TDAG: Tree-based Directed Acyclic Graph Partitioning for
Quantum Circuits

Abstract—We propose the Tree-based Directed Acyclic Graph (TDAG)
partitioning for quantum circuits, a novel quantum circuit partitioning
method which partitions circuits by viewing them as a series of binary
trees and selecting the tree containing the most gates. TDAG produces
results of comparable quality (number of partitions) to an existing
method called ScanPartitioner (an exhaustive search algorithm) with an
95% average reduction in execution time. Furthermore, TDAG improves
compared to a faster partitioning method called QuickPartitioner by 45%
in terms of quality of the results with minimal overhead in execution time.

I. INTRODUCTION

UANTUM computing is a developing computing field which

applies the principles of quantum mechanics to solve prob-
lems more efficiently than optimal classical techniques. Quantum
algorithms provide exponential speedups for problems in physics,
chemistry, and mathematics, with promising applications in a wide
variety of other areas. However, extracting the benefits of quantum
computation has proven difficult due to the high error rates and
relatively low qubit counts of Noisy Intermediate-Scale Quantum
(NISQ) computers. Further, it has been challenging to design and
implement large quantum circuits.

A promising method for reducing some of the complexity associ-
ated with quantum computing is quantum circuit partitioning. This
technique splits a quantum circuit into smaller, more manageable
pieces which can more easily be simulated by NISQ computers [1]
[2] [3] [4], or more easily processed by classical algorithms [5] [6].
Many quantum circuit partitioning methods focus on assigning qubits
to partitions such that the number of required telegate operations is
minimized. This is called qubit partitioning. Because this approach
splits multi-qubit gates, performing optimization on the resulting
sub-circuits is difficult. An alterative partitioning scheme efficiently
assigns quantum gates to partitions, such that the number of teledata
operations is minimized. In this scheme, called gate partitioning, each
partition can be considered separately, which allows applications in
both circuit distribution and optimization.

A very common approach is partitioning a circuit by performing
a balanced min-cut on the circuit’s weighted coupling graph. This
method, however, does not account for varying qubit connectivity
across different regions of the circuit, which limits partition quality
[7]. As a result, many recent works based on this approach [7] [8]
[9] or another global approach [10] incorporate some measure of
localized information when selecting cuts.

Several existing algorithms perform circuit partitioning for the
purposes of circuit optimization, but these approaches sacrifice a
significant amount of efficiency for the sake of performance, or vice
versa. We chose to compare against a pair of algorithms, one of
which is optimized for quality of result, and the other for speed.
ScanPartitioner, which is proposed as part of QGo [5], uses a greedy
approach with exhaustive search to select partitions. This approach
produces good quality results, but has a fairly large time complexity
of O(gnk). The other method, called QuickPartitioner [11], consid-
ers gates in topological order and progressively creates partitions.
QuickPartitioner has a time complexity of approximately O(gn), but
produces significantly lower quality results than ScanPartitioner.

Thus, we propose Tree-based Directed Acyclic Graph (TDAG)
partitioning, a novel iterative gate partitioning method which uses
localized heuristics to partition a circuit. The algorithm accepts a
circuit of n qubits with g gates and a constant £ < n, and partitions
the circuit into the minimum number of partitions, j, such that each
partition has < k qubits. This partitioning scheme reduces the scaling
of quantum synthesis-based optimization of a circuit from exponential
in n to exponential in k. By minimizing the number of partitions,
the algorithm provides synthesis tools with the most information
to optimize the resulting sub-circuits. Minimizing the number of
partitions also has the effect of reducing the teleportation cost of
a distributed circuit partitioned this way.

TDAG partitions circuits by viewing the gates as nodes in a
series of binary trees and selecting the tree containing the most
gates. The algorithm produces results of comparable quality to
ScanPartitioner while having a time complexity of only O(gn4k).
Since ScanPartitioner has a complexity of O(gnk), TDAG has a
significant advantage both for circuits with a large number of qubits
and for partitioning with large values of k. A comparison of TDAG,
ScanPartitioner, and QuickPartitioner across a set of benchmark
circuits is provided for & = 4 and 5. These benchmarks include
Quantum Fourier Transform (QFT), quantum arithmetic, quantum
approximate optimization algorithm, and Ising model simulation
circuits. In comparison with ScanPartitioner, which produces the
highest quality results, TDAG produces an equivalent quality of
result and an average run time reduction of 94.5%. In comparison
with QuickPartitioner, TDAG produces an average quality of result
improvement of 45.2% with only an average 4% increase in run time.
Furthermore, for larger values of k£ (up to 16), we observe a time
improvement ratio of nearly 100% compared with ScanPartitioner
for several circuits, demonstrating the superior time complexity of
TDAG. Performance on hardware mapped circuits (a 20 qubit QFT
circuit) was also measured, again showing a near 100% improvement
in run time against ScanPartitioner and up to 69% improvement in
quality against QuickPartitioner.

This paper is organized as follows: Section II describes the
behavior of TDAG. Section III discusses how the partitioners were
evaluated along with results. Section IV discusses future research
direction and concludes the article.

II. PROPOSED METHOD: TREE-BASED DIRECT ACYCLIC GRAPH
(TDAG) PARTITIONING

TDAG attempts to decompose a circuit of n qubits with g gates
into blocks at most k qubits containing as many multi-qubit gates as
possible. It follows these steps: 1: TDAG begins by enumerating all
qubit groups which could be included together in a partition. 2: A
candidate partition is then created for each group of qubits by greedily
collecting all gates which include only the grouped qubits, starting
from the beginning of the circuit. 3: These candidate partitions are
scored based on multi-qubit gate count, and the best partition is
removed from the active region and transformed into a partition.
This process is repeated until the active region is empty. All of
these steps are self-explanatory with the exception of the qubit group
enumeration algorithm (step 1), which we now explain in detail.

Qo '
! °
2 ° ®
b3I ° ®
i 4 ® ®
5 ° °
L s
s 7 ®

Fig. 2: Gate Dependency Calculation

The group enumeration algorithm operates on the Directed Acyclic
Graph (DAG) representation of the circuit. Figure 1 demonstrates
the conversion of a quantum circuit into a DAG representation. The
nodes at the top of the DAG and all edges represent qubits, while the
remaining nodes each represent a generic two-qubit quantum gate.
The DAG is constructed by iterating along each qubit in the circuit
and creating a chain of nodes representing the gates applied to the
qubit. In the case that a gate has already been encountered, an edge
connecting to the existing node for that gate is created instead. The
group enumeration algorithm is composed of two steps. The first step
calculates the qubit dependencies of each gate up to k dependencies,
while the second step finds all possible groups of interacting qubits
up to size k by viewing the circuit as a series of binary trees.

A. Gate Dependencies

The gate dependency calculation performs a modified breadth-first
search over the DAG of the circuit starting at each qubit node. The
nodes in the search queue are visited in topological order. When a
node is visited, the dependencies of the node are merged into the
dependencies of each child node. The behavior of the algorithm on
the example circuit from Figure 1 is shown in Figure 2. In the
first step, each qubit node is visited and merged into the list of
dependencies for the first gate along the qubit. Gates are added to
the visitation queue when they are encountered. The first gate to be
visited is the gate between qubits 3 and 4, which has dependencies
{3,4}. These dependencies are copied to the gate between 2 and

3 and the gate between 4 and 5. These gates are visited next and
their dependencies are similarly copied into each of their children.
Because all gates remaining in the queue are dependent on at least
k qubits, the algorithm then terminates.

B. Qubit Group Calculation

The qubit group calculation algorithm finds qubit groups by
accumulating qubits while traversing all possible binary trees with
a given root node. Figure 3 shows all possible trees rooted at qubit
3 with 4 nodes. Four of the trees (a, c, d, and e) consist of a simple
route down the graph until a total of four qubits are encountered.
The fifth tree (b) reveals a more complicated pattern which consists of
movement down one side of the graph, then backtracking and moving
down the other side of the graph. The qubit group for each path is
calculated as the union of the dependencies for all gates included in
the path.

Algorithm 1 Qubit Group Enumeration for Proposed Method

1: function ENUMERATEGROUPS(circuit, depend)

2 result < ()

3 for all qubit € circuit do

4: results.add(ENUMERATE(qubit, set{qubit}, depend))
5: end for

6 return results

7: end function

8
9

: function ENUMERATE(target, input, depend)
10: output < ()

11: result < ()

12: for all group € input do

13: if |group U depend[target]| < k then

14: result.add(group U depend[target])

15: if depend[target] ¢ group then

16: output.add(group U depend|target])
17: end if

18: end if

19: end for
20: while any |group| < k for all group € output do

21: target < target.next()

22: input <— output

23: output <— ENUMERATE(target.otherqubit, input)
24: result.add(output)

25: end while

26: return result

27: end function

Algorithm 1 shows the qubit group calculation algorithm. The algo-
rithm receives the circuit to be partitioned and the gate dependencies
as inputs, and returns the set of possible qubit groups. The circuit
paths are enumerated by recursively exploring the circuit in an order
similar to a depth first search. The recursive function (line 9) receives
a target gate and qubit, and a set of incomplete qubit groups. The
first loop in the function appends the dependent qubits for the target
gate to each group with less than k qubits. The new groups are added
to both a result set and the set of inputs to the next recursive call. In
order to prevent redundant branching, only groups which are updated
with new qubits in the previous step (evaluated on line 15) are passed
to the next call. If a new group contains more than k qubits, it is
discarded.

The algorithm then finds the next gate along the target qubit and
performs a recursive call targeting the new gate and the other qubit
the gate interacts with, alongside the relevant partial groups (lines 21

(d) Group 0,2,3,4
Fig. 3: Possible Trees Rooted Qubit 3

to 23). The return value from this call provides the partial groups
for the next recursive call. Each returned set is also merged into the
result set (line 24). Recursive calls along the target qubit are made
until the return set is empty (line 20), at which point the function
returns the accumulated result set. At the end of the call, the qubit
groups for all possible binary trees rooted at the target gate have been
accumulated in the result set. An initial recursive call is performed
on the first gate along each qubit (line 4). This allows the algorithm
to explore the circuit from all possible starting points. It is important
to note that this algorithm is guaranteed not to modify the behavior
of the circuit, because the order in which the gates are applied is not
disturbed by the partitioning process.

III. RESULTS

TDAG, ScanPartitioner, and QuickPartitioner were each applied
to a set of benchmark circuits, measuring run time and number of
partitions produced for each run. Another partitioner has been pro-
posed by Clark et al. [12] which shows good performance compared
to both of the partitioners from BQSKit. This partitioner is included
in the first part of the analysis, but excluded from the latter part
for clarity due to the similarity to ScanPartitioner. The CNOT gate
count, qubit count, and a brief description of each circuit is provided
in Table I. The analysis was performed at £ = 4 and 5, both because
4 and 5 are accepted values for this parameter and also to provide a
direct comparison with Clark et al. Each test was performed 10 times
and the results were averaged, with the exception of the more time-
consuming Quantum Fourier Transform passes on ScanPartitioner. It
should be noted that all four algorithms are deterministic, and thus
produce produce a constant number of partitions given a fixed set of
parameters. All tests were performed using a computer with an AMD
Ryzen 5 5600X processor and 32GB of RAM.

Unlike ScanPartitioner and QuickPartitioner, TDAG does not group
together qubits which cannot interact in the active portion of the
circuit, which means that it will occasionally produce partitions with
fewer average gates per block. In most cases, the resulting blocks can
be processed to obtain results similar to the other partitioning methods
by applying a simple merging algorithm which groups adjacent blocks
that contain no more than k£ qubits when combined. This approach
was applied to the quality measurements for all partitioners to allow
them to be accurately compared.

Table II shows the data for the four partitioners on all benchmark
circuits, while Table III provides a summary of the data. The results
demonstrate that TDAG produces very similar quality results to
ScanPartitioner and Clark et al., while producing a 45.2% quality
improvement over QuickPartitioner. TDAG is also shown to have

(e) Group 3,4,5,7

a run time competitive with QuickPartitioner, ScanPartitioner, and
Clark et al. across the benchmark circuits. A significant difference
in the run time of ScanPartitioner and the other methods is observed
for the 20 qubit QFT circuit, where ScanPartitioner takes significantly
longer than the other methods. As a result, TDAG shows an average
time improvement ratio of 94.5% against ScanPartitioner. TDAG also
achieves a 61.4% time improvement compared to Clark et al. [12].

Despite the large difference in average time taken, all three
methods show similar run time for most circuits at £k = 4 and 5. In
fact, ScanPartitioner is faster than both QuickPartitioner and TDAG
in a few cases, but this is primarily due to the relative simplicity of
the method. The high time complexity of ScanPartitioner becomes
evident in the larger, more complex circuits. Notably, the 20 qubit
QFT circuit shows clear exponential growth in execution time for
ScanPartitioner, while QuickPartitioner and TDAG appear constant.
Additionally, TDAG produced a higher quality result compared with
QuickPartitioner for all circuits except the 5 qubit QFT circuit, where
it was the same, and was within 1 partition of ScanPartitioner for all
circuits except the 20 qubit Quantum Fourier Transform circuit, where
it was two partitions ahead.

A. Performance as k Varies

In addition to the analysis across all circuits at £ = 4 and 5, a
more detailed analysis was performed on four important quantum
circuits (multiply_10, qaoa_10, gft_20, and TFIM_32) for values of
k up to 16. These circuits were partitioned using QuickPartitioner,
ScanPartitioner, and TDAG. The execution time and number of
partitions were measured for each partitioning and plotted.

The results are shown in Table 4. The wider range of k values
provided by this table provides a better indication of the general
performance of the three partitioners. For example, QuickPartitioner
seems to be constant in k, with the time for most circuits showing
no trend when k is varied. ScanPartitioner demonstrates an expo-
nential increase for all four circuits, with the trend for the 10 qubit
multiplier and 32 qubit TFIM circuit possibly appearing greater than
exponential. TDAG appears to be constant in k for most test circuits,
although some exponential growth is exhibited in the TFIM circuit.
TDAG and ScanPartitioner consistently outperform QuickPartitioner
in terms of quality, with QuickPartitioner producing three times as
many partitions as the other two in the TFIM circuit.

B. Performance on Hardware-Mapped Circuits

In addition to analyzing the performance of the algorithms on the
original set of benchmark circuits, we also tested the algorithms on

TABLE I:. Benchmark Circuits Used in This Work

Circuit Description CNOT Count Qubit Count
adder_9 Quantum adder 98 9
heisenberg_8 50 step Heisenberg model simulation 2100 8
hif_10 Hidden linear function circuit 56 10
multiply_10 Quantum multiplier 163 10
qaoa_10 Quantum approximate optimization algorithm 85 10
qft_5 Quantum Fourier transform circuit 33 5
qft_10 Quantum Fourier transform circuit 216 10
qft_20 Quantum Fourier transform circuit 380 20
TFIM_8 100 step transverse-field Ising model simulation | 56 8
TFIM_16 100 step transverse-field Ising model simulation | 240 16
TFIM_32 100 step transverse-field Ising model simulation | 992 32
wstate_27 We-state preparation circuit 52 27
qft_20_grid qft_20 mapped with grid connectivity 487 20
qft_20_tokyo qft_20 mapped onto the IBM Tokyo 484 20
TABLE II: Benchmarks of Partitioning Methods for k at 4 and 5

Quick [11] Scan [5] Clark et al. [12] TDAG (Proposed)
Circuit k Time (s) Partitions Time (s) Partitions Time (s) Partitions Time (s) Partitions
adder_9 4 0.04 15 0.04 7 0.07 7 0.04 7
adder_9 5 0.03 7 0.06 6 0.08 6 0.04 6
heisenberg_8 | 4 1.18 349 0.99 225 2.19 225 1.15 225
heisenberg_8 | 5 1.24 294 1.00 150 2.75 150 1.25 150
hif 10 4 0.02 15 0.03 8 0.04 8 0.02 8
hif_10 5 0.02 10 0.05 5 0.04 5 0.02 6
multiply_10 4 0.06 19 0.10 15 0.13 15 0.06 15
multiply_10 5 0.05 11 0.12 8 0.14 8 0.06 8
qaoa_10 4 0.03 16 0.05 9 0.06 9 0.03 9
qaoa_10 5 0.03 9 0.08 6 0.07 6 0.03 6
qft_5 4 0.01 3 0.01 3 0.02 3 0.01 3
qft_5s 5 0.01 1 0.01 1 0.02 1 0.01 1
qft_10 4 0.08 27 0.12 18 0.17 18 0.08 18
qft_10 5 0.07 17 0.16 12 0.20 12 0.10 12
qft_20 4 0.21 71 30.82 45 0.52 45 0.23 45
qft_20 5 0.21 51 152.29 33 0.63 32 0.24 31
TFIM_8 4 0.05 8 0.05 7 0.09 7 0.05 7
TFIM_8 5 0.05 5 0.05 5 0.10 5 0.06 5
TFIM_16 4 0.22 44 0.22 31 0.51 32 0.23 31
TFIM_16 5 0.25 35 0.23 22 0.58 22 0.26 22
TFIM_32 4 0.96 184 0.90 125 3.49 126 1.02 124
TFIM_32 5 1.00 134 0.92 86 3.80 87 1.04 85
wstate_27 4 0.03 19 0.04 13 0.11 26 0.06 13
wstate_27 5 0.03 14 0.04 9 0.10 18 0.06 9

TABLE III: Performance Improvement of TDAG Compared with Existing Works
Partitions Time (s)

k TDAG w.r.t. Quick [11] TDAG w.r.t. Scan [5] TDAG w.r.t. Clark et al. [12]
Improvement Ratio 4 34.42% 91.05% 59.68%

5 42.01% 97.96% 62.95%
Average Improvement Ratio | 45.21% 94.52% 61.37%

the 20 qubit QFT circuit mapped to existing quantum hardware. We
considered two connectivity types: a grid-shaped coupling graph, and
the coupling graph representing the IBM Tokyo quantum computer,
which is a grid with some diagonal connections inserted. The results
are shown in Figure 5.

The table indicates that mapping a fully connected circuit to a grid
architecture reduces, but does not eliminate, the exponential scal-
ing exhibited by ScanPartitioner. Although ScanPartitioner performs
better than in the unmapped case, TDAG still shows an average
99.9% performance improvement. Additionally, as before, TDAG
matches the result quality of ScanPartitioner and runs in similar
time to QuickPartitioner, with an 80% improvement in result quality
compared to QuickPartitioner.

C. Complexity

The efficiency of TDAG is explained by the dramatic reduction in
worst-case number of qubit groups returned by the group enumer-

ation method. The process of finding circuit paths is equivalent to
enumerating all binary trees of k£ nodes. This process can, in turn,
be represented in terms of a Dyck language. A Dyck language is a
collection of balanced strings composed of a pair of symbols, such
that the number of occurrences of the second symbol never exceeds
the first and the total number of occurrences of each symbol is equal.
The Dyck language representing possible paths through the circuit is
composed of the symbols F' and B. The F' symbol moves forward
along the current qubit and then branches to the other qubit in the
next gate. The B symbol moves back to the previous qubit. The
F' operation used by the enumeration algorithm skips gates until
a gate with at least one new qubit is found. This means that at
most £ — 1 pairs of symbols will be present in the resulting Dyck
words. The total number of unique Dyck words of length 2(k — 1)
is equal to the k — 1th Catalan number [13]. The growth rate of the
Catalan numbers is bounded above by 4k, Thus, the total number of
groups of length k returned by starting from a single qubit in the

multiply_10 qaoa_10
510° 2-10°
5 1-10°
1-10%)
2 @ 5-10%
£ 5.10% 1 g ,
I3} v 2-10°
g =)
£ 210% £ 1.10%
1-10% 510"
510" —o¥ ﬁ.@'g'
X ‘ i i f X f i f
30 <— QuickPartitioner [11] <— QuickPartitioner [11]
—+— ScanPartitioner [5] 15 4 @ X —+— ScanPartitioner [5]
£ 50 © TDAG z ® TDAG
£ Z 10
g g
10 + 5
0 0
k k
qft_20 TFIM_32
2:10*
107 -
_ 110"
o 10° - ® >-10
£ £
= = 2.10%
10° -
0020020000009 1-10°
; \ i ; i ;
100 QuickPartitioner [11] QuickPartitioner [11]
—+— ScanPartitioner [5] 200 - —+— ScanPartitioner [5]
2 X © TDAG 2 A © TDAG
5] 2
£ 50 £
S £ 100
LA
0 T T ee T 0
5 10 15
k k

Fig. 4: Performance for Partitioning Methods Across Select Benchmarks

enumeration algorithm is O(4") worst-case. Because this process is
repeated for each qubit in the circuit, the worst-case number of groups
returned by the enumeration algorithm is O(n4"). As each partition
contains at worst one gate, and this operation is performed after each
partition, the total time complexity is O(gn4*). This is smaller than
the O(gn*) of ScanParitioner, particularly for large values of n or
k.

It is important to note that the complexity of ScanPartitioner
and TDAG are strongly affected by the topology of their respective
graphs. Thus, for ScanPartitioner, time complexity is dependent on
the degree of the qubit coupling graph. For example, grid-shaped
(HLF, multiplier, and QAOA circuits) and fully-connected (QFT
circuits) graphs have a worst-case group count of approximately
O(n4*) and O(n*), respectively. This produces the exponential
time complexity with increasing k seen in the benchmarks. An

interesting case is the linearly connected circuits (TFIM and W-
state circuits), which produce exponential complexity despite the
O(nk) worst-case group count for linearly connected circuits. This is
caused by ScanPartitioner’s implementation of the group enumeration
algorithm, which searches the graph more than necessary in this case.

The time complexity of TDAG depends on the local connectivity
of the circuit, specifically the beginning of the active region of the
circuit. When the circuit is strongly interconnected, the dependency
list for each successive gate grows exponentially, reducing the number
of nodes in the search tree to O(lg(k)). This reduces the number
of possible groups to O(nk?). Conversely, the worst-case behavior
O(n4k) is produced if the dependency list for each successive gate
grows by only one qubit.

qft_20_grid
_10°
g
4|
.g 10
F
10%
A <— QuickPartitioner [11]
100 X —+— ScanPartitioner [5]
2 TDAG
1S
g 50
0 T T T T
4 6 8 10
k

qft_20_tokyo

_ 106 -
g
g
Z 10"
<— QuickPartitioner [11]
100 - X —+— ScanPartitioner [5]
2 TDAG
5
g 50
0 T T T T
4 6 8 10
k

Fig. 5: Performance of Partitioning Methods on Mapped Circuits

IV. CONCLUSION

Applying circuit partitioning to synthesis-based optimization pro-
vides a promising avenue to address the exponential scaling problems
which normally accompany quantum synthesis. Partition quality
significantly affects the execution time and quality of the optimized
circuit. TDAG outperforms existing partitioning methods by applying
more efficient partitioning techniques, achieving a result quality
equal to exhaustive methods and execution time similar to faster,
simpler methods. In a benchmark test against a fast method and
an exhaustive solution, TDAG shows a 45% quality improvement
against the fast method, and almost identical quality to the exhaustive
method. The execution time of TDAG scales significantly better than
the exhaustive method with an 95% average time improvement, and
is faster than the fast method in several cases.

Future improvements for TDAG should address the fact that it does
not group together qubits which can not interact in the active part
of the circuit. For very shallow circuits, the reprocessing technique
discussed in the results section may not work because TDAG fails to
find sufficiently large qubit groups due to reduced tree depth. This
problem has proven difficult to address for TDAG, but we believe
it could be resolved by slightly modifying the qubit enumeration
algorithm while preserving the positive characteristics of TDAG.

REFERENCES

[1] W. Tang, T. Tomesh, M. Suchara, J. Larson, and M. Martonosi,
“Cutqc: Using small quantum computers for large quantum
circuit evaluations,” in Proceedings of the 26th ACM Interna-
tional conference on architectural support for programming
languages and operating systems, 2021, pp. 473—486.

[2] Z. Davarzani, M. Zomorodi-Moghadam, M. Houshmand, and
M. Nouri-baygi, “A dynamic programming approach for dis-
tributing quantum circuits by bipartite graphs,” Quantum In-
formation Processing, vol. 19, no. 10, pp. 1-18, 2020.

[3] P. Andres-Martinez and C. Heunen, “Automated distribution of
quantum circuits via hypergraph partitioning,” Physical Review
A, vol. 100, no. 3, p. 032308, 2019.

(4]

(3]

(6]

(71

(8]

(9]

(10]

(11]

(12]

[13]

O. Daei, K. Navi, and M. Zomorodi-Moghadam, “Optimized
quantum circuit partitioning,” International Journal of Theo-
retical Physics, vol. 59, no. 12, pp. 3804-3820, 2020.

X.-C. Wu, M. G. Davis, F. T. Chong, and C. lancu, Qgo: Scal-
able quantum circuit optimization using automated synthesis,
2020. por: 10.48550/ARXIV.2012.09835. [Online]. Available:
https://arxiv.org/abs/2012.09835.

T. Patel, E. Younis, C. Iancu, W. de Jong, and D. Tiwari,
Robust and resource-efficient quantum circuit approximation,
2021. por: 10.48550/ARXIV.2108.12714. [Online]. Available:
https://arxiv.org/abs/2108.12714.

E. Nikahd, N. Mohammadzadeh, M. Sedighi, and M. S.
Zamani, “Automated window-based partitioning of quantum
circuits,” Physica Scripta, vol. 96, no. 3, p. 035102, 2021.

J. M. Baker, C. Duckering, A. Hoover, and F. T. Chong, “Time-
sliced quantum circuit partitioning for modular architectures,”
in Proceedings of the 17th ACM International Conference on
Computing Frontiers, 2020, pp. 98-107.

B. Fang, M. Y. Ozkaval, A. Li, U. V. Catalyiirek, and S. Kr-
ishnamoorthy, “Efficient hierarchical state vector simulation of
quantum circuits via acyclic graph partitioning,” in 2022 IEEE
International Conference on Cluster Computing (CLUSTER),
IEEE, 2022, pp. 289-300.

D. Dadkhah, M. Zomorodi, S. E. Hosseini, P. Plawiak, and
X. Zhou, “Reordering and partitioning of distributed quantum
circuits,” IEEE Access, vol. 10, pp. 70329-70341, 2022.

B. N. Laboratory, Bgskit, https://github.com/BQSKit/bgskit,
2022.

J. Clark, H. Thapliyal, and T. S. Humble, “A novel approach to
quantum circuit partitioning,” in 2022 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), IEEE, 2022, pp. 450—
451.

E. Barcucci and M. C. Verri, “Some more properties of catalan
numbers,” Discrete Mathematics, vol. 102, no. 3, pp. 229-237,
1992.

