the physical layer of the WAMS network can have a number of manifestations. More
than one PMU may be compromised by the attacker. The synthetic synchrophasor data injected into a
compromised PMU channel may appear as zero values, or as dropped packets, or sudden changes in
magnitude and/or phase angle. Depending upon the level of sophistication of the attack, the signals may
or may not respect the physics of the power system (e.g., maintain consistency with Kirchhoffs voltage and
current laws). It is acknowledged that in the case that all PMUs are compromised by the attacker, it can be
become nearly impossible to detect the attack. Nonetheless, detection algorithms should be developed to
detect all but the most sophisticated and comprehensive attacks, particularly in the case that the injected
signal is highly likely to impact control decision making. From this standpoint, a particularly pernicious
attack vector is one that spoofs or replays the transient that occurred during a fault event, from one or more
compromised PMUs. Once a PMU, or a communication channel from a PMU, has been compromised, a
hacker may compel this unit or channel to transmit to the phasor data concentrator (PDC) pre-recorded
phasor data resembling that which would have been observed during a real fault event. This particular
attack vector could easily trick a human operator, or even an automated controller, to implement protective
actions, potentially resulting in lost load. In the case of a fault replay attack on a large number of PMU
channels, the injected signals may even display a superficial consistency with network physics, making it
difficult for an experienced human operator to detect-at little additional cost to the attacker. Fig. 1.2(a),
below, shows the transient that ensues at as a result of a fault event, at 11 buses at which PMUs are
deployed. A replay attack on just over half of the PMUs is shown in Fig. 1.2 (b). If given only a brief time
period following the event in Fig. 1.2(b) to make a control decision, an operator may easily be convinced
that an actual fault event has occurred. Automated decision-making tools may be also be susceptible to this
attack.

The focus of this work is on replay attacks where the attacker modifies the synchrophasor data by re-
placing measurements with data which correspond to past system state(s). The authors of [12] propose a
detection algorithm which periodically injects a randomized signal to the measurements and use a linear
time-invariant model of the system to detect replay attacks on smart-meter data. The data-driven approach
presented in [13] introduces a metric called self-correlation coefficient for detection of replay attacks in
power systems. The approach leverages the fact that the replay attack portions of the measurements show
more periodicity than normal measurements. Reference [14] uses data mining techniques to detect cy-
berattacks including replay attack. The key concept used is called common path mining, which works by
checking if a certain sequence of events has occurred in the prescribed manner. The detection system
is first given a representative set of paths which serve as signatures for normal operating scenarios. The
actual measurements are then compared to these signatures to flag anomalies, if any. Reference [15] pro-
poses a method which monitors the intra-PMU and inter-PMU correlations between different measurement
quantities. Injection of spoofed data alters the normal values of these correlations and can be detected.
The true-positive rate detected by the authors ranges between 77% and 86% for different scenarios.

Since PMUs can transmit new samples 60 times a second, this data can quickly accumulate and grow
to unmanageable proportions. The sheer volume of sensor data from PMUs, SCADA sensors, and smart
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Figure 1.2: Simulated PMU node angles in the aftermath of a fault transient (a) and after a fault replay
cyberattack (b) for 11 buses within a power system (angles are unwrapped and detrended).

meters can be a hindrance to grid operators who require timely and actionable information. Over 2000
PMUs have been installed in the United States [16], and MISO has access to 3500 synchrophasor mea-
surements from 489 PMUs [17]. Using conventional sampling rates, the MISO PMU network alone might
generate over 100 megabytes of synchrophasor data every minute, and multiple terabytes over the course
of a month. Improved techniques are still needed to distill the sensor data and reduce it to timely, actionable
information, in the context of real-time cybersecurity monitoring. Regardless of the type of intrusion detec-
tion algorithm used, features of the PMU data must be down-selected by the algorithm for it to successfully
classify an event.

A powerful method for reducing a large dataset into a small number of important features is principle
component analysis (PCA). Authors in [18] and [19] use principle component analysis of PMU data for
event detection. A primary goal of their work is to reduce the dimensionality of PMU data in order to more
conveniently and efficiently identify changes in the operating condition of the system, such as changes in
the system topology or changes in generator inputs. It was observed that a low-dimensionality system
underlies a PMU data matrix containing just voltage magnitude and phase angle information. The algorithm
for event detection requires training using historical PMU data to determine the PMUs that have the most
impact on the singular values of the system: these pilot PMUs subsequently play a predominate role in
event detection, in the online application of the algorithm.

One important conclusion from this review is that there is still a significant research gap associated with
WAMS cyberattack detection algorithms that can operate autonomously from the control center, that can
leverage both data-driven and model-based training, and that can accurately detect fault replay attacks or
spoofed fault signals.

1.4 Algorithm Development

To achieve high classification accuracy, autonomy, and ease of implementation, the algorithm developed by
GE Global Research (GEGR) integrates data-driven and model-based approaches for rapid and convenient
training. The algorithm is capable of being trained online and can function entirely in a purely data-driven
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manner, if necessary. Alternatively, online training can be supplemented or replaced entirely by model-
based training, using an infrequent, expedient physics-based analysis of the power system, if topological
data is made available to the algorithm by the EMS. The following sections provide background regarding
two techniques that are instrumental in the operation of the cyberattack detection algorithm, including (i) the
singular value decomposition (SVD); and (ii) an example model-based power system partitioning analysis
tool.

1.4.1 Background on PCA and SVD

Let X represent an n x m data matrix, where m represents the number of variables and n represent the
number of observations. It is assumed that X is a ‘centered’ data matrix; i.e., to obtain X, subsequent to
the initial gathering of the data, the mean of each column of values has been subtracted from each element
in that column.

The covariance matrix is denoted by Cx:

1
n—1

Cy = XX (1)

In Cy, the diagonal element (k, k) represents the variance of the samples of variable &; the off-diagonal
element 4, j represents the co-variance between variables : and j.

In the case that off-diagonal element (z, j) of Cy is large, this indicates that an obvious linear relationship
has been observed between the two variables i and j. In a sense, it also indicates a redundancy in
the measurements: with high confidence, variable i can be easily calculated from variable j, and it isn’t
necessary to measure both variable i and variable j (or vice-versa). One use of PCA is dimensional
reduction: it can help eliminate this redundancy and distill the number of variables into those that are most
critical.

To eliminate this redundancy, and eliminate the off-diagonal terms, the covariance matrix Cx can be
diagonalized. Since C, is symmetric by construction, we have:

C, = VDVT (2)

where the columns of V contain the eigenvectors of C,, also known as principal axes or principle directions.
The covariance matrix eigenvalues found along the diagonal of D are ordered by magnitude from largest to
smallest.

The principle components are the new variables that result after a linear transformation on the original
centered data matrix X. This linear transformation uses the eigenvector matrix V obtained in the diagonal-
ization of the covariance matrix:

F=XV 3)

where the values of the principle components, also known as factor scores or PC scores, are denoted by F.
These values can also be interpreted as the projections of the observations on the principle components.
The eigenvector matrix V is also sometimes referred to as a projection matrix, as it allows for the projection
of the observations onto the principle axes.

The singular value decomposition (SVD) is a factorization of the centered data matrix X. The SVD
factorization is given by:

X = UAVT (4)

where A is a diagonal matrix containing singular values (positive numbers, ordered from largest to smallest)
and U is an n x n matrix whose columns are the eigenvectors of -2 1XXT. The matrix V contains the right

n—
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WAMS Cyberattack Detection Algorithm, GER 1.5 Link between PCA and SVD

singular vectors and is equivalent to the matrix of right eigenvectors of the covariance matrix, Cx, defined
previously.

By construction of U and V, it can be shown that X multiplied by a column vector v; of V results in a
output vector u; multiplied by singular vector o;.

The row space of X is given by the columns of V. The column space of X is given by the columns of
U. However, if X is rank r, then m — r additional vectors are required in V and n — r vectors are required in
U in order to make these square matrices; these extra vectors form the nullspace N(X) and left nullspace
N(XT) and can be chosen orthonormal.

Since U and V are symmetric by construction, they each have sets of orthogonal eigenvectors. Due to
this orthogonality, it can be shown that U7U = 1 and VTV = 1: in each case, the matrix is unitary, i.e. the
inverse is equivalent to the transpose.

Geometrically, the SVD represents a rotation by V7', a subsequent scaling by A, and, finally, a rotation
by U.

1.5 Link between PCA and SVD

It can be easily shown that XV = UA, i.e. that the the principle components obtained in PCA can be
determined using the SVD decomposition. More specifically, the principle components can be calculated
using the product of the left singular vector matrix and the singular values:

XV =UAVTV =UA (5)

Additionally, it can be shown that the singular values obtained from SVD are closely related to the
eigenvalues of the covariance matrix obtained from PCA:

Cx = ﬁ(UAVT)TUAVT (6)
= %VAUTUAVT (7)
o

= yaryr (8)

n—1

So that:
1 2
D= A 9)
n—1

Figure 3 provides an annotated overview of the SVD transformation using notation and conventions
(e.g., the orientation of the data matrix) that are adopted by the algorithm. The singular values and singular
vectors serve as critical inputs to a post-processing stage of the anomaly detection and event classification
subroutines.

1.6 Network Partitioning and the SVD

In the electromechanical timescale, the transient behavior of voltages and currents at each node of power
system is contingent upon a set of well-known nonlinear differential equations and algebraic constraints (1).
Over the decades, the network structure that underpins this differential-algebraic equation set has been
closely studied, and tools have been developed that leverage this underlying structure to partition the net-
work into clusters of nodes [20],[21],[22]. Such partitioning strategies have historically been applied in the
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Figure 1.3: Annotated overview of the singular value decomposition.

development of reduced-order models that represent clusters of nodes as a single aggregate node, dras-
tically reducing the number of differential and/or algebraic equations and thereby improving computational
efficiency of the model.

For a simple three-node power system, Fig. 1.4 demonstrates the impact of electrical distance between
nodes on the behavior of voltage angles at those nodes, in the aftermath of a significant event. In the
aftermath of any significant event, unique signatures of power system behavior can usually be observed
that, in general, are more consistently associated with the network structure than they are with the location
or severity of a particular fault. The SVD can be applied to a time window of synchrophasor data, and
the output from the SVD can potentially provide insight into such signatures. In [23], the intent is to use
the SVD of measured sensor data as a data-driven means to inform an aggregation strategy, ultimately
resulting in the optimized construction of a (reduced-order) physics-based model-similar to the objective
in [20],[21], and [22]. The cybersecurity algorithm described here is not concerned with reduced-order
modeling, but rather intends to leverage (i) the SVD, (ii) partitioning analysis, or (iii) a combination of both
the SVD and partitioning analysis, for purposes of feature extraction, algorithm training, and signature
identification. The extracted and post-processed signatures ultimately drive the algorithms main event
detection and classification subroutines. While a variety of different partitioning analysis techniques could
be employed within the developed cyberattack detection algorithm, the Generalized Eigenvalue Perturbation
method [20] has several desirable qualities, including expediency and scalability.

The GEP algorithm [20] is now briefly reviewed, borrowing heavily from the notation presented in [20].
For a power system of arbitrary size and interconnection, vector-valued equation set (1) represents the
nonlinear set of differential equations and algebraic constraints that dictate the dynamic behavior of a power
system in the electromechanical timescale. This simplified model is most appropriate, and most commonly
used, for transient stability analysis. Prime mover dynamics, exciter dynamics, and power system stabilizers
are not represented in the model. Loads are assumed to be constant power, the network is assumed to be
symmetric and balanced, and transfer conductances of the network are neglected.
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Figure 1.4: For a three-node system, two different cases of time-domain PMU angle signals (left) and
associated 3-dimensional parametric curve.

& = M~ (Ny(P; — Py (5,V)))
N6 =
0 :§2(§I_€N(&_‘?)_?
0 =Qr(V)—-Qnz(,V)
Where:
Py(e R™) = A diag(bl) diag(exp(|A|Tin(V))) sin(AT) (10)
Qnr (eR™):= [diag(ﬁ)]_le\A|diag(ﬁ)diag(equAUzn(V))) cos(ATH) (11)
And where:

ﬁ € R! := vector of network branch admittances, including the transient reactance of synchronous
machines.

A € R™! .= the full bus incidence matrix for the graph associated with the transmission network.

P, € R"™ .= vector of constant active power loads, at load buses. A positive value denotes that
active power is being injected into the network.

Q. € R"~™ := vector of constant reactive power loads, at load buses. A positive value denotes that
reactive power is being injected into the network.

V € R™ := vector of all bus voltages, including synchronous machine buses and load buses.
§ € R" := vector of all bus voltage angles, including synchronous machine buses and load buses,

relative to the synchronous reference frame.
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]3f € R™ := vector of synchronous machine active power output signals measured by each syn-
chronous machine and filtered using a single-pole low-pass filter.

—

Qs € R™ := vector of synchronous machine reactive power output signals measured by each syn-
chronous machine and filtered using a single-pole low-pass filter.

P, € R™ := vector of power setpoints of the prime mover

Vo € R™ := vector of generator internal voltages.

N; € R™*" .= rows 1 through m of an nxn identity matrix.

N, € R(=™)zn .— rows m through n of an nxn identity matrix.

diag(y) gives a diagonal matrix with the components of the vector y forming its diagonal entries.

K7L> e R*»™™ := a vector of algebraic states representing the voltages at the load buses: 172(@') repre-

sents the voltage at nodem + i.
Py eR:=[P],P]]"

Qn. : R"™™ — R™™ (1 := a vector-valued function giving reactive power absorbed by load
buses, normalized by voltage magnitude:

M e R™*™ .= diagonal matrix with generator inertias along the entries, ordered by bus number

When linearized at an equilibrium operating point, (1) is proven in [20] to be closely associated with the
symmetric differential algebraic equation (2):

EZ = RZ (12)
where:
0 02(77,—m)12(n—m)
—1/2
u=|M 0 (14)
0 IQ(n—m)J)Q(n—m)
R=UTJU (15)
And J represents the system Jacobian:
9Py 9Py
_ 9% 15X%
J = a0N.L 6(QN‘LZQL) (1 6)
95 vy

It can be shown that the smallest non-zero generalized eigenvalue of (2) is closely associated with
the dominant inter-area dynamics between two clusters of nodes. Due to the symmetry of the matrices
within (2) that results from its admittance-matrix-like structure, an iterative procedure identifying the clusters
was shown in [20] to always converge. In the GEP approach, the sensitivity of this smallest non-zero
generalized eigenvalue of (E,Rg) to perturbations in the branch susceptances guides the selection of a
cut-set of branches. This branch cutset forms the optimal boundary between two clusters.
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The GEP partitioning algorithm [12] is reviewed below and linked to the SVD, with the ultimate goal of
training a simple cyberattack detection algorithm described later. Notation is borrowed from [12]. The GEP
approach can be implemented by following the step-by-step instructions described in Section IV of [12].
These instructions are summarized in steps 1 through 4, below. Step 5 connects the partitioning result to
the detection algorithm.

1. E and Rg, matrices defined in [12], are closely related to a linearized version of (1). As a first step,
these two matrices are computed, assuming a particular equilibrium operating point of (1). For the
differential-algebraic system comprised by (E, Rg), the smallest generalized eigenvalue and its asso-
ciated eigenvector are identified, denoted by A and v, respectively.

2. The gradient of the generalized eigenvalue \ with respect to the vector of network susceptances, ﬁ
is then computed. Under simplifying assumptions, index i of gradient g is given by a readily-identifiable

T 9Bs
analytical expression: g; = 8>\/8ﬁi = 2

3. Gradient g; is used to identify the element of the network chosen for deletion, by finding the smallest
positive and real constant v such that for some index r: [ﬁ —7§],. = 0. Delete the entry at index r of
the susceptance vector ol

4. Repeat Steps 1 - 3 for the new system with the missing branch, until a sufficient number of branches
have been eliminated such that the nodes of the original network are fully partitioned into two disjoint
subsets. A single iteration of the GEP algorithm has now been completed.

5. Once the network has been partitioned into two disjoint subsets of nodes (Subset 1 and Subset 2)
using the GEP algorithm, a synthetic right singular vector (RSV) is created. This synthetic RSV
constitutes a prediction of a vector within the V matrix obtained from the SVD. This synthetic RSV
is first instantiated as a zero vector with length equal to the number of PMUs associated with the
synchrophasor angle data matrix, with the first element of the synthetic RSV corresponding to the first
column of data (i.e., the first PMU), the second element of the synthetic RSV corresponding to the
second PMU, and so on. The elements of this synthetic RSV are populated with a 1 or -1 depending
on whether the node that hosts each PMU is located in Subset 1 or Subset 2, respectively. If PMUs are
not included within the boundaries of the portion of the network subject to the above GEP partitioning
analysis, the element associated with that PMU remains zero. Once all elements are appropriately
populated, the synthesized RSV is then normalized to have a magnitude of 1.

6. To generate additional synthetic RSVs for the network that correspond to faster inter-area system
modes across smaller areas of the network, steps 1-5 can be iteratively repeated for the sub-networks
of the power system associated with Subset 1 and Subset 2 determined in Step 4.

1.7 High-Level Algorithm Description

Fig. 1.5 shows a block diagram of the proposed cyberattack detection algorithm, including event detection
and classification steps. A key component of the algorithm includes the online application of the singular
value decomposition (SVD) to pre-processed synchrophasor data. Among other benefits, the SVD pro-
vides dimension reduction. The features and signatures obtained from the application of the SVD upon
synchrophasor data are post-processed and utilized within both the event detection and classification sub-
routines. The event detection runs continuously, examining the SVD features for evidence of an event. Upon
detection of an event, the detection algorithm invokes the event classification subroutine.

The event classification subroutine uses the features and system signatures obtained from the SVD of
the time window of data corresponding to the new event. To classify the event as a fault or a cyberattack,
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Figure 1.5: High-level block diagram of developed cybersecurity algorithm.

the classification subroutine also examines relevant information obtained from partitioning analysis and/or
from historical events.

The dotted line within Fig. 1.5 indicates that the use of parameters and other relevant information from
the partitioning analysis is optional, contingent upon availability of recent system topological information.
Likewise, physics-based model analyses can optionally be used to inform the selection of parameters within
the event detection algorithm. While test results indicate that parameter selection is relatively straightfor-
ward, and that a common set of parameters may be successfully used for a wide range of different power
systems, model-based analyses can improve confidence in the selection of optimal algorithm parameters,
such as certain decision thresholds and the size of the data window used for the SVD.

1.8 GEGR Software-Based Testbed

A flexible, software-based testbed has been realized in the MATLAB/Simulink platform to facilitate the devel-
opment and rigorous evaluation of the candidate WAMS cyberattack detection algorithm. Within this testbed
environment, a first-principles, physics-based model of a standard 4-machine, 2-area power system, (Fig.
1.6) described in [24], is used to generate realistic time-dependent trajectories of system states in response
to dynamic events.
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Figure 1.6: The Kundur two-area test system from [24] used for algorithm development and evaluation.

The test environment is capable of automatically simulating a large number of randomized transient
events using the two-area test system, including actual fault events and spoofed data injections from com-
promised PMU(s) that resemble fault events. For the studied power system, the test environment collects
PMU data throughout the duration of each event, resembling typical behavior of a Wide Area Monitoring
System. The PMU data is comprised of time-stamped, synchronized samples of voltage and current pha-
sor magnitude and phase angles, collected at a user-defined sampling rate, under realistic off-nominal
frequency conditions. Automated MATLAB scripts provide the following functionality:

1.

7.

Specification of parameters relevant to the physical characteristics of the power network, including
fault events within the network.

. Specification of parameters relevant to the construction and testing of a cyberattack spoofing detection

algorithm.

Construction of a nested cell variable of sliding-window PMU data matrices and cyberattack events
using simulation results obtained from running the Simulink model or from import of existing simulation
results.

Training of the cyberattack detection algorithm using a model-driven Generalized Eigenvalue Pertur-
bation partitioning script.

Training of the cyberattack detection algorithm using SVD features and signatures calculated from
previous events.

Application of the cyberattack spoofing detection algorithm to the nested cell variable containing PMU
data matrices.

Three-dimensional visualization of the test matrix results.

Regarding specification of parameters relevant to the physical characteristics of the network, the simu-
lation environment is highly customizable, allowing the user a high degree of control over a large number of
relevant parameters, including:

1.

2.

3.

4.

The nature, placement and severity of physical fault events, including short circuit and line faults.
The number of PMUs within the system.
Placement of PMUs within the system.

Specification of which PMUs have been compromised.
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5. Specification of the type of cyberattack on each PMU unit. Currently, the choices are limited to the
following:

A compromised PMU replays historical fault data.
A compromised PMU erroneously reports a user-defined constant magnitude and phase angle.
A compromised PMU erroneously reports a magnitude and phase angle of zero.

Specification of line impedances and generator properties, including inertia and damping.

© © © N o

Specification of the different features of the simulation data and experiment results to be stored for
future analysis.

Many of the of the above environmental parameters (e.g., 1-5) can be randomized, facilitating large scale
studies across a range of potential environmental conditions. Additionally, parameters such as number of
PMUs in the network, or number of compromised PMUs, can be swept across a range of values, allowing
greater insight into the impact of the parameter on the performance of the algorithm.

The software-based testbed also allows for the specification of parameters relevant to the operation of
the algorithm, including all relevant decision thresholds and size of the SVD data window.

The testbed environment permits most of the above algorithm parameters to be swept across a range
of values in large-scale test matrices to empirically determine the trend of classification performance as a
function of the value of the algorithm parameter.

Fig. 1.7 demonstrates example post-event synchrophasor waveform results derived from the software-
based testbed for four different combinations of environmental parameters. Severity and location of a phys-
ical fault is varied between the four tests, and waveforms of post-processed synchrophasor voltage angle
are plotted for three PMUs.

1.9 Algorithm Performance Evaluation Results

This section documents the performance of the algorithm following its application to windows of PMU data
recorded using the 11-bus simulation testbed described earlier. Additionally, the algorithm is applied to
more realistic simulation results obtained using PNNLs testbed.

Fig. 1.8 shows example windows of simulated voltage angle waveforms that were collected using the
software-based testbed. The waveforms were collected shortly after various events, including a new fault
event, a historical fault event, and a fault replay cyberattack. Fig. 1.8(a) and (c) both correspond to the
same new fault event, but Fig. 1.8(c) shows the behavior of the voltage angle only for nodes 1,3,5,11.
Likewise, Fig. 1.8(b) and (d) both correspond to the same historical fault event. The SVD was applied
to time windows of data shown in (a), (b), (e), and (f), and the detection algorithm was invoked. The
algorithm used the SVD features and signatures in an attempt to properly classify the new fault event and
the cyberattack event. Synchrophasor information from nodes 1,3,5,11 were found to be particularly critical
for algorithm performance. Using the post-processed feature and signature information obtained from new
and historical events, the algorithm correctly concluded that the transient in Fig. 1.8(a) was a real fault, and
that the transient in Fig. 1.8(e) did not result from a real fault event but was instead either bad data or a
cyberattack.

Results to follow demonstrate a thorough investigation of the performance of the algorithm for a range
of power system conditions, and across multiple test matrices of algorithm parameter combinations. For
each tested condition and combination of parameters, the cyberattack detection algorithm is applied to 600
randomized fault event simulations and 600 randomized fault-replay cyberattack event simulations. Random
short circuit faults and line faults are applied to the power system, and the transients that result are also
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recorded for use in a fault-replay cyberattack. For a given fault-replay cyberattack, the transients replayed
at the compromised PMUs were all recorded from the same event, and the fault transient is replayed at
the same PMU from which it was recorded. A matrix of different algorithm parameter selections, number
of PMUs, and number of compromised PMUs is studied. In most of the investigations to follow, the data
window length is swept from 10 to 200 samples, and a particularly important decision threshold (referred to
here as rotation threshold angle) is swept from 0.5 degrees to 60 degrees.

Outputs of a classification subroutine can be: (i) true-positive, which is a correct classification of an
abnormal event as abnormal; (ii) false-positive, which is an incorrect classification of a normal event as
abnormal; (iii) true-negative, a correct classification of a normal event as normal; and (iv) false-negative, an
incorrect classification of the abnormal event as normal. In this section, true positive rates are recorded as
the algorithm is invoked to classify fault events and cyberattack events. In the case of fault event classifica-
tion performance, the true positive rate will be calculated, for purposes of this report, by tallying the number
of correct fault classifications and dividing by the total number of events that were classified as either a fault
or a cyberattack. Similarly, in the case of cyberattack classification performance, the true positive rate is
given by the number of correct cyberattack classifications divided by the total number of events that were
classified as either a fault or a cyberattack. It should be noted that often, a randomized event—either a
fault event or a cyberattack event—was not significant enough to surpass the event detection threshold and
invoke the classification subroutine. For each analysis of a particular set of parameter selections, number
of PMUs, and number of compromised PMUs, these minor events constituted approximately a quarter or
less of the 1200 events studied.

For tests in which PMUs are not deployed at every bus, Table 1.1 shows which buses contain PMUs
(marked with 1), and which buses omit PMUs (0). Bus numbers are labeled in the one-line diagram shown
in Fig. 1.6. Locations for PMU deployment were arbitrarily selected.

Table 1.1: PMU locations used for tests, in the case that fewer than 11 PMUs were deployed in the system.

Bus 1 Bus 2 Bus3 | Bus4 | Bus5 | Bus6 Bus7 | Bus8 Bus9 | Bus 10 Bus 11
9 PMUs 0 1 1 1 1 1 1 1 1 1 0
7 PMUs 0 1 0 1 1 1 1 1 0 1 0
5 PMUs 0 1 0 1 0 1 0 1 0 1 0
3 PMUs 0 0 0 1 0 1 0 1 0 0 0

1.9.1 Performance under Nominal Power System Parameters

In the case of the performance results in this section, the test system used to generate simulations is
characterized by two distinct areas separated by a long transmission line corridor. Parameters for the test
system can be found in [24]. This configuration is particularly conducive to inter-area oscillations between
two clusters of nodes.

Fig. 1.9 demonstrates a collection of 3-D surface plots that show the true positive rate of the classification
algorithm as a function of an important decision threshold parameter and length of the sliding window (the
number of rows in the data matrix, X). For each element of the surface plot—i.e., each combination of the
threshold parameter and data window size—the true positive rate shown is an average value calculated over
600 fault or cyberattack events. True positive rate surface plots are thus created for three different numbers
of PMUs deployed in the network (11, 9, and 7).

For the cyberattack events used to generate the right column of true positive surface plots in Fig. 1.9,
five of the deployed PMUs are compromised by the attacker. A purely data-driven approach to algorithm
training is pursued (GEP partitioning is not used), and features & signatures from only one historical event
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are used within the classification subroutine.

Table 1.2 shows samples from each of the surface plots in Fig. 1.9, for a particularly promising selection
of parameters: a rotation threshold of 18 degrees and a data window size of 150. In the case of this selection
of parameters, and for many other neighboring elements of the test matrix, the algorithm has exceptional
performance, demonstrating high true positive rates for both fault and cyberattack event classification for 11,
9 and 7 PMUs. Surprisingly, even when there are only 2 uncompromised PMUs left, Fig. 1.9(f) demonstrates
that a high true positive rate can still be achieved for cyberattack events, provided that the threshold angle
parameter is chosen to be small. Fortunately, results in Fig. 1.9(e) show that it is acceptable to maintain a
very low threshold angle provided that the data window size is high enough.

Fig. 1.9(a),(c), and (e) show how a very small threshold angle value of less than 10 degrees results in
poor true positive rates for fault event classification, especially for small window sizes.

There is a clear dependency of the fault true positive rate on the data window size: for high classification
performance, it seems as if it would be best for the data window to be long enough to include at least 70
synchrophasor samples. As observed in Fig. 1.9(a),(c), and (e), data windows larger than approximately
100 samples provide diminishing returns. Notably, in the immediate aftermath of the fault, the spatiotempo-
ral correlation of different synchrophasors is dominated more by electrical proximity to the fault than it is by
the electromechanical interaction between generators.

For the PMUs that are compromised and subject to a sophisticated replay attack that uses a real histor-
ical fault signal, a small data window may reduce the likelihood that characteristic system signatures will be
identified in a replay attack. Is therefore intuitive that cyberattack classification true positive rate is slightly
bolstered by a small data window, as seen in Fig. 1.9(b),(d), and (f).

Table 1.2: True-Positive Selections for Angle Rotation Threshold of 18 Deg. and Window Size of 150
Samples, from Experiment Results in Fig. 1.9.

Fault True Positive Rate (TPR) Cyberattack True Positive Rate
(TPR)
11 PMUs 0.83 0.33
9 PMUs 0.78 0.29

1.9.2 Performance under Augmented Power System Conditions

It should be acknowledged that the system measured by the PMUs will not always contain two distinct areas
separated by a long transmission line. In the results shown in this section, in the interest of thoroughly
testing the algorithm under a wider range of challenging circumstances, the length of the long transmission
line corridor in the testbeds Simulink model is divided by 10. Subsequently, 1,200 randomized events are
newly simulated.

As in the case of Fig. 1.9, Figs. 10-15 show collections of 3-D surface plots that demonstrate true
positive rate of the classification algorithm as a function of the main decision threshold parameter and
length of the sliding window (the number of rows in the data matrix, X). Different numbers of PMUs are
compromised in each of the Figs. 10-15. For each element of the surface plot-i.e., each combination of the
threshold parameter and data window size—the true positive rate shown is an average value calculated over
600 fault or cyberattack events.

One PMU Compromised, 1 Historical Event (Fig. 1.10): For the cyberattack events used to generate the
right column of true positive rate surface plots in Fig. 1.10, only one of the deployed PMUs is compromised
by the attacker. A purely data-driven approach to algorithm training is pursued (GEP partitioning is not
used), and features & signatures from only one historical event are used within the classification subroutine.
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Figure 1.9: True positive rates for fault event and cyberattack event classification, across a range of thresh-
old angle parameters, window sizes, and number of PMUs in the network (11 to 7). Nominal 2-area system
parameters. For the cyberattacks, five random PMUs are compromised. One historical event is used within
the classification subroutine.
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True positive rate surface plots are created for three different numbers of PMUs deployed in the network (11,
7, and 3). Under the augmented network conditions, Fig. 1.10 and Table 1.3 show that the performance of
the classification is moderately acceptable when 11 PMUs are deployed, and that performance suffers as
fewer PMUs are deployed. A direct comparison to the results of Fig. 1.9 is not possible, but it can likely be
surmised that the new system conditions result in the deterioration the performance of the algorithm.

Two PMUs Compromised, 1 Historical Events (Fig. 1.11): For the cyberattack events used to generate
the right column of true positive rate surface plots in Fig. 1.11, two of the deployed PMUs are compromised
by the attacker. A purely data-driven approach to algorithm training is pursued (GEP partitioning is not
used), and features & signatures from only one historical event are used within the classification subroutine.
True positive rate surface plots are created for three different numbers of PMUs deployed in the network
(11, 7, and 3). Under the conditions of the new system, Fig. 1.11 and Table 1.4 show that the performance
of the classification has deteriorated with respect to Fig. 1.10, in the case that 11 PMUs are deployed.

Two PMUs Compromised, 3 Historical Events (Fig. 1.12): For the cyberattack events used to generate
the right column of true positive rate surface plots in Fig. 1.12, two of the deployed PMUs are again
compromised by the malicious adversary. The same conditions were used to produce Fig. 1.12 as those
that were used to produce Fig. 1.11, with the exception that features & signatures from three historical
events are used within the classification subroutine, instead of from just one historical event. Under these
conditions, Fig. 1.12 and Table 1.5 show that the performance of the classification has significantly improved
with respect to Fig. 1.11. The true positive rates for fault and cyberattack events is excellent when 11 PMUs
are deployed, but still deteriorates substantially when 7 PMUs are deployed.

Two PMUs Compromised, 5 Historical Events (Fig. 1.13): For the cyberattack events used to generate
the right column of true positive rate surface plots in Fig. 1.13, two of the deployed PMUs are again
compromised by the malicious adversary. The same conditions were used to produce Fig. 1.13 as those
that were used to produce Fig. 1.12, with the exception that features & signatures from five historical
events are used within the classification subroutine, instead of from just one historical event. Under these
conditions, the results in Fig. 1.13 and Table 1.6 show that the classification performance does not show
any improvement over the results in Fig. 1.12.

Five PMUs Compromised, 1 Historical Event (Fig. 1.14): For the cyberattack events used to generate the
right column of true positive rate surface plots in Fig. 1.14, five of the deployed PMUs are now compromised
by the malicious adversary. The same conditions were used to produce the plots in Fig. 1.14 as those that
were used to produce the plots in Fig. 1.9, with the exception that the system used for generating the
events in Fig. 1.14 lacks long inter-area transmission lines. This set of surface plots therefore provides
an opportunity to directly assess the impact of the length of the inter-area transmission lines on algorithm
performance. In the case of the augmented system, Fig. 1.14 and Table 1.7 show that the performance of
the algorithm still approaches a satisfactory level when 11 PMUs are deployed, and the performance is only
marginally worse than in the case of Fig. 1.11. As before, the performance deteriorates substantially with a
decrease in PMU deployment. Comparing Figs. 9 and 14, it is easy to conclude that the algorithm enjoys a
substantial advantage in performance under the original system conditions.

Nine PMUs Compromised, 1 Historical Event (Fig. 1.15): For the cyberattack events used to generate
the right column of true positive rate surface plots in Fig. 1.15, nine of the deployed PMUs are now com-
promised by the malicious adversary. Otherwise, the same conditions were used to produce Fig. 1.15 as
those that were used to produce Fig. 1.11. Under these conditions, the results in Fig. 1.15(a) and (b), and
in Table 1.8, show that the classification performance has deteriorated significantly. With only two uncom-
promised PMUs and one historical event in the repository, under the conditions of the augmented system,
the algorithm is not capable of discerning fault from cyberattack.
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Figure 1.10: True positive rates for fault event and cyberattack event classification, across a range of thresh-
old angle parameters, window sizes, and number of PMUs in the network. Augmented network system
parameters are used, and the two areas are 10x closer together. For the cyberattacks, only one PMU is
compromised. One historical event is used within the classification subroutine.
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Figure 1.11: True positive rates for fault event and cyberattack event classification, across a range of thresh-
old angle parameters, window sizes, and number of PMUs in the network. Augmented network system
parameters are used, and the two areas are 10x closer together. For the cyberattacks, two PMUs are
compromised. One historical event is used within the classification subroutine.
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Figure 1.12: True positive rates for fault event and cyberattack event classification, across a range of thresh-
old angle parameters, window sizes, and number of PMUs in the network. Augmented network system
parameters are used, and the two areas are 10x closer together. For the cyberattacks, two PMUs are
compromised. Three historical events are used within the classification subroutine.
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Figure 1.13: True positive rates for fault event and cyberattack event classification, across a range of thresh-
old angle parameters, window sizes, and number of PMUs in the network. Augmented network system
parameters are used, and the two areas are 10x closer together. For the cyberattacks, two PMUs are
compromised. Five historical events are used within the classification subroutine.
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Figure 1.14: True positive rates for fault event and cyberattack event classification, across a range of thresh-
old angle parameters, window sizes, and number of PMUs in the network. Augmented network system
parameters are used, and the two areas are 10x closer together. For the cyberattacks, five PMUs are
compromised. One historical event is used within the classification subroutine.
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Figure 1.15: True positive rates for fault event and cyberattack event classification, across a range of thresh-
old angle parameters, window sizes, and number of PMUs in the network. Augmented network system
parameters are used, and the two areas are 10x closer together. For the cyberattacks, nine PMUs are
compromised. One historical event is used within the classification subroutine.
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Table 1.3: True-Positive Selections for Angle Rotation Threshold of 39 Deg. and Window Size of 150

Samples, from Experiment Results in Fig. 1.10.

Fault True Positive Rate (TPR) Cyberattack True Positive Rate
(TPR)
11 PMUs 0.93 0.98
7 PMUs 0.98 0.77
3 PMUs 1.0 0.05

Table 1.4: True-Positive Selections for Angle Rotation Threshold of 37 Deg. and Window Size of 105

Samples, from Experiment Results in Fig. 1.11.

Fault True Positive Rate (TPR) Cyberattack True Positive Rate
(TPR)
11 PMUs 0.85 0.95
7 PMUs 0.97 0.83
3 PMUs 1.0 0

Table 1.5: True-Positive Selections for Angle Rotation Threshold of 31 Deg. and Window Size of 130

Samples, from Experiment Results in Fig. 1.12.

Fault True Positive Rate (TPR) Cyberattack True Positive Rate
(TPR)
11 PMUs 0.99 0.98
7 PMUs 1.0 0.8
3 PMUs 1.0 0.28

Table 1.6: True-Positive Selections for Angle Rotation Threshold of 29 Deg. and Window Size of 105

Samples, from Experiment Results in Fig. 1.13.

Fault True Positive Rate (TPR) Cyberattack True Positive Rate
(TPR)
11 PMUs 1.0 0.98
7 PMUs 1.0 0.77
3 PMUs 1.0 0.25

Table 1.7: True-Positive Selections for Angle Rotation Threshold of 38 Deg. and Window Size of 160

Samples, from Experiment Results in Fig. 1.14.

Fault True Positive Rate (TPR) Cyberattack True Positive Rate
(TPR)
11 PMUs 0.91 0.87
7 PMUs 0.83 0.76

1.9.3 Performance with Partitioning Analysis used for Training

In this section, cyberattack detection algorithm performance is investigated in the case that the GEP par-
titioning tool from [20], described in an earlier section, is used to train the algorithm. In the case of the
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Table 1.8: True-Positive Selections for Angle Rotation Threshold of 35 Deg. and Window Size of 160
Samples, from Experiment Results in Fig. 1.15.

Fault True Positive Rate (TPR) Cyberattack True Positive Rate
(TPR)
11 PMUs 0.83 0.33
7 PMUs 0.78 0.29

cyberattack events, five PMUs are compromised by the attacker. Knowledge of the physical characteristics
of the 2-area, 11-bus system in Fig. 1.6, is assumed to be available to the cyberattack detection algorithm.
This knowledge includes network susceptances and the network incidence matrix, machine location and
inertias, and PMU location. The reduced, symmetric differential algebraic equation set (2) was determined,
and E and Rg calculated. To address the linearized equilibrium point implicit in the construction of (E,Rg),
conditions of zero load, zero power injection, uniform voltage magnitudes and 0 phase angle for all buses
were assumed. Steps 1-6 of the partitioning algorithm described earlier were applied. At the termination
of the GEP algorithm, the parallel transmission lines defining the one half of the long transmission line cor-
ridor were identified as the optimal branch cutset that separates two clusters of nodes. It should be noted
that the partitioning tool could have been applied iteratively, to further divide the clusters identified by the
first iteration of the tool. The result of the GEP partitioning algorithm was post-processed, and the post-
processed result was then applied to the classification subroutine. As shown in Fig. 1.16, a threshold angle
of approximately 23-25 degrees would allow for perfect performance: true positive rates of 1.0 for both fault
and cyberattack classification, if 11 or 7 PMUs are deployed.

1.9.4 Validation of Algorithm Performance using PNNL Testbed

GEGR collaborated with PNNL to test the developed cyberattack detection algorithm with more-realistic
synchrophasor data using one of PNNLs software-based testbeds. PNNLs testbed simulated test system
is comprised of a state-space representation of the MinniWECC model, linearized around an equilibrium
operating point. A brief overview of the MinniWECC model and its implementation within PNNLs testbed is
provided in [25]. The MinniWECC model includes 115 ac transmission lines, 34 generators, 19 load buses,
and 2 dc transmission lines, and is aggregated in such a manner so as to preserve the two most significant
inter-area modes of the true WECC system. Sixty-three buses are available for PMU measurement. Fig.
1.17 demonstrates voltage angle transients from 30 PMUs distributed throughout the MinniWECC system,
after preconditioning.

To test GEGRs algorithm, 5 realistic physical events were simulated using PNNLs software testbed.
The resulting 63 voltage phasor signals obtained during the simulation were down-selected to match the
chosen number of PMUs assumed to be deployed in the system. To process the PNNL data, scripts were
developed at GEGR that performed a randomized down-selection to the chosen number of PMUs, which
effectively randomized the deployment of PMUs within the system.

For a given deployment configuration for the PMUs, a random selection of the 5 available events was
used as the historical event for training purposes, and, in the case of fault events a second random selection
of the 5 available events was used as the new event. In the case of the cyberattack event, normal, nonevent
data is substituted for the new event. Five fault and cyberattack tests are performed, each with a new
random selection of compromised PMUs. These 5 fault and cyberattack tests were repeated for 10 different
PMU deployments configurations, for a total of 100 tests (50 fault and 50 cyberattack). Finally, the 100 tests
were repeated for each element within a larger test matrix, which varied the number of PMUs deployed and
the number of compromised PMUs.
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Figure 1.16: True positive rates for fault event and cyberattack event classification, across a range of thresh-
old angle parameters, window sizes, and number of PMUs in the network (11 and 7). Nominal 2-area system
parameters are used. The GEP partitioning tool is used to train the algorithm. For the cyberattacks, five
random PMUs are compromised.
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Figure 1.17: Example voltage angle transient from post-processed, simulated synchrophasor data, obtained
at 30 nodes within the MinniWECC system (raw phasor data generated at PNNL).

32
This document is subject to the distribution statement and notices on the cover page.



WAMS Cyberattack Detection Algorithm, GER 1.9 Algorithm Performance Evaluation Results

B = Cyber True Pos. B = Fault True Pos.

l = Cyber False Neg. B = Fault False Neg.
£ 60 : : : : :
()
D
- 40 B
9
=
@ 20+ 1
o

0
10 15 20 25 30

Number of Compromised PMUs

Figure 1.18: Performance of GEGRs algorithm when applied to GEGRs testbed data. 30 PMUs are de-
ployed.
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Figure 1.19: Performance of GEGRs algorithm when applied to GEGRs testbed data. 40 PMUs are de-
ployed.

Algorithm parameter selections were informed by the results from rigorous experiments with the GEGR
software-based testbed, described earlier. The rotation angle threshold was chosen to be 30 degrees, and
the window size chosen to be 100 samples. Manual training using the GEP partitioning algorithm was not
undertaken; historical events are used to train the algorithm, and only one historical event was used in the
event repository.

If PMUs are deployed at 30 of the buses in the system, Fig. 1.18 shows the relative amounts of correctly-
and incorrectly-classified fault and cyberattack events for different quantities of compromised PMUs. The
algorithm was found to perform satisfactorily, as close to 50 of the fault events and close to 50 of the
cyberattack events were classified properly if 10 or 15 PMUs are compromised in a system with 30 PMUs.
The algorithm still performs in a relatively robust manner even if 20 PMUs are compromised by the malicious
entity. However, there is a sharp cut-off phenomenon: performance degrades significantly if only 5 or less
PMUs are left uncompromised. If 40 PMUs are deployed, Fig. 1.19 shows how performance of the algorithm
improves, for the same numbers of compromised PMUs. If 50 PMUs are deployed, and 30 are compromised
in a cyberattack, Fig. 1.20 shows perfect classification for both faults and cyberattacks.
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Figure 1.20: Performance of GEGRs algorithm when applied to GEGRs testbed data. 50 PMUs are de-
ployed.

1.10 Conclusions: Algorithm Development

Rigorous testing using GRCs software-based testbed showed that the WAMS cyberattack detection al-
gorithm demonstrates either satisfactory or exceptional performance under a broad range of conditions.
However, results did show that the algorithm may have a weakness when applied to power systems that
do not contain long inter-area transmission lines. Therefore, it can be surmised that performance of the
algorithm is dependent upon the physical characteristics of the system included within the boundaries of
the WAMS network, including the existence (or lack there-of) of dominant, inter-area swing modes within
the WAMS network footprint.

A thorough investigation was made of the sub-optimal condition in which the inter-area transmission
lines were significantly reduced in length. In this sub-optimal condition, the algorithm appears to require
a larger number of PMUs and knowledge of more historical events to achieve satisfactory performance.
Refinements will be made to the algorithm to address the classification performance under these conditions.

In the case of both the original, unaltered Kundur two-area test system from [24] and in the realistic Min-
niWECC model-the algorithm demonstrates exceptional ability to discern between fault and replay attacks.
Excellent performance was observed even under the circumstances in which features & signatures from
only one historical event are available to the classification subroutine and a majority of the PMUs have been
compromised in the cyberattack. Results also showed that even a single iteration of the GEP partitioning
tool is sufficient to fully train the algorithm such that it achieves high classification performance. Finally, the
collaboration with PNNL presented the opportunity to successfully test the algorithm in a larger test system,
with a larger quantity of data, and more-realistic system behavior.

Additional refinements in Phase |l and included in the subsequent sections include augmentation of the
initial event detection subroutine of the algorithm. Additional topics of investigation may include, but are not
limited to: (1) the exploration of how power system stabilizers and other yet-unmodeled components impact
the algorithm performance; and (2) the continued validation of the algorithm using even larger test systems,
potentially including 1000s of buses.

GE Digital runs EMS software for 10 of the 14 largest power grid operators, 170 systems in USA, 70%
of Middle East utilities, and 70% of Africa, and is a leading WAMS software provider. In Section 4 of this
report, the prototype algorithm will be demonstrated in a more realistic environment by integrating it with
the GE Digital PhasorAnalytics software platform used for synchrophasor visualization.
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2 Phase llIA: Event Detection Subroutine Refinement

2.1 Introduction

Anomaly detection refers to the problem of finding patterns in data that do not conform to expected behavior.
These nonconforming patterns are often referred to as anomalies, discordant observations or peculiarities
in different application domains [1]. For a modern power grid, an anomaly could manifest as physical
disturbances including transmission line faults, fault induced protective relay action, a sudden loss of gen-
eration or load, oscillation, etc. or malicious cyber activities such as false data injection, spoofing attack,
or critical information availability attack. Prompt detection of these two types of anomalies in power grid is
vital in order to prevent economic losses and protect utility assets and even human lives. The availability
of real-time, spatially-distributed system operation data of high accuracy is indispensable for system-level
anomaly detection. Synchrophasor data collected by Phasor Measurement Units (PMU) have brought un-
precedented observability into the operation of power grids. The integration of streaming data from a group
of synchronized PMUs provides real-time "snapshots” of the grid under monitoring with high fidelity, and
the critical information that those data carry should be fully leveraged in anomaly detection. Meanwhile, the
vast amount of PMU data renders the manual analyses time consuming, and the conventional rule-based
detection schemes ineffective, making it almost impossible to capture unobserved anomalies with sufficient
expediency. Therefore, researchers have been attempting to develop automated offline and online anomaly
detection methods to cope with streaming PMU signals.

In the literature, there are many examples of synchrophasor anomaly detection algorithms that use static
thresholds determined in an offline manner [2]-[6]. In [2], a density-based local outlier factor approach is
proposed to detect false data injection attacks, and the decision threshold is determined using offline training
and a historical dataset. In both [3]and [4], the static decision threshold is determined in an offline, brute
force manner, by repeatedly applying the proposed algorithm to a sample PMU dataset while sweeping
the threshold across a wide range. A user guide composed by NREL [5] introduces a few event detection
methods that can be used to analyze streaming PMU data. 3-¢ criteria is utilized to distinguish the sliding
windows that contain major events from those which don’t. These methods can be used to extract features
from synchrophasor sliding windows, but it is worth noting that the 3-o confidence interval deployed in
these methods is static and determined by the complete offline observation set. Similarly, Aditya et al.
utilizes a static confidence interval in online anomaly detection, which is derived offline based on historical
observances of the metrics under consideration [6]. Most of the aforementioned anomaly detection methods
leverage either static threshold or static confidence interval based criteria to determine if a specific system
state is abnormal or not, and thus lack adaptiveness to unobserved scenarios.

In this section, we propose a PMU data driven online anomaly detection solution for power grids, which
adopts Chebyshev’s Inequality using two different approaches: (i) accumulative feature sample set and (ii)
sliding feature sample set. Both approaches replace the static threshold or confidence interval with an
adaptive confidence interval in the anomaly detection. Use of Chebyshev’s Inequality in anomaly detection
reduces the massive efforts required to determine a static detection criterion. The proposed solution is
capable of automatically updating the knowledge base of the detection engine such that it guarantees the
detection decision is always made according to an up-to-date confidence interval. In the following sub-
sections, a feature engineering method entitled Minimum Volume Enclosing Ellipsoid (MVEE) is reviewed,
Chebyshev’s Inequality and the two approaches for its application in online anomaly detection are intro-
duced, and experimental evaluation and result analysis are elaborated upon.
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Figure 2.1: Sliding window schema.

2.2 Streaming PMU Data Feature Extraction

Prior to application of the anomaly detection algorithm, it is often required to carry out feature engineering
in order to extract the most critical information and/or reduce the dimension of the raw data. In this section,
we apply multidimensional Minimum Volume Enclosing Ellipsoid (MVEE) on the PMU data scoped by every
sliding window to attain the features needed for anomaly detection.

2.2.1 Application of Sliding Window

Critical power system event information is embedded in raw PMU data sets. For streamed data such
as synchrophasor measurements, industry practitioners often utilize a sliding window for data analysis [8]
such that the feature extraction and detection can be performed in the context of the most recent raw data
segment. Various features can be derived to capture the correlation among multiple PMU channels. Such
features can serve as holistic system state indicators. It should be noted that the sliding window concept can
be applied not only to raw data, but also to feature values repeatedly derived from this data, since the feature
values also become a conventional time-series dataset. Fig. 2.1 depicts the main approach to applying
sliding windows used in this section. The label "pi” in the figure denotes a sample of the multidimensional
PMU data at time instance ’/’, and "Fi” represents the features value attained from a raw data sliding
window "W_ri”. "W_fi” is a second level sliding window, being applied in the feature space. The length of the
sliding window and the overlap between two adjacent windows usually is determined according to the time
scale of the specific targeted events empirically or as a tuning parameter by conducting repetitive offline
trainings. For online application, the window length dictates the applicable feature extraction techniques,
due to computational complexity concerns.

2.2.2 MVEE based Feature Engineering

In reference [7], the authors propose a feature extraction strategy entitled Minimum Volume Enclosing El-
lipsoid (MVEE). It defines a problem of searching for a minimum volume ellipsoid enclosing a set of PMU
data points within a sliding window. The data within a sliding window can be denoted by a matrix Xy x s,
i.e., this data set contains M samples from N PMU measurement channels. The sliding window matrix X
can also be denoted as 1, z2, z3, ..., zar, 2 € RY. An enclosing ellipsoid is defined as in (17).
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E(Ac)={z € RY|(z — )T Az —c < 1} (17)

In (17), vector ¢ € RY represents the center of the ellipsoid, and the positive definite matrix A contains
information regarding the shape and orientation information of the ellipsoid. Both A and ¢ can be determined
by solving the optimization problem (18), and A and ¢ together determines the MVEE enclosing all the data
points within the sliding window X. The objective function of (18) reflects the volume of the ellipsoid.

. 1 T )
min st(z;—c)  Alx; —c<1),i=1,..M;A<0 18
A Vaeras Al ) 18)

After the MVEE is obtained by solving (18), different features associated with the ellipsoid can be ex-
tracted and utilized for anomaly detection. For instance, the semi-axis lengths of the ellipsoid corresponding
to sliding window j can be calculated after applying singular value decomposition on matrix A7. In this cal-
culation, u;,v; € R™ are the left and right singular vectors respectively, and \; are the singular values. The
semi-axes lengths r; of the MVEE can be obtained as

; 1
K sqrtA; (19)

In this section, we propose to use the log sum of X/ as defined in (20) as the anomaly detection feature.
Please refer to [7] for more features that can be derived from MVEE.

N
feat! = logz )\f (20)

i=1

2.3 Application of Chebyshev’s Inequality

Critical information embedded in the streaming PMU data can be obtained after feature extraction. But in
order to detect anomalous operating states of a power grid, a decision has to be made given a specific
feature value. Typically, when the observed feature values deviate from the “normal pattern”, one may claim
the occurrence of anomalies in the system.

2.3.1 Static Threshold vs. Chebyshev’s Inequality

In order to tell if the feature value deviates from the normal value, we can compare the real time feature
values with a static threshold. Fig. 2.2 provides an example. The bottom plot depicts the voltage magnitude
measurements from 11 PMUs, and the top one shows the feature values corresponding to sliding windows.
We can qualitatively observe that the absolute feature value increases when the events occur. While a
static threshold of °’5’ would provide satisfactory detection performance for the events shown here, a clear
deficiency is that the static threshold lacks self-adaptiveness, and it will require manual adjustment when
facing other events to maintain the desired performance in a dynamic system. The traditional static thresh-
old often remains unchanged for too long, resulting in more frequent false positives and false negatives as
the system state evolves.

Instead of determining a static threshold through laborious offline analyses or qualitative assessments,
we can reformulate this problem as seeking for the confidence interval for the feature value with a predeter-
mined confidence level by utilizing Chebyshev’s Inequality.
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Figure 2.2: Anomaly detection based on static threshold.

For a random variable = with population mean p and standard deviation o, and any k& > 0, Chebyshev’s
Inequality states that

Plle— | > ho < ) (1)

Given a confidence level /%, the confidence interval in anomaly detection can be denoted as [uko, p+ko].
The expression indicates that the probability of x¢ [uko,u+ko] is less than k% . It's noteworthy that, to apply
Chebyshev’s Inequality, we need either the knowledge of the population mean and variance or a very large
number of samples so that the sample mean and variance can be also utilized. However, in practice,
operators can only have access to limited number of sliding windows.

To cope with this disadvantage of Chebyshev’s Inequality, statisticians have developed an extended
version of (21) [9]-[10]. With a given sample set of limited size, the extended Chebyshev’s Inequality defines
the confidence interval with sample mean m, sample standard deviation s, and the sample size N as in (22),
where Q? = 2152, The constant & can be set as 3 to 5 to achieve a satisfactory confidence level. The fact
that there is very low probability that the new feature value will fall outside of the confidence interval, in a
statistical sense, can be used to determine if an anomaly has occurred.

1 N+1 N-1

Plle =l 2 kQ) < 5=~~~

< + 1)) (22)

In the remainder of this section, considering that the application of the extended Chebyshev’s Inequality
relies on a feature value sample set, we will propose two different approaches by which to scope the feature
value sample set.

2.3.2 Approach 1: Accumulative Feature Sample Set (Cl 1)
The first proposed approach by which to implement Chebyshev’s Inequality is to use an accumulative feature

sample set to determine the confidence interval. As shown in Fig. 2.3, the continuous online detection
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No

starts with an initial feature sample set. The sample mean and standard deviation can be calculated and
then further utilized to determine the confidence interval under a certain confidence level. When a new
feature value is obtained based on the latest sliding window, it is compared against the confidence interval.
If the new feature value falls out of the interval, it is treated as an anomaly. Otherwise, the system state is
determined as normal. Only if the new feature value is normal will it be added into the feature sample set,
and a re-computation of the sample mean and standard deviation is needed. In this method, the feature
sample set continues growing. This method can determine the duration of events by continuously triggering
alarms during the entirety of the event since it does not involve any anomalous feature values in the sample
set.

N
Sk = g Do~ ) (23)
j=1
S% = 31 %1 Uy — ) (24

When applying Chebyshev’s Inequality with an accumulative feature sample set, the confidence interval
needs to be dynamically updated after a new sample is observed. To improve the computation efficiency,
equation (24) is utilized instead of (23) in the sample variance update. In both equations, S%, and fy is the
sample variance and sample mean of the augmented sample set respectively, which contains N feature
values f;,7 = 1,...,N. fy_1 is the sample mean before the new feature value is observed. With (24), the
sample variance computation complexity decreases from O(N) to O(17).

2.3.3 Approach 2: second-level sliding window (CI 2)

Another method by which to prepare the feature sample set is to keep updating the sample set along with
the observance of new sliding windows. As shown in Fig. 2.4, whether the feature value derived from the
latest sliding window is normal or not, it will be added to the feature sample set. In the meantime, the
oldest feature value will be discarded from the feature sample set. In such a way, the feature sample set
becomes the second level sliding window, as shown in Fig. 2.1. This detection method updates its sample
set whenever a new feature value arrives,and thus the feature sample set remains the same length. This
approach can reduce the alarms since the feature sample set will adapt to transient processes.
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2.4 Experimental Evaluation
2.4.1 Experimental Setup

In this section, we evaluate the proposed solution with two power system models. The first is the Kundur’s
2-area 4- machine system introduced in [11], as depicted in Fig. 1.6. This system is simulated using
Matlab/Simulink, and we assume that all the 11 buses have PMUs installed. The second model is the
Mini-WECC system [12], which is a reduced-order dynamic model of the WECC system with 120 buses,
172 lines/transformers and 34 generators. Mini-WECC system is modeled and simulated with the MATLAB
toolbox PST (Power System Toolbox).

Both physical disturbances and data integrity attacks are simulated for the 2-area system. In total,
200 physical event simulations are conducted, each lasting for 20 seconds. Each simulation involves a
load step change event at t=4s and a short circuit fault at t=15s. 200 more simulations are conducted
when the system is under data integrity attacks. We assume the adversary has recorded historical PMU
measurements, and he will replay the recorded data on a randomly selected PMU channel in real-time. In
the simulation, the cyber attack is equivalent to replacing the data from one PMU channel corresponding to
the event A with the data from the same channel recorded for a historical event B. Three-phase to ground
faults of a transmission line and load step changes are simulated with Mini-WECC model. For each type
of event, twelve 20s-long simulations are conducted. The three-phase fault occurs on a pre-determined
critical line at 15s, and the fault clears at 15.1s. For the simulation of load step change, all loads in the
system change at 1.4s simultaneously. The PMU sampling rate for all the simulations are configured to be
60 samples per second, and the voltage magnitude and angle are recorded for each bus. In the application
of the MVEE feature extraction, the sliding window size is selected as 20 samples, and the overlap between
two adjacent windows covers 19 samples. In this section, we assume that the PMU data are "cleaned”
by data preprocessing such as data filtering, and therefore, the interference influences due to data noises,
harmonics, etc. have not been incorporated in the synthetic data. We will investigate such conditions in our
future work.

2.4.2 2-Area system case study

Plots in Fig. 2.5 provides some insights into the performance of the static threshold method, and the Cl
1 and Cl 2 approaches. Fig. 2.5 (a) and (b) represent a physical event simulation and a cyber event
simulation respectively. Subplots in each from bottom to top are the positive sequence voltage magnitudes
of 11 PMUs, feature values, detection results of static threshold and that of Cl 1. The detection outcome
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for each sliding window is either 1 or 0. A pulse taking value 1 represents an anomalous system state,
while 0 means the system condition is normal. From (a) and (b), it can be seen that the Cl 1 is able to
detect all the anomalies in time (note the 4s and 15s time points). The static threshold based detection
fails to detect the load step change event in (a) at 4s, and for it to work for cyber attack scenarios in (b),
the static threshold needs to be changed to 0.5. Otherwise, nothing will be detected for (b). Realistically,
one cannot change the static threshold for every specific event. For the same two events, Fig. 2.5 (c) and
(d) depicts the detection results with ClI 2. If one compares the top subplot in (a) with (c), it is obvious that
the ClI 2 causes less alarms than Cl 1. The reason is that Cl 2 updates its base feature sample set by
incorporating every feature value regardless if it is normal or abnormal. That is, Cl 2 makes the detection
based on the information from the "localized” time interval with predefined length while decision making in
Cl 1 depends on all the information in the past. If the feature sample set size is too small, such as 50 feature
values are utilized in (d), Cl 2 can frequently induce false positives. Statistically, Table 1 lists the average
detection time for the three different anomaly detection approaches. If a true event doesn’t get detected, the
corresponding detection time is noted as 20s, which is the end time of the simulation. The performance of Cl
based approaches is better than the static threshold in terms of detection promptness. Table 2 provides the
recall values (recall = Tyuclositive) for the three approaches. Recall is adopted here since a false negative
is much more undesirable compared to a false positive in power system. The detection recall for both CI
based methods are satisfactory in physical events detection. However, for the stealthy replay attack that
we simulate, the recall is not as good with the single MVEE feature selected. Other features that are more
sensitive to the cyber attacks should be leveraged in the detection. But with the given set-up, we can see
that CI 2 is more sensitive than Cl 1 and delivers better recall. Fig. 2.6 shows the detection results when
multiple anomaly events take place in quick temporal succession. Three load changes occur at 4s, 6s, and
7s respectively. Cl 1 (50 initial feature values) roughly scopes the anomaly as two time intervals, while Cl 2
(80 feature values) doesn't trigger any alarms during the third event. This is because after the secondload
change event, the sample set is full of "abnormal” samples and therefore, feature values during the third
load change are labeled as normal. This can be regarded as a disadvantage intuitively, but in fact it might
become an advantage when we want to reduce the alarm numbers, and there is no need to distinguish
among frequent events.

Table 2.1: Average detection time (s).

This document is subject to the distribution statement and notices on the cover page.

Event Type Cl1 Cl2 Threshold
Load Change || 4.0634 4.0333 12.8
Fault 15.1976 15.2044 16.3
Cyberattack 17.4160 17.3443 20.0

Table 2.2: Average detection recall (%).
Event Type Cl1 Cl2 Threshold
Load Change 100 100 46.5
Fault 100 100 78.0
Cyberattack 54.0 67.5 0
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2.4.3 Mini-WECC case study

In Fig. 2.7, (a) represents a short circuit event occurs in MiniWECC system and (b) a load step change. ClI
1 keeps sending alarm from the time when the event starts for both cases, while the Cl 2 only triggers a few
alarms in the beginning. This further demonstrates the difference between Cl 1 and CI 2. Fig. 2.7 Cl based
methods applied on Mini-WECC data

2.5 Conclusions: Anomaly Detection Subroutine

This section investigates the application of Chebyshev’s Inequality in power system anomaly detection. Two
approaches are proposed: Cl 1 utilizes accumulated feature samples to determine the dynamic confidence
interval; while Cl 2 relies on a fixed-size feature sample set. Compared to Cl1, Cl 2 is more sensitive to
anomalous events and it can also reduce the number of alarms. Meanwhile, Cl 2 is more likely to commit
false positive errors, and its performance highly depends on the selected feature sample size. In practice,
multiple features should be utilized in anomaly detection, and Cl 1 and 2 can be combined to achieve better
accuracy and adaptiveness.
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Figure 3.1: Fault Event T3.

3 Phase lIB: Integration of Prototype Algorithm into GE PhasorAna-
lytics Synchrophasor Visualization Platform

A finalized version of the synchrophasor cyberattack detection algorithm has been ported from its MATLAB-
based development / validation environment into a set of fully-functioning Python modules, which enables
integration of the algorithm into a commercial synchrophasor visualization platform—PhasorAnalytics, from
GE Digital-using an embedded Python interface. It was verified that the standalone Python version per-
forms identically to MATLAB version. The Python interface within PhasorAnalytics allows for rapid proto-
typing of new software features, such as the WAMS cyberattack detection algorithm, within the software
framework.

Synthetic synchrophasor event datasets were pre-assembled by GEGR. These simulated test and train-
ing datasets were converted to the JSIS format and ingested into PhasorAnalytics. Using these synthetic
datasets, the performance of the cyberattack detection algorithm was demonstrated in PhasorAnalytics for
both replay cyberattacks and physical faults.

The WAMS cyberattack detection algorithm was trained on random two fault events from a set of 20
fault events. New fault events ‘T3’ and T6 were simulated, and their datasets were converted to JSIS
csv format and loaded into PhasorAnalytics. In Fig. 3.1 and 3.2 show the resulting visualization within
PhasorAnalytics, respectively (synchrophasor voltage angles are relative to bus 1). It can be seen that the
algorithm successfully detects fault events T3 and T6 and classifies them correctly.

Addtionally, cyber replay attack event T1 was simulated, it's dataset converted to JSIS csv format and
loaded into PA. Fig. 3.3 shows how the algorithm successfully detects and classifies the event as a cyber-
attack.
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Figure 3.3: Cyber Replay Event T1.
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