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Abstract 
Identifying small molecules (e.g., metabolites) is key towards driving scientific advancement in 
metabolomics, and gas chromatography–mass spectrometry (GC-MS) is an analytic method that 
may be applied to facilitate this process. The typical GC-MS identification workflow involves 
quantifying the similarity of an observed sample spectrum and other features (e.g., retention 
index) to that of several references, noting the compound of the best-matching reference 
spectrum as the identified metabolite. While a deluge of similarity metrics exists, none 
characterize the error rate of generated identifications, thereby presenting an unknown risk of 
false identification or discovery. To quantify this unknown risk, we propose a model-based 
framework for estimating the false discovery rate (FDR) among a set of identifications. Extending 
the traditional mixture modeling framework, our method incorporates both similarity score and 
experimental information in estimating the FDR. We apply these models to identification lists 
derived from across 548 samples of varying complexity and sample type (e.g., fungal species, 
standard mixtures, etc.), comparing their performance to that of the traditional Gaussian mixture 
model (GMM). Through simulation, we additionally assess the impact of reference library size on 
the accuracy of FDR estimates. In comparing the best performing model extensions to the GMM, 
our results indicate relative decreases in median absolute estimation error (MAE) ranging from 
12% to 70%, based on comparisons of the median MAEs across all hit-lists. Results indicate that 
these relative performance improvements generally hold despite library size, however FDR 
estimation error typically worsens as the set of reference compounds diminishes.  
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Summary 
In this research we quantify this unknown risk and propose a model-based framework for 
estimating the false discovery rate (FDR) among a set of identifications. Extending the traditional 
mixture modeling framework, our method incorporates both similarity score and experimental 
information in estimating the FDR. We apply these models to identification lists derived from 
across 548 samples of varying complexity and sample type (e.g., fungal species, standard 
mixtures, etc.), comparing their performance to that of the traditional Gaussian mixture model 
(GMM). Through simulation, we additionally assess the impact of reference library size on the 
accuracy of FDR estimates. In comparing the best performing model extensions to the GMM, our 
results indicate relative decreases in median absolute estimation error (MAE) ranging from 12% 
to 70%, based on comparisons of the median MAEs across all hit-lists. Results indicate that these 
relative performance improvements generally hold despite library size, however FDR estimation 
error typically worsens as the set of reference compounds diminishes.  

We further examined whether uninvestigated assumptions of the RI score are valid and propose 
ways to improve them. Query RI were matched to library RI with a generous window of +/-35 to 
avoid unintentional removal of valid compound identifications. Each match was manually verified 
as a true positive, true negative or unknown. Metabolites with at least 30 true positive 
identifications were included in downstream analyses, resulting in a total of 87 metabolites from 
samples of varying complexity and type (e.g., amino acid mixtures, human urine, fungal species, 
etc.). Our results showed that the RI score assumptions of normality, consistent variance across 
metabolites, and a mean error centered at 0 are often violated. We demonstrated through a cross-
validation analysis that modifying these underlying assumptions according to empirical, 
metabolite-specific distributions improved the true positive and negative rankings. Further, we 
statistically determined the minimum number of samples required to estimate distributional 
parameters for scoring metrics. Overall, this work proposes a robust statistical pipeline to reduce 
the time bottleneck of metabolite identification by improving RI scores and thus minimizing the 
effort to complete manual verification. 
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shown in the figure above, but estimated curves are obtained for every 
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Figure 7: Boxplots of model-specific MAE distributions under simulated reference libraries 
of varying size, faceted by sample type. Each box-plot is annotated by its 
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1.0 Introduction 
Metabolites – which include the diverse set of hormones, signaling molecules and other small 
molecules – help paint a detailed picture of the chemical processes that govern biological 
systems. Thus metabolomics, the study of metabolites and other small molecules, impacts 
scientific advancement across a wide variety of biological and chemical domains. Fundamental 
to these impactful metabolomic contributions, however, is the ability to accurately identify the set 
of metabolites in samples using a variety of analytical techniques. 

Gas chromatography-mass spectrometry (GC-MS) is an analytic method that yields molecular 
fingerprints in the form of spectra, thus making GC-MS an ideal tool for metabolite identification. 
These spectra are typically compared to those of known reference compounds, with each 
comparison being scored by a metric assessing their degree of similarity. The reference 
metabolite of each sample spectrum’s best scoring match is then assigned as the spectrum’s 
identification, provided that the measured similarity is above the threshold level specified by the 
analyst. For example, when using the cosine dot-product, threshold levels between 0.6 and 0.7 
are often used (1). Despite the use of these thresholds, there is no guarantee that the resulting 
set of identifications are without false positives and thus there is rarely an accurate estimate of 
the expected number of false identifications relative to the total set (i.e. false discovery rate, FDR).  

Methods for false discovery rate estimation are commonly applied in proteomics and genomics, 
with some of these approaches utilizing biological structural information to inform or generate their 
estimates. In proteomics, for example, spectra are matched against a composite database of 
decoy and reference proteins, where decoys are generated by shuffling the reference protein 
sequences. The number of false positives is then estimated by doubling the number of matched 
decoys (2). Given the structural diversity of metabolites, such methods are not directly 
transferable. However, for LC-MS/MS, an alternative solution has been offered by Sheubert et al. 
who developed target-decoy approaches with decoys generated through fragmentation trees (3-
5). Yet the best performing of these approaches was found to only marginally outperform an 
Empirical Bayes approach (6) when applied to noise-filtered data and substantially underperform 
otherwise.   

The previous target-decoy-based approaches removed, existing FDR methods in metabolomics 
are largely probabilistic or model-based (1,7-9). However, the widespread adoption of these 
approaches has been hindered due to either their complexity, limitation(s) towards 
implementation, or their generalizability. As an example, the Basic Local Alignment Search Tool 
method requires that users perform sever-al complex preprocessing steps and specify several 
parameters that influence resulting estimates (1). Kim and Zhang (9) offer a much less 
complicated solution based on similarity score differences, but their approach is based on a 
limited set of empirical trends observed when applying the weighted cosine correlation to the NIST 
08 Mass Spectral Library data and has not been generalized to other scores or datasets. 

Table 1. Dataset, Sample, Spectrum, and Annotation Counts by Sample Type 

Sample 
Type 

# 
Datasets 

# 
Samples 

# 
Spectra 

# (%) TP # (%) TN # (%) 
Unknown 

Standards 11 140 10807 433 (0.09) 452708 
(96.19) 

17498 (3.72) 
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Human 
CSF 

8 206 25035 6437 
(0.44) 

947132 
(64.90) 

505832 
(34.66) 

Human 
Blood 
Plasma 

3 90 15621 2593 
(0.32) 

333239 
(41.46) 

467877 
(58.22) 

Human 
Urine 

2 66 22978 2340 
(0.20) 

481163 
(41.43) 

678008 
(58.37) 

Fungi 3 30 8766 1102 
(0.24) 

260721 
(57.40) 

192407 
(42.36) 

Soil 2 16 3622 581 
(0.34) 

100457 
(58.50) 

70688 
(41.16) 
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2.0 Experimental Section 
2.1 Data 

Our data were compiled from an internal Pacific Northwest National Laboratory (PNNL) 
repository of Agilent.D files collected over four years and processed by CoreMS (10), software 
developed at PNNL. Datafiles corresponding to standards samples were generated from standard 
metabolites purchased from Sigma Aldrich, and these standards were derivatized using a 
modified version of the FiehnLib protocol (11) as described in other works (12, 13). Briefly, dried 
samples underwent methoxyamination and trimethylsilyation (TMS) before being analyzed by an 
Agilent GC 7890A coupled with a single quadrupole MSD 5975C (Agilent Technologies). Data 
were collected over a mass range of 50-550 m/z, and a standard mixture of fatty acid methyl 
esters (FAMEs) (C8 – C28) were analyzed with samples to facilitate retention index alignment.  

The processed and compiled data are representative of six categorizations of sample type of 
varying complexity: standards mixtures, human cerebrospinal fluid (CSF), human blood plasma, 
human urine, fungi species (A. niger, A. nidulans, T. reesei), and soil crust. Each of the human 
samples (i.e., CSF, plasma, and urine) contained deuterated internal standards (14). Within each 
category of sample type are collections of datasets, each of which are composed of spectra 
measured at different observed retention times/indices from across separate samples. In 
processing these data with CoreMS, a generous retention index window of +/- 35 was used to 
append lists of candidate metabolite matches to the corresponding processed spectra.  

Candidate matches of each spectrum were then manually annotated as either “True Positive” 
(TP), “True Negative” (TN), or “Unknown” based on the assessment of expert analysts. Expert 
annotations were partly informed by a few guidelines. Specifically, for standards samples, any 
small compound that was not included in the mixture was labeled as a TN. Exceptions to this rule 
include FAMES and other commonly occurring compounds such as carbonate, phosphate, 
phosphoric acid, glycerol, and propylene glycol. In complex samples, for a spectrum with a 
candidate metabolite labeled as TP, all other candidate metabolites were labeled as TN. Lists of 
prevalent compounds within certain sample types were derived from the Human Metabolome 
Database (15) and CEU Mass Mediator (16). These lists were used to assign TN labels to 
candidate metabolites that were foreign to a particular sample type (e.g. benzene-1,2,4-triol in 
blood plasma), except for prevalent sugars, amino acids, nucleic acids, small organic compounds, 
and the FAMES and commonly occurring compounds previously mentioned. Candidate 
metabolites which could not be confidently assigned as either TP or TN were labeled as 
“Unknown”. Table 1 displays the number of datasets, samples, and total spectra corresponding 
to each sample type. Counts and percentages of all corresponding annotations (TP, TN, or 
Unknown) are also included.  

2.2 FDR Estimation  

Estimates of the false discovery rate are generated through each of four general approaches. The 
first approach, a gaussian mixture model (GMM) serves as a baseline for comparison given its 
ubiquitous application as an FDR estimation method across a wide variety of scientific domains. 
The choice of GMM for baseline was also influenced by a separate simulation study indicating 
superior performance of the GMM as compared to the method introduced by Jeong et al (8).  

2.2.1 GMM Simulation Study  
We compared the false discovery rate estimation accuracy of the standard Gaussian Mixture 
model (GMM) to that of the hierarchical empirical Bayes model (HEBM) introduced by Jeong et. 
al (8). Data for this comparison study were simulated according to the HEBM. To simulate data 
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from the HEBM, we first specified values for each of the model’s parameters (𝜌𝜌 = 0.1, 𝜂𝜂0 =
0.5,𝛽𝛽0 = 3,𝛽𝛽1 = 2,𝛽𝛽2 = 1, 𝜂𝜂1 = 0.7 ,𝛼𝛼0 = 6,𝛼𝛼1 = 4,𝛼𝛼2 = 2, 𝜏𝜏 = 0.8, 𝜇𝜇𝑇𝑇 = 5,𝜎𝜎𝑇𝑇2 = 9, 𝜇𝜇𝐹𝐹 = 40,𝜎𝜎𝐹𝐹2 =
100). Next, we computed competition scores based on a subset of 200 compounds from the 
CoreMS reference library. We then drew 200 samples from a 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜌𝜌) distribution to generate 
a binary vector 𝑌𝑌 indicating which of the 200 reference metabolites are “present” (𝑌𝑌𝑖𝑖 = 1) in the 
simulated sample. Using the generated vector, 𝑌𝑌, we then take draws from two different Bernoulli 
distributions, depending on whether 𝑌𝑌𝑖𝑖 = 1 or 𝑌𝑌𝑖𝑖 = 0. The parameterizations of these Bernoulli 
distributions are functions of the computed competition scores, and the parameters 
𝜂𝜂0,𝛽𝛽0,𝛽𝛽1,𝛽𝛽2, 𝜂𝜂1 ,𝛼𝛼0,𝛼𝛼1, and 𝛼𝛼2. Drawing from this second set of Bernoulli distributions results in the 
binary vector 𝑍𝑍 indicating which of the 200 reference metabolites were “matched” (𝑍𝑍𝑖𝑖 = 1) to 
simulated sample spectra. Each “matched” reference metabolite (i.e., 𝑍𝑍𝑖𝑖 = 1) is then associated 
with five hypothetical sample spectra. For each of these five hypothetical matches, we next draw 
from a 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜏𝜏) distribution if the corresponding reference metabolite is “present” within the 
simulated sample (𝑌𝑌𝑖𝑖 = 1). If not present, we draw from a 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(0) distribution. This process 
results in the generation of binary vectors 𝑊𝑊𝑖𝑖 that indicate whether the “match” between the 𝑖𝑖𝑡𝑡ℎ 
reference metabolite and 𝑗𝑗𝑡𝑡ℎ hypothetical match is correct (𝑊𝑊𝑖𝑖𝑖𝑖 = 1). Last, the cosine similarity 
scores between the reference metabolite and its simulated matches are generated from a normal 
mixture distribution with parameterization depending on the value of 𝑊𝑊𝑖𝑖𝑖𝑖. If 𝑊𝑊𝑖𝑖𝑖𝑖 = 0, scores are 
generated from the “false positive” component of the mixture distribution parameterized by 𝜇𝜇𝐹𝐹 and 
𝜎𝜎𝐹𝐹2. Otherwise, scores are generated from the “true positive” component of the mixture distribution 
parameterized by 𝜇𝜇𝑇𝑇 and 𝜎𝜎𝑇𝑇2. Further details on the HEBM, its structure, required parameters, and 
the competition scores may be found in Jeong et. al (8). 
A total of 100 datasets were simulated based on the previously described process, and for each, 
GMM and HEBM models were fitted to the data to yield model-estimated FDR curves. The HEBM 
outputs probabilities indicating the likelihood of each reference metabolite’s presence in sample, 
Pr (𝑌𝑌𝑖𝑖 = 1), and thus FDR estimates for the HEBM are based on thresholding these probabilities 
(e.g., all reference metabolites with estimated probabilities greater than 0.8 are considered 
“identifications”). This differs from the process of obtaining FDR estimates based on the GMM. 
Details on FDR estimation for the GMM may be found in the main text. True FDR curves for each 
dataset were obtained by determining the proportion of false positives (𝑌𝑌𝑖𝑖 = 0) among 
identifications generated according to each observed score threshold (GMM) or probability 
threshold (HEBM). Figure 1 displays the resulting model-estimated and true FDR curves for each 
of the 100 simulated datasets.  
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Figure 1: Model-estimated FDR curves based on the Gaussian mixture model (left) or hierarchical 
empirical Bayes model (right). Each black line corresponds to the model-estimated curve of a 
simulated dataset. Red lines indicate the true FDR curves of each dataset. The text indicates the 
median of the median absolute errors (MAE) measured between each estimated FDR curve and 
the truth across the 100 simulated datasets. 

 

Within the context of GC-MS metabolomics, a GMM is fit to the measured similarity scores of the 
top-matched candidate metabolites from across a group of spectra. The fitted GMM presumes 
that the observed distribution of similarity scores arises from an unknown mixture of two latent 
populations, each normally distributed with some mean and variance. In the present context, 
these two latent populations correspond to the correctly matched metabolites (true positives) and 
incorrect matches (true negatives). The expectation-maximization algorithm (17) is often used to 
fit GMMs, and it provides an estimate of the unknown mixing proportion between the two latent 
populations and estimates of each population’s mean and standard deviation. These parameter 
estimates may then be used to assign each match a probability indicating their likelihood of 
inclusion among either of the two latent populations. Assuming larger similarity scores indicate a 
better-quality match, and given a set of n spectra with a similarity score threshold t, the FDR is 
estimated as 

𝐹𝐹𝐹𝐹𝐹𝐹� =  
1

|{𝑠𝑠𝑖𝑖|𝑠𝑠 ≥ 𝑡𝑡}| � 𝑃𝑃�𝑖𝑖(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)
𝑖𝑖 ∈ �𝑠𝑠𝑖𝑖�𝑠𝑠 ≥ 𝑡𝑡�

, 

where 𝑠𝑠𝑖𝑖 ≔ {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛} are the measured similarity scores of the top matches for each of the 𝑛𝑛 
spectra, |{𝑠𝑠𝑖𝑖|𝑠𝑠 ≥ 𝑡𝑡}| is the number of top matches with scores greater than or equal to the 
threshold, and 𝑃𝑃�𝑖𝑖(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) is the GMM estimated probability that the match of the 𝑖𝑖𝑡𝑡ℎ 
spectrum belongs to the false positive population. If it is the case that smaller similarity scores 
indicate a better-quality match, the above computation remains the same, but each instance of 
𝑠𝑠 ≥ 𝑡𝑡 is replaced with 𝑠𝑠 ≤ 𝑡𝑡.  

The remaining three modeling approaches that we consider are extensions to the GMM that are 
derived from a more general class of modeling framework first introduced by Rigby and 



PNNL-33865 

Experimental Section 6 
 

 

Stasinopoulos (18). These extensions blend a regression-type framework with the GMM, 
effectively allowing one to model select GMM parameters (i.e., mixing probability, population 
means) as a linear function of one or more additional factors (i.e., covariates). The first extension 
(i.e., “Extension 1”) models the mixing proportion as a function of covariate(s), meaning that a 
match’s probability of belonging to a given latent population varies depending on the specified set 
of external factors. The second extension (i.e., “Extension 2”) models the underlying means of 
each latent population as a linear function of covariate(s), which implies that the degree of 
separation between the true and false positive populations changes according to the values of 
these factor(s). The final extension (i.e., “Extension 3”) is a combination of the first two, modeling 
the mixing proportion and population means through a linear function of covariates. Though each 
extension differs from the GMM in their construction and flexibility, each are like the GMM in that 
they ultimately yield probabilities of latent population membership for each match. Thus, FDR 
estimates are obtained through the same method as for the GMM. Figure 2 visually summarizes 
the conceptual differences between each of the four considered modeling approaches for FDR 
estimation. 

  
Figure 2. Conceptual differences between the standard GMM (A), first extension (B), and second 
extension (C). The third extension (not pictured) is a combination of (B) and (C). Changing mixing 
proportion are represented by an increase (decrease) in the relative sizes of each bell curve. 
Neither the mixing proportion or population means of the standard GMM (A) vary by covariate(s). 

2.3 Approach Comparison 
Given that the proposed GMM extensions are characterized by the ability to model select 

parameter(s) by a set of factors, we consider all possible subsets of seven factors in the fitting of 
each model extension. These factors may be classified as either spectrum-specific or match-
specific factors. Spectrum-specific factors are those that vary across sample spectra. These 
include the number of candidate (i.e., potential) matches returned by CoreMS that were within the 
+/- 35 RI window (“PoMatchCnt”); the interference and peak height of the spectrum (“Intrfrnce”, 
“PeakHgt”); and the difference in similarity score between the top two ranked matches for the 
spectrum (“ScrDiff”). If only a single candidate match was returned by CoreMS, “ScrDiff” was 
computed as either the difference between the measure score and 0 (when larger scores indicate 
better matches) or as the difference between the measured score and the largest empirically 
observed score across all spectra in the dataset (when smaller scores indicate better matches). 
Match-specific factors include the number of times the reference metabolite of the top match was 
listed as a candidate match for other spectra in the dataset (“SpctCndtsCnt”); the number of times 
the reference metabolite of the top match was identified as the top match for other spectra in the 
dataset (“MatchCnt”); and the average cosine similarity score between the spectrum of the 
matched reference metabolite and all other spectra within the reference library (“RefAvg”). All 
considered variables were centered and scaled prior to inclusion in models. All possible subsets 
of these seven factors resulted in 127 models fitted for each of the three GMM extensions, 
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resulting in a total of 381 models compared against the standard GMM model. Models were fitted 
using the gamlss.mx package (19) in the open-source software environment, R (20). 

 
Figure 3. True false discovery rate (FDR) curves corresponding to each of the 812 identification 
lists, stratified by sample type. Recall that the 812 identification lists result from applying each of 
the 28-similarity metrics to each of the 29 datasets. Thus, each curve represents a particular 
metric/dataset combination. Similarity metrics are separated according to whether larger or 
smaller values indicate improved similarity (as indicated by the subplot facets). To plot all curves 
on the same scale, all similarity metrics have been normalized to fall within the range of 0 and 1.  

 
Comparisons between these models were made across 812 identification lists generated from 

28 different similarity metrics applied separately to each of the 29 datasets shown in Table 1. 
Identification lists were generated by selecting the best matching candidate spectra for each 
spectrum, according to the given choice of score. These identification lists were then filtered to 
include only those matches with either a “True Positive” (TP) or “True Negative” (TN) annotation. 
Given a similarity score threshold 𝑡𝑡, the true FDR was then computed as the proportion of TN 
annotations among matches with score ≥ 𝑡𝑡 (when larger scores are indicative of better matches) 
or among matches with score ≤ 𝑡𝑡 (when smaller scores are indicative of better matches). A true 
FDR curve, composed of true FDR computations at different values of 𝑡𝑡, was then constructed by 
using the set of observed scores in the identification lists as the values of 𝑡𝑡 (Figure 3).  
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Figure 4. Visual description of measurements used to assess the accuracy of model-generated 
FDR estimates. For each of N datasets, k similarity metrics are considered to generate sets of 
true (solid line) and model-estimated (dashed line) FDR curves corresponding to the particular 
dataset/similarity-score combination. Only a single estimated curve is shown in the figure above, 
but estimated curves are obtained for every considered model. The median of the absolute value 
of differences between estimated and true curves (MAE) along observed threshold points is used 
to summarize the estimation accuracy of a model for a particular dataset/similarity-score 
combination. Collectively, measured MAEs form a distribution which may be used to describe a 
model’s overall performance across different choices of dataset and similarity metric. 

 
 
FDR estimates from each model were then obtained at each of the same values of 𝑡𝑡 as for the 

true FDR computations, thus generating estimated FDR curves for each model. To assess the 
accuracy of each model’s estimates, we computed the absolute value of the difference between 
each model’s estimated FDR and the true FDR at each value of 𝑡𝑡. For each model, the median of 
its absolute errors (i.e., MAE) was then used to summarize its FDR estimation accuracy for the 
given identification list (Figure 4).  Distributions of these computed MAEs across all hit-lists were 
then compared and used to identify the top-performing models relative to baseline. We 
additionally investigated the use of AIC (21) and BIC (22), popularly used model selection criteria, 
towards identifying top-performing models but found there to be poor correspondence between 
AIC-/BIC-preferred models and those that consistently outperform the baseline.  

 

2.4 Library Size Simulation 

To further strengthen the generalizability of our study results, we designed a simulation study to 
assess the impact that reference library size has on the relative differences in measured 
estimation accuracy between the top-performing models identified through the study described in 
Section 2.3 and the baseline GMM.  We simulated libraries that were 25%, 50%, and 75% the 
size of our original reference library by randomly sampling – without replacement – from our 
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original set of 1284 reference compounds. For each combination of the 29 datasets and 28 
similarity scores, 30 sets of libraries of each size were simulated. Candidate lists of potential 
matches for each spectrum were then filtered to include only the reference metabolites within a 
particular simulated set, and identification lists were subsequently obtained by identifying the top 
match among remaining candidates. Post-identification-list-generation, the analyses proceeded 
in an identical manner as for the comparison study: true and estimated FDR curves were 
determined, and MAEs were computed as the metric of comparison between models. 
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3.0 Results 
Table 2 summarizes, by sample type, the average percentage of “True Positive” (TP), “True 
Negative” (TN), and “Unknown” annotations among the 812 identification lists generated for all 
analyses. Note that the number of identification lists (i.e., ID Lists) for each sample type is 
computed as the number of datasets for the sample type (Table 1) multiplied by 28, the number 
of different similarity scores considered.  

 
Table 2: Average Annotation Percentages for Identification Lists, Stratified by Sample Type 

Sample Type # ID Lists % TP  % TN % Unknown  
Standards 308 2.63  86.16  11.21 
Human CSF 224  19.53  25.43  55.04 
Human Blood Plasma 84  15.94  14.90  69.16 
Human Urine 56  7.45  19.43  73.12 
Fungi 84  9.44  31.05  59.51 
Soil 56  9.83  33.13  57.04 

We observe (on average) that for all but the standards samples, more than half of all identifications 
within generated ID lists are labeled as “Unknown” and thus removed from analyses. Based on 
these average percentages, the number of spectra informing the results of subsequent analyses 
are (roughly) 9618 standards spectra; 11265 human CSF spectra; 4842 human blood plasma 
spectra; 6204 human urine spectra; 3506 fungi spectra; and 1557 soil spectra. 

3.1 Approach Comparison 

Recall that the comparisons between the 382 considered models are based on the median 
absolute estimation error (MAE) of estimated FDR curves relative to the truth. These MAEs are 
computed for each of the 812 ID lists, and thus each model is associated with 812 different MAEs. 
Subsetting by sample type and faceting by candidate model extension type, each model’s median 
observed MAE is then represented within the distributions shown in Figure 5. 

 
Figure 5. Distributions of model median MAE values by sample type, faceted by extension type. 
Each distribution is formed by the median MAEs recorded for each of the 382 compared models 
(127 for each extension). Black points are representative of the standard GMM median MAE value 
under the corresponding sample type. The percentages of models with a smaller (improved) 



PNNL-33865 

Results 11 
 

 

median MAE relative to baseline are provided to the right of each plotted distribution. Note that a 
median MAE of 1 implies an FDR estimation error of 100%. 

The displayed distributions indicate that for each sample type, there are candidate models from 
each extension whose performance is improved relative to baseline. However, the abundance of 
these improved candidate models varies by extension and sample type. As an example, for 
standards samples, we observe that 88.19% of the “Extension #2” candidate models have smaller 
median MAEs than the standard GMM, yet only 22.83% of the “Extension #1” models are 
improved over baseline. This trend is reversed for human blood plasma samples, where 83.46% 
of “Extension #1” models and only 1.57% of “Extension #2” models are improved. The degree of 
relative improvement among candidate models, measured by the difference between each 
distribution’s minimum median MAE and that of the baseline GMM, also exhibits substantial 
variability across sample type. For example, in soil samples, these differences are roughly 0.32 
(“Extension #1), 0.35 (“Extension #2”), and 0.125 (“Extension #3”), contrasting with the human 
urine samples differences of ~0.03 (“Extension #1”), ~0.02 (“Extension #2”), and <0.01 
(“Extension #3”).   

Despite the observed variability of results, Figure 2 nonetheless indicates that there exists 
subset(s) of candidate models that improve over the baseline GMM model. Our interest, however, 
is to identify the subset of models whose relative improvements are robust to changes in the 
underlying sample type and may therefore be applied more generally and reliably as 
improvements over the standard GMM. To arrive at this subset, we consider several different 
MAE-based model rankings and identify the model(s) that are consistently among the highest-
ranked across the most sample types. Ranked lists of candidate models were generated based 
on the 1) average MAE by sample type; 2) median MAE by sample type; 3) a composite rank 
based on the sum of the average and median MAE ranks; and sample-type-agnostic ranks based 
on the 4) average and 5) median MAE. Only the top 4 (~1%) ranked models were recorded for 
each of the five ranking methods considered.  Across all resulting top-ranked subsets, three 
candidate models were the most consistently observed. Of these, two were found to be among 
the top 1% of models for three sample types, and one (“Ext #1: SpctCndtsCount + ScoreDiff”) 
was identified as the highest ranked model for two sample types. Figure 6 provides the 
distributions of the median absolute differences (MAE) between model-estimated and true FDR 
curves for these three “best” models and the baseline GMM.    
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Figure 6: Boxplots of model-specific distributions of the median absolute errors (MAE), faceted 
by sample type. For a given boxplot, black points indicate the MAEs of the underlying samples 
(i.e., identification lists) that generate the distribution. Each boxplot is annotated by its median 
value (i.e., the median MAE).    
 
As was the case for the comparisons depicted in Figure 5, we observe here variability across 
sample types in the improvements that each “best” model exhibits over the baseline GMM. 
Comparing the median MAEs of the “best” and baseline model distributions, we observe (at worst) 
a ((0.43-0.15))⁄0.43*100 ≈65% relative reduction in estimation error for soil samples; 43% for fungi 
and human urine samples; 44% for human CSF samples; 50% for human blood plasma samples; 
and 13% for standards samples. Evidence for improvement over baseline is strengthened by the 
fact that in all but the standards samples, p-values obtained from one-sided Wilcoxon rank-sum 
tests between the “best” model distributions and the baseline distribution were each less than 
0.05. This suggests that – for non-standards samples – the top three models have MAEs that are 
typically distributed over errors that are smaller than those of the baseline GMM. For standards 
samples comparisons, two-sample Wilcoxon rank-sum tests for equality indicated an equivalence 
of MAE distributions and thus “best” models are characterized by errors comparable to the 
standard GMM in these cases.    

3.2 Library Size Simulation 
Having identified a set of “best” models with relative improvements over the standard GMM that 
are robust to the choice of sample type and similarity score, Figure 7 next summarizes 
comparisons between these top models and the baseline across simulated reference libraries of 
varying size. 
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Figure 7: Boxplots of model-specific MAE distributions under simulated reference libraries of 
varying size, faceted by sample type. Each box-plot is annotated by its median value (i.e. the 
median MAE). Simulated libraries are either 25%, 50%, or 75% the size of our original reference 
library of 1284 compounds. 
 
Across the “best” and baseline models, Figure 6 indicates an increase in estimation accuracy with 
increased library size. This general trend is unaffected by sample type, how-ever the model-
specific trends in estimation error improvement do vary across sample type. Taking the base-line 
model as an example and comparing the median MAEs at simulated libraries that are 25% and 
75% of the original library size, we see relative reductions of ~31% for soils samples; ~37% for 
fungi samples; ~25% for human CSF samples; ~33% for human blood plasma samples; ~88% 
for human urine samples; and 13% for standards samples.  
 
Comparing across models and at each simulated library size, we see that the previously observed 
relative improvements (Figure 5) among the “best” models are largely preserved. Furthermore, 
these “best” models typically experience greater reductions in estimation error with in-creased 
library size than what is seen for the baseline model, except for cases where the estimation error 
is minimal to begin with. Specifically, we observe an average reduction among the “best” models 
of ~62% for soils and fungi samples (baseline GMM: 31% and 37%); ~23% for human CSF 
samples (baseline GMM: 25%); ~38% for human blood plasma (baseline GMM: 33%); ~81% for 
human urine samples (baseline GMM: 88%); and 25% for standards samples (baseline GMM: 
13%) when increasing the simulated library size from 25% to 75% of the size of our original 
reference library. 
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4.0 Discussion 
In aggregate, the results from our studies provide support towards three models as improved 

alternatives over the standard GMM for FDR estimation within GC/MS metabolomics. These three 
models are each of the first extension type, which allows the mixing proportions of the latent true 
and false positive populations to vary by some set of covariates. More practically speaking, 
models of the first extension type are those that assume that there are a greater (or lesser) 
proportion of true positives within a set of identifications, depending on some set of external 
factor(s). The factors characterizing the three identified top models include “PoMatchCount”, 
“ScoreDiff”, and “SpctCndtsCount”, with “ScoreDiff” being common to all three top models.  

The consistent presence of “ScoreDiff” across all three of our top-performing models agrees with 
the findings of Kim and Zhang (9) regarding similarity score differences and FDR estimation. The 
idea that “ScoreDiff” offers value towards FDR estimation also agrees with intuition: smaller 
differences between the top two scoring candidate matches imply the existence of at least one 
other supported match for the same spectrum, thus creating greater uncertainty for the match. 
Given the importance that score differences exhibit towards FDR estimation, future work may 
investigate the utility of using score differences – rather than the scores of the top matches – as 
the basis for standard GMM models. This proposed work may lead to yet another simple and 
improved alternative to the standard GMM, which has the potential to be improved even further 
by leveraging the GMM extensions proposed in the present work.  

  Like “ScoreDiff”, the importance of each of the other observed factors in our top models makes 
intuitive sense. To understand this, it is important to emphasize that each of these factors are 
used to model the mixing proportion between the latent true and false positive populations. In 
other words, depending on the values of these factors, the model-estimated proportion of true 
positives may be high-er or lower. Considering “PoMatchCount”, which describes the number of 
candidate matches returned for a given spectrum, larger values indicate a greater number of 
potential matches and thus a larger proportion of false positives (assuming only a single match is 
true). The metabolite-specific factor, “SpctCndtsCount”, measures the number of times a 
reference metabolite appeared as a candidate match across other spectra. This factor may then 
be thought of as a proxy measure for the ubiquity of a spectrum’s features across known 
metabolites. If a reference candidate is a potential match across several other spectra, it may 
have features which are commonly observed and thus its pre-disposition to be incorrectly 
matched is higher than a metabolite with more unique features. 

The present work makes clear that incorporating information beyond the similarity scores of top 
matches greatly improves the quality of FDR estimates. Though our top models are characterized 
by a smaller subset of considered factors, other factors may still hold importance. Recall that our 
top models are those that were among the best for multiple sample types, not all (or even the 
majority). This point is best made when comparing the performance of the top models for 
standards samples in Figure 6 to the best case observed for standards samples in Figure 5. The 
lowest median MAE for our top models is 0.43 for standards samples (Figure 6), yet the minimum 
median MAE observed for standards samples is near 0.10 (Figure 5). The model corresponding 
to this minimum contains “Interference”, “MatchCount”, “RefAvg”, in addition to all the factors 
observed in our top models. It should also be noted that this model is of the second GMM 
extension type, as opposed to the first GMM extension type that characterizes our top models.   

Outside of supporting the notion that covariates outside the set identified for our top models may 
hold importance towards FDR estimation, the previous observation also suggests a potential 
avenue for future explorations. Ensemble modeling approaches are those that generate estimates 
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or predictions based on an aggregation of several different models. Through leveraging the 
collective strengths of several models, ensemble approaches have often been found to 
outperform their non-ensemble counterparts (23). In the present context, given that no single 
model has been identified as optimal across all sample types, datasets, score choices, and library 
sizes, an ensemble approach may be ideal. 

Last, our library size investigations reveal a strong and consistent trend: larger libraries are 
associated with reduced estimation error. This finding implies that for reference libraries much 
larger than the library of 1284 compounds used in this study, such as the NIST library, estimation 
errors may be minimized to an even greater extent than observed here (and vice versa). However, 
given that the presented library size trends are based on simulated reference libraries, additional 
work is needed to validate these findings through comparisons based on real reference libraries 
of varying size. 
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5.0 Conclusion 
This work has identified three models that offer improved accuracy over a Gaussian mixture 
modeling approach when estimating the false discovery rate. Each of these models are easily 
implemented, as they may be fitted using the well-documented gamlssMXfits function offered by 
the open-source R package, gamlss.mx. Contrasting the standard GMM, these models estimate 
the true proportion of correct identifications (i.e., true positives) as a parameter that varies 
according to a set of external factors. These factors include the number of candidate matches 
returned for the given spectrum, the number of times a matched metabolite appeared as a 
candidate match for other spectra, and the difference in similarity score between the top two 
candidate matches for the given spectrum. The relative improvements in performance exhibited 
by these models have been shown to be robust to the choice of sample type, dataset, similarity 
score, and library size. However, there has been a clear contrast in performance between 
standards and non-standards samples. Whereas estimation error for the top three identified 
models is on the order of ~10% or lower for non-standards samples, typical estimation errors rise 
fourfold for standards samples. A similar inflation in estimation error is observed more generally 
across all models. This observation highlights the importance of using real, non-standards data 
when developing methodology for false discovery rate estimation. Standards samples do not 
reflect the characteristics and complexities of real-world biological samples and thus methods that 
may be optimal for standards data may be sub-optimal otherwise. 
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