
Virtual Neuron: A Neuromorphic Approach for
Encoding Numbers

Prasanna Date
Oak Ridge National Laboratory

Oak Ridge, TN 37830
Email: datepa@ornl.gov

Catherine Schuman
University of Tennessee

Knoxville, TN 37996
Email: cschuman@utk.edu

Shruti Kulkarni
Oak Ridge National Laboratory

Oak Ridge, TN 37830
Email: kulkarnisr@ornl.gov

Thomas Potok
Oak Ridge National Laboratory

Oak Ridge, TN 37830
Email: potokte@ornl.gov

Aaron Young
Oak Ridge National Laboratory

Oak Ridge, TN 37830
Email: youngar@ornl.gov

Jeffrey S. Vetter
Oak Ridge National Laboratory

Oak Ridge, TN 37830
Email: vetter@ornl.gov

Abstract—Neuromorphic computers perform computations by
emulating the human brain and are expected to be indispensable
for energy-efficient computing in the future. They are primarily
used in spiking neural network–based machine learning applica-
tions. However, neuromorphic computers are unable to prepro-
cess data for these applications. Currently, data is preprocessed
on a CPU or a GPU—this incurs a significant cost of transferring
data from the CPU/GPU to the neuromorphic processor and
vice versa. This cost can be avoided if preprocessing is done on
the neuromorphic processor. To efficiently preprocess data on a
neuromorphic processor, we first need an efficient mechanism
for encoding data that can lend itself to all general-purpose pre-
processing operations. Current encoding approaches have limited
applicability and may not be suitable for all preprocessing opera-
tions. In this paper, we present the virtual neuron as a mechanism
for encoding integers and rational numbers on neuromorphic
processors. We evaluate the performance of the virtual neuron
on physical and simulated neuromorphic hardware and show
that it can perform an addition operation using 23 nJ of energy
on average using a mixed-signal, memristor-based neuromorphic
processor. The virtual neuron encoding approach is the first step
in preprocessing data on a neuromorphic processor.

I. INTRODUCTION

Neuromorphic computers perform computations by emulat-
ing the human brain [1], and like the human brain, they are
extremely energy efficient [2]. For instance, while CPUs/GPUs
consume around 70–250 W of power, a neuromorphic com-
puter consumes around 65 mW of power (i.e., 4–5 orders of
magnitude less power than CPUs and GPUs [3]). The struc-
tural and functional units of neuromorphic computation are

This manuscript has been authored in part by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The
United States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or repro-
duce the published form of this manuscript, or allow others to do so, for United
States Government purposes. The Department of Energy will provide public
access to these results of federally sponsored research in accordance with
the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-
plan). This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research,
under contract number DE-AC05-00OR22725.

neurons and synapses, which can be implemented on digital
or analog hardware [4]. They impart critical characteristics
to neuromorphic computing such as colocated processing and
memory, event-driven computation, massively parallel oper-
ation, and inherent scalability [5]. These characteristics are
crucial for the energy efficiency of neuromorphic computers.
Neuromorphic computing is also Turing-complete—that is,
capable of general-purpose computation [6]. This ability to
perform general-purpose computations and potentially use or-
ders of magnitude less energy in doing so is why neuromorphic
computing is poised to be an indispensable part of the energy-
efficient computing landscape in the future.

Neuromorphic computers are seen as accelerators that can
perform machine learning operations by using spiking neural
networks (SNNs). For performing any other operation (e.g.,
arithmetic, logical, relational), we still resort to CPUs and
GPUs. These general-purpose operations are important for
preprocessing data before it is transferred to a neuromorphic
processor. In the current neuromorphic workflow (i.e., prepro-
cessing on the CPU/GPU and inferencing on the neuromorphic
processor) more than 99% of the time is spent on data transfer
(Table IV). This is highly inefficient and can be avoided
by preprocessing on the neuromorphic processor. To develop
efficient mechanisms for preprocessing data on a neuromor-
phic processor, we must first have an efficient mechanism for
encoding the data on the neuromorphic processor. The virtual
neuron proposed in this paper is such an encoding mechanism.

A few methods to encode numbers on neuromorphic pro-
cessors exist in the literature [7], but their scope is restricted
to the specific application they were designed for, and they
are not suitable for general-purpose operations. Furthermore,
no good mechanism exists for encoding negative integers and
positive and negative rational numbers exactly on neuromor-
phic computers. To this extent, our main contributions in this
work are as follows:

1) We introduce the Virtual Neuron as a spatial encoding
mechanism for encoding integers and rational numbers



on neuromorphic processors. We also analyze its com-
putational complexity (Section IV).

2) We implement the virtual neuron in the Neural Sim-
ulation Technology (NEST) simulator [8] and test its
performance on 16-bit rational numbers (Section V).

3) We analyze the virtual neuron’s run time on the Caspian
digital neuromorphic hardware [9] and estimate its en-
ergy usage on the mrDANNA mixed-signal, memristor-
based neuromorphic hardware [10] (Section VI).

II. RELATED WORK

Neuromorphic computing is primarily used for SNN-based
machine learning applications, including computer vision [11],
natural language [12], and speech recognition [13]. The latest
additions to neuromorphic computing applications include
graph algorithms [14]–[16], autonomous racing [17], epidemi-
ological simulations [18], classifying supercomputer failures
[19], µ-recursive functions [6], [20], and boolean matrix-vector
multiplication [21].

Most of the above applications are based on binary numbers
and Boolean arithmetic. This is due to the spiking behavior
of the neuron—the spikes can be interpreted as a 1, and lack
of spike can be interpreted as a 0. Leveraging this behavior,
several mechanisms for encoding numbers (mainly positive
integers) have been proposed in the literature. Iaroshenko and
Sornborger propose neuromorphic mechanisms for encoding
binary numbers and use it for binary two’s complement
operations and binary matrix multiplication [22]. However,
their approach uses numbers of neurons and synapses that are
of the quadratic and cubic order, respectively. Lawrence et al.
perform neuromorphic matrix multiplication by using an in-
termediate transformation matrix, flattened into a neural node,
for encoding [23]. Schuman et al. propose three mechanisms
for encoding positive integers on neuromorphic computers;
these mechanisms are used in many applications [7]. Zhao
et al. develop a compact, low power and robust spiking-
time-dependent encoder designed with a leaky integrate-and-
fire (LIF) neuron cluster and a chaotic circuit with ring
oscillators [24]. Zhao et al. develop a method for representing
data by using spike–time dependent encoding that efficiently
maps a signal’s amplitude to a spike time sequence that
represents the input data [25]. Zhao et al. propose an analog
temporal encoder for making neuromorphic computing robust
and energy efficient [26]. Wang et al. use radix encoding
of spikes to realize SNNs more efficiently and improve the
speedup by reducing the overall latency for machine learning
applications [27]. Other efforts to realize basic computations
on neuromorphic platforms that leverage the inherent structure
and parameters of SNNs for logic operations (e.g., AND,
OR, XOR) were demonstrated in [28]. George et al. perform
IEEE 754 compliant addition using SNNs by designing a
system based on the Neural Engineering Framework and
implemented, simulated and tested the design by using Nengo
[29]. Dubey et al. extend this work to perform IEEE 754
compliant multiplication [30].

{0,0}

{0,0}

{0,0}

{0,0}
23

22

21

20

Fig. 1. Encoding rationale of a 4-bit virtual neuron. Numbers can be encoded
by selecting synaptic weights as powers of two. Here, we use four neurons
to encode the number 10.

0

1

0

1

2

0

1

2

0

0

0

0

0

0

0

𝑥𝑥0

𝑥𝑥1

𝑦𝑦0

𝑦𝑦1

𝑧𝑧0

𝑧𝑧1

𝑧𝑧2

⟨1,2⟩

⟨1,2⟩

⟨1,1⟩

⟨1,1⟩

⟨1,2⟩

⟨1,1⟩

⟨-1,2⟩

⟨1,2⟩

⟨-1,1⟩

⟨1,1⟩

⟨1,3⟩

⟨-1,3⟩

⟨1,1⟩

⟨1,1⟩

Fig. 2. A 2-bit virtual neuron. Takes two 2-bit numbers as input on the left: X
and Y , represented as x1, x0, and y1, y0 respectively. Adds the two numbers
and generates their sum on the right. The sum of two 2-bit numbers can at
most be a 3-bit number.

Most of these encoding mechanisms have the ability to
encode binary numbers. They are designed with specific appli-
cations in mind (e.g., control applications), and it is unclear
if they can be used for general-purpose neuromorphic com-
putation, for which arithmetic operations must be performed
on positive and negative integers/rationals. Moreover, some
encoding mechanisms (e.g., binning) tend to lose information
by virtue of discretization. To the best of our knowledge,
an efficient mechanism for encoding positive and negative
rational numbers does not yet exist in the literature.

III. NEUROMORPHIC COMPUTING MODEL

We leverage the neuromorphic computing model described
by Date et al. [6], [20]. This model is based on the LIF neuron
with two parameters (threshold, ν and leak, λ) and two synapse
parameters (weight, ω and delay, δ).

IV. THE VIRTUAL NEURON

Structurally, the virtual neuron is composed of LIF neu-
rons and synapses that are connected in a particular way.
Functionally, the virtual neuron mimics the behavior of an
artificial neuron with identity activation. It leverages the binary
encoding to encode numbers and performs addition operations



similar to a ripple carry adder. Figure 1 shows a way of
encoding 4-bit numbers on a neuromorphic computer. Each
neuron in the figure represents a bit. The synapse coming out
of the neuron assigns a value to the binary spike of the neuron
by multiplying its weight. We can encode rational numbers by
having powers of two as the weights. The synapses coming out
of the four neurons in Figure 1 have weights 20, 21, 22, and
23. When the second and fourth neurons (from the bottom)
spike, the result gets multiplied by 2 and 8, respectively, in
the outgoing synapses. This is interpreted as the number 10.

A 2-bit virtual neuron is shown in Figure 2. As input, it
takes two 2-bit numbers, X and Y , which are shown in the
figure as [x1, x0] (blue neurons) and [y1, y0] (yellow neurons).
It then adds X and Y in the three groups of bit neurons,
which are shown in red. We call them bit neurons because
they are responsible for the bit-level operations in the circuit
(e.g., bitwise addition, propagating the carry bit). Finally, it
produces a 3-bit number, Z, as output, which is shown in the
figure as [z2, z1, z0] (green neurons).

The default internal states of all neurons are set to −1.
Furthermore, all neurons have a leak of 0, which means they
reset to their default internal state instantaneously if they do
not spike. The reset state of all neurons is set to −1 (i.e.,
all neurons reset to −1 after they spike). The numbers on
the neurons indicate their thresholds. For example, the top
set of bit neurons (red neurons) has thresholds 0, 1, and 2,
respectively. The synapse parameters are indicated in angular
brackets on the top or bottom of the synapses. The first
parameter is the weight, and the second parameter is the delay.
If a group of synapses has the same parameters, then it is
indicated with a dotted arc. The delays are adjusted so that bit
operations of red neurons are synchronized.

We now describe the inner workings of the virtual neuron
shown in Figure 2 by using the following example: [x1, x0] =
[1, 1] and [y1, y0] = [0, 1]. We start our analysis when the
inputs X and Y have been received in the blue and yellow
neurons—let us call this the zeroth time step. In the first time
step, the bottom set of bit neurons in red receive an input
of 1 along each of their incoming synapses. Thus, the total
incoming signal at both of these neurons is 2, which changes
their internal state from −1 to 1. As a result, both the bottom
red neurons spike. Their spikes are sent along their outgoing
synapses, which delay the signal for 3 time steps.

In the second time step, the bit neurons in the middle set
receive the following inputs: 1 from the blue incoming neuron
that represents x1, 0 from the yellow neuron that represents
y1, and 1 from the red bit neuron with a threshold of 1 in the
bottom group. Thus, the sum of their incoming signals is 2, and
their internal states reach a value of 1. As a result, neurons with
thresholds 0 and 1 in the middle set spike, whereas the one
with threshold 2 does not spike. The spikes from the middle
red neurons with thresholds 0 and 1 are sent to the green output
neuron that represents z1 along their outgoing synapses, which
are delayed for 2 time steps.

In the third time step, the three bit neurons in the top
group of red neurons receive an input of 1 along each of

𝑋𝑋+

𝑋𝑋−

𝑌𝑌−

𝑌𝑌+

𝐵𝐵+

𝐵𝐵−

𝑍𝑍+

𝑍𝑍−

Fig. 3. Encoding P+-bit positive rationals and P−-bit negative rationals using
a virtual neuron.

their incoming synapses. As a result, their internal states
are incremented by 1 to the value of 0. The neuron with 0
threshold spikes as a result sends its spike along its outgoing
synapse to the green neuron that represents z2.

In the fourth time step, the green neurons that represent z0,
z1, and z2 receive their inputs: z0 receives a 1 and −1 from
the bit neurons with the thresholds 0 and 1, respectively, in the
bottom group of red neurons. Its total input is thus 1− 1 = 0,
which keeps its internal state at −1, and it does not spike.
Similar operations happen at the green neuron that represents
z1. It, too, does not spike. The green neuron that represents z2
receives a signal of 1 from the bit neuron with the threshold of
0 in the top red set. As a result, its internal state is incremented
by 1 to the value of 0, and it spikes.

The net output [z2, z1, z0] from the circuit is [1, 0, 0], which
can be interpreted as the number 4 in binary. Given that our
inputs were [x1, x0] = [1, 1], and [y1, y0] = [0, 1] (i.e., X = 3
and Y = 1), we have received the correct output of 4 from the
virtual neuron circuit. Note that we did not use powers of two
in the synapses inside the virtual neuron. Depending on the
application, powers of two as synaptic weights may be used
on the incoming or outgoing synapses of a virtual neuron.

Although we restricted ourselves to 2-bit positive integers in
this example, this approach can be extended to encode positive
and negative rational numbers by using positive and negative
powers of two. We let P+ and P− denote the number of bits
used to represent positive and negative numbers, respectively.
We call them positive precision and negative precision. In
general, the positive precision, P+, will be distributed among
bits used to represent positive integers (20, 21, 22, . . .) and
positive fractionals (2−1, 2−2, 2−3, . . .). Similarly, the negative
precision, P−, will be distributed among bits used to represent
negative integers (−20,−21,−22, . . .) and negative fractionals
(−2−1,−2−2,−2−3, . . .).

In Figure 3, the virtual neuron operates on two (P++P−)-
bit rational numbers as inputs: X (blue rectangles) and Y



TABLE I
COMPARING THE VIRTUAL NEURON TO OTHER NEUROMORPHIC

ENCODING MECHANISMS THAT REPRESENT TWO N-BIT NUMBERS
EXACTLY

Metrics Binning [7] Rate [7] Time [7] Virtual
neuron

IEEE-754
[29], [30]

Time
Required
(big-O)

O(1) O(2N ) O(2N ) O(1) O(1)

No. of neurons
(big-O) O(2N ) O(1) O(1) O(N)

Ensembles
of N neurons
with dimension
and radius
properties1

O(N)2.

Accuracy 100% 100% 100% 100%

>90% at 500
neurons per bit.
Encoded error
at 0 with >300
neurons per bit.

Energy
Efficiency
(no. of spikes
in the worst case)

O(1) spikes O(2N ) spikes O(1) spikes O(N) spikes;
N spikes

Energy results
unpublished.

Energy
Efficiency
(no. of spikes in
the average case)

O(1) spikes O(2N ) spikes O(1) spikes O(N) spikes;
N/2 spikes

Energy results
unpublished.

1Dimension refers to the number of values represented by the ensemble (this is
1 for a scalar quantity). Radius defines the range of values that can be represented by
the ensemble. For the cited work, the dimension is 1, and the radius is set to 2.
2Authors only looked at IEEE floating point. How the representation scales with
numerical precision is unclear.

TABLE II
COMPARING A VIRTUAL NEURON TO OTHER NEUROMORPHIC ENCODING

MECHANISMS FOR ADDING TWO N-BIT NUMBERS

Metrics Binning [7] Rate encoding [7] Virtual neuron IEEE 754 [29]

Time to solution O(1) O(2N ) O(N) Constant

No. of neurons O(2N ) O(1) O(N) 3075

No. of synapses O(2N ) O(1) O(N) N/A

Energy
Efficiency
(no. of spikes in
the worst case)

O(2N ) O(2N ) O(N) N/A

Energy
Efficiency
(no. of spikes in
the average case)

O(2N ) O(2N ) O(N); N/2 N/A

Accuracy 100%1 Depends on
model type 100%

100% with
300 neurons
per bit

1Accuracy is bound by the synapse weight and accumulation accuracy.

(yellow rectangles). Notice that the positive part of the circuit
(upper half) is completely independent of the negative part of
the circuit (lower half).

A. Computational Complexity

For P+-bit positive operations, we use O(P+) neurons
and synapses and perform the virtual neuron operations in
O(P+) time steps. Specifically, we use 6P+ + 3 neurons,
12P+ synapses, and P+ + 2 time steps for virtual neuron
operations. Similarly, for P−-bit negative operations, we use
O(P−) neurons and synapses and perform the virtual neuron
operations in O(P−) time steps. All in all, we use O(P++P−)
neurons and synapses and consume O(max{P+, P−}) time
steps for the virtual neuron operations.

In computing the above space and time complexities, our
inherent assumption is that the positive and negative precision
is variable. However, we envision using the virtual neuron
in settings where a neuromorphic computer has a fixed,
predetermined positive and negative precision—just like the
fixed precision on our laptops and desktops today, i.e., 32, 64,
or 128 bits. In such a scenario, P+ and P− can be treated as
constants. Thus, the resulting space and time complexities for
a virtual neuron would all be O(1).

Table I compares different neuromorphic encoding ap-
proaches found in the literature with our approach, the virtual
neuron. Because a neuromorphic computer consumes energy
that is proportional to the number of spikes, we use the number
of spikes in the worst case and the average case as an estimate
for the energy usage of different neuromorphic approaches.
Across different comparison metrics (e.g., network size, num-
ber of spikes), the virtual neuron scales linearly with the
bit-precision, N , while providing the exact representation of
the input number. Other approaches take exponential space
(binning) or exponential time (rate encoding) or are unable to
represent rational numbers exactly (IEEE 754).

Table II compares the computational complexity of per-
forming addition with two N -bit numbers under different
neuromorphic encoding schemes. Here, we do not include
the temporal encoding scheme because under such a simple
approach, binary spikes that occur at different time instances
cannot be added exactly by spiking neurons. While the virtual
neuron performs addition in linear time and by using a linear
number of neurons, synapses, and energy, other approaches
use either exponential time (rate encoding), exponential space
(binning), exponential energy (rate encoding), or significantly
large number of neurons per bit (IEEE 754).

V. IMPLEMENTATION DETAILS

We implemented the virtual neuron in Python by using
the NEST simulator. We ran the simulations on an Apple
MacBook Pro equipped with a quad-core Intel Core i7 CPU
running at 2.3 GHz paired with 32 GB of LPDDR4X memory
running at 3,733 MHz. We wrote a VirtualNeuron class,
whose constructor takes a list-like object of length 4 as the
precision vector. The elements of this vector correspond to
the number of bits for positive integers, positive fractionals,
negative integers, and negative fractionals.

We used the iaf_psc_delta neuron model in NEST.
All neurons had an internal state of −1.0 and a leak of 10−6,
which is a good approximation to a 0 leak. All neurons except
the bit neurons had a neuron threshold of 0. The set of bit
neurons that correspond to the least significant bit in both the
positive and negative parts of the circuit had only two neurons
with thresholds 0 and 1. All other groups of bit neurons had
three neurons with thresholds 0, 1, and 2, respectively.

The synapses between positive (negative) incoming neurons
and positive (negative) bit neurons had weights as 1.0 and
delays of i+1, where i ranges from 0 to P+ (P−). The carry
synapses go from the bit neuron having a threshold of 1 in
the ith group to all neurons in the (i + 1)th group, where i



TABLE III
TESTING VIRTUAL NEURON ON 16-BIT RATIONAL NUMBERS. PRECISION IS [4, 4, 4, 4] FOR POSITIVE INTEGER, POSITIVE FRACTION, NEGATIVE

INTEGER, AND NEGATIVE FRACTION, RESPECTIVELY.

X+ X− Y+ Y− Z+ Z−
Decimal Binary Decimal Binary Decimal Binary Decimal Binary Decimal Binary Decimal Binary

2.5625 00101001 -11.375 10110110 13.3125 11010101 -6.75 01101100 15.875 011111110 -18.125 100100010
2.3125 00100101 -13.9375 11011111 11.375 10110110 -9.3125 10010101 13.6875 011011011 -23.25 101110100
15.875 11111110 -2.9375 00101111 1.5625 00011001 -4.6875 01001011 17.4375 100010111 -7.625 001111010
8.625 10001010 -10.1875 10100011 8.9375 10001111 -1.625 00011010 17.5625 100011001 -11.8125 010111101
14.6875 11101011 -10.625 10101010 11.625 10111010 -11.875 10111110 26.3125 110100101 -22.5 101101000

goes from 0 to P+ (P−). The carry synapses had weights
and delays of 1.0. The outgoing synapses from bit neurons
with thresholds 0 and 2 had weights of 1.0, whereas those
from bit neurons with thresholds 1 had weights of −1.0. These
synapses in the positive (negative) part of the circuit had a
delay max{P+, P−} − i + 1 for i that ranged from 0 to P+

(P−).

VI. TESTING RESULTS

We tested our implementation of the virtual neuron on 16-
bit rational numbers. The precision vector fed to the class
constructors was [4, 4, 4, 4]. We tested 100, 000 permutations
of inputs that were uniformly generated at random. Table III
shows a sample of the results. The virtual neuron can encode
and correctly add positive and negative rational numbers on a
neuromorphic computer.

A. Caspian and Hardware Testing

We also implemented and tested the 16-bit virtual neuron
by using the Caspian simulator and µCaspian digital field-
programmable gate array (FPGA) hardware [9]. Because the
µCaspian run time depends on activity, we ran 1,000 permuta-
tions of inputs selected uniformly at random on the µCaspian
simulator and hardware and monitored the total number of
spikes and the number of cycles used by the processor. Over
the 1,000 runs, the simulator reported 73,159 total spikes for
an average of 73 spikes per test case. Using Verilator, the
1,000 test cases finished in ∼5,000,000 clock cycles. Around
7,000 cycles were used to load the virtual neuron network, and
∼5,000 cycles were used per test case. Because the processor
runs at 25 MHz, the total run time without the overhead from
data transfer with the host computer was ∼0.21 s for all the
test cases. When we ran the test using the UPduino FPGA, the
total time was ∼400 s. One culprit for this slowdown is the
3 MBaud UART connection between the host and the FPGA.
While running on hardware, over 99.9% of the execution time
was spent in overhead and data transfer. This result highlights
the great benefit of using the virtual neuron to perform addition
on the neuromorphic processor instead of the CPU/GPU. The
results from the hardware evaluation are tabulated in Table IV.

B. mrDANNA Power Estimate

The power required for a particular network execution can
be estimated based on the energy required for active and idle

TABLE IV
SUMMARY OF HARDWARE EVALUATION

Method Execution time
of processor

Wall time
of evaluation Power

µCaspian hardware 0.21 s 400 s
µCaspian simulator N/A 747 ms
mrDANNA 1 µs @ 20MHz N/A 23.04 mW

neurons and synapses during execution. To estimate the power
of the virtual neuron design, we used the same method and
energy-per-spike values as reported in [10] for the mrDANNA
mixed-signal, memristor-based neuromorphic processor. Using
the same number of spikes, neurons, and synapses as reported
in the µCaspian simulation, we estimate that a mrDANNA
hardware implementation would use ∼23 nJ for the average
test case run and around ∼23 mW for continuous operation.

VII. DISCUSSION

In this paper, we proposed the virtual neuron as a mech-
anism for encoding and adding rational numbers. Our work
is a stepping stone toward a broader class of general-purpose
neuromorphic computing algorithms. In addition to the low op-
erational power required to operate a neuromorphic computer,
performing the general-purpose operations within the spiking
array—without the need to send data to a CPU or GPU—will
significantly reduce the communication overhead. Moreover,
the virtual neuron is a vital component for composing subnet-
works to scale up neuromorphic algorithms.

Many applications that use neuromorphic processors
(e.g., classification, anomaly detection, control) may require
general-purpose operations as a pre- or post-processing step.
For a continually operating neuromorphic processor (e.g.,
in control applications), these operations may be required
between neuromorphic computations. Performing them on the
neuromorphic processor will alleviate the costs associated with
moving data to and from the neuromorphic processor. Even if
the neuromorphic computations described above may not be
as fast as those on a traditional processor, it is likely that
the slowdown incurred during data transfer will negate any
speedup obtained on the traditional processor.

VIII. CONCLUSION

In this work, we presented the virtual neuron as a mecha-
nism for encoding positive and negative integers and rational



numbers. We implemented the virtual neuron in the NEST
simulator and tested it on 16-bit rational numbers. We com-
pared the computational complexity of the virtual neuron to
other neuromorphic encoding mechanisms. We also tested the
virtual neuron on neuromorphic hardware and presented its
time, space, and power metrics. In our future work, we would
like to explore general-purpose neuromorphic algorithms and
applications that use virtual neurons.

REFERENCES

[1] A. Calimera, E. Macii, and M. Poncino, “The human brain project and
neuromorphic computing,” Functional neurology, vol. 28, no. 3, p. 191,
2013.

[2] J. Grollier, D. Querlioz, K. Camsari, K. Everschor-Sitte, S. Fukami, and
M. D. Stiles, “Neuromorphic spintronics,” Nature electronics, vol. 3,
no. 7, pp. 360–370, 2020.

[3] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam et al.,
“Truenorth: Design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip,” IEEE transactions on computer-
aided design of integrated circuits and systems, vol. 34, no. 10, pp.
1537–1557, 2015.

[4] C. D. Schuman, J. P. Mitchell, J. T. Johnston, M. Parsa, B. Kay, P. Date,
and R. M. Patton, “Resilience and robustness of spiking neural networks
for neuromorphic systems,” in 2020 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2020, pp. 1–10.

[5] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, B. Kay et al.,
“Opportunities for neuromorphic computing algorithms and applica-
tions,” Nature Computational Science, vol. 2, no. 1, pp. 10–19, 2022.

[6] P. Date, T. Potok, C. Schuman, and B. Kay, “Neuromorphic computing
is Turing-complete,” in Proceedings of the International Conference on
Neuromorphic Systems 2022, 2022, pp. 1–10.

[7] C. D. Schuman, J. S. Plank, G. Bruer, and J. Anantharaj, “Non-traditional
input encoding schemes for spiking neuromorphic systems,” in 2019
International Joint Conference on Neural Networks (IJCNN). IEEE,
2019, pp. 1–10.

[8] M.-O. Gewaltig and M. Diesmann, “Nest (neural simulation tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[9] J. P. Mitchell, C. D. Schuman, R. M. Patton, and T. E. Potok, “Caspian:
A neuromorphic development platform,” in Proceedings of the Neuro-
inspired Computational Elements Workshop, 2020, pp. 1–6.

[10] G. Chakma, N. D. Skuda, C. D. Schuman, J. S. Plank, M. E. Dean, and
G. S. Rose, “Energy and area efficiency in neuromorphic computing
for resource constrained devices,” in Proceedings of ACM Great Lake
Symposium on VLSI (GLSVLSI), 2018, pp. 379–383.

[11] T. Serre and T. Poggio, “A neuromorphic approach to computer vision,”
Communications of the ACM, vol. 53, no. 10, pp. 54–61, 2010.

[12] S. H. Sung, T. J. Kim, H. Shin, H. Namkung, T. H. Im, H. S. Wang, and
K. J. Lee, “Memory-centric neuromorphic computing for unstructured
data processing,” Nano Research, vol. 14, no. 9, pp. 3126–3142, 2021.

[13] P. Blouw and C. Eliasmith, “Event-driven signal processing with neuro-
morphic computing systems,” in ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 8534–8538.

[14] B. Kay, P. Date, and C. Schuman, “Neuromorphic graph algorithms:
Extracting longest shortest paths and minimum spanning trees,” in
Proceedings of the Neuro-inspired Computational Elements Workshop,
2020, pp. 1–6.

[15] B. Kay, C. Schuman, J. O’Connor, P. Date, and T. Potok, “Neuromorphic
graph algorithms: Cycle detection, odd cycle detection, and max flow,”
in International Conference on Neuromorphic Systems 2021, 2021, pp.
1–7.

[16] K. Hamilton, T. Mintz, P. Date, and C. D. Schuman, “Spike-based graph
centrality measures,” in International Conference on Neuromorphic
Systems 2020, 2020, pp. 1–8.

[17] R. Patton, C. Schuman, S. Kulkarni, M. Parsa, J. P. Mitchell, N. Q. Haas,
C. Stahl, S. Paulissen, P. Date, T. Potok et al., “Neuromorphic computing
for autonomous racing,” in International Conference on Neuromorphic
Systems 2021, 2021, pp. 1–5.

[18] K. Hamilton, P. Date, B. Kay, and C. Schuman D, “Modeling epidemic
spread with spike-based models,” in International Conference on Neu-
romorphic Systems 2020, 2020, pp. 1–5.

[19] P. Date, C. D. Carothers, J. A. Hendler, and M. Magdon-Ismail,
“Efficient classification of supercomputer failures using neuromorphic
computing,” in 2018 IEEE Symposium Series on Computational Intelli-
gence (SSCI). IEEE, 2018, pp. 242–249.

[20] P. Date, B. Kay, C. Schuman, R. Patton, and T. Potok, “Computational
complexity of neuromorphic algorithms,” in International Conference
on Neuromorphic Systems 2021, 2021, pp. 1–7.

[21] C. D. Schuman, B. Kay, P. Date, R. Kannan, P. Sao, and T. E. Potok,
“Sparse binary matrix-vector multiplication on neuromorphic comput-
ers,” in 2021 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2021, pp. 308–311.

[22] O. Iaroshenko and A. T. Sornborger, “Binary operations on
neuromorphic hardware with application to linear algebraic operations
and stochastic equations,” 2021. [Online]. Available: https://arxiv.org/
abs/2103.09198

[23] S. Lawrence, A. Yandapalli, and S. Rao, “Matrix multiplication
by neuromorphic computing,” Neurocomputing, vol. 431, pp. 179–
187, 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0925231220316416

[24] C. Zhao, W. Danesh, B. T. Wysocki, and Y. Yi, “Neuromorphic encoding
system design with chaos based cmos analog neuron,” in 2015 IEEE
Symposium on Computational Intelligence for Security and Defense
Applications (CISDA), 2015, pp. 1–6.

[25] C. Zhao, B. T. Wysocki, Y. Liu, C. D. Thiem, N. R. McDonald, and
Y. Yi, “Spike-time-dependent encoding for neuromorphic processors,”
J. Emerg. Technol. Comput. Syst., vol. 12, no. 3, sep 2015. [Online].
Available: https://doi.org/10.1145/2738040

[26] C. Zhao, J. Li, and Y. Yi, “Making neural encoding robust and
energy efficient: An advanced analog temporal encoder for brain-
inspired computing systems,” in Proceedings of the 35th International
Conference on Computer-Aided Design, ser. ICCAD ’16. New York,
NY, USA: Association for Computing Machinery, 2016. [Online].
Available: https://doi.org/10.1145/2966986.2967052

[27] Z. Wang, X. Gu, R. Goh, J. T. Zhou, and T. Luo, “Efficient spiking neural
networks with radix encoding,” arXiv preprint arXiv:2105.06943, 2021.

[28] J. Plank, C. Zheng, C. Schuman, and C. Dean, “Spiking neuromorphic
networks for binary tasks,” in International Conference on Neuromor-
phic Systems 2021, 2021, pp. 1–9.

[29] A. M. George, R. Sharma, and S. Rao, “Ieee 754 floating-point addition
for neuromorphic architecture,” Neurocomputing, vol. 366, pp. 74–85,
2019.

[30] K. Dubey, U. Kothari, and S. Rao, “Floating-point multiplication
using neuromorphic computing.” [Online]. Available: https://arxiv.org/
abs/2008.13245

https://arxiv.org/abs/2103.09198
https://arxiv.org/abs/2103.09198
https://www.sciencedirect.com/science/article/pii/S0925231220316416
https://www.sciencedirect.com/science/article/pii/S0925231220316416
https://doi.org/10.1145/2738040
https://doi.org/10.1145/2966986.2967052
https://arxiv.org/abs/2008.13245
https://arxiv.org/abs/2008.13245

	Introduction
	Related Work
	Neuromorphic Computing Model
	The Virtual Neuron
	Computational Complexity

	Implementation Details
	Testing Results
	Caspian and Hardware Testing
	mrDANNA Power Estimate

	Discussion
	Conclusion
	References

