

1 **Microstructural Analysis of Tristructural Isotropic Particles in High-Temperature Steam**
2 **Mixed Gas Atmospheres***

3
4 Katherine I. Montoya^{a,†}, Brian A. Brigham^a, Grant Helmreich^b, Jesse Werden^b, Tyler J.
5 Gerczak^b, and Elizabeth S. Sooby^a

6
7 ^a Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX,
8 78249, USA

9 ^b Reactor and Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, TN,
10 37831, USA

11 **Abstract**

12 High-temperature gas-cooled reactors (HTGRs) use tristructural isotropic (TRISO) particles
13 embedded in a graphitic matrix material to form the integral fuel element. Potential off-normal
14 reactor conditions for HTGRs include steam ingress with temperatures above 1,000°C. Fuel
15 element exposure to steam can cause the graphitic matrix material to evolve, forming an
16 atmosphere composed of oxidants and oxidation products and potentially exposing the TRISO
17 particles to these conditions. Investigating the oxidation response of TRISO particles exposed to a
18 mixed gas atmosphere will provide insight into the stability under off-normal conditions. In this
19 study, surrogate TRISO particles were exposed to high temperatures ($T = 1,200^\circ\text{C}$) in flowing
20 steam ($5\% < p\text{H}_2\text{O} < 21\%$) and CO ($p\text{CO} < 1\%$) to determine the oxidation behavior of the SiC
21 layer when exposed to various mixed gas atmospheres. Scanning electron microscopy, x-ray
22 diffraction, and focused ion beam milling was used to determine the impact of CO and steam on
23 the oxidation behavior of the SiC layer. The data presented demonstrates how the SiC layer showed
24 strong oxidation resistance due to limited SiO_2 growth and maintained its structural integrity under
25 these off-normal conditions.

26 **Highlights**

27 Steam oxidation results of SiC at 1,200°C in 5–21% steam and 0–1% CO
28 SiO_2 growth were measured in low partial pressure of steam with CO present
29 Crystalline SiO_2 formed under all conditions
30 SiC layer displays microstructural degradation in a high-temperature mixed gas atmosphere

31 **Keywords**

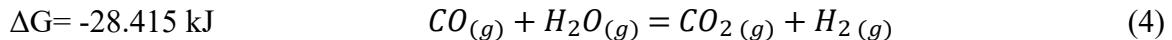
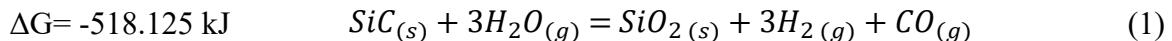
32 High-temperature gas reactor
33 Silicon carbide
34 Steam oxidation
35 Ion milling techniques
36 Nuclear fuel
37 TRISO

* This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (<http://energy.gov/downloads/doe-public-access-plan>).

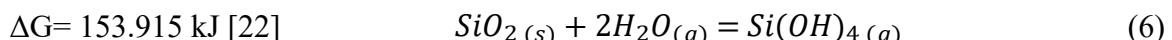
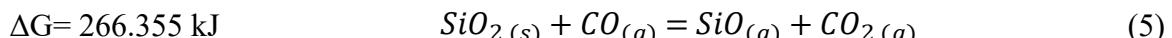
† Corresponding author: *E-mail address:* katherine.montoya@utsa.edu (K.I. Montoya).

1 **Microstructural Analysis of Tristructural Isotropic Particles in High-Temperature Steam**
2 **Mixed Gas Atmospheres**
3

4 **1. Introduction**
5



6 Tristructural isotropic (TRISO) particles are the proposed fuel form for high-temperature gas-
7 cooled reactors (HTGRs) [1, 2]. The TRISO design features four coating layers (three graphitic
8 and one silicon carbide (SiC)) that surround the actinide-bearing fuel kernel and provide structural
9 stability and fission product retention. The TRISO particles are typically encapsulated in a
10 graphitic matrix material composed of graphite flake and carbonized resin to form fuel elements
11 (e.g., cylindrical compacts or spherical pebbles). Multiple failure mechanisms of TRISO particles
12 have been identified, some of which can lead to the cracking of the SiC layer [3]. Nuclear fuel
13 performance codes such as PARFUME and BISON have been used to assess different SiC layer
14 failures but have yet to model all the phenomena [4-6]. Thinning of the SiC layer increases the
15 probability of SiC failure, specifically cracking and/or rupture, due to a reduction of structural
16 material to withstand internal particle pressure caused by fission gas and/or carbon monoxide (CO)
17 production. Appreciable CO build-up and SiC deterioration caused by a chemical attack by CO is
18 seen explicitly in UO₂ kernels at high burnups but is not as prevalent in the UCO TRISO kernels.
19 Thinning of SiC can occur in localized areas due to buffer and inner pyrolytic carbon (IPyC)
20 fracture. Under more extreme irradiation conditions and temperatures (T>1,800°C), IPyC cracking
21 can occur. The compromised IPyC layer can provide an additional pathway for fission products,
22 such as palladium, to accumulate, corrode, and degrade the SiC layer. This fission product
23 interaction causes localized thinning of the SiC layer and increases stress on the region resulting
24 in a higher probability of SiC failure. This mechanism of a failed IPyC layer and compromised
25 SiC layer due to fission product interactions was found to only occurred in only a few UCO
26 particles [7-9]. Both modeling efforts and experimental results determined that the structural
27 strength of the SiC layer in the traditional TRISO designs decreases as it thins [4-6, 10]. The SiC
28 layer will still be able to withstand typical HTGR operating conditions until it reaches the critical
29 point of 20 µm [4-6, 11].

30 For an HTGR utilizing a Rankine power cycle, a hypothesized off-normal reactor condition
31 would be produced in the core if the secondary cooling line were to rupture, causing the helium
32 coolant to become contaminated with the secondary coolant [12, 13]. In designs where the
33 secondary heat transfer medium is steam, the depressurized loss of forced cooling could result in
34 steam exposure to fuel elements. Depending on the temperature and partial pressures of oxidant
35 ingress, some matrix material will volatilize, producing a mixed-gas atmosphere that contains both
36 steam and volatile graphite oxidation products [14]. If sufficient oxidation occurs, the fuel
37 element's structural integrity, specifically the SiC layer, may be degraded [14].



38 Under HTGR accident conditions, the steam partial pressure can reach 400 kPa *pH₂O*, but
39 lower partial pressures <3 kPa *pH₂O* are more likely and can vary by reactor design [12, 13, 15-
40 17]. Brigham *et al.* demonstrated that the exposure of matrix material to steam reduces the partial
41 pressures of oxidants (as H₂O and O₂ are consumed) and produces significant concentrations of
42 CO, CO₂, and H₂ at T>800°C [18]. At high temperatures (T>800°C) and lower partial pressures of
43 steam (<10 kPa *pH₂O*), the reported CO mass spectrometry signal was greater than CO₂, indicating
44 CO is the predominant graphite matrix oxidation product in simulated HTGR accidents involving
45 lower, less than 10%, partial pressures of steam [18]. Oxidation of the SiC layer by either chronic
46 or acute exposure to oxidants in the He coolant would lead to SiC layer recession and the

1 subsequent growth of SiO_2 (i.e., passive oxidation) or volatilization of silicon hydroxides (i.e.,
2 active oxidation). During high-temperature steam exposure, the passive oxidation behavior of SiC
3 can be described by the formation of a protective silica (SiO_2) scale that slows the transport of
4 oxygen to the bulk SiC material.

5 Thermodynamically, SiC reaction with steam and CO is anticipated to be governed by
6 Equations 1 and 2 due to the more negative change in Gibbs Free Energy (ΔG) per mole reactant.
7 The ΔG is presented for equations 1–5 at 1,200°C as calculated using the ‘Reaction Equations’
8 module in HSC chemistry [19]. Equation 1 is considered the global steam reaction equation that
9 describes the often passivating behavior that has been reported up to 1,200°C in $\text{H}_2\text{O}_{(g)}$. Equation
10 3 is the primary active, volatile forming response for SiC that may occur in the active regime [20–
11 22]. Equation 4 describes the reaction where the oxidation potential in this atmosphere can be
12 reduced and potentially limit the amount of oxide growth due to $\text{CO}_{(g)}$. Equations 3,5, and 6 are
13 potential reactions that can occur if the oxidation regime is active would result in some loss of the
14 SiO_2 layer or prevent further growth .
15

16
17 As SiO_2 grows in thickness, the oxidizing reaction described by Equation 6 can occur
18 simultaneously and eventually reach a steady-state thickness where the SiO_2 volatilizes as a
19 hydroxide at the same rate that the oxide forms. This dynamic is often observed as a para-linear
20 oxidation response [23]. Although Equation 5 is less thermodynamically favorable due to its
21 positive ΔG value, experimentally, it has been seen that the SiO_2 can be formed and then reduced,
22 leading to volatilization of the oxide if the partial pressure of CO is sufficient. Increasing the local
23 partial pressure of CO can prevent further formation of the SiO_2 layer and potentially damage the
24 layer [24]. If active oxidation occurs after the formation of the SiO_2 , the volatilization of SiO_2
25 (cristobalite) can follow Equations 6 with $\text{Si(OH)}_{4(g)}$ as the primary volatile reaction product as
26 observed in high-temperature steam experiments [20, 22]. Equation 6 dominates for high partial
27 pressures of steam and high temperatures as the SiC undergoes active oxidation [20]. The
28 predominance of $\text{Si(OH)}_{4(g)}$ is dependent on the pH_2O and temperature and has been
29 experimentally measured to produce a small amount ($\sim 10^{-5}$ bar) at 1,300°C in 1 atm steam [20,
30 22, 25]. The ΔG seen in Equation 6 further suggests that this reaction is thermodynamically
31 unfavorable at temperatures below 1,200°C and pressures below 10⁻⁷ MPa, however the
32 phenomena is observed in numerous studies [20, 22, 26] at $T \geq 1,200^\circ\text{C}$, potentially progressing in
33 a multistep reaction.
34

35
36 Bulk SiC oxidation behavior has also been studied by Opila *et al.* [27–29] in combustion
37 environments and reducing mixed gas atmospheres where H_2O , O_2 , CO , and CO_2 are present.
38 Although the concentrations of the gases presented are not representative of a reactor scenario, the

1 studies provide insight into the oxidation response of SiC to mixed gases. Opila *et al.* determined
2 that atmospheres composed of both oxidizing and reducing gases (CO₂ and CO) can inhibit the
3 growth of the passive SiO₂ layer by reducing the *p*O₂ in the atmosphere, preventing further SiO₂
4 growth and can lead to volatilization of the SiO₂ [21]. Additionally, Opila *et al.* determined that in
5 atmospheres composed of CO-CO₂ and H₂O-H₂ mixtures, where both oxidizing and reducing
6 agents are present, the partial pressure of the oxidant (CO₂ and H₂O in that study) allows for the
7 formation of the SiO₂, it is not able to prevent the volatilization of the SiO₂ layer [28, 30, 31]. The
8 presence of the reducing agent consumes any free oxygen present in the atmosphere and
9 contributes to mass loss due to the interaction with the reducing agents and the SiO₂.

10 Exploring the impact of an HTGR accident-relevant steam and CO mixed gas atmospheres
11 provides insight into the microstructural response of the SiC layer to oxidation. Exposure of the
12 SiC layer to an oxidizing, mixed gas atmosphere could compromise the SiC. Some fission products
13 are present in the SiC layers after irradiation of TRISO fuel [32, 33]. Oxidation SiC layer may lead
14 to thinning of the SiC layer leading to increase probability of fuel failure [5, 6]. The investigation
15 presented here includes particle exposure to steam and relevant CO concentrations (0.1 and 1%
16 mol fraction) to simulate mixed gas atmospheres after matrix graphite oxidation. These conditions
17 model the off-normal scenario of the contaminated coolant introducing oxidants to the TRISO
18 particles after the matrix and outer PyC (OPyC) layer have evolved and exposed the SiC layer.
19 The objective of this study is to probe partial pressures of steam and CO. Determining the behavior
20 of the SiC layer using microstructural characterization and x-ray diffraction (XRD) to understand
21 the microstructural and thermochemical degradation of TRISO particles when exposed to high-
22 temperature mixed gas atmospheres.

24 **2. Materials and Methods**

25 **2.1 Materials**

26 Oxidation testing and microstructural characterization were conducted on AGRBW-4A2 ZrO₂
27 kernel particles, which are ~0.6 mm in diameter and weigh ~0.7 mg each, received from Oak Ridge
28 National Laboratory (Oak Ridge, Tennessee, USA). These surrogate coated particles, referred to
29 as SiC-terminated, were fabricated without the buffer layer or outer pyrolytic carbon (OPyC) layer
30 specifically for systematic strength testing of fluidized bed chemical vapor deposition (FBCVD).
31 The resulting SiC layer is the outermost layer in this particular particle design and maintains
32 relevant features to TRISO fuel architectures [34, 35]. The exposed SiC layer produced a SiC layer
33 with near-representative properties to those found in typical TRISO fuel, while the exposed SiC
34 outer surface allows for direct observation of the oxidation response of the SiC layer in the absence
35 of the OPyC layer.

36 **2.2 TRISO oxidation testing**

37 The SiC-terminated particles were subjected to oxidation testing in a Netzsch F3 449 Jupiter
38 Simultaneous Thermal Analyzer (STA) (449 F3, Netzsch Instruments, Selb, Germany) equipped
39 with a SiC element furnace with a water vapor adapter (1,600°C maximum temperature) and inline
40 RapidOx O₂ sensors (RapidOx OEM447, Cambridge Sensotec) to measure trace, contaminant O₂
41 levels. During each test, 200 particles were placed in an additively manufactured yttria-stabilized
42 zirconia (YSZ) mesh basket in a hanging sample configuration. The custom basket design is

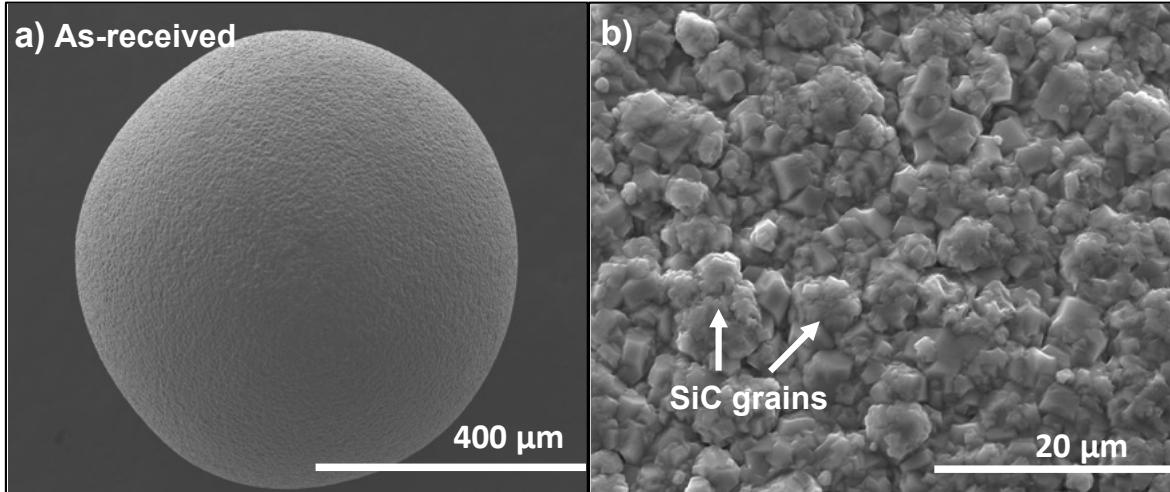
1 intended to allow for laminar flow of gas over and around the particles while limiting the potential
 2 of fixturing interaction within the furnace. During the thermal ramp, argon (Ar) was purged
 3 through the furnace at 200 standard cubic centimeters per minute (sscm) via the integrated STA
 4 mass flow controllers and 8 NL/hr (112 sscm) via the heated stainless-steel water vapor generator
 5 transfer line, as the system was heated at 10°C/min to the isothermal test temperature. To allow
 6 the system to thermally equilibrate, the system was held at 1,200°C under an Ar-only atmosphere
 7 for 20 minutes before steam and CO were introduced for the 10-hr isotherm. The system was
 8 cooled to room temperature at 20°C/min with flowing Ar. Steam generation rates were 0.75, 2,
 9 and 4.0 g/hr to target corresponding mole fractions of 5, 9, and 21% steam. While CO from either
 10 a 0.1% or 2% secondary standard gas cylinder (balance Ar) was injected into the furnace at 100
 11 sscm for corresponding concentrations of 1,000 and 10,000 ppm, respectively. Steam generation
 12 rates remained the same as CO was introduced at either 0.1% or 1%. The unchanged steam rates
 13 allowed for the total moles of steam exposed to the sample to remain the same for each subset of
 14 tests (.75, 2 and 6 g/hr), though the overall partial pressure is reduced due to the dilution of the
 15 steam with CO and the Ar carrier gas, as per Dalton's law. The steam-only conditions allow for
 16 comparison to the respective steam with CO-exposed specimens in the condition set to determine
 17 the impact of high-temperature CO and steam on the microstructure. The naming scheme labels
 18 the conditions as steam-only, 0.1%, and 1% CO as conditions of the steam flow conditions. The
 19 exposures were performed at $T=1,200^{\circ}\text{C}$ for 10-hour isotherms with varying partial pressures of
 20 steam ($5\% < p\text{H}_2\text{O} < 21\%$) and CO (0.1% and 1.0%) as summarized in Table 1. The mixture
 21 concentrations for each exposure were calculated via the Ar/CO calibration factor, Ar purge flow
 22 rate, and water mass flow rate. The measured change in mass was within the error of the TGA
 23 measurement technique, and thus the TG results are not presented here. Specifically, the mass
 24 change over the course of the 10-hour exposure is comparable to drift in baseline measurements.
 25 The lack of quantifiable weight change demonstrates, despite the sample size containing 200
 26 particles, there is difficulty in determining the amount of oxide grown during exposures due to the
 27 slow kinetics of SiC oxidation. Any slight changes are within the error of the measurement
 28 technique.

29

ID	Carrier Gas flow rate (NL/h)	Purge gas rate (sscm)	Water mass flow (g/h)	Resulting Condition
1	8	200	4.0	21% H_2O
2	8	200	4.0	21% $\text{H}_2\text{O} + 0.1\% \text{CO}$
3	8	200	4.0	21% $\text{H}_2\text{O} + 1\% \text{CO}$
4	8	200	1.5	9% H_2O
5	8	200	1.5	9% $\text{H}_2\text{O} + 0.1\% \text{CO}$
6	8	200	1.5	9% $\text{H}_2\text{O} + 1\% \text{CO}$
7	8	200	0.75	5% H_2O
8	8	200	0.75	5% $\text{H}_2\text{O} + 0.1\% \text{CO}$
9	8	200	0.75	5% $\text{H}_2\text{O} + 1\% \text{CO}$

30

31 Table 1-Summary of exposure conditions of 10-hr at 1200°C isotherms with varying $p\text{H}_2\text{O}$ and
 32 $p\text{CO}$.


33

1
2 **2.3 X-ray diffraction**
3

4 A Bruker D2 phaser benchtop powder x-ray diffractometer was used to collect diffraction
5 patterns of the particles pre-and post-exposure to compare the crystallographic phase
6 compositions. The 200 particles pre-and post-exposure were placed in a low background holder
7 with measurements taken from 18 to 80° 2θ with a 0.01 step size and 3-second dwell time per step.
8 Surveying whole particles provides a non-destructive method for acquiring data on the
9 crystallographic phases and allows for SEM characterization of the same as-oxidized TRISO
10 particles following oxidation exposure. Data processing and visualization were performed on
11 Bruker DiffracEVA (version 5.0) software. To determine the phase abundance for each exposure,
12 each phase was normalized to its corresponding powder diffraction file (PDF), and then the semi-
13 quantitative analysis function on the DiffracEVA software was used to quantify the relative phase
14 abundance. The semi-quantitative technique uses the normalized intensity of the main peak from
15 the reference PDF and fits it to the main peak of the obtained spectra to determine the relative
16 abundance for each phase. The semi-quantitative analysis can result in some uncertainty in the
17 measured amount of each phase because the main peak can be significantly more intense than the
18 others, leading to an over- or underestimation of the other peaks causing the relative abundance of
19 this phase not to be accounted for fully. This measurement was intended to provide an estimated
20 ratio of the SiC and SiO₂ phase abundances and identify any trends. Each set of conditions had a
21 consistent C amount suggesting that the phase values could provide a relative ratio.
22

23 **2.4 Scanning electron microscopy**
24

25 Top-down scanning electron microscopy (SEM) was used to visualize the evolved
26 microstructure of the SiC surface pre-and post-exposure. TRISO particles were cleaned before
27 imaging by using an ultrasonic bath (acetone followed by methanol) to eliminate debris from the
28 particles' surface. SEM analysis was performed on a Hitachi FlexSEM 1000 equipped with
29 secondary electron (SE) and backscatter electron (BSE) detectors. BSE images were used to
30 identify surface structures and potential compositional changes in the structure. Ten particles were
31 selected from each condition to observe the microstructural evolution of the surface of the SiC
32 layer. Top-down or as-oxidized imaging targeted the observation of the change in surface
33 morphology of the SiC surface and SiO₂ formation. Initial SEM characterization, as shown in
34 Figure 1, displays the as-received particle surface. The rough surface results from the termination
35 of the columnar SiC grains during the fluidized bed chemical vapor deposition fabrication process
36 [36].
37

1
2 Figure 1. BSE micrographs of as-received TRISO SiC-terminated particles with (a) the SiC layer
3 as the outermost layer and (b) the initial uneven SiC surface.

4 Focus ion beam (FIB) milling was performed on an FEI Versa dual-beam FIB-SEM equipped
5 with a Ga^+ focused ion beam to analyze the SiO_2 -SiC interface and measure oxide growth. In a
6 previous study [37], FIB milling on uncross-sectioned TRISO particles was successfully
7 demonstrated for an oxide thickness analysis on SiC by trenching. The cross-sections provide
8 information on oxide thickness, pore formation, and SiO_2 layer cracking. Cross-section images of
9 the oxide layer were acquired in SE mode at 5 keV in high-vacuum mode. Pt was deposited on the
10 surface to prevent rounding and accurately measurement of the SiO_2 thickness. FIB milling was
11 performed on two particles for each exposure with two milled locations on the selected particles.
12 ImageJ (1.8.0_172) was used to determine the thickness of the SiO_2 layer using an average of
13 twenty measurements for each exposure condition [38]. This method was performed for all
14 oxidized particles for both locations on each particle. The brightness and contrast of the
15 micrographs were adjusted to create a distinction between SiO_2 -SiC and Pt- SiO_2 interfaces, and
16 then SiO_2 thickness measurements were made. Two select whole particles were cross-sectioned
17 using a Hitachi ArBlade 5000 ion milling system, as shown in Figure 2, and imaged using the
18 Hitachi FlexSEM 1000. This method complements and validates thickness measurements from
19 FIB prepared samples.

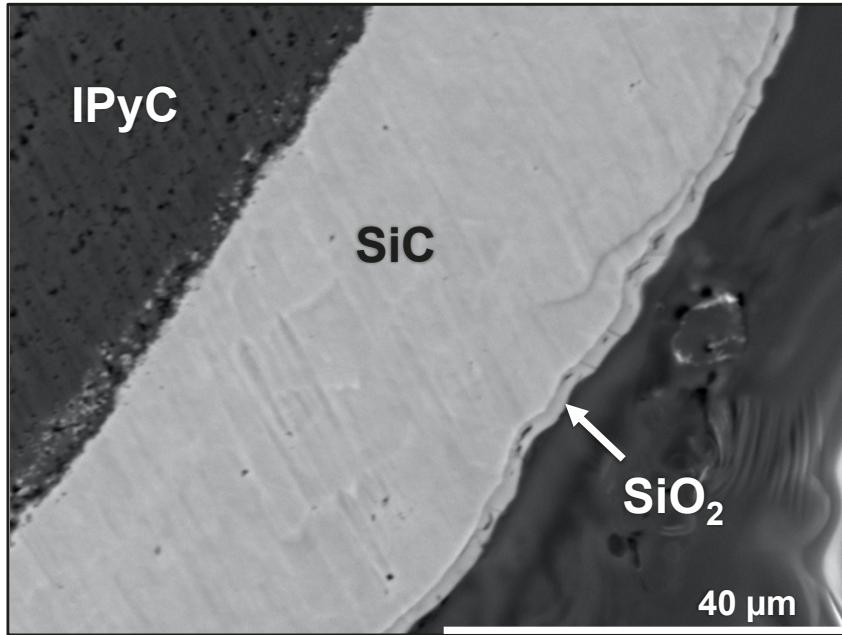


Figure 2-Surface ion milled cross-section of SiC-terminated particle exposed to 1,200°C, 21% steam with preserved SiO₂-SiC interface

2.5 Optical Microscopy

Optical microscopy was performed using Olympus DSX500 Opto-Digital Microscope equipped with a 10X lens. Micrographs were used to measure diameters of as-received and oxidized particles using shadow imaging [39]. Images were calibrated using 1 mm ball bearings to determine the image resolution. The stitching feature in the Olympus software allowed for imaging of a larger area to prevent repeated measurements of the particles. Combining the diameter results obtained during shadow imaging with the reported kernel and IPyC dimensions as well as the SiO₂ thickness measurements provides insight into potential changes in the SiC layer.

3. Results

3.1 X-ray diffraction analysis

The XRD data obtained after each exposure are arranged by increasing *p*H₂O and *p*CO atmosphere in Figure 3. The powder diffraction files (PDFs) of each identified phase are also listed in Figure 3. Targeted phases included SiC, SiO₂, C (graphite), and ZrO₂. A shift of -0.122° 2θ was observed and fit to the main SiC peak at 35.6° for all measurements. The observed shift is due to the height difference of the particles with respect to the standardized measurement plane. The as-received spectrum of the particles displayed notable peaks for SiC, C (IPyC), and ZrO₂, which correspond to the fabricated layers with no SiO₂ detected. Identified C phase is within the approximate 40 μm probing depth of the XRD. The ZrO₂ phase may be due to kernel contributions. The intensity of the SiC peaks is mainly unaffected by the exposures.

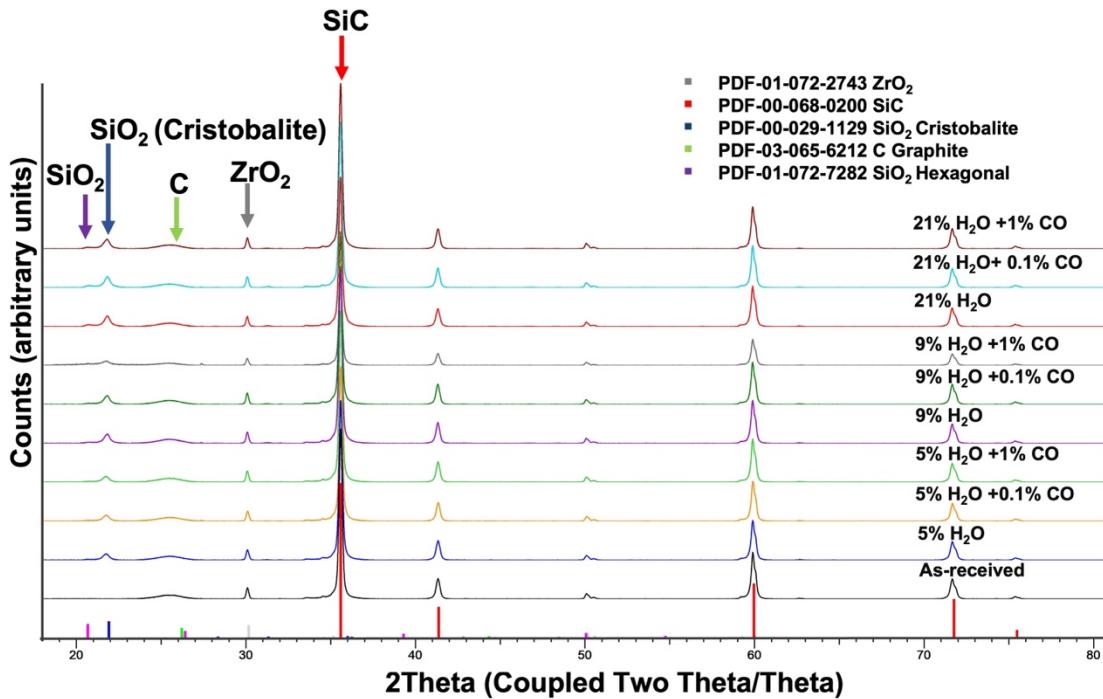


Figure 3. XRD patterns of as-received and as-oxidized TRISO particles samples are arranged by increasing steam exposure. The main peaks of each identified phase are denoted with an arrow corresponding to a PDF color.

Semiquantitative analysis was performed in the DiffracEva (version 5.0) software for each XRD scan, and the results are presented in Table 2. XRD analysis confirmed the presence of SiO_2 and determined that cristobalite with a minor, secondary hexagonal SiO_2 phase formed for all conditions. The semiquantitative analysis focused on the ratio of SiC consumption to the formation of SiO_2 . The ZrO_2 and C abundances were nearly identical for all scans because these contributions are from the surrogate kernel and IPyC layer which should be unaffected by the exposure. Any changes in the C phase can be attributed to the varying SiC- SiO_2 thickness. XRD analysis confirmed the presence of a stable crystalline SiO_2 layer under these conditions and of the SiO_2 phases that were identified, cristobalite being the dominant of the two and the greatest amount of the hexagonal phase seen in the steam-only conditions. Similarly cristobalite and quartz phases were observed in a previous high temperature steam exposure study performed on SiC exposed TRISO [40]. The SiC concentration observed here decreased as the two identified SiO_2 phase concentrations increased as shown in Table 2. The exposures containing a higher concentration of CO reduced the amount of SiO_2 formed compared to the pure steam exposures. Amorphous SiO_2 could not be detected this measurement.

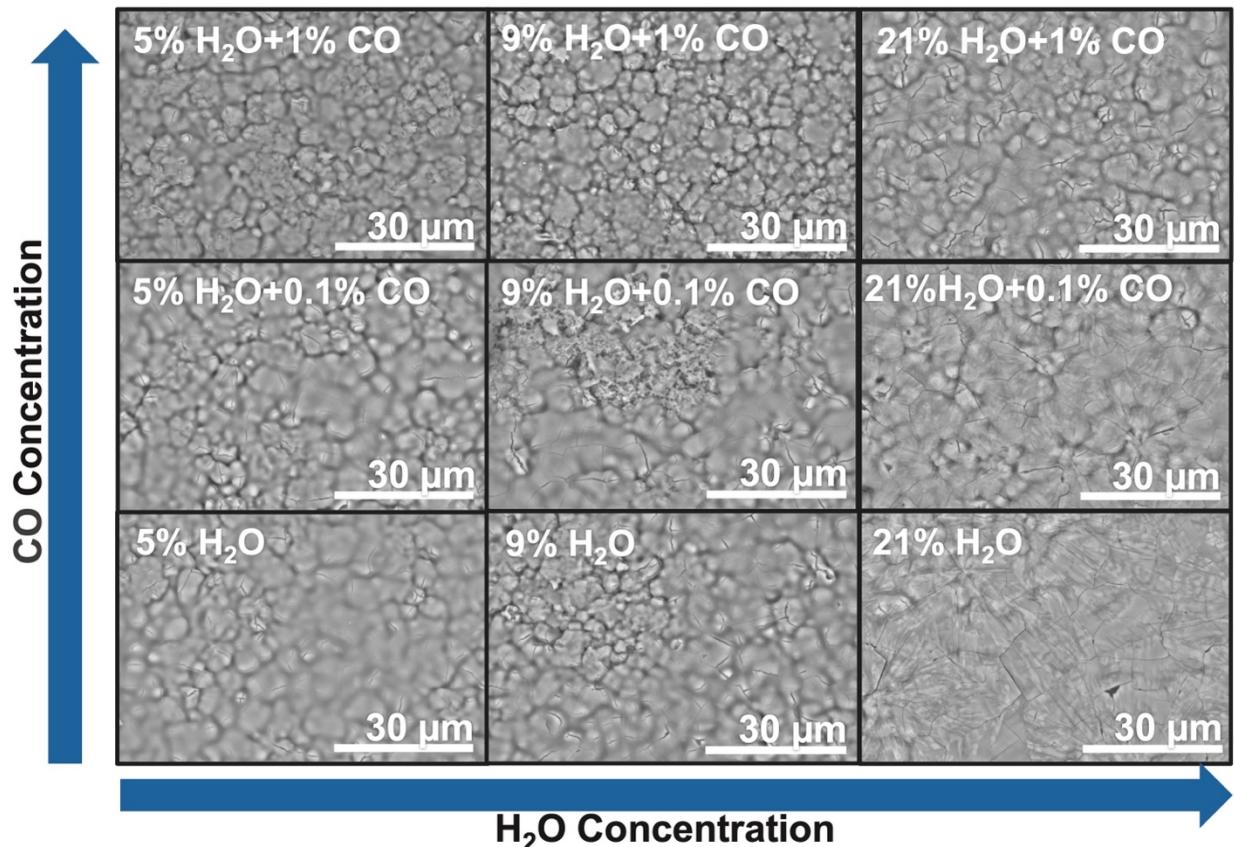

Condition	SEM Measurement		XRD Measurement				
	Average SiO ₂ thickness (μm)	SiC	SiO ₂ (cristobalite)	SiO ₂ (hexagonal)	ZrO ₂	C (graphite)	
As-received	-	98.7%	0.00%	0.10%	0.60%	0.60%	
5% H ₂ O +1% CO	0.72 (SD=0.08)	97.7%	0.60%	0.60%	0.60%	0.60%	
5% H ₂ O +0.1% CO	0.80 (SD=0.15)	97.6%	0.60%	0.60%	0.60%	0.60%	
5% H ₂ O	0.87 (SD=0.13)	96.9%	0.60%	0.40%	0.60%	0.60%	
9% H ₂ O +1% CO	0.95 (SD=0.12)	96.6%	0.70%	1.60%	0.60%	0.50%	
9% H ₂ O +0.1% CO	1.04 (SD=0.10)	97.4%	0.90%	0.60%	0.60%	0.50%	
9% H ₂ O	1.10 (SD=0.12)	97.2%	0.90%	0.70%	0.60%	0.60%	
21% H ₂ O +1% CO	1.49 (SD=0.11)	97.2%	1.00%	0.70%	0.60%	0.50%	
21% H ₂ O+ 0.1% CO	1.70 (SD=0.10)	96.7%	1.10%	1.10%	0.60%	0.50%	
21% H ₂ O	1.68 (SD=0.16)	96.5%	1.20%	1.20%	0.60%	0.50%	

Table 2-Summary of semi-quantitative analysis arranged by increasing *pH₂O* atmosphere with microscopic measurements with its standard deviation of the SiO₂ layer thickness.

3.2 Scanning Electron Microscopy Results

Figure 4 provides representative images of the particle's surface morphology post-exposure for each oxidation condition tested. All exposures displayed varying amounts of SiO₂ growth verifying the detection of SiO₂ from the XRD analysis. For the 21% steam-only exposure, the micrograph displays the most uniform oxide scale with surface cracking present. The surface cracking likely formed on cooling with the phase transition of the crystalline SiO₂ due to a mismatch in the coefficient of thermal expansion (CTE) with the base SiC layer [41-43]. The SiO₂ scale formed with the highest steam partial pressures had very little of the original surface morphology (refer to Figure 2) remaining as seen in the 21% steam column of Figure 4. The least amount of observable surface oxide present was present at the highest concentration of CO with the lowest partial pressure of steam being 5%. At 5% steam with 1% CO, there is little SiO₂ layer growth relative to other conditions, and most of the original SiC surface morphology is visible. As the CO concentration increased, it was inferred that the SiO₂ layer that formed was a non-uniform due to the as-oxidized SiC exposed surface having a similar morphology to the as-received surface of the TRISO particles seen in Figure 1. Under these conditions, the microstructure evolution may follow Eq. 3 and 5, where CO can inhibit the amount of SiO₂ formed and/or cause SiO₂ to volatilize by reducing the *pH₂O* as seen in Eq. 6. Volatilization would need to be confirmed via recession measurements and/or significant changes in the thermogravimetric data, which were not observed in this study. Additionally, the lower *pH₂O* with increased CO amount can allow for the CO amount to getter any addition H₂O, as seen in Eq. 4, further limiting the SiO₂ growth. A minimal amount of surface porosity in the SiO₂ layer was observed for all conditions.

1

2 Figure 4-BSE micrographs of the evolved surface microstructures arranged by $p\text{H}_2\text{O}$ and $p\text{CO}$
 3 atmospheres.

4 In Figure 5, the surface of an oxidized TRISO particle with a selected trenching area displays
 5 the varying surface topography of the particle. The uneven surface is a function of the FBCVD
 6 deposition process and provides a rough surface for the SiO_2 to form. Figure 5 labels the
 7 topography with peaks (white arrows) and valleys (red arrow). These height differences in the SiC
 8 grains contribute to how the SiO_2 will grow from an uneven surface.
 9

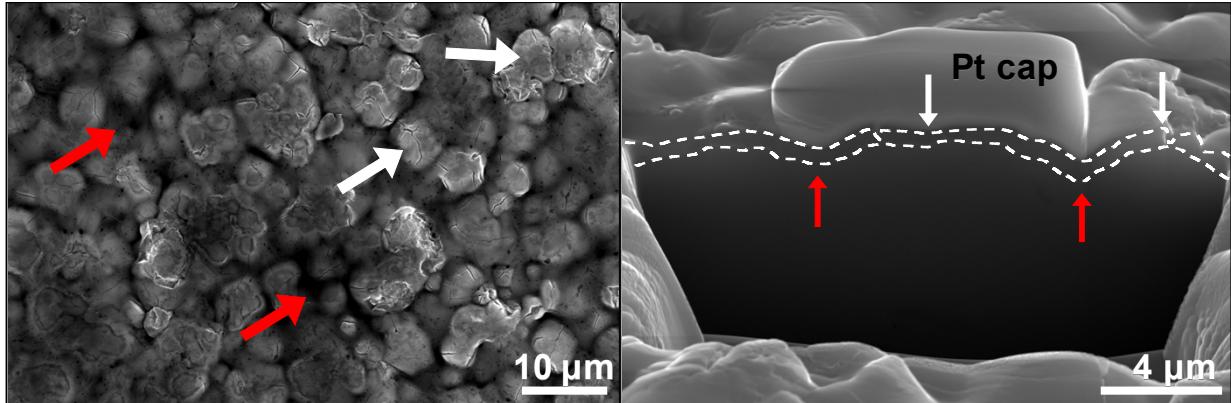


Figure 5-SE micrographs of the microstructures formed when exposed to 5% steam with 1% CO. The surface displays varying surface topographies. White arrows indicate areas of higher height differences and red arrows indicate areas of lower height difference.

Figure 6 provides representative FIB cross-sections used to determine the values shown in Table 2 arranged by the increasing steam and CO concentrations. From Figure 6, the FIB cross-sections determined that all conditions had produced a SiO_2 layer, confirming the XRD results from Section 3.1. The 21% H_2O atmospheres displayed the most oxide growth overall. The variance in oxide thickness is largest with 1% CO exposures. Conditions that contained 1% CO had lower amounts of oxide growth when compared to the steam-only conditions, suggesting that CO may inhibit the amount of SiO_2 that can form. The measured SiO_2 thickness for all exposures is $<2 \mu\text{m}$ which is lower than the thicknesses reported for 100% steam exposures at similar temperatures [11, 40]. The resulting SiO_2 layer was dense with some porosity, seen in the void structures in the SiO_2 layer. The void features observed more often in the higher partial pressures of steam ($p_{\text{H}_2\text{O}}=21\%$) are likely due to trapped gases such as CO or H_2 produced during SiC consumption [40]. Larger pores were observed in the 1% CO conditions giving the appearance that a more complex SiO_2 layer had formed. The porosity may be attributed to the formation of H_2 shown in Eq.1 [40]. For all conditions, there is variation in the thickness of the SiO_2 as it formed on uneven SiC grains as seen in Figure 6. Vertical cracking observed in the SiO_2 layer was reported to form during cooling due to the mismatched thermal expansion coefficients of the SiO_2 and the SiC [11, 40] which was noted in the surface morphology analysis (Figure 4). XRD, surface microscopy, and FIB cross-sections provide insight into the SiO_2 presence and abundance following the mixed atmosphere exposures. However, recession cannot be quantitatively determined as the overall change in particle diameter is within the diameter variation from particle to particle.

25

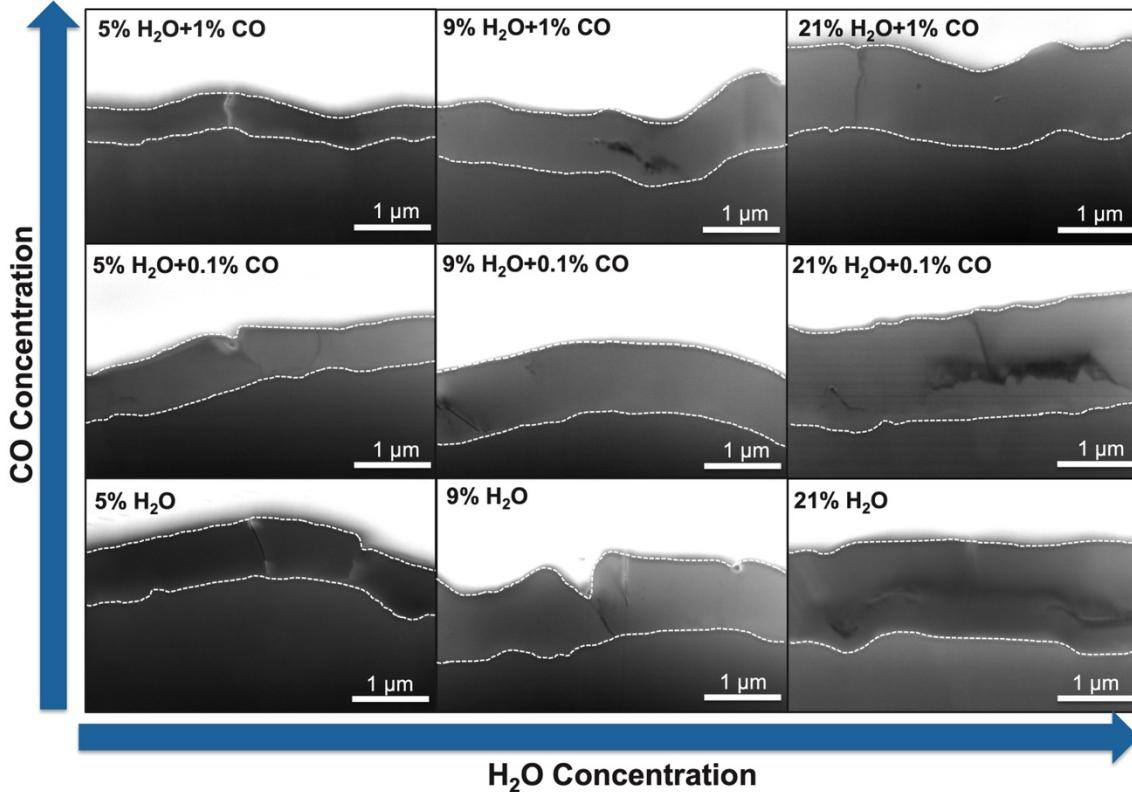


Figure 6-SE micrographs of SiO_2 - SiC interface. The protective Pt layer is observed in the lightest phase, and the SiC is observed in the darkest phase. Dotted lines highlight the SiO_2 layer.

4. Discussion

4.1. Oxidation of SiC in mixed gases

SiC oxidation in the TRISO design was previously studied at high temperatures ($T > 1,200^\circ\text{C}$) paired with high partial pressures of steam ($p\text{H}_2\text{O} > 20\%$) [11, 40, 44]. However, low partial pressures of steam and CO as a mixed oxidant atmosphere have not been comprehensively investigated. The typical oxidation behavior seen under high partial pressures of steam conditions involves the formation of SiO_2 and its subsequent volatilization in appreciable steam concentrations at $T > 1,200^\circ\text{C}$. The behavior of the SiC in this investigation, when exposed to low partial pressures of the contaminants, provided insight into the oxidation mechanisms under mixed gas atmosphere composed of a oxidizing and reducing gas. The predominant behavior suggested that the SiC underwent passive oxidation to form SiO_2 . Kinetic rates could not be calculated in this study as each particle weighs ~ 0.7 mg, and weight changes were not distinguishable in the TG signal, even with 200 particles in each exposure. The lack of measurable weight change led to a focus on the evolution of the microstructure in the SiC layer caused by presence of high-temperature mixed gases. Oxidation testing of bulk SiC at high temperatures and high partial pressures of H_2O resulted in the formation of a SiO_2 layer. Cristobalite is the more thermodynamically favorable and stable of the two SiO_2 phases formed in this study and under high-temperature steam atmospheres ($T > 1,000^\circ\text{C}$) [27, 40]. Despite the presence of CO, the formation of crystalline SiO_2 was seen under all conditions. If the amount of CO is not appreciable, it cannot suppress the volatilization of the SiO_2 to $\text{SiO}_{(g)}$ due to the higher partial pressure of H_2O .

[21]. The microstructures shown in this study, specifically porosity and cracking on the surface of the SiO_2 layer, have been seen in other high-temperature steam exposures [11, 40, 44, 45]. The high-temperature steam-only studies [11, 40, 44] noted pore formation in the SiO_2 layer due to diffusion and entrapment of CO and H_2 gas produced from Eq. 1. The porosity was greatest in the higher $p\text{H}_2\text{O}$ conditions, potentially leading to a thicker oxide layer. Cracking of the SiO_2 layer upon cooling is due to differing coefficients of thermal expansion between the SiO_2 and SiC [11, 40, 44, 46]. Due to the high partial pressure of steam, the dominant oxidation mechanism observed in these studies was the formation of the SiO_2 scale. However, the SiO_2 may have reacted with the steam and formed silicon hydroxide $\text{Si(OH)}_{4(g)}$, which can become volatile at temperatures greater than 1,200°C, or the presence of a reducing gas may have slowed the growth of the SiO_2 layer [23].

Parabolic rate constants from Cho *et al.* and Cao *et al.* [11, 44], where comparable $p\text{H}_2\text{O}$ at 1,200°C were tested on TRISO particles, were used to determine if the amount of oxide formed in the presented work followed a similar growth trend as seen in the two listed investigations. The amount of SiO_2 growth seen for the 5, 9, and 21% steam-only conditions were within or below the calculated value of 1.9 μm , which was extrapolated from Cho *et al.* and Cao *et al.* [11, 44]. The hypothesis was that introducing varying $p\text{CO}$ amounts would produce thinner oxide layers than in the H_2O -only atmosphere. The 1% CO conditions favored Eq. 4, limiting the amount of oxide growth, making Eq. 1 less favorable but still the dominant reaction [21]. The differences between the extrapolated value using the rate constants from Cho *et al.* and Cao *et al.* [11, 44] and the measured SiO_2 growth in a pure H_2O atmosphere could be due to the oxidation testing method where tube furnaces equipped with alumina working tubes and fixturing were used [11, 44] versus a yttria-stabilized zirconia (YSZ) basket used in this investigation. Alumina can volatilize in high-temperature steam environments and within the tube itself can affect the oxide growth [47]. In an effort to mitigate any sample interactions with the alumina tube of the STA that could alter the oxidation rates, the particles were placed in a hanging perforated YSZ basket. Additionally, mechanical testing has been performed on TRISO particles exposed to high temperatures ($T > 1,200^\circ\text{C}$) and high partial pressures of steam ($p\text{H}_2\text{O} > 20\%$) and determined that under the testing conditions, the fracture strength of the SiC decreases [11, 44]. Despite the decrease in fracture strength due to thinning of the oxidized SiC layer, the TRISO particle is predicted to still withstand the pressures due to internal fission gas pressure until the SiC layer reaches a thickness of 20 μm [11]. The oxidized SiC layer in this study is expected to maintain its integrity and ability to retain fission products and withstand internal pressures during operation. Following that the dominant oxidation regime was passive, the amount of SiO_2 growth shows limited SiC consumption that not enough to cause the SiC layer thickness to reach the 20 μm limit [11].

4.2. Recession determination methods

Two methods were used to determine the resulting SiC layer thickness following oxidation and the results are shown in Table 3. Discrepancies resulted from both techniques, and overall, there is no agreement on the magnitude of SiC recession as the measurements are within the error of both techniques. The lack of agreement displays the need for research that captures micro- to nano-scale changes under extreme conditions while providing statistically relevant and high-fidelity data. The following sections discuss the limitations of both techniques.

4.2.1. Electron microscopy based methods

1 Two particles from each condition were selected to be cross-sectioned and imaged.
2 Micrographs were calibrated using the scale bar provided during imaging to provide the $\mu\text{m}/\text{pixel}$
3 number. An average of 10 radial measurements at various locations were taken for each particle's
4 SiC cross-section. This measurement was performed on both the as-received and oxidized particles
5 for comparison with two particles analyzed for each condition. The averages of the as-received
6 and each oxidation condition were then subtracted from each other to determine the amount of
7 recession that occurred for the sample set. The measured thickness is 2.6 μm larger than that
8 reported by the ORNL, ($33.6 \mu\text{m} \pm 0.8 \mu\text{m}$) for these particles [34]. While it is closer in agreement
9 with a recent study (SiC layer reported to be 35.0 μm) that also tested AGRBW-4A2 ZrO_2 kernel
10 particles [11], the lack of midplane corrections in both this study and in [11] bias the measured
11 value higher and the limited number of particles analyzed fail to capture the statistical distribution
12 of SiC layer thickness. When measuring TRISO layer thickness using microscopy methods,
13 particles must either be polished very close to the midplane or apply a geometric midplane
14 correction. In addition, a significant number of particles (100's) must be measured to accurately
15 capture the statistical distribution of variable parameters. While ion milling and subsequent
16 microscopy are sensitive to sub-micron microstructural changes, the variation from particle to
17 particle increases the uncertainty in the measurement. This variation in measurements highlights
18 the need for appropriate sampling to improve the fidelity of certain analysis approaches, as
19 measurable oxide growth is observed, however the SiC recession is within the propagated
20 uncertainty of these techniques. The anticipated uncertainty is acknowledged and consistent
21 approaches to measure SiC thickness were applied for the SiC recession analysis presented in
22 Table 3.

23

24 4.2.2. *Shadow imaging via optical microscopy and statistical analysis*

25 Shadow imaging has been shown to be accurate in its measurement of the TRISO particle
26 diameters and capable of measuring particle size distribution when sample sets are at least 80
27 particles in size [34]. The amount of particles used in this investigation, 20–50 oxidized particles,
28 is lower than standard shadow imaging processes applied at ORNL, resulting in greater uncertainty
29 [34]. Using the stitched optical micrographs described in section 2.5, the images were processed
30 using the algorithm described in Price et al. [48, 49]. The algorithm identifies the edges using
31 Sobel edge-detection and takes 360 measurements around the circumference of the particles.
32 Outlier points are identified and discarded based on comparison with neighbors and statistics of
33 each condition. The average of the 360 measurements for each particle within individual each
34 oxidation condition is reported. The mean kernel and IPyC contributions to the diameter along
35 with their standard deviation values were obtained from the fabrication report [34], and SiO_2
36 thickness measurements from the FIB cross sections were subtracted out. The remaining value
37 would be the SiC layer thickness for that condition. Automated image processing software is used
38 to identify each particle and measure its boundary, allowing for the calculation of mean diameter
39 and other attributes (e.g., aspect ratio or local curvatures) for each particle. When this approach is
40 used on a mount with many particles, it produces a statistical distribution of particle diameters.

41 The challenges of using this technique for determination of the SiC layer thickness is that the
42 direct measurement is of the particle diameter and the SiC layer thickness is thereby inferred,
43 resulting in statistical uncertainty introduced by subtracting the mean kernel and internal layer
44 thicknesses, each of which have a given mean and standard deviation as reported by the Advance
45 gas reactor (AGR) program [34]. Additionally, a limited number of particles (20-50) are available
46 for measurement to form a robust statistical distribution. Using this technique in the present study,

1 the mean SiC layer thickness was determined to be 27.1 μm ($\text{SD}=9.1 \mu\text{m}$) with a standard error of
 2 1.8 and a kernel diameter of 672 μm ($\text{SD}=9.4 \mu\text{m}$) using as-received particles. Using uncertainty
 3 propagation and the SD values for the kernel and IPyC from the fabrication report [34], particle
 4 statistics are the main factors that contribute to the observed uncertainty. If a greater particle
 5 sample set was used, then it is expected that the SD, and associated uncertainty, which is currently
 6 within 2 SD of the AGR report, would decrease and align more with the reported values of both
 7 SiC layer thickness and its SD in reference [34]. Although the value will be closer, it will not
 8 match the reported value in the AGR report [34]; this measurement technique does propagate the
 9 uncertainty from the kernel and IPyC. The SiC thickness reported in [34] is a direct measurement
 10 that does not propagate that same uncertainty.

11 A likely optimal approach to directly measure SiC recession would be to leverage the layer
 12 thickness measurement approach described in Hunn, Byun, and Miller [34] on a statistically
 13 significant population of particles. This approach used a combination of cross-sectioning and
 14 optical imaging to determine the SiC layer thickness [50]. A grid of 80 samples was ground down
 15 a set known distance (200 μm) to approximately midplane and then polished for imaging. This
 16 materialographic method allowed the samples to remain planar and limited artifacts from sample
 17 preparation impacted the measurement. Using an automated optical system, serial imaging of the
 18 cross-sections was performed, and in-house software identified 720 points on each interface while
 19 applying a geometrical correction to account for the samples being approximately midplane [48,
 20 49]. The image analysis would then produce the mean layer thickness and kernel radius as the
 21 measurement average and SD for each particle. The direct measurement isolates the thickness
 22 variation of the SiC layer only in the statistical population and therefore does not propagate
 23 uncertainty from inner layers (e.g. IPyC and kernel in the particles explored here). The
 24 aforementioned method would likely present SD on the order of 0.8 μm based on 720 measured
 25 thickness values from each of the 80 particles [34] allowing for recession greater than 1.6 μm to
 26 be measured. Alternatively, recession could be measured by less sensitive techniques if conditions
 27 exploring significant layer recession greater than the SD associated with the previously described
 28 approaches were pursued.

29

Condition	Microscopic Measurements		Shadow Imaging Analysis			
	Average SiC recession (μm)	Standard deviation for SiC recession (μm)	Particle diameters (μm)	Standard deviation for particle diameter (μm)	SiC recession from shadow imaging (μm)	Standard error for particle diameter (μm)
5% $\text{H}_2\text{O}+1\% \text{CO}$	0.87	0.64	669	9.1	1.6	2.1
5% $\text{H}_2\text{O}+0.1\% \text{CO}$	0.84	1.2	673	9.4	0.54	1.3
5% H_2O	0.88	0.68	674	9.7	-0.30	1.2
9% $\text{H}_2\text{O}+1\% \text{CO}$	0.42	1.3	672	8.1	0.86	1.3
9% $\text{H}_2\text{O}+0.1\% \text{CO}$	0.25	1.1	673	9.7	0.64	1.4
9% H_2O	0.83	0.51	678	6.8	-1.5	1.8
21% $\text{H}_2\text{O}+1\% \text{CO}$	1.0	0.87	672	7.4	1.4	1.2

21%H ₂ O+0.1%CO	1.2	0.92	675	7.6	0.48	1.1
21% H ₂ O	1.3	0.44	668	9.1	2.6	1.0

1 Table 3-Summary of measurements on SiC recession had occurred utilizing both microscopic
2 and shadow imaging analysis.

3

4 **5. Conclusion**

5

6 The complex behavior of the SiC layer under mixed gas atmospheres at T = 1,200°C was
7 observed, and the investigation concludes that the SiC underwent predominantly passive oxidation
8 with potential SiC recession. The TRISO particle oxidation in varying partial pressures of steam
9 and CO formed a crystalline SiO₂ layer that increased in porosity at high pH₂O (pH₂O=21%)
10 conditions. Microstructure analysis determined that exposures with higher CO concentrations
11 paired with low partial pressure of steam (<5%) atmospheres inhibited SiO₂ layer growth,
12 facilitating the potential for active oxidation. SiO₂ growth was most prominent in high pH₂O
13 (>21%) atmospheres suggesting that these conditions exhibited passive oxidation. The study
14 demonstrated how the SiC layer of the TRISO particle in a mixed gas atmosphere forms a
15 crystalline yet porous SiO₂ layer, but the presence of CO, a reducing gas, can limit its growth (<2
16 µm) and porosity. Under off-normal reactor conditions, the presence of low partial pressures of
17 steam and CO can inhibit the amount of the protective SiO₂ layer. Overall, the SiC layer showed
18 strong oxidation resistance under these accident conditions, limiting SiO₂ growth and maintaining
19 its structural integrity when exposed to various mixed oxidant atmospheres.

20 This study will be built upon for testing and characterizing SiC-terminated TRISO particles at
21 higher temperatures (T>1,300°C) with similar mixed gas conditions. Testing the particles in
22 mixed gas atmospheres will aid in understanding how steam ingress may cause some of the
23 graphitic components to oxidize, forming a complex atmosphere of steam and volatile oxidation
24 products. Low partial pressures (<10%) of reducing gases, such as CO and H₂, are expected to
25 alter the oxidation response compared to a steam-only condition. As the event continues, the
26 relative abundances of the contaminants are consumed or formed as the scenario progresses.
27 Further investigation into oxidation testing of high-temperature mixed gas atmospheres will better
28 inform on the oxidation performance of the SiC layer.

29

30 **6.CRediT authorship contribution statement**

31

32 **Katherine I. Montoya:** Investigation, Methodology, Writing-Original Draft, Writing-Review and
33 Editing **Brian A. Brigham:** Writing-Original Draft, Writing-Review and Editing **Grant**
34 **Helmreich:** Formal analysis, Writing-Review and Editing **Jesse W. Werden:** Investigation,
35 Writing-Review and Editing **Tyler J. Gerczak:** Conceptualization, Writing-Review and Editing,
36 **Elizabeth S. Sooby:** Conceptualization, Funding acquisition, Supervision, Writing-Review and
37 Editing

38

39 **7.Acknowledgements**

40

41 FIB microscopic measurements were taken in the Low Activation Materials and Development and
42 Analysis facilities at Oak Ridge National Laboratory. Ion milling cross-sectioning was performed
43 at the University of Texas at San Antonio Kleberg Advanced Microscopy Center with the support
44 of Hitachi High-Tech. Materials for this work were provided by the US Department of Energy's

1 (DOE's) Office of Nuclear Energy Advanced Reactor Technologies as part of the Advanced Gas
2 Reactor Fuel Development and Qualification (AGR) program. This material is based upon work
3 supported by the U.S. Department of Energy, Office of Nuclear Energy AGR Program, ORISE
4 H.E.R.E Program, and Department of Energy Nuclear Energy University Programs. Award
5 Number: DE-NE0008798.

6

7 **8. References**

8 [1] D.A. Petti, J.T. Maki, J.D. Hunn, P.J. Pappano, C. Barnes, The DOE advanced gas reactor fuel
9 development and qualifications programs, Materials for Nuclear Power 62 (2010).

10 [2] T. Hicks, Modular HTGR Safety Basis and Approach, INL/EXT-11-22708 Idaho National
11 Laboratory (2011).

12 [3] P.A. Demkowicz, J.D. Hunn, B. Liu, Coated particle fuel: Historical perspectives and current
13 progress, Journal of Nuclear Materials 515 (2019) 434-450.

14 [4] J. Wen, J.D. Hales, S.B. W., B.P. Collin, A.E. Slaughter, S. Novascone, A. Toptan, K. Gamble,
15 R. Gardner, TRISO particle fuel performance and failure analysis with BISON, Journal of Nuclear
16 Materials 548 (2021).

17 [5] W.F. Skerjanc, J.T. Maki, B.P. Collin, D.A. Petti, Evaluation of design parameters for TRISO-
18 coated fuel particles to establish manufacturing critical limits using PARFUME, Journal of Nuclear
19 Materials 469 (2016) 99-105.

20 [6] G.K. Miller, D.A. Petti, J.T. Maki, D.L. Knudson, W.F. Skerjanc, PARFUME Theory and
21 Model Basis Report, NL/EXT-08-14497 (2018).

22 [7] K. Minato, T. Ogawa, K. Fukuda, M. Shimizu, T. Yoshinobu, I. Takahashi, Fission Product
23 behavior in TRISO-coated UO₂ Fuel Particles, Journal Of nuclear Materials 208 (1994) 266-281.

24 [8] J.D. Hunn, C.A. Baldwin, F.C. Montgomery, T.J. Gerczak, R.N. Morris, G.W. Helmreich, P.A.
25 Demkowicz, J.M. Harp, J. Stempien, Initial examination of fuel compacts and TRISO particles
26 from the US ARG-2 irradiation test, Nuclear Engineering and Design 329 (2018) 89-101.

27 [9] J.D. Hunn, C.A. Baldwin, T.J. Gerczak, F.C. Montgomery, R.N. Morris, C.M. Silva, P.A.
28 Demkowicz, J.M. Harp, S.A. Ploger, Detection and analysis of particles with failed SiC in AGR-
29 1 fuel compacts, Nuclear Engineering and design 306 (2016).

30 [10] G.K. Miller, D.A. Petti, J.T. Maki, D.L. Knudson, An evaluation of the effects of SiC layer
31 thinning on failure of TRISO coated fuel particles, Journal of Nuclear Materials (2006).

32 [11] Y. Cho, K. Lu, Water vapor oxidation of SiC layer in surrogate TRISO fuel particles,
33 Composites Part B 215 (2021).

34 [12] J. Wolters, R. Bongartz, R. Moormann, The significance of water ingress accidents in small
35 HTRs, Nuclear Engineering and Design 109(1-2) (1988) 289-294.

36 [13] Preliminary Safety Information Document for the Standard MHTGR, HTGR-86-024 1
37 (1986).

38 [14] T.J. Gerczak, C.I. Contescu, Y.H. Lee, R.W. Mee, A. Schumacher, J. Stempien, M.P.
39 Trammell, Oxidation of Matrix Material in Helium Varied Moisture Content, ORNL/TM-
40 2019/1341 (2019).

41 [15] Z. Yanhua, S. Lei, Y. Wang, Water-ingress analysis for the 200 MWe pebble-bed modular
42 high temperature gas-cooled reactor, Nuclear Engineering and Design 240(10) (2010) 3095-3107.

43 [16] G.H. Lohnert, The consequences of water ingress into the primary circuit of an HTR-
44 Module- From design basis accident to hypothetical postulates, Nuclear Engineering and Design
45 134(2-3) (1992) 159-176.

1 [17] M.B. Richards, D.L. Hanson, R.F. Turner, Fission-Gas Release During Hydrolysis of Exposed
2 Fuel Kernel, Specialists Meeting on Behavior of Gas-Cooled Reactor Fuel Under Accident
3 Conditions, International Atomic Energy Agency, 1991.

4 [18] B.A. Brigham, K.I. Montoya, T.J. Gerczak, E.S. Sooby, Determination of oxidation rates and
5 volatile oxidation products for HTGR graphite matrix material exposed to steam atmospheres,
6 Journal of Nuclear Materials 557 (2021) 153256.

7 [19] A. Roine, HSC Chemistry Software, in: Outotec (Ed.) Pori Software, 2018.

8 [20] E.J. Opila, D. Fox, G.M. Jacobsen, Mass Spectrometric identification of Si-O-H(g) Species
9 from the Reaction of Silica with water vapor at atmospheric Pressure, J. Am. Ceram. Soc. 80
10 (1997).

11 [21] E.J. Opila, N.S. Jacobson, SiO(g) formation from SiC in mixed oxidizing-reducing gases,
12 Oxidation of Metals 44(5) (1995) 527-544.

13 [22] N.S. Jacobson, E.J. Opila, D. Myers, E.H. Copland, Thermodynamics of gas phase species in
14 the Si-O-H system, J. Chem. Thermodynamics 37 (2005).

15 [23] V. Presser, K.G. Nickel, Silica on Silicon Carbide, Critical Reviews in Solid State and
16 Materials Sciences 33 (2008) 1-99.

17 [24] M. Balat, R. Bejoan, G. Pichelin, D. Rochman, High temperature oxidation of sintered silicon
18 carbide under pure CO₂ at low pressure: active-passive transition, Applied Surface Science (1998)
19 115-123.

20 [25] V. Avincola, D. Cupid, H.J. Seifert, Thermodynamic modeling of the silica volatilization in
21 steam related to silicon carbide oxidation, Journal of the European Ceramic Society 35 (2015)
22 3809-3818.

23 [26] E.J. Opila, N.S. Jacobson, D.L. Myers, E.H. Copland, Predicting oxide stability in high-
24 temperature water vapor, Jom 58(1) (2006) 22-28.

25 [27] E. Opila, Variation of the Oxidation Rate of Silicon Carbide with Water-Vapor Pressure,
26 Journal of American Ceramic Society 82(3) (1999) 625-36.

27 [28] E.J. Opila, N.S. Jacobson, SiO(g) Formation from SiC in Mixed Oxidizing-Reducing Gases,
28 Oxidation of Metals 44(5/6) (1995) 527-544.

29 [29] E.J. Opila, SiC Recession caused by SiO₂ scale volatility under combustion conditions:II,
30 thermodynamics and gaseous-diffusion model, Journal of American Ceramic Society 82(7)
31 (1999).

32 [30] R.C. Robinson, SiC recession caused by SiO₂ volatility under combustion conditions: I,
33 Experimental Results and Empirical Model, J. Am. Ceram. Soc. 82(7) (1999) 1817-25.

34 [31] E.J. Opila, J.L. Smialek, R.C. Robinson, D. Fox, N.S. Jacobson, SiC Recession Caused by
35 SiO₂ Scale Volatility under Combustion Conditions: II, Thermodynamics and Gaseous-Diffusion
36 Model, Journal of the American Ceramic Society 82(7) (2004) 1826-1834.

37 [32] I.J. van Rooyen, D.E. Janney, B.D. Miller, P.A. Demkowicz, J. Riesterer, Electron
38 microscopic evaluation and fission product identification of irradiated TRISO coated particles
39 from the AGR-1 experiment: A preliminary review, Nuclear Engineering and Design 271 (2014)
40 114-122.

41 [33] B.A. Brigham, K.I. Montoya, T.J. Gerczak, E.S. Sooby, Analysis of Graphite Matrix Kinetics
42 and Burnoff Products under Off-Normal High-Temperature Gas-Cooled Reactors Conditions,
43 Transaction of American Nuclear Society 122 (2020) 349 to 352.

44 [34] J.D. Hunn, T.-S. Byun, J. Miller, Fabrication and characterization of Sixteen SiC Variants
45 Deposited on the same IPyC substrate for fracture strength, ORNL/TM-2009/324 (2009).

1 [35] P. Hosemann, J.N. Martos, D. Frazer, G. Vasudevamurthy, T.-S. Byun, J.D. Hunn, B.C. Jolly,
2 K.A. Terrani, M. Okunsiewski, Mechanical characteristics of SiC coating layer in TRISO fuel
3 particles, *Journal of Nuclear Materials* 442(1-3) (2013) 133-142.

4 [36] T.J. Gerczak, J.D. Hunn, R.A. Lowden, T.R. Allen, SiC layer microstructure in AGR-1 and
5 AGR-2 TRISO fuel particles and the influence of its variation on the effective diffusion of key
6 fission products, *Journal of Nuclear Materials* 480 (2016) 257-270.

7 [37] A. Bratten, V. Jalan, T.J. Gerczak, H. Wen, Oxide evolution on the SiC layer of TRISO
8 particles during extended air oxidation, *Journal of Nuclear Materials* 558 (2022).

9 [38] C.A. Schneirder, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image
10 analysis, *Nature Methods* 9(7) (2012) 671-675.

11 [39] A.K. Kercher, J.D. Hunn, J.R. Price, P.J. Pappano, Automated optical microscopy of coated
12 particle fuel, *Journal of Nuclear Materials* 380 (2008) 74-84.

13 [40] K.A. Terrani, C.M. Silva, High temperature steam oxidation of SiC coating layer of TRISO
14 fuel particles, *Journal of Nuclear Materials* 460 (2015) 160-165.

15 [41] K.A. Terrani, B.A. Pint, C.M. Parish, C.M. Silva, L.L. Snead, Y. Katoh, Silicon Carbide
16 Oxidation in Steam up to 2 MPa, *American Ceramic Society* 97(8) (2014) 2331-2352.

17 [42] L. Snead, T. Nozawa, Y. Katoh, T.-S. Byun, S. Kondo, D.A. Petti, Handbook of SiC properties
18 for fuel performance modeling, *Journal of Nuclear Materials* 371(1-3) (2007) 329-377.

19 [43] I. Swainson, M. Dove, On the Thermal Expansion of B-Cristobalite, *Phys. Chem. Miner* 22
20 (1995).

21 [44] F. Cao, W. Hao, F. Guo, X. Wang, X. Zhao, N. Rohbeck, P. Xiao, Effects of water vapor on
22 the oxidation and the fracture strength of SiC layer in TRISO particles, *Journal of the American
23 Ceramic Society* 100(5) (2017).

24 [45] D.A. Petti, P.A. Demkowicz, J.T. Maki, R.R. Hobbins, 3.07 - TRISO-Coated Particle Fuel
25 Performance, in: R.J.M. Konings (Ed.), *Comprehensive Nuclear Materials*, Elsevier, Oxford,
26 2012, pp. 151-213.

27 [46] R. Liu, B. Liu, K. Zhang, M. Liu, Y. Shao, C. Tang, High temperature oxidation behavior of
28 SiC coating in TRISO coated particles, *Journal of Nuclear Materials* 453(1-3) (2014) 107-114.

29 [47] E.J. Opila, Influence of alumina reaction tube impurities on the oxidation of chemically-vapor
30 deposited silicon carbide, *Journal of the American Ceramic Society* 78(4) (1995) 1107-1110.

31 [48] J.R. Price, J.D. Hunn, Optical Inspection of coated-particle nuclear fuel, *Proceedings of SPIE*
32 5303 (2004).

33 [49] J.R. Price, D. Aykac, J.D. Hunn, A.K. Kercher, R.N. Morris, New developments in image-
34 based characterization of coated particle nuclear fuel, *Proceedings of SPIE* 6070 (2006).

35 [50] J.R. Price, D. Aykac, J.D. Hunn, A.K. Kercher, Automatic characterization of cross-sectional
36 coated particle nuclear fuel using greedy coupled Bayesian snakes, *Machine Vision Applications*
37 in Industrial Inspection XV, SPIE, 2007, pp. 9-18.

38