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Radiation detectors for space applications

. _  Detection of energetic charged
- particles (ECP) in space from:

12,000 — 25,000 miles

—— @ - Trapped energetic electrons and
12,500 miles "
protons

— Galactic and solar cosmic rays
B renoaten] © Detectors in satellites are exposed

NASA's Solar

e \ I\ /“ to large energy range of charged
B e _- | particles fluxes and temperature
sty vl | fluctuations.
SRS Nl | » Reduction of size, weight and

power is important for payloads.
* Scintillators detectors are a good
choice for reduction of SWaP.

Van Allen Probe-B



SCinti"ation process in @ Conduction band

ol
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inorganic crystals
Activator
* Discrete energy bands available based on excited states | -
crystal lattice. Band | .:_:;::“sdntn|aﬁon

. . gap .""._g:)hoton
* Photons are emitted when electrons in

excited atoms de-excite to ground state.

Activator
* For pure crystals, photons may have too O ground Stat‘”{
much energy to emit energy in the visible Scir:tillator Valence band
range. crystal 4
e Cerium, thallium and other elements are \ Electric
used to create impurities sites in the Inciderit signal
lattice, that increase the likelihood of r&diation /\ output

photons to be emitted in the visible range. Photodiode



Quenching e : b

* Non-proportional scintillation N ® CElectron
light output between incident e <
gamma and incident light charged ,{’3’” @ eroton
particle of the same energy. " GO

* Quenching can be related to the dE  4me?z?

stopping power of a material
which is energy dependent,

incident radiation dependent and B & Z[In 2mov? _ In(1-2) -2
material dependent. ! ¢«

dx  mgyv?

Y = primary particle’s velocity
* Found in literature as the a/B ze = primary particle’s charge,
. . . N = number density
ratio and typically presented in z - atomic number of the absorber atom
calibrated units to 662 keV Cs137 Mo - electron rest mass
e = electronic charge
gamMma ped k. I = avg excitation and ionization potential of absorber

<



Parameterizing quenching

dE
* dL i

dx 44 kB

dL/dx = Light yield

S = Scintillation constant
kB = Birks factor

dE/dx = Stopping power

LE b e

fO 1+I<B dE

Q,(E) = Quenching factor
L.(E)/L.(E) = light output of ion vs e

Stopping Powers [MeV cm? g~1]
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Factors that influence quenching
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Temperature effects on quenching is material dependent

14 [ - = ¢ |4 - Different material exhibit
- " Tha = narm1 |1 different effects as

el . = —yooset 11 temperature changes

ok . ~*~Gsoce |« The pattern of the effect is
e = < v Bso |{ material dependent and
Sosf . A 'S 1 therefore cannot be
R [N R B N 1 generalized to all

06 I = » " << scintillators
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Experiment goal

* To measure rare earth inorganic scintillators’ light output quenching from
incident protons at a specific energy range under different systematic
effects (i.e., temperature and dopant variations)



Rare earth inorganic scintillators

« Characteristics: fast decay (YSO), high light output yield (GAGG), non-
hygroscopic, reduced size, weight and power
* Manufactured by Advatech UK + Si PIN photodiode:

GAGG (Gd:Al,Gas0::Ce) quantum efficiency
Three types: matches max emission

High Yield [ <150 ns, 60 photons/keV ] Wavele.ngth, good energy
Standard [ <90 ns, 50 photons/keV ] resolution
Fast Decay [ <50 ns, 40 photons/keV ]

YSO (v,sios:Ce)
[50-70 ns, 10 photons/keV]

>

Hamamatsu photodiodes
$3590: 08 and 18

Other types such as Nal
[from Advatech: ~230 ns, ~38 photons/keV, hygroscopic]



Schematic of detector

NIA Pixie digitizer:
Takes in signal from
preamp and
convolves the input
signal with a
trapezoidal filter:

Laptop:

Collects .csv files
with counts and
bin numbers, data
processing

CAEN A1422 Pre-
amplifier
Decay time:
27 us
Sensitivity
400 mV/MeV

Hamamatsu S3590 Si

» PIN photodiode

N

NIM power
supply biased
at 80 V to each
detector
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Scintillator detector with front and
back polished. Detector coupled with
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127 um Ti degrader

EP30 epoxy, wrapped in 3M reflector
material and thin layer of PTFE tape.



Temperature control

« TEC and two thermistors (T1 and T2)
« Temperature controller TC-XX-PR-59
and software from manufacturer

Cold finger

T2

* Not optimal temperature stability




Energy calibration

a O

Tenney temperature
chamber

Gamma source

Source Energy
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lon Beam Materials Laboratory (IBML)

« 3MV Pelletron tandem accelerator allows the production of energy tunable protons with small energy spread *

A

200
B lon KV

3""’ /1 ,.% - Dlng)
A. Accelerator lon Source {{{;;:: | .
B. NEC 3 MV Tandem Accelerator :
C
D

e
()]

. Varian 200 kV lon Implanter x>Nd F
. Dedicated beamline for science g
campaigns D
E. General Purpose Chamber (IBA) E
F. Irradiation and Corrosion
Experiment
G. Radiolysis and In-situ
Characterization
H. Dual Beam Joint Chamber
I. Tandem Control Console




Energy ranges of interest

Elastic scattering off a thin Au target Nuclear reaction off ErD, target [3He(d,p)*He]
1.0 MeV < E,< 6.0 MeV 15.0 MeV < E< 25.0 MeV




GAGG High Yield elastically scattering proton data
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GAGG High Yield nuclear reaction proton data
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[ 4MeV
1 3MeV
1 2MeV
1 1MeV

SHe(d,p)*He

Proton energy spectra
from protons produced
from different 3He beam
energies impinging on
ErD, target.



GAGG High Yield Proton Data
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GAGG High Yield Proton Data

kB =0.0073
chi-sqr = 0.0031
Birks fit o _
4+ Measured and incident data The fitting routine
7 allows the
e e extraction of the
— kB parameter
h P : which can be used
] ! rE for describing
] | 4E — quenching for
~ o) J, 1+k@ other incident
: ot charged particles
dE
- Measured (MeVee - e.g., alphas).
1 Q) = _ ( ) IR 4z (-g., alphas)
: Incident (MeV) 0 y
I ' ' ' | ' ' ' | ' ' ' I ' ' ' I
0 ) 10 15 20 25

Incident Proton Energy [MeV]



Determination of uncertainty for incident energy

Energy variation due to angular acceptance

Energy straggling in Al degrader and Ti degrader

p+ beam

Beam energy width =0.01%
Energy straggling in target



Determination of uncertainty for measured energy

Temperature-dependent gamma calibration
GAGG High Yield
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Determination of uncertainty contribution for final propagation

Uncertainty contribution
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Potential Temperature Effects
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Results

|GAGG Fast Decay

IYSO

IGAGG Standard

0.009

0.008

0.007 4 [GAGG High Yield

) — T ] - - -
60 80 100 120 140
Decay Time (ns)

Detector: GAGG Fast Decay | GAGG Standard | GAGG High Yield | YSO
decayTime: 50 90 150 60
kB_parameter: 0.01205 0.00933 0.00729 0.01197
error: 0.00024 0.000225 0.000156 0.000449




Conclusions

« Rare-earth inorganic scintillators have characteristics that offer optimal detection
qualities for space applications as long a quenching is considered.

* |ncident proton and electron response was measured in four different rare-earth
inorganic scintillators of interest.

 We observed:
A temperature effect on quenching for GAGG type detectors.
A dopant concentration/decay time effect on quenching for GAGG detectors.

« Extracting the Birks’ factor for future detectors will improve the analysis of data.



Desired future work

* This measurement could be repeated to compare samples between
manufacturers.

 Measurements of how radiation damage changes this parameter over
time would be interesting.

* An improved temperature controller system for the chamber can be
developed.
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d(3He,p)4He
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Temperature-dependent gamma calibration

¥ 20°C
— 30°C
> 40°C

At 20 ° C: slope = 0.00096, b-parameter = 0.0445
* At 30 ° C: slope = 0.00104, b-parameter = 0.0268

At 40 ° C:slope = 0.00114, b-parameter = 0.0268
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Temperature-dependent gamma calibration

¥ 20°C
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L 4

At 20 ° C: slope = 0.00089, b-parameter = 0.0201
At 30 ° C: slope = 0.00091, b-parameter = 0.0207

At 40 ° C:slope = 0.00093, b-parameter = 0.0207
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GAGG High Yield temps above 32°C
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kB =0.0116£0.0007
chi-sqr = 0.561

Birks fit
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GAGG High Yield temps below 27°C

kB = 0.0073+£0.0004
chi-sqr = 0.374
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GAGG High Yield Results
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