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Abstract

Aerosol-cloud-precipitation interactions (ACPI) remain a major uncertainty in understanding the
Earth’s radiation budget and water cycle (including extremes). After decades of active research,
various observationally based metrics have been developed to constrain ACPI in Earth System
Models (ESMs), but direct comparison of model and data estimates can confound scientific
understanding because limitations and uncertainties in sampling and retrieval procedures may
combine with model deficiencies in process representations of ACPI to obstruct understanding.
Furthermore, conventional ACPI metrics often vary from one regime to another, and the ACPI
process representation in ESMs is also typically derived based on only a limited area/regime (even
though the parameterization applies globally). To bridge the gap between models and data and to
correctly describe ACPI in all regimes, we propose to construct a new CALIPSO-CloudSat merged
dataset that is produced by the same algorithms used in satellite simulators in ESMs, and to use
machine learning techniques to derive new ACPI metrics that can be accurately estimated by
satellites and can provide meaningful constraints on cloud microphysical process representations
in ESMs. The dataset will include measured and retrieved variables for aerosol, cloud, and
precipitation from CALIPSO and CloudSat, and environmental variables from meteorological
reanalysis. The data will be used to train a neural network to construct the ACPI metrics as a
function of environmental conditions. The new ACPI formula will be used to constrain the ACPI in
the Energy Exascale Earth System Model (E3SM), and to augment/reformulate the ACPI process
representation in the E3SM to improve the simulation of the evolution of the atmosphere under
different environmental conditions.
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Objective

The primary objective of this study is to develop a new data-driven formula that describes ACP]I, so
that simulations of water cycle and atmospheric evolution under different environmental
conditions can be improved with higher confidence. The proposed work, compared to conventional
approaches, aims to better integrate data and model. The unique contribution includes:

1. The observational data used for deriving the ACPI is constructed using the same algorithms
used in simulators in ESMs, minimizing the inconsistencies between models and
observations, so that the ACPI can be accurately derived by current satellite technology and
can be directly applied to augment/reformulate process representations in ESMs; and

2. The new ACPI formula is derived from samples of all environmental conditions using
advanced machine learning techniques instead of from samples within a limited area or
regime using simple linear regression, so that the formula can provide a holistic view of
ACPI in the Earth system.

Background

Even though the research community has actively worked on ACPI for decades, large uncertainties
still remain, with two known challenges: (1) calculations are typically performed inconsistently
between models and observations, and (2) applicability of the ACPI metrics is commonly limited to
one meteorological regime. The first challenge was recently discussed by Ma et al. (2018) in Nature
Communications, showing that the validity of the conventional ACPI metrics can be compromised
due to observational limitations. Hence, there is an increasing demand of a new observational
dataset which consists of aerosol, cloud, and precipitation fields, and is produced by the same
algorithms as those implemented in simulators in ESMs, so that inconsistencies between models
and data are minimized and that results from data analysis can be directly applicable to models.
The PI Po-Lun Ma has the scientific and technical expertise on this subject, so we can make the
unique contribution to the community. The second challenge is related to the fact that conventional
ACPI metrics are derived by linear regression methods, while ACPI are nonlinear processes.
Furthermore, ACPI process representations in ESMs are often derived from data of limited area or
regime, but the parameterizations are applied globally. Studies have suggested that the
formulations regulating ACPI vary significantly from one regime to another, indicating that the
formula embedded in ESMs is insufficient to describe ACPI in all regimes, and that more factors
should be considered when formulating ACPI. Deriving an ACPI formula suitable for all regimes by
considering all necessary variables has not been achieved in the past due to the complexity of the
problem, and can be benefited from novel machine learning techniques. Our goal is to develop a
correct formula rather than an optimal set of parameters/coefficients for a wrong formula. The Co-I
Panagiotis Stinis has the expertise and experience with these techniques and will perform the task.
Lastly, Ma is familiar with ACPI process representations in E3SM, and can implement the new
machine learning based ACPI formula in E3SM effectively. In summary, this project leverages the
PNNL strength in ESM, satellite simulator, and machine learning, to improve understanding of ACPI
which is an issue of scientific significance.

Scientific Basis and Technical Approach

The proposed study will merge the CALIPSO, CloudSat, and MODIS satellite data with
meteorological reanalysis data, use the data to train neural networks, and assess the cloud and
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precipitation response to environmental changes under different conditions using the new
formulation. Specific steps are described below:

1.

Data preparation: We merge the high-resolution CALIPSO, CloudSat, and MODIS data
with meteorological reanalysis data. The horizontal resolution of the dataset is 20 km.
The dataset includes CALIPSO retrieval of aerosol extinction profile and optical depth,
CloudSat precipitation flag, MODIS cloud properties, and meteorological fields. These
variables will be used to train neural networks.

ACPI derivation: We use supervised learning, where we form pairs of tuples (vectors)
mapping the environmental variables to the aerosol, cloud, and precipitation variables,
and train a generative model, i.e., a neural network, that produces ACPI as a function of
environmental tuple. We compare results derived from other machine learning
techniques such as random forest and linear regression.

E3SM application: We will compare the ACPI derived from the new dataset and from
E3SM, and augment/replace the ACPI process representations in the model with the
new data-driven formula. Lastly, we will perform short E3SM simulations to assess the
evolution of atmosphere with the new ACPI formulation.

Summary of Scientific Results

We have collocated the dataset, combining satellite retrievals with meteorological reanalysis. The
data is used to derive cloud response to aerosol perturbations. As shown in Figure 1, we compares
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Figure 1. Scatter plots comparing predictions from deep neural network
(left) and multiple linear regression (right) with satellite data (true value).
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large droplets), in better agreement with the truth, but the results are more scattered. A sensitivity
test shows that using a deeper neural net reduces the scatter slightly and requires less iteration. By
removing one variable at a time, we find that the variable lifting condensation level (LCL) is critical
for correctly predicting the spread of the droplet size. When LCL is not included in the training
dataset, DL and linear regression produce similar droplet size spread. The results show that using
DL provides insights into meteorological factors that affect how aerosols influence clouds even if
the effects are non-linear, which cannot be revealed when using linear regression. This sensitivity
test also shows that two meteorological variables (estimated inversion strength and humidity) that
are commonly used for determining meteorological regimes for understanding ACPI do not actually
have a statistically significant impact on ACPI, suggesting that a different way of defining
meteorological regimes is necessary for understanding ACPL
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We also used the random forest technique and was able to achieve a remarkable prediction of cloud
optical depth probability
distribution with predictions
bounded by a factor of 2 (not
shown). This provides us

g

g E' g confidence in using the emulator

g . ﬁi ﬁ # s to explore cloud response to

3 aerosol variations. Using the
emulator, we find that cloud

optical depth increases with
increasing aerosol optical depth
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Figure 2. Box plots of cloud optical depth as a function aerosol clean (AOD < 0.5), and then the
optical depth derived from satellite (gray) and machine effects saturate so that the cloud

learning emulator (red). optical depth does not change

with increasing AOD. A large variability exists which indicates the significant contributions from
other environmental (meteorological) variables.

We next analyzed the SHapley Additive explanation (SHAP) values to attribute the variation of
et clouds to aerosol and meteorological conditions. As
shown in Figure 3, the full dataset tries to derive the
variation of cloud optical depth as a function of cloud
geometric depth (cld14), cloud base height (cld12),
surface skin temperature (era4), lower tropospheric
stability (era6), precipitation flag (cld15), boundary
layer height (era3), relative humidity near surface
(era7), column averaged relative humidity (met4), AOD
(aerl), cloud effective height (cld10), total column
water vapor (era2), cloud top height (cld11),
precipitable water (met3), LCL (met1), vertical velocity
(era5), and aerosol index (aer2). We use cluster
1 analysis to group clouds into 3 different categories and
mesn(SHARD perform the same analysis. Our results show that the
Figure 3. SHAP values ordered by the SHAP values and the order of them are very similar to
importance of variables. the global SHAP values, indicating that the relationship
derived from the emulator is independent of cloud regimes.

cld124

: ---II-I.IIII
5
g

o

Impact
Presentation: This work has been presented at several venues as follows.

Ma, P.-L. (2020), Better cloud calibration leads to improved realism in global atmospheric
simulation. Global Model Cloud-Aerosol Research (GM-CAR) Workshop of the 2020 U. S.
Climate Model Summit, April 16, 2020, online meeting.

Ma, P.-L., (2019), Using deep learning to derive aerosol-cloud interactions from satellite
observations, PNNL TechFest, June 6, 2019, Richland, Washington, USA.

Ma, P.-L., (2019), Using deep learning to derive aerosol-cloud interactions from satellite
observations, UCP, February 28, 2019, Berlin, Germany.

Publication: A manuscript is in preparation and will be submitted next year.
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Response to funding solicitations: The approach of using novel machine learning techniques to
derive observational constraints, and to emulate physical processes, of ACPI have been proposed as
part of the “Enabling Aerosol-cloud interactions at GLobal convection-permitting scalES (EAGLES)”
project (PI: Po-Lun Ma), funded by U.S. DOE, Office of Science, Office of Biological and
Environmental Research (BER), Earth System Model Development (ESMD) program (funding
4M/yr, 2019-2021). Further research on ACPI in E3SM and new observations will be conducted in
the EAGLES project.

New Collaborations: Through this LDRD project, we have established collaborations with PCSD
scientists including Panagiotis Stinis and Rama Tipireddy. We have also established collaboration
with pioneers in using machine learning in Earth system modeling including Christopher
Bretherton at University of Washington and Michael Pritchard at University of California, Irvine.
Both of them are funded collaborators of the EAGLES project. Furthermore, we established
collaboration with Mathieu Vrac at Laboratory of Climate and Environmental Sciences in France.
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