
LLNL-TR-850152

Spatio-Temporal Surrogates for
Interaction of a Jet with High Explosives:
Part I - Analysis with a Small Sample Size

C. Kamath, J. S. Franzman, B. H. Daub

June 10, 2023

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Spatio-Temporal Surrogates for Interaction of a Jet with High

Explosives: Part I - Analysis with a Small Sample Size

Chandrika Kamath, Juliette S. Franzman, and Brian H. Daub

Lawrence Livermore National Laboratory

7000 East Avenue, Livermore, CA 94551, USA

kamath2,franzman1,daub1@llnl.gov

9 June 2023

Abstract

Computer simulations, especially of complex phenomena, can be expensive, requiring high-performance
computing resources. Often, to understand a phenomenon, multiple simulations are run, each with a dif-
ferent set of simulation input parameters. These data are then used to create an interpolant, or surrogate,
relating the simulation outputs to the corresponding inputs. When the inputs and outputs are scalars,
a simple machine learning model can suffice. However, when the simulation outputs are vector valued,
available at locations in two or three spatial dimensions, often with a temporal component, creating a
surrogate is more challenging. In this report, we use a two-dimensional problem of a jet interacting with
high explosives to understand how we can build high-quality surrogates. The characteristics of our data
set are unique - the vector-valued outputs from each simulation are available at over two million spatial
locations; each simulation is run for a relatively small number of time steps; the size of the computational
domain varies with each simulation; and resource constraints limit the number of simulations we can run.
We show how we analyze these extremely large data-sets, set the parameters for the algorithms used in
the analysis, and use simple ways to improve the accuracy of the spatio-temporal surrogates without
substantially increasing the number of simulations required.

1

Contents

1 Introduction 3

2 Description of the problem and data 3

2.1 Challenges to the analysis . 6

3 Related work 6

4 Solution approach 8

4.1 Sampling the input parameter space . 8

4.2 Pre-processing the data . 9

4.3 Surrogate using a linear transformation . 11

4.4 Surrogate using a locally-linear transformation . 14

5 Experiments, results, and discussion 15

5.1 Test simulations . 15

5.2 Generating the SVD . 16

5.3 Clustering the snapshots . 17

5.4 Determining the number of singular values to keep . 17

5.5 Software and parallel implementation . 19

5.6 Reconstruction results . 20

5.7 Discussion . 22

6 Conclusions 25

7 Acknowledgment 25

A Appendix: Data for x-momentum variable 29

B Appendix: Data for y-momentum variable 31

C Appendix: Eigen-snapshots for mass variable, with and without clustering 33

D Appendix: Reconstructed mass (before and after clustering) for all seven test cases 35

E Appendix: Eigen-snapshots for x-momentum variable, with clustering 50

F Appendix: Reconstructed x-momentum (after clustering) for all seven test cases 51

2

1 Introduction

Computer simulations are increasingly being used in science and engineering applications. However, it
can be time consuming to run these simulations for a given set of input parameters, especially when the
problem being modeled is complex and requires high-performance computing resources. Surrogates, often
based on a machine learning model [16], are used to provide a fast, but approximate, alternative that relates
the simulation outputs to the corresponding inputs. Such surrogates are relatively easy to create when
the simulation inputs and outputs are both scalars. However, when the output is in two or three spatial
dimensions and varies with time, relating these spatio-temporal outputs to the scalar inputs becomes more
challenging. If, in addition, we are constrained by time or computer resources to generate data for only a
small number of simulations, building a surrogate that is accurate, becomes non-trivial.

We describe our work in creating surrogates for a problem in two spatial dimensions, plus time, in two reports.
In this first report, we discuss the applications aspect of our work, focusing on issues related to the small
number of simulations in our data set. We want to understand whether it is possible to build an accurate,
predictive surrogate model under these conditions and to identify simple ways to improve the accuracy of
these models. In a companion report [17], we discuss in detail how we made our solution approach tractable,
despite the large size of the spatial data generated at each time step of the simulation.

We start this report by describing the problem considered, namely, the interaction of a jet with high explo-
sives, and the two-dimensional outputs generated by the simulations (Section 2). We then discuss the unique
aspects of our problem and place it in the context of related work (Section 3). We describe how we address
these unique challenges, focusing on ways in which we can improve the accuracy of the surrogate models
(Section 4). Using several test cases, we explore how to set various parameters in the algorithms used in our
solution approach and the metrics to evaluate the predictions of the surrogate models (Section 5). Finally,
we conclude this report with the lessons learned in building accurate spatio-temporal surrogates for a limited
number of simulations, each of which generates a large amount of data (Section 6).

2 Description of the problem and data

We illustrate our ideas on building accurate spatio-temporal surrogates using simulation output from a
problem describing the interaction of a jet with high explosives (HE). The domain of the problem is a right
cylinder with its axis oriented horizontally as shown on the left in Figure 1. There is a steel plate, 1cm thick,
near the right end of the cylinder, with the LX14 high explosive to the left of the plate. Both the plate and
the HE have a fixed radius of 10cm. A copper jet aligned along the center line of the cylinder, enters the HE
from the left. The simulation models what happens as the jet moves through the HE and the plate. The jet
is modeled initially as uniform cylinder. It is 10 cm in length with a varying radius. The jet tip velocity is
specified as an input parameter; a linearly-varying velocity profile is applied to the remainder of the cylinder

plateHEjet

plateHE

jet

X

Y

Figure 1: A schematic of the problem being simulated. On the left is the horizontal cylinder in three-dimensions,
showing the plate in pink, to the left of which is the HE in blue. The jet, in red, enters the HE from the left. As the
problem is radially symmetric about the axis of the cylinder, we need to simulate only the two-dimensional region
shown by a dotted rectangle on the left and schematically on the right.

3

that represents the jet to approximate a stretching metal jet. As the problem is radially symmetric about
the axis of the cylinder, only the two-dimensional region shown by a dotted rectangle on the left in Figure 1,
and schematically on the right, is simulated.

There are three input parameters for the simulation: the radius of the jet, the length of the HE to be traversed
by the jet, and the tip velocity of the jet in the positive x direction. At each time step, the simulation outputs
variables of interest, such as mass and momentum, at different points on a grid in the two dimensional region.
By running the simulations at select values of these input parameters, and collecting the output at different
time steps for each simulation, we can create a data set that could be used to build a surrogate model to
predict the output at a new set of input parameters and a given time step. We are interested in determining
for example, whether the plate breaks; what is the final position of the plate; and, if the plate breaks, what
is the velocity of the jet tip as it comes out on the other side of plate.

To illustrate the instances in our data set, we use four simulations whose parameters are listed in Table 1.
Figure 2 shows the output variable, mass, at the first and last time steps for these four example simulations.
As explained earlier, we have simplified the three-dimensional problem by assuming radial symmetry around
the axis of the cylinder, so the output from the simulation is shown as two dimensional images, with the
axis of the cylinder shown at the bottom, that is, at y = 0. The domain extent in x (along the length of the
cylinder) varies as the length of the HE varies across simulations; however, the domain in y ranges from 0
to 11cm for all simulations.

Simulation key jet radius HE-length jet tip velocity # time #grid outcome

(cm) (cm) (cm/µsec) steps points

r01 i004 0.15 13.67 0.894 38 2,859,387 almost break

r01 i017 0.17 12.24 0.648 41 2,759,181 no break

r02 i021 0.14 6.77 0.914 30 2,374,179 break

r02 i028 0.23 10.54 0.843 35 2,639,637 break

Table 1: Input parameters for the four example simulations shown in Figure 2. Note the very large number of grid
points (over two million) at which variables of interest are output at each time step in a simulation.

In Figure 2, the vertical plate, shown in red, is stationary at time t = 0. To the left of the plate is the HE
shown in light blue. The jet in shown in red at the bottom of the domain to the left of the HE; it is quite
thin relative to the radius of the cylinder, and is barely visible in the images. As the simulation evolves,
the jet moves to the right, through the HE, which expands, pushing the plate to the right. At late time,
depending on the simulation input parameters, the plate could:

• break, with the jet going through the plate and coming out clearly on the other side;

• almost break, with the jet either going completely through the plate but barely coming out the other
side or the jet going almost all the way through the plate, leaving it barely connected at the bottom;

• not break, with the plate remaining attached, either partially or completely, at the bottom. The
plate could have moved from its original position at time t = 0.

We used the last two time steps in each simulation to assign one of these three class labels to the simulation.
This label was not used in building the surrogate; it was used only to ensure we had a good coverage of the
design space. We selected the four example simulations in Figure 2 to illustrate these three cases.

In our simulations, the output at each time step consists of the values of variables of interest that are
generated at grid points in the two-dimensional rectangular domain. These grid points are on a regular grid,
with ∆x = ∆y = 0.0125cm. There are three variables output: mass, x-momentum, and y-momentum; the
latter two are shown later in Appendices A and B, respectively. The values of these variables are defined at
the center of the cell formed by four nearby grid points. Thus the data appear as an image, with regularly
spaced pixels. However, in general, the grid points in a simulation need not be on a regular grid; they could

4

Figure 2: The variable mass at the first time step (left column) and last time step (right column) for the four example
simulations in Table 1. From top to bottom, simulations with keys r01 i004, r01 i017, r02 i021, r02 i028, illustrate
an almost break, no break, break, and break case, respectively. The data shown are before the pre-processing steps
described in Section 4.2. The vertical red region represents the plate, the light blue represents the high explosive
(HE), the horizontal red region at the bottom to the left of the HE at the first time step is the jet, and the dark
blue region is air. The right column shows the last time step of each simulation and the effect on the plate as the jet
moves to the right, through the HE, and potentially through the plate. The range of x values is different for different
simulations, while the range of y values is the same. The HE starts at x = 0 in each plot. Note that even when the
plate does not break (second row), the plate has moved to the right from its original position.

form an unstructured grid, as in a finite element mesh, or a locally structured grid, as in an Adaptive Mesh
refinement (AMR) mesh. As a result, unlike an image, most output from simulations also include the (x, y)
coordinates of the grid points. In our work, we retain this association of the coordinates with the grid points
as it enables us to extract sub-domains from the larger domain for processing.

Each simulation is run for a fixed number of time steps which is determined as (b(HE-length/jet-tip-velocityc)+
23), with the output generated at each time step. As both HE-length and jet tip velocity vary with the
simulation, the number of time steps also varies across simulations. At early time, as the jet starts to move
through the HE, there is little of interest in the simulation output. Once the jet is partway through the HE,
as indicated by the first term in the equation above, it starts to influence the location of the plate, until 23
µsec later, it is expected that we should know the final status of the plate. In our work, we consider all the
time steps in the analysis; an alternative would be to consider only the later 23 time steps.

The output data for a variable at a time step in a simulation is referred to as a snapshot, so named as it
is a snapshot of the evolution of the simulation at a particular point in time. For the problem considered

5

in this report, we generated the data set by identifying sample parameter values in the three-dimensional
input space and running the corresponding simulations for the specified number of time steps. For each of
the three output variables, the data set consists of the snapshots across all time steps of all simulations.

Our eventual goal in building the spatio-temporal surrogates for the jet-HE interaction problem is to predict
what happens to the jet and the plate at late time, specifically, does the jet go through the plate, what
is the velocity of the jet tip when it goes through the plate, and what is the location of the plate at late
time. However, in this initial study, we limit the scope of the work and explore options for creating an
accurate surrogate when we have a small number of simulations. Specifically, we consider how to process
large data sets, how to set parameters for the algorithms used in our solution approach, and how to improve
the accuracy of the surrogates without substantially increasing the number of simulations required. We
evaluate our ideas using a qualitative comparison of predicted outputs for seven test snapshots.

2.1 Challenges to the analysis

There are two main challenges to building spatio-temporal surrogates for our problem:

• The first is how do we build a surrogate that is accurate? The predictive accuracy depends on two
factors. The first is the quality of the training data. Simulating the jet-HE interaction is resource-
intensive, requiring multiple processors of a high-performance computing system. This limits the
number of sample points we can run in the three-dimensional input parameter space. These points
have to be selected carefully; this is difficult as we do not know a priori the outcome of running
the simulation at a specific sample point, which in turn implies that we do not know the range of
parameter values to use. The second factor influencing the accuracy of the surrogate is the choice of
the model used. We want to predict a two-dimensional output, given only four scalar inputs - the three
simulation input parameters and a time step. A traditional machine learning model, where we predict
scalar outputs for a set of scalar inputs, cannot be used in this case.

• The second, and related, challenge is the very large size of our data set. Though the number of
simulations is small, each snapshot has over two million grid points as shown in Table 1. In addition,
as the simulations are run on multiple processors, each snapshot is split across multiple files. Any
algorithms used to build a high-quality surrogate must be modified to account for both these factors.

This report focuses on the first challenge of building accurate spatio-temporal surrogate models given a
limited number of simulations. The second challenge of processing the extremely-high dimensional snapshots
generated in a distributed manner is discussed in the companion report [17].

3 Related work

Our approach to creating accurate, two-dimensional, spatio-temporal surrogates builds on some early work
in turbulence and pattern recognition, specifically the characterization and recognition of human face images.
The early work of Sirovich and Kirby [32, 21] showed that a data matrix, formed by an ensemble of face
images, similar to our snapshots, can be transformed using the Karhunen-Loève expansion (similar to the
principal component analysis (PCA) [14]) such that each face is written as a linear combination of two-
dimensional basis functions, they called “eigenpictures”. A close approximation to a face is then obtained by
truncating the linear combination to use only a small number of the initial, more important, basis functions
and the corresponding weights, thus creating a lower-dimensional representation. Kirby and Sirovich also
applied their ideas to problems in fluid flow, including data from simulations, and introduced the snapshot
method and the concept of eigenflows [31, 22].

Following this early work, Turk and Pentland [36, 35] showed that these ideas enabled face recognition as we
could recognize a new image as a specific face if its weights matched those of the specific face. They referred
to the basis functions as “eigenfaces” as they were obtained using eigenanalysis of the data matrix. In later

6

work, non-linear alternatives were explored to obtain a better representation for data that did not necessarily
lie on a linear manifold. The techniques included locally-linear decompositions and neural-network-based
auto-encoders, not only for face images, but also speech data in the form of time series and images of
handwritten digits [12, 20, 18, 19].

In problems where the data represents output snapshots from simulations run with different input parameters,
at possibly different time steps, an obvious next step was to build a predictive model relating the simulation
input parameters and time step to the weights characterizing a snapshot. This would enable the prediction
of results at parameters not included in the original set of simulations. Such an approach was taken in
the early work of Ly and Tran [25], who used proper orthogonal decomposition (similar to PCA) for the
decomposition, and spline interpolation for the predictive model. A similar idea was explored by Higdon et
al. [11], who also used PCA, but predicted the weights using Gaussian process models, and by Swischuk et
al. [33], who compared different machine learning models for predicting the weights.

These ideas have become the subject of much recent research, especially as compute-intensive simulations
have become an increasingly important part of design and engineering, requiring rapid generation of results.
In particular, in the field on non-intrusive reduced-order modeling (ROM) [28, 29], many options have been
proposed, both for the decomposition into a lower-dimensional representation and for the predictive model
that relates this representation to the simulation inputs. While the dimension reduction is often obtained
using PCA, which is a linear method, non-linear approaches developed in data mining [23], have also been
used, despite their greater complexity. These include locally-linear PCA, kernel PCA, and deep neural
networks [2, 39, 4, 10]. For the predictive models, a range of interpolation techniques have been used,
including radial basis function regression, Gaussian processes, and deep neural nets [41, 38, 5].

Several unique aspects of our problem make it impractical to directly apply these ideas:

• The very large size of each snapshot: Many of the problems considered in the literature for
building spatio-temporal surrogates have data at spatial points that number in the thousands, or tens
of thousands, while a few have hundreds of thousands of grid points. For example, among the larger-
sized data sets, one test problem in fluid flow considered by Rajaram et al. [29] had 1047 snapshots,
each with 41,796 grid points and the other had 1001 snapshots, each with 450,000 grid points. Both
problems were static (no time dependence), with a low-rank, reduced-dimensional space. A problem
with more complex geometry considered by Bērzinš et al. [5] had a structured grid with 2459 nodes
and two data sets, one with 100 simulations and the other with 400 simulations, where each simulation
was run for 100 time steps. In addition, 50 simulations each were generated for validation and testing.
In contrast, each snapshot in our data set has over 2 million grid points, which makes it challenging
to both manage and process the data, requiring the algorithms to be modified suitably.

• The small number of simulations and time steps: Spatio-temporal models are typically built
using a large number of simulations, numbering in the hundreds or thousands, as noted earlier. We
found one example of a compute-intensive simulation [40] where just thirty simulations were run, each
for 1000 time steps. While our constraints on resources also limit us to a similar number of simulations,
we run each simulation for a much smaller number of time steps, as indicated in Table 1.

• The variable size of the domain: Most problems considered in spatio-temporal modeling are
formulated on a fixed domain, with grid points at the same fixed locations at all time steps across all
simulations. There are a few exceptions; the work by Yeh et al. [40] considers a problem where the
input parameters control the geometry of the domain, while the problem in Bērzinš et al. [5] had a
moving grid with a fixed number of grid points. As we show in Section 4.2, substantial pre-processing
of our data is required to bring all snapshots into a common grid before we can build the surrogate.

Our contributions in this report are three-fold: First, we address the issues above and show how we process
the large number of grid points per snapshot on domains that vary with each simulation. Second, we propose
ways to determine the parameters for the algorithms used in building the surrogates. Finally, we investigate
the accuracy of surrogates we might expect when the number of simulations and the number of time steps
at which we run each simulation are both small. We show how we can use the small number of simulations

7

to identify the range of input parameters and to create a data set with a sufficient diversity of outputs. We
also consider simple ways in which we can improve the quality of the surrogate while keeping the number of
simulations small.

4 Solution approach

Our approach to building accurate spatio-temporal surrogates for jet-HE interaction problem is composed
of multiple steps which we describe in detail in the following sections. We started by carefully generating
sample points in the three-dimensional input parameter space (Section 4.1). We then pre-processed the
output from each simulation so that all snapshots from all simulations had values defined at the same set of
grid points, with the plate locations aligned at the initial time step, t = 0 (Section 4.2). This allowed us to
represent the data in the form of a matrix, whose 1604 columns represented all the snapshots from the 45
simulations, and each row represented the value of the variable at a specific (x, y) grid point location. This
data in the form of the snapshot matrix was used to build the spatio-temporal model (Sections 4.3 and 4.4)
and the accuracy of the surrogate evaluated on new simulations (Section 5).

4.1 Sampling the input parameter space

One of the challenges in our problem is that simulating the interaction of the jet with the HE is compute
intensive, limiting the number of sample points at which we can run the simulations. Therefore, the location
of these sample points has to be selected carefully, which is challenging as we do not know a priori the
outcome of running the simulation at any sample point or the range of input parameters we should use in
generating the samples.

Therefore, we generated the sample points incrementally in the three-dimensional input space using a mod-
ified version of the best candidate algorithm [27, 15] that selects samples randomly, but far apart from each
other. We first generated a small set of 16 samples using a range of [5.0, 20.0]cm for HE-length, [0.125,
0.25]cm for the jet radius, and [0.6, 0.95]cm/µs for the jet tip velocity. We then excluded four sample points
with HE-length greater than 16.2cm, as this length was too large for the jet to even reach the plate at late
time. Next, restricting HE-length to be in the range [5.0, 16.2]cm, we ran 12 new samples. Of the resulting
24 samples, we found that we could shrink the range of HE-length further to [5.0, 15.0]cm and also exclude
samples in the lower right corner of the (HE-length - jet-tip-velocity) plot where the jet tip velocity was too
low for the plate to break. This left us with data from 20 simulations, from an initial set of 28 simulations.

Having identified the range of values for generating simulations, we added 25 new samples in this region, for
a total of 45 samples. As the best-candidate method is a progressive sampling algorithm, it allows us to add
samples incrementally, while preserving the random and far-from-each-other property of the samples.

Our data set, shown in Figure 3, indicates that at high jet tip velocity, but low HE-length, the plate breaks,
while at low jet tip velocity and high HE-length, the jet does not penetrate the plate. This latter region
is sparsely sampled as we are interested mainly in cases where the plate breaks. The class label (break, no
break, or almost break) was assigned by examining the outputs at the last two time steps in each simulation.

It is clear that our data set is unbalanced as we have 9 samples where the plate does not break, 31 where
the plate breaks, and 5 that are almost break. Generating an appropriate data set for a problem like ours
is challenging as we can run only a limited number of simulations. However, the boundary between the
classes is poorly defined and we do not know the range of inputs that will give us sample points with the
desired outcome. We erred on the side of having more break cases as these were of greater interest. The
outputs for the no-break cases tended to be very similar, and we expected that a small number of such cases
would suffice. Admittedly, as shown in Section 5, our choice of sample points affects the accuracy of the
spatio-temporal surrogates built using the data set.

These 45 simulations generate a total of 1604 snapshots that vary in the number of grid points as indicated
for the four examples in Table 1. The simulation at the extreme corner of the input space, with HE-length,
jet tip velocity, and jet radius equal to 5.0cm, 0.950cm/µs, and 0.125cm, respectively, is referred to as the

8

Figure 3: The 45 samples in the space of the three input parameters for the simulation, labeled by the state of the
plate at the last time step of the simulation. The simulation at the extreme corner of the input space, with HE-length,
jet tip velocity, and jet radius equal to 5.0cm, 0.950cm/µs, and 0.125cm, respectively, is referred to as the baseline
simulation. It has the smallest number of time steps, with 29 snapshots.

baseline simulation. It has the smallest number of time steps, with 29 snapshots.

4.2 Pre-processing the data

To create a spatio-temporal surrogate for our data set, we first need to create a snapshot matrix for each
of the three output variables, mass, x-momentum, and y-momentum. This snapshot matrix, X ∈ RD×N , is
just a collection of the snapshots

X = [x1,x2, . . . ,xN] (1)

where xi ∈ RD, N = 1604 is the number of snapshots, and D is the number of grid points in a snapshot.
However, a number of issues have to be addressed before we can generate the snapshot matrix where each
snapshot has the same number of grid points at the same (x, y) coordinates. These issues, and our solution
approach, are discussed in detail in the companion report [17] and described briefly below.

The data generated for each simulation, regardless of the size of the domain, are available in 360 files in
HDF5 format [34] for each time step, as shown in Figure 4 for two of the four example sub-domains. Each
HDF5 file includes five variables — x and y coordinates, mass, x-momentum, and y-momentum. Within
each file, the variables are in natural ordering, that is, ordered by increasing values of the y-coordinate, and
for a fixed y-coordinate, ordered by increasing values of the x-coordinate. All simulations are on a regular
grid with ∆x = ∆y = 0.0125cm.

However, there are several differences in the data across the simulations that preclude just appending the
snapshots to create the matrix X. Figure 2 shows that each simulation has a different domain size, with
the same range of values in y, but different ranges in x. In addition, while all simulations write the output
to 360 files, their sizes are different as shown in Figure 4. We also observe that the plate, which is a key
structure in the problem, is at different locations in the domain due to varying values of HE length in the
simulations. A closer look at the (x, y) coordinates of the grid points indicated that the values of ∆x and
∆y are not exactly 0.0125cm across simulations, and while the coordinates in y, which has a fixed range of
values, are identical across simulations, this is not the case for the x coordinates.

To address these differences across simulations, we first aligned the domain for each simulation so that the
origin was at the lower right corner, which automatically aligned the plate at time t = 0 across all simulations.
Next, we cropped the left end, removing data with the shifted x coordinate outside the range [-32, 0.0], which
corresponds to the smallest HE length of 5.0cm. Now, all snapshots have data on the same domain, though

9

Figure 4: The distribution of data in 360 sub-domains for the first two example simulations in Table 1. Top: key
r01 i004 and bottom: key r01 i017. At each time step, the data in each sub-domain is available in a separate HDF5
file. Note that the sizes of the sub-domains within a simulation vary and these sizes are different across simulations.
All time steps in a simulation have the same distribution of the data.

not at the same (x, y) coordinates. To accomplish this, we re-mapped the data to a common grid, using a
simple 1-nearest neighbor algorithm.

To make further processing of the large snapshot matrix feasible, we generated it in a block form

X =


Xb1

Xb2

. . .

Xbk

 (2)

by using a block form for the common grid that was used to remap the data. Each block was written to a
separate file and contained all grid points in a specific non-overlapping range of y values, stored in natural
order. Thus, concatenating the blocks in the order of their y values, would result in a single snapshot-matrix
file for each variable, with the grid points stored in natural order in the rows of the matrix.

At the end of the pre-processing step, we have each of the three output variables, in a separate snapshot
matrix, where each matrix has 1604 columns and 2,180,799 rows. Each matrix is split by rows into 22 blocks,
each block stored in a separate file. Figure 5 shows the mass variable for the first and last snapshot, for each
of our four example simulations, after the raw output data have been aligned, cropped, and remapped. The
corresponding images for x-momentum and y-momentum are shown in Figures 12 and 14 in Appendix A
and B, respectively.

10

Figure 5: The variable mass, after the snapshots have been aligned, cropped, and remapped. Left column shows
the first time step and right column shows the last time step for the four example simulations in Table 1. From
top to bottom, simulations with keys r01 i004, r01 i017, r02 i021, r02 i028, respectively. The color bars are different
between simulations and across time steps.

Next, to illustrate the evolution of the simulations over time, we show the data, after the original output
has been pre-processed, at multiple time steps in two example simulations, key r01 i017 and key r02 i028,
corresponding to no-break and break cases, respectively. Figure 6 shows the mass variable evolving with
time in these two simulations. The corresponding images for x-momentum and y-momentum are shown in
Figures 13 and 15 in Appendix A and B, respectively.

The pre-processing of the data described in this section is similar to that performed in face recognition,
where the face images are all processed so they are the same size, with the face centered in the image and
major features such the eyes and nose aligned across images. The difference in our data is that unlike a
face, which is stationary, the snapshots show the motion of the HE and the plate with time. Therefore, even
though we aligned the plate at time t = 0 in all simulations, there is a loss of alignment of the plate location
as the simulations progress, which will influence the accuracy of any surrogate built from the data.

4.3 Surrogate using a linear transformation

After pre-processing the simulation output and converting it into a snapshot matrix, X, in a block form
as shown in Equation 2, we build the spatio-temporal surrogate using the traditional approach outlined in
Section 3. We start by linearly transforming the snapshot matrix X using a singular value decomposition

11

Figure 6: The variable mass, after the snapshots have been aligned, cropped, and remapped, at different time steps
in two simulations showing the evolution of the data over time. Left: key r01 i017 (no break case) at time steps t0,
t10, t20, t30, and t41. Right: key r02 i028 (break case) at time steps t0, t09, t17, t26, and t35. The color bars are
different between simulations and across time steps.

(SVD) [26]
X = UΣVT (3)

where
X ∈ RD×N , U ∈ RD×D , Σ ∈ RD×N , and V ∈ RN×N .

Here, Σ is a diagonal matrix with non-zero diagonal elements σii, referred to as the singular values of the
matrix X. These singular values are typically ordered in descending order, with the rows and the columns
of the U and V matrices ordered correspondingly. Since D >> N in our problem, the top N rows of Σ will
have non-zero diagonal elements, assuming rank(X) = N . If the rank, k, is less than N , then only the first
k diagonal elements will be non-zero and the rest will be zero. The columns of the orthonormal matrices U

12

and V are referred to as the left and right singular vectors of X. The matrix

U = [u1,u2, . . . ,uN] where ui ∈ RD (4)

is also the matrix of orthonormal eigenvectors of XXT , and the singular values σi are the square-root of the
eigenvalues of XXT (or XTX). We refer to the vectors ui as “eigen-snapshots”, akin to the “eigenfaces”
used in face recognition [35].

The ui also form a basis in RD for the data, so each snapshot xi can be written as a linear combination of
the uk as follows

xi =

N∑
k=1

wkiuk (5)

where the weight, wki, of the k-th basis for the i-th snapshot is given as

wki = uT
k xi for k = 1, . . . , N . (6)

These weights are just the projection of the i-th snapshot onto each of the columns of the U matrix.
Equation 5 shows how the original snapshot can be reconstructed using the weights and the basis vectors. A
reasonable approximation, x̃i, to a snapshot xi can then be obtained by using the ui corresponding to the
n, n < N , larger singular values:

x̃i =

n∑
k=1

wkiuk. (7)

Thus, if we can generate the SVD for X as in Equation 3, then Equations 6 and 7 enable us to generate an
approximation, x̃i, to the original snapshot, xi. These equations can be interpreted as generating a reduced
representation in two ways - first, by creating an approximation that uses a smaller number of weights and
basis functions, ignoring the other weights and basis functions, and second, by characterizing a snapshot xi

in terms of just its weights
wi = [w1i, w2i, . . . , wNi] , (8)

which can be combined with the basis set (uk, k = 1, . . . , N) to reconstruct the snapshots exactly.

This representation of the i-th snapshot, in terms of its weights, wki, k = 1, . . . , N , can be related to another
representation of the snapshot in terms of its simulation input parameters (hi, vi, ri) and time step, ti,
through a predictive model

wki ≈ fk(hi, vi, ri, ti), where k = 1, . . . , N and i = 1, . . . , N. (9)

Here hi, vi, and ri are the HE length, jet tip velocity, and jet radius for the i-th snapshot. Note that a
separate model is created for each weight index, that is, the first or most important weight is predicted
by one model, the second most important weight by another, and so on, resulting in the n (or N) models
required to generate the snapshots approximately (or exactly). Then, to reconstruct approximately the
two-dimensional output, or snapshot at a new set of input parameters and time step, we can first use the
predictive model for each of the n weights to predict the weight values at this new input and time step, and
apply Equation 7.

The spatio-temporal surrogate is thus composed of the basis functions obtained using the SVD and the
predictive models created using a training set that relates the simulation inputs and time step to the weights
associated with the basis functions. There are several options available to calculate the SVD and to generate
the predictive models; we next describe the options we selected for use in our problem.

We considered two ways to generate the SVD of X and obtain the matrix U and the singular values σi:

• In the first approach based on the normal equations, we form the matrix XTX, of size N ×N , and
obtain its eigen-decomposition. The singular value σi of X is then the square-root of the eigenvalue λi
of XTX. The columns ui ∈ RD of U are the corresponding orthonormal eigenvectors of XXT . Since

13

we have calculated the eigenvectors, vi ∈ RN , of the much smaller matrix XTX, we can obtain the ui

as

ui =
1√
λi

Xvi . (10)

The division by
√
λi, which is the length of the vector Xvi, results in orthonormal vectors ui.

This normal equations approach is very straight-forward and easily extends to the case when X is in
block form (Equation 2) as we can form the matrix XTX by reading in a block at a time. However, it
does suffer from floating point issues associated with normal equations [26].

• A more stable approach to SVD is the QR decomposition that does not involve forming the normal
equations. Here, we first decompose the snapshot matrix as X = QR, where Q ∈ RD×D has orthonor-
mal columns and R is upper triangular, and then generate the SVD of the smaller matrix R. Since X
is a tall, skinny matrix, we use the thin/reduced version of the QR decomposition [37]:

X = QR =
[
Q1 Q2

] [R1

0

]
= Q1R1 (11)

where
X ∈ RD×N , Q ∈ RD×D , Q1 ∈ RD×N , R1 ∈ RN×N .

We next obtain the SVD of the much smaller matrix R1

R1 = UR1
ΣR1

VT
R1

(12)

where UR1 ∈ RN×N , ΣR1 ∈ RN×N , and VT
R1
∈ RN×N , which gives

X =
(
Q1UR1

)
ΣR1V

T
R1
. (13)

Thus, the singular values of X are just the singular values of R1 and the left singular vectors of X.
that is, the basis functions, are the columns of Q1UR1

.

To extend the QR decomposition to matrices in the block form, we used the work of Constantine and
Gleich [8]; this implementation is less straight-forward than the normal equations.

We have several options for the n predictive models to predict the weights in the reduced representation of the
data. In our work, we use a machine learning model, specifically, a Gaussian process model [30], as it is one
of the models that is accurate for small data sets [16]. It also provides an estimate of the uncertainty on the
prediction, which gave us an opportunity to investigate whether the uncertainty could be used to understand
and explain the results, and to determine the number of weights, n, to use in the reduced representation.
The GP is an expensive model to create, especially when we use automatic relevance determination [30],
where the hyper-parameters include the weights on each input. However, in our problem, we can create and
apply the n models in parallel, which reduces the turnaround time for creating the models.

4.4 Surrogate using a locally-linear transformation

The singular value decomposition, described in Section 4.3 is a linear decomposition and if the data do not lie
on a linear manifold, the number of weights required for a reduced representation may be quite large. This
can create problems with accurate prediction of the weights when we have a small number of simulations.

A simple approach to introducing nonlinearity in the decomposition is to use a locally-linear decomposition,
that is, cluster the snapshots by similarity and then apply the linear, SVD-based approach to each separate
cluster [20, 19, 12]. Then, to predict the two-dimensional output at a new point in the simulation input space
and time step, we identify which cluster the new point belongs to, and use the predictive model created for
that cluster.

A challenge in clustering our data is the extreme high-dimensionality of the snapshots as each snapshot
has over 2.2M grid points. As described in the companion report [17], we investigated multiple ways to

14

address this problem. For iterative clustering methods, such as k-means, which require multiple passes
through the data, processing large files in each iteration can be expensive. We considered two ways to
avoid this processing: in the first approach, we reduced the dimension prior to clustering by using random
projections [9, 24] and, in the second approach, we clustered a different, but equivalent, representation of the
each snapshot, such as the weights obtained after SVD (Equation 6). We also investigated a non-iterative
algorithm, hierarchical clustering [13], which requires the pairwise distances between the snapshots. By
calculating the distance matrix once, we could experiment with different options for the method. We found
that hierarchical clustering with Ward linkage gave remarkably similar results to k-means clustering. We
chose the results with k-means and random projections as we could exploit the randomness of both the
random projections and the initial choice of cluster centroids in k-means to identify the number of clusters.

A locally-linear transformation that combines clustering of snapshots, following by an SVD on each cluster,
is not the only option for non-linearly transforming our data. Other options include kernel PCA [39], which
requires the solution of an ill-posed inverse problem to reconstruct the two-dimensional output at a new point
in the simulation input space, and a neural-network based auto-encoder, which, given the high-dimensionality
of the snapshots, will be a challenge to implement, even with a small number of hidden layers [19]. In this
work, we selected the locally-linear transformation as it is a simple method and allowed the re-use of software
developed for the linear transformation.

5 Experiments, results, and discussion

We next present the results of our experiments to test the accuracy of our two spatio-temporal surrogates,
one using a linear decomposition and the other using a locally-linear decomposition. Recall that the approach
in both cases is similar: we start with a snapshot matrix, generate an SVD for it, and calculate the eigen-
snapshots and the corresponding weights that can be used to perfectly reconstruct each snapshot. Next, we
build Gaussian process models that can predict each of the initial, important weights based on the simulation
inputs and time step. Then, to reconstruct an approximation to a new snapshot that is identified by its
simulation input parameters and time step, we first predict the weights and then combine the weights with
the eigen-snapshots. The two surrogates differ in the snapshot matrix that is used - the linear surrogate uses
a matrix composed of all snapshots, while for the locally-linear surrogate, we cluster the snapshots, grouping
similar snapshots together, and then build a linear surrogate for each cluster separately.

Our eventual goal in building these spatio-temporal surrogates is to predict what happens to the jet and the
plate at late time, specifically, does the jet go through the plate, what is the velocity of the jet tip when it
goes through the plate, and what is the location of the plate at late time. As the simulations are expensive,
we want to build accurate surrogates using only a small number of data points in the simulation input space.
As stated earlier, in this initial study, we qualitatively evaluate the surrogates to understand to what extent
we can achieve our goals and to identify simple ways in which we can improve the accuracy of the surrogates
without substantially increasing the number of simulations required.

In our work, given the questions we want to address regarding the status of the plate and the jet at late
time, we focus on the mass and x-momentum variables. As shown in Figures 14 and 15, the y-momentum
variable does not clearly define either the plate or the jet, and is therefore less useful in our analysis.

In the following sections, we describe the test data we use to evaluate the accuracy of reconstruction of new
snapshots and discuss how we determine various parameters used in our approach, including the number
of weights to use in the reconstruction, the number of clusters to use for the locally-linear surrogate, and
the identification the cluster to which the new data point belongs. We also discuss ways to evaluate the
reconstruction quality for the test snapshots.

5.1 Test simulations

To test our ideas and evaluate the accuracy of the linear and locally-linear surrogates created using the 45
simulations shown in Figure 3, we identified seven data points in this simulation input parameter space.

15

Simulation key jet radius HE-length jet tip velocity # time outcome

(cm) (cm) (cm/µsec) steps

r03 i008 0.221386 12.5439 0.725508 40 no break

r03 i018 0.153774 12.8638 0.830377 38 almost break

r03 i021 0.1647 11.7005 0.760524 38 almost break

r03 i023 0.197432 9.0411 0.613552 37 no break

r03 i026 0.219371 5.86578 0.912855 29 break

r03 i037 0.246562 9.47074 0.867685 33 break

r03 i050 0.211678 8.08681 0.794035 33 break

Table 2: Input parameters for the seven test simulations used to evaluate the quality of the spatio-temporal surrogates.

Figure 7: The 7 test simulations, along with the 45 training samples, in the space of the three input parameters,
labeled by the state of the plate at the last time step of the simulation. Note that several of the test points are either
near the boundary of the rectangular domain, or near the boundary of the region identified by the data points.

These points are listed in Table 2 and their locations are shown in Figure 7. The parameters for these data
points were selected to be different from each other, so we could evaluate the quality of the predictions not
only at different locations in the input parameter space, but also at different locations in the break, no-break,
and almost-break space. Three of the seven points are clearly in the region where the plate breaks, with two
points each in the almost-break region and the no-break regions. The latter four points were more difficult
to identify as the no-break region is less well defined in the (HE-length - jet-tip-velocity) space, and the
no-break points are near the boundary of the sampled region. Their locations make it likely that the output
predictions at these four data points will be less accurate.

To enable us to evaluate the outputs predicted by the surrogates by comparing with the actual outputs, we
ran the simulation at these seven points in the input space and identified the status of the plate at the last
time step. In practice, this last time step would be identified as described in Section 2.

5.2 Generating the SVD

There are several issues we need to address related to the implementation of the SVD. As explained in
Section 4.3, we considered two implementations of the SVD algorithm - one based on the normal equations
and the other on a QR decomposition. In early experiments, using a snapshot matrix with data from fewer
than 45 simulations, we found that when select snapshots were reconstructed using all the weights, the error

16

was greater when we used the normal equations formulation. This was expected behavior given the floating
point issues associated with the normal equations. Therefore, all results in this report were generated using
the QR decomposition.

Another issue that is the subject of much confusion is whether the snapshot matrix should be “centered”,
that is, the mean snapshot subtracted from each snapshot, before calculation of the SVD. As observed by
Bērzinš et al. [5], there are adherents on both sides of the issue. Jolliffe and Cadima [7, 14] have discussed
the topic at length, providing examples of where centering may or may not be meaningful. Some authors [1],
taking a pragmatic approach, have evaluated the results both ways, and selected the option that best met
their needs. For our data set, the mean of the snapshot matrix with all 1604 snapshots is dominated by the
plate at early time; this is because in most snapshots, the plate, which is aligned across all simulations at
t = 0, has barely moved from the initial location. Therefore, when the mean snapshot is subtracted from the
snapshots at late time (the ones of most interest to us), the initial position of the plate appears clearly. As a
result, more eigen-snapshots are required to account for, say, 90% of the variation in the data. In addition,
we found that the substantial visual change in the late time snapshots after centering made it difficult to
determine how many weights to use in the reconstruction.

5.3 Clustering the snapshots

Clustering the 1604 snapshots for each of the three variables proved to be challenging for several reasons. In
Section 4.4, we discussed how we addressed the issue of the extremely high-dimensionality of each snapshot.
We also wanted to understand if there was an inherent clustering in the collection of snapshots. A careful
analysis of the snapshots, as shown in Figures 5 and 6 for mass, and Figures 12 and 13 for x-momentum,
indicated that the first and last snapshots in a simulation are quite different, suggesting that multiple clusters
exist in the data. However, clustering the snapshots would result in some neighboring snapshots, which are
very similar, assigned to two different clusters, which suggested that the clusters are not well separated. This
made it difficult to identify the number of clusters and to evaluate the results of any clustering algorithms.

A detailed discussion on how we addressed these issues is given in the companion report [17]. Figure 8 shows
the clustering results we use for the mass and x-momentum variables. These results were obtained using
the k-means clustering algorithm, combined with random projections to reduce the dimensionality of the
snapshot matrix. Based on these results, for our problem, it is relatively simple to identify the cluster for
each of the snapshots at which we want to predict the 2-D output. Our interest is in the late time cluster,
which is cluster 2 for the mass variable and cluster 0 for the x-momentum variable. Using these clusters, we
can predict the output at both the last time step and the time step that is 2 prior to the last time step; we
refer to these time steps as tlast and (tlast-2). Our reason for predicting two late-time snapshots in each of
the seven test simulations will become clear in Section 5.6.

5.4 Determining the number of singular values to keep

One of the key issues in reconstructing the simulation outputs at a new data point is the determination
of n, which is the number of weights and basis vectors to use in building the approximation. Ideally, we
want a good approximation to a snapshot using a small value for n. Let Xn be the matrix composed of
snapshots reconstructed using only the top n weights. For our problem, with a tall, skinny X, this error in
the reconstruction is given by

‖X−Xn‖2F =

N∑
i=n+1

σ2
ii (14)

that is, the sum of squares of the singular values that were excluded in the reconstruction. If these singular
values are small, the error in the approximation is small. The cumulative percentage variation explained by
the first n singular vectors is ∑n

ii=1 σ
2
ii∑N

ii=1 σ
2
ii

∗ 100.0 . (15)

17

Figure 8: The cluster assignment, for the mass variable (3 clusters) on the left, and the x-momentum variable (4
clusters) on the right. The plots show the times steps in the simulations plot along with the HE length. For the mass
variable, the cluster sizes for clusters 0, 1, and 2, are 889, 351, and 364 snapshots, respectively. For the x-momentum
variable, the cluster sizes for clusters 0, 1, 2, and 3 are 397, 454, 305, and 448 snapshots, respectively.

Thus, one way to determine n is to use a fixed percentage variation, say 90% or 95%, that we would like
explained by the reconstructed data, and identify the n associated with it. This is the most popular approach
in building spatio-temporal surrogates, where, having identified n, predictive models are created for each of
these n weights and then used to predict the weights at a new data point.

Data set # snapshots 90% 95%

mass, unclustered 1604 6 17

mass, cluster 2 364 7 28

x-momentum, cluster 0 397 40 130

Table 3: Number of weights required to reconstruct the snapshot matrix to account for 90% and 95% variation in
the data for the mass variable (clustered and unclustered) and the x-momentum variable (clustered).

Table 3 lists the values of n for our snapshot matrices. As the values of n can be quite large, and we have a
small number of simulations, we wanted to confirm the quality of the n models with a leave-one-out approach
prior to their use. We created each model with all but one of the snapshots, and used the model to predict
the weight for the snapshot left out. For a good model, the plot of the predicted vs. actual weights should
give points close to the y = x line. However, we found that the quality of the models tended to deteriorate
quite quickly as the index of the weight increased. Figure 9 shows a sample of these predictions for the
mass variable, with all 1604 snapshots and with the 364 snapshots in the last cluster. We found that the
most important weights usually predicted very well, but the scatter around the y = x line increased with the
weight index. Sometimes, many of the predicted values would be along the y = x line, with some relatively
large outliers. In other cases, most of the predictions were poor. Interestingly, some weights at higher indices
had better predictions than the weights at lower indices.

We suspect that this poor prediction of some weights is due to the small size of our data set, as we have just
45 simulations. Bērzinš et al. [5] observed that for one of their problems, increasing the data set from 100
to 400 simulations did not affect the linear transformation, but significantly improved the accuracy of the
models created to predict the weights.

The results in Figure 9 indicated that we could not use the quality of the actual vs. predicted weight for the
training data set to determine the number of weights for reconstruction. Even when the overall quality of
predictions on the training data are poor, a weight prediction at a new data point could be accurate, and

18

-0.15

-0.1

-0.05

0

0.05

0.1

-0.15 -0.1 -0.05 0 0.05 0.1

Parameters m = 0.999, c = -2.466e-05

RMS of residuals (y=mx+c): 2.017e-03

p
re

d
ic

te
d

actual

gp_wt5_predictions_opt.rdb
linear fit y = mx+c

 y=x

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

Parameters m = 0.993, c = -9.599e-05

RMS of residuals (y=mx+c): 3.339e-03

p
re

d
ic

te
d

actual

gp_wt9_predictions_opt.rdb
linear fit y = mx+c

 y=x

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Parameters m = 0.998, c = 5.566e-07

RMS of residuals (y=mx+c): 1.170e-03

p
re

d
ic

te
d

actual

gp_wt11_predictions_opt.rdb
linear fit y = mx+c

 y=x

(a) (b) (c)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

Parameters m = 0.985, c = -5.451e-04

RMS of residuals (y=mx+c): 9.268e-03

p
re

d
ic

te
d

actual

gp_wt5_predictions_opt.rdb
linear fit y = mx+c

 y=x

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06

Parameters m = 0.181, c = -1.378e-04

RMS of residuals (y=mx+c): 8.525e-03
p

re
d

ic
te

d

actual

gp_wt9_predictions_opt.rdb
linear fit y = mx+c

 y=x

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Parameters m = 0.909, c = -1.019e-04

RMS of residuals (y=mx+c): 1.042e-02

p
re

d
ic

te
d

actual

gp_wt11_predictions_opt.rdb
linear fit y = mx+c

 y=x

(d) (e) (f)

Figure 9: Evaluating the prediction of the weights by the Gaussian process models using a plot of actual vs. predicted
values obtained using leave-one-out validation. Top row: mass, without clustering. Bottom: mass, cluster 2. From
left to right, weight indices 5, 9, and 11 (the first weight has index 0). The red line is y = x line, while the blue line is
the best fit line to the data, whose slope and intercept is also included in each plot. The very early weights typically
have little to no scatter as in (a), but the scatter increases with weight index, as in (b) and (d). The prediction may
be incorrect for most snapshots, as in (e). It may also improve with increasing weight index, as in (c) and (f).

vice versa.

We therefore decided to estimate the number of weights based on the uncertainty in prediction obtained from
the Gaussian process surrogates. We predicted the values of the first 50 weights and started by using the
largest number of weights that all had small variance in the predictions. Since this number is relatively small
for the mass variable, we also generated the reconstructions using a larger number of weights to understand
the inaccuracies they would introduce into the reconstructed outputs.

5.5 Software and parallel implementation

Many of the steps in our approach to creating spatio-temporal surrogates can be parallelized to reduce the
computational time. In this initial implementation, we exploited parallelism wherever it was possible to
do so easily. For example, tasks in the pre-processing of the HDF5 files, such as reading the files, aligning
and cropping the domains, and remapping each simulation to the common grid, could all be done in parallel
across simulations using the Python sub-process function. For the SVD using QR decomposition on our block
snapshot matrix, we implemented a serial version of the parallel algorithm by Constantine and Gleich [8].
For the random projections used prior to clustering, we used a sparse random matrix that was generated on
the fly, reducing the storage required, and enabling better use of the cache on the computer system.

Where possible, we used pre-existing, highly optimized software from the double-precision BLAS [6] and
LAPACK [3] libraries. These included DGEMV and DGEMM for matrix-vector and matrix-matrix multiply,
respectively; GEQRF, GESVD, and ORGQR for the SVD using the QR decomposition; and DSYEVR for
the eigenanalysis on the normal equations.

We also did not make any efforts to optimize the codes, for example by finding the optimal block size to
use in storing the snapshot matrix or identifying ways in which consecutive steps in the processing could
be merged for faster turnaround. Since our focus in this report is to understand what is possible when the
number of simulations is small, we do not include compute times for various steps in our solution approach.

19

5.6 Reconstruction results

We next present the results of reconstruction of the tlast and (tlast-2) time steps for the seven test simu-
lations using our two surrogates. For the mass variable, we show results for both linear and locally-linear
transformations. As expected, the latter approach gave better results as the models to predict the weights
were created using snapshots that were more similar to each other. Therefore, for the x-momentum variable,
we considered only the locally-linear transformations.

To determine the number of weights to use in reconstruction, we generated the predictions and the uncer-
tainties for the first 50 weights using the Gaussian process models. We expected, based on Table 3, that a
maximum of 50 weights should suffice to obtain a reasonable reconstruction for the mass and x-momentum
variables. Typically, the weights reduce in value with increasing index number, and later weights that are
near zero can be dropped. However, it is possible that for a specific snapshot, a later weight is too large
to ignore. We combined the information in Table 3 with the uncertainties in the weight predictions, to
determine the exact number of weights to use in reconstruction as follows:

• mass variable using the linear transformation: Using the SVD results for all 1604 snapshots,
we reconstructed the test snapshots with 8, 20, and 47 weights. We considered the first 8 weights as
these weights were predicted with low uncertainty for all 14 test snapshots and Table 3 indicated that
we would capture more than 90% of the variation in the training data. We considered 20 weights as
17 weights allowed us to account for atleast 95% variation in the training data, and adding weights 18
through 20, which were predicted with low variation for all 14 test snapshots, could only improve the
results. Finally, we used 47 weights to understand the effects of adding more weights; we stopped at 47
as all test snapshots had higher uncertainty on prediction of weight 48. We observe that for many test
snapshots, the six weights with indices ranging from 9 to 15, often had high uncertainty. We therefore
expected reconstructions with more than 8 weights to be of poor quality, but we wanted to understand
to what extent including weight predictions with larger uncertainties would influence the results.

• mass variable using the locally-linear transformation: Using the SVD results for the 364 snap-
shots in the late-time cluster, we generated the reconstructed test snapshots with 30 weights. The
errors in the initial weights tended to be small, especially for the (tlast-2) time steps. The first large
error typically occurred at weight 31, resulting in our choice of 30 weights for reconstruction.

• x-momentum variable using the locally-linear transformation: Table 3 indicated we needed
40 weights to capture 90% variation in the reconstructed snapshots. We used all 50 weights as the
error in the prediction of weights at higher indices was often very small.

We next describe the reconstruction results using the two spatio-temporal surrogates. First, in Appendix C,
we show the first ten eigen-snapshots for the mass variable generated with the linear and locally-linear trans-
formations. The corresponding eigen-snapshots for the x-momentum variable, locally-linear transformation,
are shown in Appendix E. In addition, for each of the 14 snapshots being reconstructed, we present the
following detailed results:

• the predictions obtained from the Gaussian process surrogate: We plot the predictions for
the first 50 weights, with the uncertainty in prediction shown as an error bar at 1 standard deviation.

• the original snapshot, along with various reconstructed snapshots: We focus on the region
around the plate as we want to predict what happens to the plate at late time.

• a y-lineout using the actual values in the reconstructed snapshots: This plot of the variable
values at y = 6.0063 and −15.5 ≤ x ≤ −10.5 (in our transformed coordinates) for the original
and reconstructed snapshots gives a concise summary of the quality of reconstruction and makes the
comparison more quantitative than comparing entire snapshots visually.

These detailed results, including weight predictions, reconstructed snapshots, and the y-lineouts for the
linear and locally-linear surrogates for the mass variable at time steps tlast and (tlast-2) for all seven test

20

snapshots are shown in Appendix D. The corresponding results for the x-momentum with the locally-linear
surrogate are shown in Appendix F. We repeat the y-lineout for the reconstruction of the 14 test snapshots
for the mass variable in Figures 10 and 11 and use them to discuss the results and compare the different
options used.

Figure 10: The y-lineouts for comparing the reconstruction of the mass variable both with and without clustering.
From top to bottom: test simulations r03 i008, r03 i018, r03 i021, and r03 i023, representing no break, almost
break, almost break, and no break cases, respectively. Results for snapshot at time step (tlast-2) are shown on the
left and time step tlast on the right.

21

Figure 11: The y-lineouts for comparing the reconstruction of the mass variable both with and without clustering.
From top to bottom: test simulations r03 i026, r03 i037, and r03 i050, all representing break cases. Results for
snapshot at time step (tlast-2) are shown on the left and time step tlast on the right.

5.7 Discussion

We next summarize our observations on the reconstructed results presented for the mass and the x-momentum
variables in Figures 10 and 11, and in Appendices C through F. These results indicate the following:

• For the mass variable, the reconstructions of the plate region using the linear surrogate are usually
worse than the locally-linear surrogate. This is observed visually in the reconstructed snapshots and
more clearly in the y-lineouts.

When we use all snapshots in the linear surrogate, the location of the plate at t = 0 is captured
prominently in the early eigen-snapshots. However, all the test snapshots are at late time, when the
plate has moved to the right from its original location. Therefore, any errors in the predicted values
of the early weights, when multiplied by the corresponding eigen-snapshots, appear as vertical streaks
in the region to the left of the plate in the reconstructed snapshots. In contrast, for the locally-linear
surrogate, the location of the plate in the eigen-snapshots is constrained to a smaller range of x values
and closer to where we might expect the plate to be at late time. This is to be expected as the snapshot
matrix in the locally-linear surrogate includes only the late time snapshots, instead of all the snapshots
in the linear surrogate. The result is better quality reconstruction with the locally-linear surrogate.

22

The creation of the locally-linear surrogate requires the additional step of clustering of the snapshots.
However, the facts that the calculation of the SVD is for a smaller snapshot matrix and the Gaus-
sian process models are built for a smaller data set, make the creation of the locally-linear surrogate
computationally faster than the linear surrogate.

• For both the mass and the x-momentum variables, the reconstruction at time step (tlast-2) is often
better than at time step tlast.

There are two contributing factors. First, the weights corresponding to higher indices at time step
(tlast-2) are often smaller than the corresponding weights at time step tlast. So, when both snapshots
are reconstructed with the same number of weights, ignoring the weights with higher indices, more
useful information is ignored at time step tlast than at time step (tlast-2), resulting in better recon-
struction of the latter. Second, the error in prediction of the weights at time step (tlast-2) is usually
smaller than at time step tlast. This is to be expected. When we consider the sample points in the
input region formed by the three simulation parameters and the time step, the point at the last time
step is on the boundary of this region, while the point at (tlast-2) time step is near, but not at the
boundary. Weight predictions at the boundary points are usually less accurate as they have fewer
neighboring points around them.

• However, for the two no-break simulations, r03 i008 and r03 i023, the reconstructions of the mass and
x-momentum variables, at both the tlast and the (tlast-2) time steps are poor.

These two simulations are near the boundary of the region formed by the training data in the space
of the three input parameters, as shown in Figure 7. Simulation r03 i023 also has the smallest jet tip
velocity. With fewer neighbors around these points, the weight predictions from the Gaussian process
models are less accurate, resulting in poor quality reconstructions.

• For the mass variable, we see different effects as we change the number of weights used in reconstruction
with the linear surrogate. These effects are best understood through the y-lineplots. When the number
of weights is small (=8), though the curve is very smooth, it is a poor fit to the plate profile, and extends
far to the left of the plate. As the number of weights increases to 20 and then 47, the curves become
a better fit to the profile of the plate and extend less to the left of the plate, but appear less smooth.

There are several competing factors responsible for this behavior. The eigen-snapshots indicate that at
a fixed y coordinate the values flip between positive and negative, with fewer sign changes in the initial
eigen-snapshots and more in the later ones, somewhat akin to a Fourier series. This accounts for the
smooth curve in the y-lineout at few weights, which becomes more jagged as the number of weights is
increased and the “higher-frequency” eigen-snapshots are used to approximate the plate, which can be
seen as a square wave. As we increase the number of weights, the approximation to the plate location
becomes better, and the y-lineout curve, which extends far to the left of the plate at 8 weights, moves
closer to the plate at 20 and 47 weights. However, the weights between 8 and 15 are often predicted
with high error, which shows up as wiggles in the curve to the left of the plate. In contrast, for the
locally-linear surrogate, the better localization of plate location in the eigen-snapshots and the lower
error in weight prediction, lead to a better match of the reconstructed curve to the actual plate profile.

• For the mass variable, the reconstructed snapshots have negative values, which appears physically
incorrect. This is due to the limited number of eigen-snapshots used in reconstruction. Using all
eigen-snapshots would result in near perfect reconstruction and all positive values (to within floating
point errors) for the mass variable.

• For the x-momentum variable, for which we only present results generated with the locally-linear
surrogate, we observe certain differences with the mass variable. The values of both the variable and
the weights are smaller for x-momentum. In most cases, the weights for x-momentum go rapidly to
zero, though the initial weights have higher uncertainty. The reconstruction quality based on the
y-lineplots indicates that the no-break cases and some of the break cases could be improved.

• We observe that in our problem, as the focus is on what happens to the plate and the jet at late time,
we could have reduced the size of each snapshot further by focusing on just the region around the
plate. However, such an option is problem dependent and may not be available in general.

23

• Finally, we consider to what extent we can address the eventual goals of this effort, namely, for a new
point in the simulation input space, is it possible to use the surrogate to determine if the plate breaks
at late time, to identify the final location of the plate, and to obtain the speed of the jet as it exits the
plate in cases where the plate breaks.

We address these questions using the reconstructed region around the plate and the y-lineouts for
the cases where the snapshots have good reconstruction quality. Understandably, the reconstructed
snapshots are an approximation to the actual snapshots, especially when a small number of weights
are used. However, the y-lineouts indicate that it should be possible to obtain a good estimate of the
plate location at late time by applying gradient-based image segmentation techniques. To determine
whether the plate is a break, almost-break, or no-break case, we can look at the bottom region of the
plate to see if it has detached from the bottom and if we can see the jet on the other side. We observe
that it may be harder to distinguish between the no-break and the almost-break cases, but this may
be due to the poor reconstruction of the no-break cases. However, the break cases appear to be easy
to identify. This is despite the fact that the boundary of the plate is not as sharply defined in the
reconstruction as we have ignored the weights at higher indices.

Understanding whether we can meet our goals for the no-break cases, which are poorly reconstructed
given our training data, we will first need to improve these cases using the ideas discussed next.

Overall, we observe that the quality of the reconstructed test snapshots is a combination of several factors,
including the suitability of the initial eigen-snapshots at capturing the plate location at late time, the error
in the prediction of the weights, and the number of weights used in the reconstruction. This gives us some
suggestions for generating better quality reconstructions, without increasing the number of simulations:

• For our problem, the locally-linear surrogate created using only the late time snapshots, gives better
results than the linear surrogate created using all snapshots from the 45 simulations. We expect this
result to hold in general. By clustering the snapshots, and building linear surrogates for each cluster,
we generate a better basis for the snapshots in that cluster, leading to more accurate predictions for
new snapshots in that cluster. This requires the identification of a cluster for the new snapshot, which
can be obtained from the cluster assignment of all the snapshots. It also suggests that for our problem,
other non-linear transform methods may be worth exploring.

• To reduce the error in the prediction of the weights, we want the test point to be in the interior of the
region formed by the training data in the space of the three input parameters and time step.

Therefore, if our interest is in predicting what happens at late time steps, as in our jet-HE interaction
problem, we should run the simulations used to create the training data for a few more time steps, so
the test points lie in the interior of the region that forms the input to the Gaussian process models.

This also means that the test points should lie in the interior of the space of the simulation input
parameters. Since the locations of the test points may not always be known before the training data
are generated, one approach to ensure that the test points are not too far from the training data is
to cover the region of interest with random points far from each other. We accomplish this using the
best candidate sampling. In addition, decisions not to add points in some regions of the input space,
should be taken with care; our decision to exclude points in the high HE-length, low jet tip velocity
region led to poor prediction for the no-break test cases. Further, it may be desirable to set aside a
number of simulations to be run once the locations of the test points are known.

• It still remains a challenge to determine the number of weights to use for reconstruction, especially as
the quality of the weight prediction could be poor when the number of simulations is small. Using too
few weights would result in poor reconstruction of sharp changes in the data, such as the plate boundary,
while using more weights might introduce errors when the weight predictions are not accurate. Ideally,
we want the weight values to decrease rapidly as it would indicate that a small number of initial weights
is necessary for reconstruction. However, this may not be the case when there is large variation in
the data that is not captured sufficiently by a small number of simulations. It therefore appears that
we may require experimentation with different number of weights, with the number selected possibly
varying with each test snapshot.

24

6 Conclusions

In this report, we considered the problem of jet-HE interaction to determine if it is possible to build accurate,
spatio-temporal surrogates when we can run only a small number of simulations to create a training data set.
We showed how to process a data set where the size of the computational domain varies with each simulation
and each snapshot has over two million grid points. Our results showed that a locally-linear surrogate, which
builds separate surrogate models using groups of similar snapshots, is more accurate than one which builds
a single surrogate using all the snapshots. We also identified other simple ways to improve the quality
of surrogates when we are constrained to run only a limited number of simulations. These include better
sampling of the training data points in the simulation input parameter space to cover the region uniformly
so no test point is too far from a training point; selecting, if possible, the locations of the training data
points such that the test snapshots are not near the boundary of the region defined by the training data; and
setting aside a part of the simulation budget to run a few additional simulations once the test data points
have been identified.

7 Acknowledgment

We would like to thank the Defense Threat Reduction Agency (DTRA) for funding this work. The simulations
of the interaction of the jet with high explosives were performed using the ARES code developed at Lawrence
Livermore National Laboratory.

LLNL-TR-850152 This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

This document was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their
employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore National Security,
LLC, and shall not be used for advertising or product endorsement purposes.

References

[1] N. Alexandris, S. Gupta, and N. Koutsias. Remote sensing of burned areas via PCA, Part 1; centering,
scaling and EVD vs SVD. Open Geospatial Data, Software and Standards, 2, 2017. doi: https://doi.
org/10.1186/s40965-017-0028-1.

[2] D. Amsallem, M. J. Zahr, and C. Farhat. Nonlinear model order reduction based on local reduced-
order bases. International Journal for Numerical Methods in Engineering, 92(10):891–916, 2012. doi:
https://doi.org/10.1002/nme.4371.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, third edition, 1999. ISBN 0-89871-447-8.

[4] G. Aversano, A. Bellemans, Z. Li, A. Coussement, O. Gicquel, and A. Parente. Application of reduced-
order models based on PCA and Kriging for the development of digital twins of reacting flow ap-
plications. Computers & Chemical Engineering, 121:422–441, 2019. doi: https://doi.org/10.1016/j.
compchemeng.2018.09.022.

25

[5] A. Bērzinš, J. Helmig, F. Key, and S. Elgeti. Standardized non-intrusive reduced order modeling
using different regression models with application to complex flow problems, 2021. arXiv:2006.13706v2
[physics.comp-ph].

[6] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel, J. Dongarra, I. Duff,
S. Hammarling, G. Henry, et al. An updated set of basic linear algebra subprograms (BLAS). ACM
Transactions on Mathematical Software, 28(2):135–151, 2002.

[7] J. Cadima and I. T. Jolliffe. On relationships between uncentred and column-centred principal compo-
nent analysis. Pak J. Statist., 25:473–503, 2009.

[8] P. Constantine and D. Gleich. Tall and skinny QR factorizations in MapReduce architectures. In
MapReduce’11 - Proceedings of the 2nd International Workshop on MapReduce and Its Applications,
January 2011. doi: https://doi.org/10.1145/1996092.1996103.

[9] S. Dasgupta and A. Gupta. An elementary proof of a theorem of Johnson and Lindenstrauss. Random
Structures & Algorithms, 22(1):60–65, 2002. doi: https://doi.org/10.1002/rsa.10073.

[10] K. Fukami, T. Nakamura, and K. Fukagata. Convolutional neural network based hierarchical autoen-
coder for nonlinear mode decomposition of fluid field data. Physics of Fluids, 32:095110, 2020.

[11] D. Higdon, J. Gattiker, B. Williams, and M. Rightley. Computer model calibration using high-
dimensional output. Journal of the American Statistical Association, 103(482):570–583, 2008. doi:
https://doi.org/10.1198/016214507000000888.

[12] G.E. Hinton, P. Dayan, and M. Revow. Modeling the manifolds of images of handwritten digits. IEEE
Transactions on Neural Networks, 8(1):65–74, 1997. doi: https://doi.org/10.1109/72.554192.

[13] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1988.

[14] I. T. Jolliffe and J. Cadima. Principal component analysis: A review and recent developments. Phil.
Trans. R. Soc. A., 374, 2016. doi: http://doi.org/10.1098/rsta.2015.0202.

[15] C. Kamath. Intelligent sampling for surrogate modeling, hyperparameter optimization, and data anal-
ysis. Machine Learning with Applications, 9:100373, 2022. doi: https://doi.org/10.1016/j.mlwa.2022.
100373.

[16] C. Kamath and Y. J. Fan. Regression with small data sets: A case study using code surrogates in
additive manufacturing. Knowl. Inf. Syst., 57(2):475–493, November 2018. doi: https://doi.org/10.
1007/s10115-018-1174-1.

[17] C. Kamath and J. S. Franzman. Spatio-temporal surrogates for interaction of a jet with high explosives:
Part II - Clustering extremely high-dimensional grid-based data. Technical Report LLNL-TR-850159,
Lawrence Livermore National Laboratory CA., June 2023.

[18] N. Kambhatla and T. K. Leen. Fast non-linear dimension reduction. In J. Cowan,
G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems, vol-
ume 6. Morgan-Kaufmann, 1993. URL https://proceedings.neurips.cc/paper/1993/file/

d554f7bb7be44a7267068a7df88ddd20-Paper.pdf.

[19] N. Kambhatla and T. K. Leen. Dimension reduction by local principal component analysis. Neural
Computation, 9:1493–1516, 1997.

[20] N. Kambhatla and T.K. Leen. Fast nonlinear dimension reduction. In IEEE International Conference
on Neural Networks, pages 1213–1218 vol.3, 1993. doi: https://doi.org/10.1109/ICNN.1993.298730.

[21] M. Kirby and L. Sirovich. Application of the Karhunen-Loeve procedure for the characterization of
human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1):103–108, 1990.
doi: https://doi.org/10.1109/34.41390.

26

[22] M. Kirby, J. Boris, and L. Sirovich. An eigenfunction analysis of axisymmetric jet flow. Journal of
Computational Physics, 90:98–122, 1990.

[23] J. A. Lee and M. Verleysen. Nonlinear Dimensionality Reduction. Springer, New York, NY, USA, 2007.

[24] P. Li, T. J. Hastie, and K. W. Church. Very sparse random projections. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’06, pages
287–296, New York, NY, USA, 2006. Association for Computing Machinery. doi: https://doi.org/10.
1145/1150402.1150436.

[25] H. V. Ly and H. T. Tran. Modeling and control of physical processes using proper orthogonal decom-
position. Mathematical and Computer Modelling, 33(1):223–236, 2001. doi: https://doi.org/10.1016/
S0895-7177(00)00240-5. Computation and control VI proceedings of the sixth Bozeman conference.

[26] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, 2000.

[27] D. P. Mitchell. Spectrally optimal sampling for distribution ray tracing. Computer Graphics, 25(4):
157–164, 1991.

[28] M. Mitry. Reduced Order Surrogate Modelling (ROSM) of high dimensional deterministic simulations.
Master’s thesis, Department of Aerospace Engineering, University of Toronto, 2014. Available from
http://hdl.handle.net/1807/68047.

[29] D. Rajaram, C. Perron, T. G. Puranik, and D. N. Mavris. Randomized algorithms for non-intrusive
parametric reduced order modeling. AIAA Journal, 58(12):5389–5407, 2020. doi: https://doi.org/10.
2514/1.J059616.

[30] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cam-
bridge, MA, 2006.

[31] L. Sirovich. Turbulence and the dynamics of coherent structures part i: coherent structures. Quarterly
of Applied Mathematics, 45:561–571, 1987.

[32] L. Sirovich and M. Kirby. Low-dimensional procedure for the characterization of human faces. J Opt
Soc Am A., 4:519–524, 1987. doi: https://doi.org/10.1364/josaa.4.000519.

[33] R. Swischuk, L. Mainini, B. Peherstorfer, and K. Willcox. Projection-based model reduction: For-
mulations for physics-based machine learning. Computers & Fluids, 179:704–717, 2019. doi: https:
//doi.org/10.1016/j.compfluid.2018.07.021.

[34] The HDF Group. Hierarchical Data Format, version 5, 1997-2023. https://www.hdfgroup.org/HDF5/.

[35] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71–86,
01 1991. doi: https://doi.org/10.1162/jocn.1991.3.1.71.

[36] M.A. Turk and A.P. Pentland. Face recognition using eigenfaces. In Proceedings. 1991 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 586–591, 1991. doi: https:
//doi.org/10.1109/CVPR.1991.139758.

[37] R. A. van de Geijn and M. Myers. Advanced Linear Algebra: Foundations to Frontiers. Online book
available at www.ulaff.net, 2023.

[38] P. Wu, J. Sun, X. Chang, W. Zhang, R. Arcucci, Y. Guo, and C. C. Pain. Data-driven reduced
order model with temporal convolutional neural network. Computer Methods in Applied Mechanics and
Engineering, 360:112766, 2020. doi: https://doi.org/10.1016/j.cma.2019.112766.

[39] W.W. Xing, V. Triantafyllidis, A.A. Shah, P.B. Nair, and N. Zabaras. Manifold learning for the emula-
tion of spatial fields from computational models. Journal of Computational Physics, 326:666–690, 2016.
doi: https://doi.org/10.1016/j.jcp.2016.07.040.

27

[40] S.-T. Yeh, X. Wang, C.-L. Sung, S. Mak, Y.-H. Chang, L. Zhang, C. F. Wu, and V. Yang. Common
proper orthogonal decomposition-based spatiotemporal emulator for design exploration. AIAA Journal,
56:2429–2442, 2018. doi: https://doi.org/10.1016/j.jcp.2016.07.040.

[41] J. Yu, C. Yan, Z. Jiang, W. Yuan, and S. Chen. Adaptive non-intrusive reduced order modeling for
compressible flows. Journal of Computational Physics, 397:108855, 2019. doi: https://doi.org/10.1016/
j.jcp.2019.07.053.

28

A Appendix: Data for x-momentum variable

Figure 12: The variable x-momentum, after the snapshots have been aligned, cropped, and remapped, at the first
time step (left column) and last time step (right column) for the four example simulations in Table 1. From top to
bottom, simulations with keys r01 i004, r01 i017, r02 i021, r02 i028, respectively. The first time step has value zero
for most of the domain, except the jet along the bottom on the left side of the region. The color bars are different
between simulations and across time steps.

29

Figure 13: The variable x-momentum, after the snapshots have been aligned, cropped, and remapped, at different
time steps in two simulations showing the evolution of the data over time. Left: key r01 i017 (no break case) at time
steps t0, t10, t20, t30, and t41. Right: key r02 i028 (break case) at time steps t0, t09, t17, t26, and t35. The color
bars are different between simulations and across time steps.

30

B Appendix: Data for y-momentum variable

Figure 14: The variable y-momentum, after the snapshots have been aligned, cropped, and remapped, at the first
(left column) and last (right column) time steps for the four example simulations in Table 1. From top to bottom,
simulations with keys r01 i004, r01 i017, r02 i021, r02 i028, respectively. The first time step has value zero for most
of the domain. Unlike the x-momemtum in Figure 12, there is no y-momentum for the jet at initial time. The color
bars are different between simulations and across time steps.

31

Figure 15: The variable y-momentum, after the snapshots have been aligned, cropped, and remapped, at different
time steps in two simulations showing the evolution of the data over time. Left: key r01 i017 (no break case) at time
steps t0, t10, t20, t30, and t41. Right: key r02 i028 (break case) at time steps t0, t09, t17, t26, and t35. The color
bars are different between simulations and across time steps.

32

C Appendix: Eigen-snapshots for mass variable, with and without
clustering

Figure 16: Eigen-snapshots (0-4) for variable mass, without clustering (on left) and with clustering, cluster 2, on
right. The color bars are different across eigen-snapshots.

33

Figure 17: Eigen-snapshots (5-9) for variable mass, without clustering (on left) and with clustering, cluster 2, on
right. The color bars are different across eigen-snapshots.

34

D Appendix: Reconstructed mass (before and after clustering)
for all seven test cases

35

Figure 18: Reconstruction of the variable mass, without clustering, for test simulation r03 i008 at time t38 (left)
and t40 (right). Plots show the weight predictions (with 1 standard deviation error bar) for the first 50 weights.

Figure 19: Reconstruction of the variable mass, without clustering, for test simulation r03 i008 at time t38 (top)
and t40 (bottom). The plate view shows from left to right: the original snapshot followed by the reconstruction using
8, 20, and 47 weights.

36

Figure 20: Reconstruction of the variable mass, after clustering, for test simulation r03 i008 at time t38 (left) and
t40 (right). Top: the weight predictions (with 1 standard deviation error bar) for the first 50 weights. Bottom: each
pair shows the plate view of the original snapshot and the reconstruction using 30 weights.

Figure 21: Comparison of the reconstruction of the variable mass, both with and without clustering, for test simulation
r03 i008 at time t38 (left) and t40 (right). The plots compare the value of the variable at y = 6.0063 for the different
reconstructions to indicate how well they detect the plate boundary.

37

Figure 22: Reconstruction of the variable mass, without clustering, for test simulation r03 i018 at time t36 (left)
and t38 (right). Plots show the weight predictions (with 1 standard deviation error bar) for the first 50 weights.

Figure 23: Reconstruction of the variable mass, without clustering, for test simulation r03 i018 at time t36 (top)
and t38 (bottom). The plate view shows from left to right: the original snapshot followed by the reconstruction using
8, 20, and 47 weights.

38

Figure 24: Reconstruction of the variable mass, after clustering, for test simulation r03 i018 at time t36 (left) and
t38 (right). Top: the weight predictions (with 1 standard deviation error bar) for the first 50 weights. Bottom: each
pair shows the plate view of the original snapshot and the reconstruction using 30 weights.

Figure 25: Comparison of the reconstruction of the variable mass, both with and without clustering, for test simulation
r03 i018 at time t36 (left) and t38 (right). The plots compare the value of the variable at y = 6.0063 for the different
reconstructions to indicate how well they detect the plate boundary.

39

Figure 26: Reconstruction of the variable mass, without clustering, for test simulation r03 i021 at time t36 (left)
and t38 (right). Plots show the weight predictions (with 1 standard deviation error bar) for the first 50 weights.

Figure 27: Reconstruction of the variable mass, without clustering, for test simulation r03 i021 at time t36 (top)
and t38 (bottom). The plate view shows from left to right: the original snapshot, followed by the reconstruction
using 8, 20, and 47 weights.

40

Figure 28: Reconstruction of the variable mass, after clustering, for test simulation r03 i021 at time t36 (left) and
t38 (right). Top: the weight predictions (with 1 standard deviation error bar) for the first 50 weights. Bottom: each
pair shows the plate view of the original snapshot and the reconstruction using 30 weights.

Figure 29: Comparison of the reconstruction of the variable mass, both with and without clustering, for test simulation
r03 i021 at time t36 (left) and t38 (right). The plots compare the value of the variable at y = 6.0063 for the different
reconstructions to indicate how well they detect the plate boundary.

41

Figure 30: Reconstruction of the variable mass, without clustering, for test simulation r03 i023 at time t35 (left)
and t37 (right). Plots show the weight predictions (with 1 standard deviation error bar) for the first 50 weights.

Figure 31: Reconstruction of the variable mass, without clustering, for test simulation r03 i023 at time t35 (top)
and t37 (bottom). The plate view shows from left to right: the original snapshot; followed by the reconstruction
using 8, 20, and 47 weights.

42

Figure 32: Reconstruction of the variable mass, after clustering, for test simulation r03 i023 at time t35 (left) and
t37 (right). Top: the weight predictions (with 1 standard deviation error bar) for the first 50 weights. Bottom: each
pair shows the plate view of the original snapshot and the reconstruction using 30 weights.

Figure 33: Comparison of the reconstruction of the variable mass, both with and without clustering, for test simulation
r03 i023 at time t35 (left) and t37 (right). The plots compare the value of the variable at y = 6.0063 for the different
reconstructions to indicate how well they detect the plate boundary.

43

Figure 34: Reconstruction of the variable mass, without clustering, for test simulation r03 i026 at time t27 (left)
and t29 (right). Plots show the weight predictions (with 1 standard deviation error bar) for the first 50 weights.

Figure 35: Reconstruction of the variable mass, without clustering, for test simulation r03 i026 at time t27 (top)
and t29 (bottom). The plate view shows from left to right: the original snapshot; followed by the reconstruction
using 8, 20, and 47 weights.

44

Figure 36: Reconstruction of the variable mass, after clustering, for test simulation r03 i026 at time t27 (left) and
t29 (right). Top: the weight predictions (with 1 standard deviation error bar) for the first 50 weights. Bottom: each
pair shows the plate view of the original snapshot and the reconstruction using 30 weights.

Figure 37: Comparison of the reconstruction of the variable mass, both with and without clustering, for test simulation
r03 i026 at time t27 (left) and t29 (right). The plots compare the value of the variable at y = 6.0063 for the different
reconstructions to indicate how well they detect the plate boundary.

45

Figure 38: Reconstruction of the variable mass, without clustering, for test simulation r03 i037 at time t31 (left)
and t33 (right). The plots show the weight predictions (with 1 standard deviation error bar) for the first 50 weights.

Figure 39: Reconstruction of the variable mass, without clustering, for test simulation r03 i037 at time t31 (top)
and t33 (bottom). The plate view shows from left to right: the original snapshot; followed by the reconstruction
using 8, 20, and 47 weights.

46

Figure 40: Reconstruction of the variable mass, after clustering for test simulation r03 i037 at time t31 (left) and
t33 (right). Top: the weight predictions (with 1 standard deviation error bar) for the first 50 weights. Bottom: each
pair shows the plate view of the original snapshot and the reconstruction using 30 weights.

Figure 41: Comparison of the reconstruction of the variable mass, both with and without clustering, for test simulation
r03 i037 at time t31 (left) and t33 (right). The plots compare the value of the variable at y = 6.0063 for the different
reconstructions to indicate how well they detect the plate boundary.

47

Figure 42: Reconstruction of the variable mass, without clustering, for test simulation r03 i050 at time t31 (left)
and t33 (right). Plots show the weight predictions (with 1 standard deviation error bar) for the first 50 weights.

Figure 43: Reconstruction of the variable mass, without clustering, for test simulation r03 i050 at time t31 (top)
and t33 (bottom). The plate view shows from left to right: the original snapshot; followed by the reconstruction
using 8, 20, and 47 weights.

48

Figure 44: Reconstruction of the variable mass, after clustering, for test simulation r03 i050 at time t31 (left) and
t33 (right). Top: the weight predictions (with 1 standard deviation error bar) for the first 50 weights. Bottom: each
pair shows the plate view of the original snapshot and the reconstruction using 30 weights.

Figure 45: Comparison of the reconstruction of the variable mass, both with and without clustering, for test simulation
r03 i050 at time t31 (left) and t33 (right). The plots compare the value of the variable at y = 6.0063 for the different
reconstructions to indicate how well they detect the plate boundary.

49

E Appendix: Eigen-snapshots for x-momentum variable, with clus-
tering

Figure 46: Eigen-snapshots (0-4 on left and 5-9 on right) for variable x-momentum, with clustering. The color bars
are different across eigen-snapshots.

50

F Appendix: Reconstructed x-momentum (after clustering) for
all seven test cases

51

Figure 47: Reconstruction of the variable x-momentum, after clustering, for test simulation r03 i008 at time t38
(left) and t40 (right). Top: the weight predictions (with 1 standard deviation error bar) for the first 50 weights.
Bottom: each pair shows the plate view of the original snapshot and the reconstruction using 50 weights. The color
bars are different across images.

Figure 48: Comparison of the reconstruction of the variable x-momentum, with clustering, for test simulation r03 i008
at time t38 (left) and t40 (right). The plots compare the value of the variable at y = 6.0063 for the reconstruction
to indicate how well it detects the plate boundary.

52

Figure 49: Reconstruction of the variable x-momentum, after clustering, for test simulation r03 i018 at time t36
(left) and t38 (right). Top: the weight predictions (with 1 standard deviation error bar) for the first 50 weights.
Bottom: each pair shows the plate view of the original snapshot and the reconstruction using 50 weights. The color
bars are different across images.

Figure 50: Comparison of the reconstruction of the variable x-momentum, with clustering, for test simulation r03 i018
at time t36 (left) and t38 (right). The plots compare the value of the variable at y = 6.0063 for the reconstruction
to indicate how well it detects the plate boundary.

53

Figure 51: Reconstruction of the variable x-momentum, after clustering, for test simulation r03 i021 at time t36
(left) and t38 (right). Top: the weight predictions (with 1 standard deviation error bar) for the first 50 weights.
Bottom: each pair shows the plate view of the original snapshot and the reconstruction using 50 weights. The color
bars are different across images.

Figure 52: Comparison of the reconstruction of the variable x-momentum, with clustering, for test simulation r03 i021
at time t36 (left) and t38 (right). The plots compare the value of the variable at y = 6.0063 for the reconstruction
to indicate how well it detects the plate boundary.

54

Figure 53: Reconstruction of the variable x-momentum, after clustering, for test simulation r03 i023 at time t35
(left) and t37 (right). Top: the weight predictions (with 1 standard deviation error bar) for the first 50 weights.
Bottom: each pair shows the plate view of the original snapshot and the reconstruction using 50 weights. The color
bars are different across images.

Figure 54: Comparison of the reconstruction of the variable x-momentum, with clustering, for test simulation r03 i023
at time t35 (left) and t37 (right). The plots compare the value of the variable at y = 6.0063 for the reconstruction
to indicate how well it detects the plate boundary.

55

Figure 55: Reconstruction of the variable x-momentum, after clustering, for test simulation r03 i026 at time t27
(left) and t29 (right). Top: the weight predictions (with 1 standard deviation error bar) for the first 50 weights.
Bottom: each pair shows the plate view of the original snapshot and the reconstruction using 50 weights. The color
bars are different across images.

Figure 56: Comparison of the reconstruction of the variable x-momentum, with clustering, for test simulation r03 i026
at time t27 (left) and t29 (right). The plots compare the value of the variable at y = 6.0063 for the reconstruction
to indicate how well it detects the plate boundary.

56

Figure 57: Reconstruction of the variable x-momentum, after clustering, for test simulation r03 i037 at time t31
(left) and t33 (right). Top: the weight predictions (with 1 standard deviation error bar) for the first 50 weights.
Bottom: each pair shows the plate view of the original snapshot and the reconstruction using 50 weights. The color
bars are different across images.

Figure 58: Comparison of the reconstruction of the variable x-momentum, with clustering, for test simulation r03 i037
at time t31 (left) and t33 (right). The plots compare the value of the variable at y = 6.0063 for the reconstruction
to indicate how well it detects the plate boundary.

57

Figure 59: Reconstruction of the variable x-momentum, after clustering, for test simulation r03 i050 at time t31
(left) and t33 (right). Top: the weight predictions (with 1 standard deviation error bar) for the first 50 weights.
Bottom: each pair shows the plate view of the original snapshot and the reconstruction using 50 weights. The color
bars are different across images.

Figure 60: Comparison of the reconstruction of the variable x-momentum, with clustering, for test simulation r03 i050
at time t31 (left) and t33 (right). The plots compare the value of the variable at y = 6.0063 for the reconstruction
to indicate how well it detects the plate boundary.

58

