

1 **Enhanced backscatter and unsaturated blue wavelength
2 shifts in F-doped fused silica optical fibers exposed to
3 extreme neutron radiation damage**

4 **CHRISTIAN M. PETRIE* AND DANIEL C. SWEENEY**

5 *Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA*

6 **petriecm@ornl.gov*

7 **Abstract**

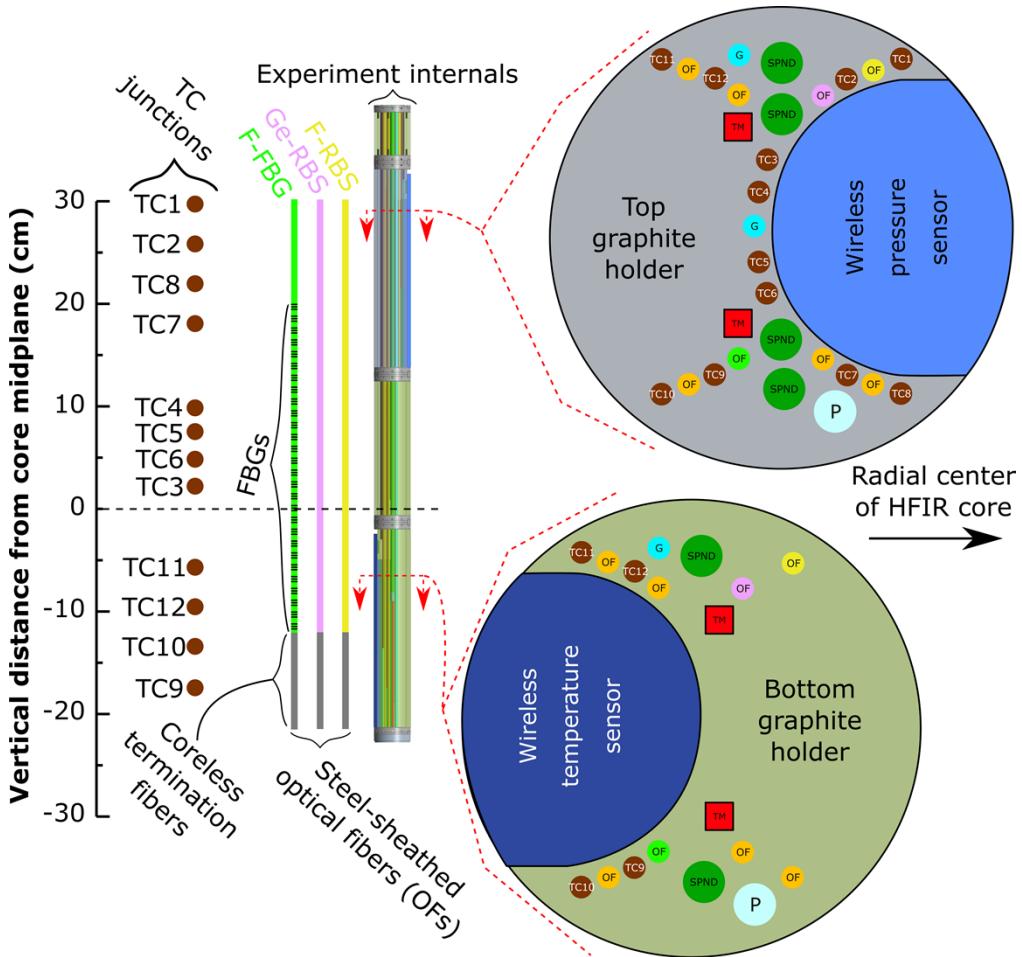
8 Amorphous fused silica (a-SiO₂) optical fibers, with and without inscribed Bragg gratings, were
9 interrogated using infrared (~1550 nm) optical backscatter reflectometry during ~25 days of
10 intense neutron irradiation to a fast (energy > 0.1 MeV) neutron fluence of ~10²¹ n/cm², or ~1.5
11 atomic displacements per atom. The reflected light amplitudes in Ge-doped core
12 telecommunications fiber dropped below detection limits (>15 dB attenuation) within 3 days of
13 irradiation (~10²⁰ fast n/cm²). Amplitudes from a pure silica core, F-doped silica cladding fiber
14 reached equilibrium levels ~1.5–2 dB *higher* than pre-irradiation values, whereas Bragg gratings
15 inscribed in the same fiber using a femtosecond laser (point-by-point method) suffered > 45 dB
16 attenuation. Blue wavelength shifts were initially consistent with previous radiation-induced
17 compaction models but increased linearly with increasing neutron fluence (no evidence of
18 saturation) beyond 10²⁰ n/cm² and exceeded 0.6%, which corresponds to >1,000 °C drift if used to
19 measure temperature changes.
20

21 **1. Introduction**

22 Optical fibers have long been considered as candidates for signal transmission and sensing in high-
23 radiation environments, including satellite and space applications, high energy physics facilities,
24 and containment or confinement structures surrounding fusion and fission nuclear reactors [1].
25 Significant work has been dedicated to understanding the fundamental point defects introduced in
26 amorphous fused silica (a-SiO₂) caused by ionization or displacement damage, including
27 dependencies of the radiation-induced attenuation (RIA) on photon wavelength (λ), dose, dose
28 rate, temperature, and fiber composition [2-4]. RIA is the primary limitation of fiber optics for
29 nuclear applications and is most significant in the ultraviolet to visible spectrum, although some
30 absorption bands possess tails that extend into the near-infrared. Additionally, atomic
31 displacements caused by fast neutron irradiation of a-SiO₂ are known to compact the amorphous
32 structure, which eventually reaches an equilibrium metamict phase with a 2–3% increase in density
33 and a 0.6–0.8% increase in refractive index after accumulating a fast neutron fluence >10²⁰
34 n_{fast}/cm² [5-7]. These changes in density and refractive index manifest as a drift in optical fiber-
35 based sensors such as fiber Bragg gratings (FBGs) [8], but this drift is expected to saturate once
36 the metamict structure is fully formed. Previous works provide more details regarding radiation
37 effects on different types of FBGs [9, 10], with a significant portion of the experimental data
38 originating from gamma or X-ray irradiations with a total ionizing dose of ~GGy or less.

39 Extension of fiber optics to extreme-dose applications such as in-core sensing in fission-based
40 nuclear reactors has long been met with skepticism based on the poor radiation tolerance of
41 telecommunication fibers even at relatively low levels (1 kGy) of ionizing dose from gamma rays.
42 Telecommunications fibers contain dopants such as P and Ge that are known to significantly
43 increase RIA, becoming intolerable for higher-dose applications [11]. Fluorine-doped silica
44 cladding fibers with either a pure silica core or lower doping of F in the core (relative to that of the
45 cladding) have shown promise. For example, $RIA < 10 \text{ dB/m}$ was measured near 1500 nm in some
46 cases during gamma and moderate neutron fluence ($\sim 10^{20} \text{ n}_{\text{fast}}/\text{cm}^2$ or lower) irradiation [12-14].
47 However, at $> 10^{18} \text{ n}_{\text{fast}}/\text{cm}^2$, increased infrared RIA was observed, which increased with increasing
48 wavelength beyond $\sim 1,000$ nm. The origins of this infrared RIA have been attributed to increased
49 vibrational absorption caused by fast neutron-induced compaction of the a-SiO₂ structure [8, 15],
50 which should also reach an equilibrium once the metamict structure is fully formed at neutron
51 fluences on the order of $10^{20} \text{ n}_{\text{fast}}/\text{cm}^2$ [5].

52 To date, testing of radiation-hardened fibers to neutron fluences approaching or exceeding $10^{20} \text{ n}_{\text{fast}}/\text{cm}^2$
53 has been performed only using fibers with inscribed FBGs or other laser-induced
54 scattering enhancements to compensate for RIA. Grating amplitudes decreased by ~ 6 dB and the
55 Bragg wavelength drifted by $\sim 0.3\%$ during irradiation up to $\sim 5 \times 10^{20} \text{ n}_{\text{fast}}/\text{cm}^2$ [16]. Similar ~ 10
56 dB reductions in backscattered light amplitude were observed in radiation-hardened fibers with
57 laser-enhanced Rayleigh backscatter (RBS) irradiated to $\sim 6 \times 10^{20} \text{ n}_{\text{fast}}/\text{cm}^2$ [17]. The latter work
58 did not report radiation-induced wavelength shifts relative to the initial pre-irradiation spectra,
59 potentially because of poor correlations that resulted after the signal attenuation. The challenge in
60 these cases is that it is not possible to separate fundamental RIA and compaction-induced changes
61 in a-SiO₂ properties (density, refractive index) from radiation effects on the gratings or other signal
62 enhancements. The critical gaps in assessing the suitability of radiation-hardened, F-doped fiber
63 optics for extreme nuclear environments ($> 10^{21} \text{ n}_{\text{fast}}/\text{cm}^2$ or > 1 atomic displacement per atom, dpa)
64 include the following objectives: (1) determining whether the infrared RIA and wavelength shifts
65 reach an equilibrium or otherwise remain tolerable, (2) identifying the mechanisms driving
66 infrared RIA and wavelength shifts, and (3) evaluating whether FBGs or other backscatter
67 enhancements suffer from additional radiation effects beyond those in the fiber itself.


68 This work summarizes experimental measurements recorded during the continuous interrogation
69 of optical fibers during intense neutron irradiation at the highest steady-state fast neutron flux and
70 fluence ever reported in the literature. Multiple fiber types with and without inscribed FBGs were
71 tested to separate the effects of radiation on the fiber transmission vs. the grating reflectivity. The
72 interrogation method allowed for evaluation of spatially dependent reflected signal amplitudes
73 (e.g., RIA) and spectral shifts.

74

75 **2. Methodology**

76 Pure a-SiO₂ core, F-doped a-SiO₂ cladding single-mode fibers—SM1250SC(9/125) from
77 Fibercore—were continuously interrogated using optical backscatter reflectometry (OBR using
78 the 4600 model from Luna Innovations) during intense neutron irradiation in the High Flux Isotope
79 Reactor (HFIR) [18, 19] at Oak Ridge National Laboratory. Fig. 1 shows the experimental
80 configuration. Multiple fibers were tested (see Table 1) with and without inscribed FBGs ($\sim 0.5\%$
81 reflectivity) and are hereinafter referred to as F-FBG and F-RBS, respectively, denoting the fiber
82 dopant (F) and light scattering mechanism (i.e., FBG or RBS). A relatively low grating reflectivity
83 was chosen to minimize reflection losses from the FBGs and improve signal transmission to the

84 FBGs at the end of the array. The FBGs (Type II) were inscribed through the fiber coating using a
 85 femtosecond laser following the common point-by-point approach. A standard
 86 telecommunications single-mode fiber (SMF-28e+ from Corning) with a Ge-doped a-SiO₂ core
 87 and pure a-SiO₂ cladding was also included in the test as a reference (denoted as Ge-RBS).
 88

89
 90 **Fig. 1.** Experimental configuration showing the locations of all thermocouples (TCs) and optical
 91 fibers (OFs), including the FBGs in the F-FBG fiber and the coreless termination fibers that were
 92 spliced to the end of each fiber. Other sensors were included in the experiment but are not
 93 discussed herein. Those include other OFs, wireless temperature and pressure sensors, passive
 94 temperature monitors (TMs), self-powered neutron detectors (SPNDs), a purge gas line (P), and
 95 multiple control gas lines (G). The two graphite holders have different geometries to
 96 accommodate leads from sensors that terminate at lower elevations. TC2 and TC8 were faulted
 97 from the start of the experiment and were therefore not used.
 98

99 The OBR system uses a tunable laser to sweep over a range of wavelengths (1530.0–1571.7 nm)
 100 and performs Fourier analyses to determine the backscattered light amplitude vs. position along
 101 the fiber [20]. Using a sliding spatial window, data from select regions can be transformed back
 102 into the spectral domain and cross-correlated with an unperturbed reference scan made before
 103 irradiation to determine spatially dependent spectral (wavelength) shifts [21]. Data were acquired
 104 from each fiber every 5 minutes and processed using previously established adaptive reference

105 techniques [22-24] that adjust the reference scan based on the correlation coefficient to more
106 accurately resolve incremental spectral shifts that can be summed to determine larger spectral
107 shifts.

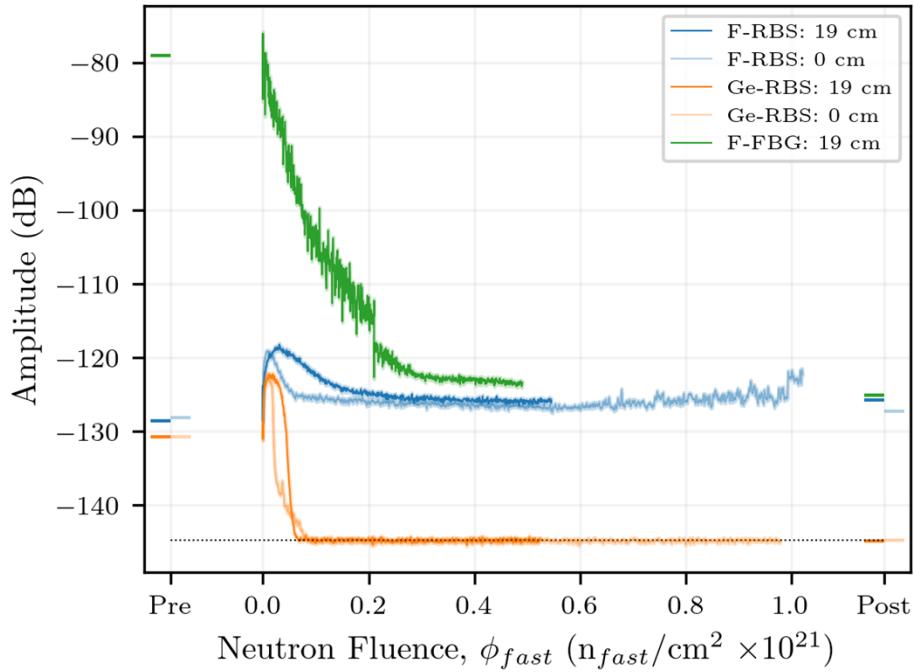
108

109 **Table 1.** Optical fibers included in the irradiation test.

Fiber	Vendor	Part Number	Core	Cladding	Coating	Gratings
F-RBS						N/A
F-FBG	Fiber-core	SM1250SC (9/125)P	Ø9 µm SiO ₂	Ø125 µm F-doped SiO ₂	Ø155 µm polyimide	28 fs gratings, ~1 cm spacing, ~0.5% reflectivity, 1548 nm center wavelength
Ge-RBS	Corning	SMF-28e+	Ø8.2 µm Ge-doped SiO ₂	Ø125 µm SiO ₂	Ø242 µm acrylate	N/A

110

111 Near the reactor core midplane, the time-averaged thermal neutron flux (energy < 1 eV) and
112 gamma dose rate were $8.8 \times 10^{14} \text{ n}_{\text{thermal}}/\text{cm}^2/\text{s}$ and 33 MGy/hr, respectively, for all fibers. After
113 25.3 effective full-power days of irradiation, the maximum integrated thermal neutron fluence was
114 $2.0 \times 10^{21} \text{ n}_{\text{thermal}}/\text{cm}^2$, and the total ionizing dose was 20 GGy. The fast neutron flux (energy > 0.1
115 MeV) and fluence near the core midplane were in the range of $4.5 \times 10^{14} \text{ n}_{\text{fast}}/\text{cm}^2/\text{s}$ and $1.0 \times 10^{21} \text{ n}_{\text{fast}}/\text{cm}^2$ but varied slightly for each fiber due to their radial distance from the center of the reactor
116 core. Assuming displacement threshold energies of 15 eV for Si and 28 eV for O [25], the
117 calculated displacement damage dose near the core midplane was in the range of 1.4–1.5 dpa. Fig.
118 A1 in the Appendix shows the spatial variations in fast neutron fluence and dose at the end of the
119 experiment, for positions along each fiber >–10 cm. The fiber temperature (i.e., ~150–400 °C; see
120 Fig. A2 in the Appendix) was independently monitored using 10 Type N thermocouples (locations
121 shown in Fig. 1).

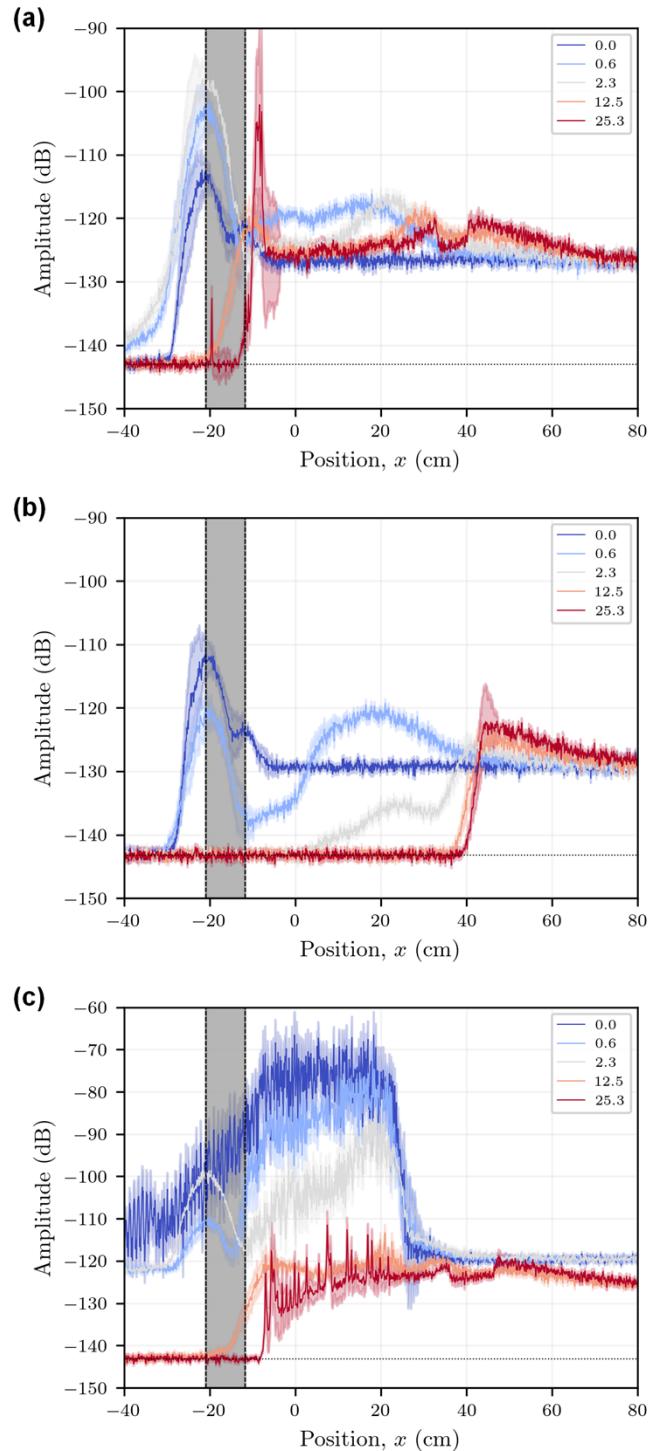

123

124 3. Results

125 3.1 Backscattered amplitudes

126 Fig. 2 shows the reflected signal amplitude from all three fibers vs. fast neutron fluence with the
127 location relative to the reactor core midplane as a parameter. The amplitudes are relative to those
128 obtained with a gold reflector attached to the OBR system. Positions farther from the core midplane
129 were exposed to a lower neutron fluence because of the spatial variation in neutron flux. The semi-
130 transparent shadings indicate the standard error of the mean measured amplitudes for each position
131 and fast neutron fluence. Standard errors were obtained by taking the standard deviation of 521
132 data points that were measured within the 1 cm wide sensor gauge length, for each reported
133 location, and then dividing by $\sqrt{521}$ to obtain the standard error of the mean. In this way, the
134 standard error quantifies how well the mean amplitude, taken over a discrete gauge length
135 (sample), is representative of the true mean amplitude that is backscattered from a given position.

136

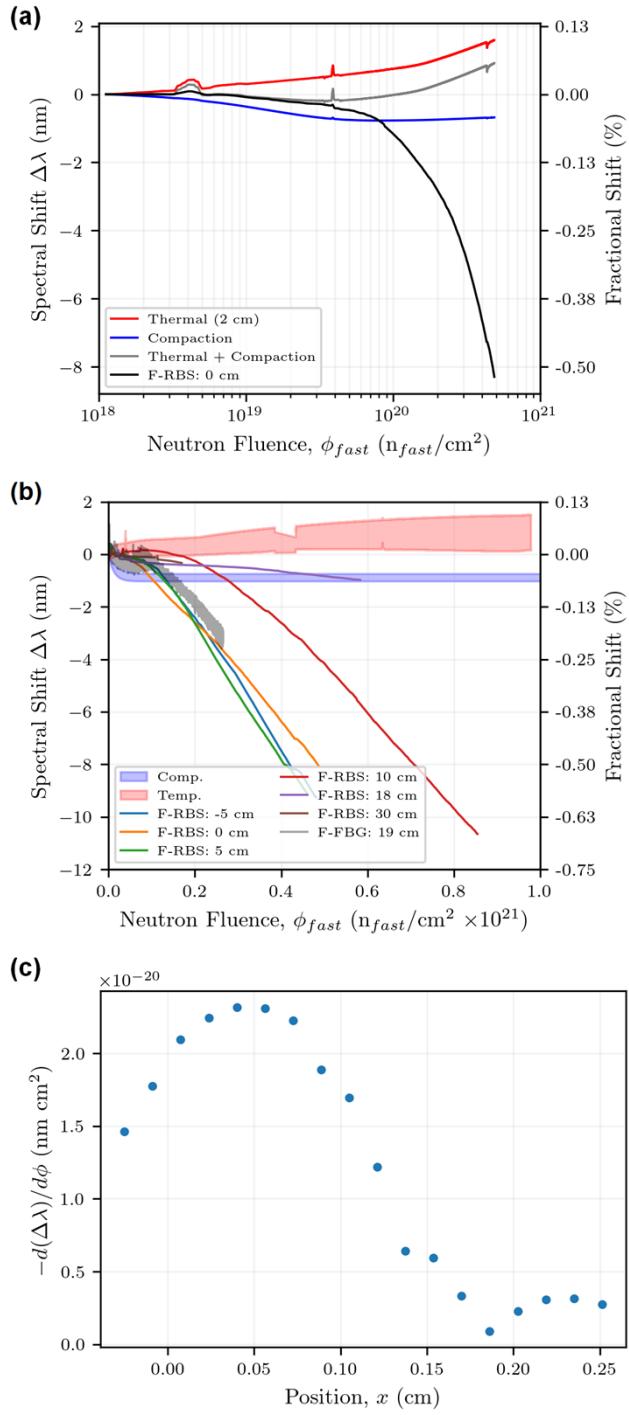

137

138 **Fig. 2.** Reflected signal amplitude vs. fast neutron fluence for each fiber at various locations.
 139 Amplitudes are also shown pre- and post-irradiation. The horizontal dashed line indicates the
 140 noise floor of the OBR system and the semi-transparent shadings indicate the standard error of
 141 the mean for each amplitude measurement.

142 All RBS amplitudes initially increased by ~10 dB during the first ascent to full reactor power up
 143 to ~ 10^{19} n_{fast}/cm^2 , followed by a decrease in amplitude. As expected from previous RIA
 144 measurements [11], the Ge-RBS amplitudes decreased most significantly and approached the
 145 system noise floor within <3 effective full power days of irradiation (< 10^{20} n_{fast}/cm^2). The decrease
 146 in amplitude for F-RBS was much less significant. In fact, the amplitudes approached an
 147 equilibrium value that remained ~1.6 dB greater than the pre-irradiation amplitudes over the entire
 148 test.

149 The initial increases in amplitude can be explained by Fresnel reflections caused by compaction-
 150 induced increases in refractive index that varied along the length of the fiber as a result of spatial
 151 variations in neutron fluence. Similar reflections have been observed previously during neutron
 152 irradiation [14]. The refractive index has previously been shown to approach an equilibrium value
 153 when the fast neutron fluence is on the order of 10^{19} n_{fast}/cm^2 [5], which reduced the Fresnel
 154 reflections near the reactor midplane as the refractive index profile became more uniform. As the
 155 neutron fluence increased farther above the core, Fresnel reflections became more significant in
 156 these regions, causing the maximum reflected amplitude to shift to locations farther above the core
 157 (see Fig. 3). The large reflection peaks in Fig. 3 near -10 and -20 cm—which are particularly
 158 evident for the F-RBS and Ge-RBS fibers—are caused by reflections that occur at the interface
 159 between the fiber and a coreless termination fiber and the end of the termination fiber, respectively.

160



161
162
163
164
165
166
167
168

Fig. 3. Reflected signal amplitude vs. axial position relative to reactor core midplane at various effective full power days (indicated in the legends) for the (a) F-RBS, (b) Ge-RBS, and (c) F-FBG fibers. The regions that include the coreless termination fibers that were spliced to the ends of each sensing fiber are indicated with grey shading. Horizontal dashed lines indicate the noise floor of the OBR system and the semi-transparent shadings indicate the standard error of the mean for each amplitude measurement.

169 *3.2 Spectral shifts*

170 Fig. 4 shows local shifts in the reflected wavelength from the F-RBS and F-FBG fibers vs. fast
171 neutron fluence; the locations relative to the reactor core midplane are indicated in the figure
172 legends. Additional data are provided in Fig. A4 and Fig. A5 in the Appendix. Wavelength shifts
173 are relative to the times when the reactor reached full power, and shifts during reactor startup and
174 shutdown are not accounted for. Wavelength shifts could not be resolved in the Ge-RBS fiber due
175 to the high RIA. Blue wavelength shifts >10 nm (0.63%) were measured, and the magnitudes of
176 the wavelength shifts continued to increase with increasing fast neutron fluence with no evidence
177 of saturation up to 10^{21} $n_{\text{fast}}/\text{cm}^2$. The fact that the trends in the measured shifts are the same with
178 and without FBGs provides greater confidence in the shifts determined from the F-RBS fiber using
179 adaptive reference techniques. The estimated wavelength shifts caused by changes in temperature
180 and radiation-induced compaction (and the effects of compaction on refractive index [8]) are also
181 shown. For neutron fluences on the order of $\sim 10^{19}$ $n_{\text{fast}}/\text{cm}^2$, the compaction model shows relatively
182 good agreement with the experimental results for the positions with higher neutron flux (≤ 10 cm).
183 The disagreement at positions >10 cm (lower neutron flux), even at lower neutron fluence, implies
184 that the compaction model may have some rate dependence that is not currently captured.

185
186 **Fig. 4.** (a) Measured spectral shift vs. fast neutron fluence (log scale) at 0 cm compared with
187 expected shifts due to temperature and neutron-induced compaction effects. (b) Measured
188 spectral shifts vs. fast neutron fluence (linear scale) at various positions compared with bounding
189 values for spectral shifts caused by temperature changes and neutron-induced compaction. (c)
190 Calculated spatial profile of $d(\Delta\lambda)/d\phi$ obtained by fitting the spectral shift vs. neutron fluence
191 data at high neutron fluence for each position along the F-RBS fiber.
192

193 **4. Discussion**

194 *4.1 Signal transmission and backscatter amplitude*

195 Increased backscatter amplitudes in the F-RBS fiber vs. the Ge-RBS fiber were expected based on
196 previous findings [11], but the *enhanced* backscatter observed in the F-RBS fiber after reaching
197 such a high neutron fluence was not expected. After ~ 2.3 days of effective full-power irradiation
198 ($\sim 8 \times 10^{19} \text{ n}_{\text{fast}}/\text{cm}^2$), contributions from Fresnel reflections would be negligible near the core
199 midplane once the refractive index approached a uniform equilibrium value. At this point, the
200 amplitude near the core midplane remained 1–2 dB higher than pre-irradiation values despite
201 losses caused by upstream Fresnel reflections and any contributions from RIA. This result
202 indicates that some other mechanism besides Fresnel reflections must be causing the increased
203 amplitudes and that this mechanism dominates the effects of RIA. Backscatter amplitudes depend
204 on the Rayleigh scattering coefficient α_R , which quantifies light scattering from random density
205 fluctuations that are initially frozen during cooling following fiber drawing:

$$\alpha_R = \frac{8\pi^3}{3\lambda^4} n^8 p^2 k_B \beta T_f, \quad (1)$$

206 where n , p , β , and T_f are the fiber's refractive index, photo-elastic coefficient, isothermal
207 compressibility, and fictive temperature, respectively, and k_B is the Boltzmann constant.

208 Compaction-induced increases in refractive index as high as $\sim 0.8\%$ were previously reported [5].
209 With an 8th power dependence on n , this increase in refractive index would increase the Rayleigh
210 scattering coefficient by 6.6% (< 0.3 dB), much less than the ~ 1.6 dB increase observed
211 experimentally. The increases in backscattered amplitudes could also be explained by increases in
212 T_f as local “thermal spikes” generated from neutron collision cascades are rapidly cooled from a
213 higher temperature than the initial T_f that was established during fiber manufacturing [7]. For
214 example, Leon et al. reported 12–20% increases in T_f following low neutron fluence ($\sim 10^{18} \text{ n}/\text{cm}^2$,
215 no indication of neutron energy) irradiations of a-SiO₂ [26].

216 The combination of Fresnel reflections and enhanced RBS appears to explain most of the time and
217 spatial dependences of the F-RBS amplitudes without considering the effects of RIA. Quantitative
218 estimates of RIA were obtained by performing a linear fit of the amplitude vs. position data over
219 select spatial positions along each fiber. The F-RBS data were fit from 0 to 20 cm, and the Ge-
220 RBS data were fit from 35 to 45 cm. These positions were selected to avoid the effects of Fresnel
221 reflections and end reflections (see Fig. 3). The RIA in F-RBS approached an equilibrium value
222 of 2–4 dB/m, which is significantly less than previously reported values [12, 14] and is manageable
223 for many sensor systems with a dynamic range of 20–40 dB and irradiated fiber lengths on the
224 order of meters. By comparison, the Ge-RBS fiber suffered RIA > 100 dB/m before the amplitudes
225 reached the noise floor of the OBR system.

226 The F-FBG data show that gratings inscribed in the same fiber as F-RBS suffer significant
227 reductions in amplitude (> 45 dB) that must be unrelated to RIA in the fiber itself due to the
228 minimal RIA observed in the F-RBS fiber. The FBGs were inscribed using a femtosecond laser
229 pulse to create a point-by-point modulation of the refractive index via a multiphoton absorption
230 process to introduce defects in the glass network. Eventually, the atomic displacements generated
231 from neutron-induced collision cascades dominate the defects that establish the local refractive
232 index modulations within the FBG, thus effectively annihilating the grating. When the
233 displacement damage dose approaches 1 dpa ($\sim 7 \times 10^{20} \text{ n}_{\text{fast}}/\text{cm}^2$), all atoms that define the gratings
234 statistically will have been displaced from their original atomic position. Fig. 2 shows that the F-

235 FBG amplitude approaches that of the F-RBS fiber (within 4 dB) after accumulating $\sim 1.5 \times 10^{20}$
236 $n_{\text{fast}}/\text{cm}^2$. The ~ 4 dB discrepancy is primarily caused by increased noise in the F-FBG fiber when
237 the reactor is operating, as this discrepancy is much lower (< 0.9 dB) post-irradiation. Therefore,
238 the Type II FBGs tested herein provide no long-term benefit for OBR-based distributed fiber optic
239 temperature sensing when compared with the F-RBS fiber.

240 *4.2 Spectral shifts and implications on distributed temperature sensing*

241 The large, unsaturated blue wavelength shifts that were observed in the pure silica core, F-doped
242 silica cladding fibers are a concern for some sensing techniques, such as OBR, because these blue
243 wavelengths shifts cause severe sensor drift. Blue wavelength shifts > 10 nm (0.63%) correspond
244 to a $> 1,000$ °C decrease in temperature for a typical FBG temperature sensor with a sensitivity of
245 10 pm/°C near 1550 nm [27]. Uncertainties are not reported in Fig. 4 or the additional data in the
246 Appendix, but the magnitude of the sensor drift is clearly a concern. It is difficult to quantify the
247 uncertainties in the spectral shift data. Although uncertainty metrics have been proposed when
248 performing cross-correlations of two spectral measurements [28], the adaptive reference
249 techniques that were used here were only developed recently and methods for quantifying
250 uncertainties using these approaches are still in development. The vendor of the OBR system tested
251 herein quotes temperature uncertainties on the order of 0.1°C, which translates to a wavelength
252 uncertainty of 1 pm. A previous study observed hysteresis in the range of 7 to 10°C (70 to 100 pm)
253 after using adaptive reference techniques to recover spectral shifts during thermal testing to
254 temperatures up to 1000°C [29]. This hysteresis may have resulted from error propagation using
255 the adaptive reference techniques or from physical changes in the fiber itself. While there is no
256 established approach to quantify uncertainties in the spectral shift data, the authors estimate the
257 uncertainty to be on the order of tens of picometers.

258 The mechanism responsible for the unsaturated wavelength shifts is not currently known, but it is
259 likely unrelated to radiation-induced compaction and changes in refractive index, as these
260 parameters have been shown to reach an equilibrium in irradiated bulk materials [5]—some of
261 which were irradiated to higher fast neutron fluences than the fibers tested in the present study [8].
262 Fig. 4(c) shows the spatial profile of the rate of change in spectral shift. These rates of change were
263 determined from the slopes of the linear (high fluence) portions of the data in Fig. 4(b). The drift
264 is most significant near 5 cm, which is closer to the maximum temperature location as opposed to
265 the location with maximum neutron flux (approximately -5 cm). Therefore, the mechanism
266 driving unsaturated blue wavelength shifts may have a strong temperature dependence. Additional
267 information will be generated during post-irradiation examination of the fibers to better inform
268 potential mechanistic explanations.

269 As mentioned previously, fused silica compaction has been shown to saturate at 2–3 vol% (0.67–
270 1% linear compaction), which would cause a blue wavelength shift in the range of 10.3–15.5 nm
271 after accumulating a fast neutron fluence $> 10^{20} n_{\text{fast}}/\text{cm}^2$ [5–7]. However, the corresponding ~ 0.6 –
272 0.8% increase in refractive index partially offsets these blue wavelength shifts by including a
273 positive (red) wavelength shift in the range of 9.3–12.4 nm. The net blue shifts predicted by the
274 compaction model (see Fig. 4 and the detailed description in the Appendix) are < 1 nm in
275 magnitude. Indeed, previous works have measured blue wavelength shifts < 1 nm following
276 neutron irradiation to fast neutron fluences on the order of $10^{19} n/\text{cm}^2$ [30]. Moreover, the
277 compaction model generally agrees with the experimental data presented herein up to $10^{19} n/\text{cm}^2$.

278 Although some gamma (or X-ray) irradiations and low neutron fluence ($\sim 10^{17}$ n/cm²) irradiations
279 have shown small (tens to hundreds of pm) red wavelength shifts [9], these tests did not subject
280 the fibers to the significant displacement damage levels that are required to achieve saturation of
281 the radiation-induced compaction. Zaghloul et al. observed unsaturated blue wavelength shifts in
282 FBGs on the order of nanometers during neutron irradiation to fast neutron fluences on the order
283 of 10^{20} n/cm² [16], which is consistent with the data obtained herein using fibers without FBGs
284 that were tested to a higher neutron fluence. On the other hand, Fernandez et al. tested regenerated
285 gratings (chemical composition gratings) written in a Ge/F-co-doped fiber to a fast neutron fluence
286 of $\sim 10^{19}$ n/cm² and observed a large red wavelength shift that reached saturation at ~ 14 nm [31].

287 The present results provide more fundamental data regarding spectral shifts in unaltered (no FBGs)
288 fused silica fibers to help improve mechanistic understandings of radiation-induced compaction
289 and its effect on sensor drift. The consistency between the results of Zaghloul et al. and the present
290 study suggest that the regenerated FBGs tested by Fernandez et al. may have been affected by
291 more complex chemical evolutions in the regenerated FBGs that would not be observed in Type
292 II FBGs. In any case, it appears that higher neutron fluences on the order of 10^{20} n/cm² are required
293 to observe the unsaturated drift phenomenon and the observed drift cannot be explained by
294 radiation-induced changes in the fiber density and refractive index.

295 5. Summary and conclusions

296 This work used OBR to interrogate fiber optic sensors under extreme neutron irradiation to reveal
297 several critical findings, which are summarized below. The results are encouraging for F-doped
298 fiber optic signal transmission in extreme radiation environments but pose significant challenges
299 to the use of OBR and other distributed sensing techniques given the large, unsaturated drift that
300 was observed at high neutron fluence.

- 301 • Near-infrared (~ 1550 nm) RIA in Ge-doped fibers quickly becomes intolerable (> 100 dB/m)
302 at $\sim 10^{19}$ n_{fast}/cm², whereas pure silica core, F-doped silica cladding fibers exhibit significantly
303 lower RIA (2–4 dB/m) that approaches an equilibrium for fast neutron fluences up to $\sim 10^{21}$
304 n_{fast}/cm².
- 305 • At high neutron fluence, the equilibrium RBS amplitude remains higher than pre-irradiation
306 values, likely because of some combination of the compaction-induced increases in refractive
307 index as well as increases in fictive temperature during rapid cooling from local “thermal
308 spikes” generated during the displacement damage cascade.
- 309 • Type II FBGs inscribed in pure silica core, F-doped silica cladding fiber suffered > 45 dB
310 attenuation independent of RIA in the fiber once the defects that comprise the FBGs are
311 annihilated by displacement damage. This shows that the Type II FBGs tested herein provide
312 no long-term benefit for OBR-based distributed fiber optic temperature sensing in high-dose
313 applications approaching 1 dpa.
- 314 • Reflected light signals from RBS and FBGs inscribed in pure silica core, F-doped silica
315 cladding both indicate unsaturated blue wavelength shifts that cannot be explained by
316 compaction effects or temporal temperature variations. Therefore, although the ability to
317 transmit near-infrared light during extreme neutron fluence exposure is encouraging, the drift
318 that would result from the unsaturated blue wavelength shifts is a major concern for some fiber
319 optic-based sensors and may not be easily compensated for if the mechanism is unrelated to
320 fused silica compaction.

321 **6. Acknowledgements**

322 This research was sponsored by the Nuclear Science User Facilities Program of the US Department
323 of Energy (DOE), Office of Nuclear Energy. Data curation was supported by the Advanced
324 Sensors and Instrumentation Program of the US DOE, Office of Nuclear Energy. Neutron
325 irradiation in HFIR was made possible by the US DOE, Office of Science. Shay Chapel, Padhraic
326 Mulligan, Kurt Smith, David Bryant, Bob Sitterson, Adam James, Maureen Searles, and Nora
327 Dianne Ezell contributed to the design, analysis, assembly, and operation of the irradiation
328 experiment.

329 **7. References**

- 330 [1] S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M.V. Uffelen, Y. Ouerdane, A. Boukenter, C. Marcandella, Radiation Effects on Silica-
331 Based Optical Fibers: Recent Advances and Future Challenges, *IEEE Trans. Nucl. Sci.* 60(3) (2013) 2015–2036.
- 332 [2] D.L. Griscom, Optical Properties and Structure of Defects in Silica Glass, *Journal of the Ceramic Society of Japan* 99(1154) (1991) 923–942.
- 333 [3] L. Skuja, Optically active oxygen-deficiency-related centers in amorphous silicon dioxide, *J. Non-Cryst. Solids* 239(1) (1998) 16–48.
- 334 [4] L. Skuja, M. Hirano, H. Hosono, K. Kajihara, Defects in oxide glasses, *physica status solidi (c)* 2(1) (2005) 15–24.
- 335 [5] W. Primak, Fast-neutron-induced changes in quartz and vitreous silica, *Physical Review* 110(6) (1958) 1240.
- 336 [6] F. Piao, W.G. Oldham, E.E. Haller, The mechanism of radiation-induced compaction in vitreous silica, *J. Non-Cryst. Solids* 276(1-3) (2000)
337 61–71.
- 338 [7] W. Primak, Mechanism for the Radiation Compaction of Vitreous Silica, *Journal of Applied Physics* 43(6) (1972) 2745–2754.
- 339 [8] C.M. Petrie, A. Birri, T.E. Blue, High-dose temperature-dependent neutron irradiation effects on the optical transmission and dimensional
340 stability of amorphous fused silica, *J. Non-Cryst. Solids* 525 (2019) 119668.
- 341 [9] A. Morana, E. Marin, L. Lablondé, T. Blanchet, T. Robin, G. Cheymol, G. Laffont, A. Boukenter, Y. Ouerdane, S. Girard, Radiation Effects
342 on Fiber Bragg Gratings: Vulnerability and Hardening Studies, *Sensors* 22(21) (2022) 8175.
- 343 [10] F. Esposito, A. Srivastava, S. Campopiano, A. Iadicicco, Radiation Effects on Long Period Fiber Gratings: A Review, *Sensors* 20(9) (2020)
344 2729.
- 345 [11] E.J. Friebele, M.E. Gingerich, Radiation-induced optical absorption bands in low loss optical fiber waveguides, *J. Non-Cryst. Solids* 38-39
346 (1980) 245–250.
- 347 [12] T. Kakuta, T. Shikama, M. Narui, T. Sagawa, Behavior of optical fibers under heavy irradiation, *Fusion Engineering and Design* 41(1)
348 (1998) 201–205.
- 349 [13] B. Brichard, A. Fernandez Fernandez, H. Ooms, F. Berghmans, M. Decréton, A. Tomashuk, S. Klyamkin, M. Zabechailov, I. Nikolin, V.
350 Bogatyryov, E. Hodgson, T. Kakuta, T. Shikama, T. Nishitani, A. Costley, G. Vayakis, Radiation-hardening techniques of dedicated optical fibres
351 used in plasma diagnostic systems in ITER, *J. Nucl. Mater.* 329-333 (2004) 1456–1460.
- 352 [14] G. Cheymol, H. Long, J.F. Villard, B. Brichard, High Level Gamma and Neutron Irradiation of Silica Optical Fibers in CEA OSIRIS
353 Nuclear Reactor, *IEEE Trans. Nucl. Sci.* 55(4) (2008) 2252–2258.
- 354 [15] B. Brichard, P. Borgermans, A.F. Fernandez, K. Lammens, A. Decreton, Radiation effect in silica optical fiber exposed to intense mixed
355 neutron-gamma radiation field, *IEEE Trans. Nucl. Sci.* 48(6) (2001) 2069–2073.
- 356 [16] M.A.S. Zaghloul, M. Wang, S. Huang, C. Hnatovsky, D. Grobnić, S. Mihailov, M.-J. Li, D. Carpenter, L.-W. Hu, J. Daw, G. Laffont, S.
357 Nehr, K.P. Chen, Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores, *Opt. Express*
358 26(9) (2018) 11775–11786.
- 359 [17] J. Wu, M. Wang, K. Zhao, S. Huang, M.A.S. Zaghloul, R. Cao, D. Carpenter, G. Zheng, S.D. Rountree, K.P. Chen, Distributed Fiber
360 Sensors With High Spatial Resolution in Extreme Radiation Environments in Nuclear Reactor Cores, *J. Lightw. Technol.* 39(14) (2021) 4873-
361 4883.
- 362 [18] D. Chandler, B.R. Betzler, E.E. Davidson, G. Ilas, Modeling and simulation of a High Flux Isotope Reactor representative core model for
363 updated performance and safety basis assessments, *Nucl. Eng. Des.* 366 (2020) 110752.
- 364 [19] R.D. Cheverton, T.M. Sims, HFIR Core Nuclear Design, ORNL-4621, Oak Ridge National Laboratory, Oak Ridge, TN (1971).
- 365 [20] B.J. Soller, D.K. Gifford, M.S. Wolfe, M.E. Froggatt, High resolution optical frequency domain reflectometry for characterization of
366 components and assemblies, *Opt. Express* 13(2) (2005) 666–674.
- 367 [21] M. Froggatt, J. Moore, High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter, *Appl. Opt.* 37(10)
368 (1998) 1735–1740.
- 369 [22] D.C. Sweeney, A.M. Schrell, C.M. Petrie, An Adaptive Reference Scheme to Extend the Functional Range of Optical Backscatter
370 Reflectometry in Extreme Environments, *IEEE Sens. J.* 21(1) (2020) 498–509.
- 371 [23] D.C. Sweeney, D.M. Sweeney, C.M. Petrie, Graphical Optimization of Spectral Shift Reconstructions for Optical Backscatter Reflectometry,
372 *Sensors* 21(18) (2021) 6154.
- 373 [24] D.C. Sweeney, C.M. Petrie, Expanding the range of the resolvable strain from distributed fiber optic sensors using a local adaptive reference
374 approach, *Opt. Lett.* 47(2) (2022) 269–272.
- 375 [25] M. Toulemonde, W.J. Weber, G. Li, V. Shuthananadan, P. Kluth, T. Yang, Y. Wang, Y. Zhang, Synergy of nuclear and electronic energy
376 losses in ion-irradiation processes: The case of vitreous silicon dioxide, *Physical Review B* 83(5) (2011) 054106.
- 377 [26] M. León, L. Giacomazzi, S. Girard, N. Richard, P. Martín, L. Martín-Samos, A. Ibarra, A. Boukenter, Y. Ouerdane, Neutron Irradiation
378 Effects on the Structural Properties of KU1, KS-4V and I301 Silica Glasses, *IEEE Trans. Nucl. Sci.* 61(4) (2014) 1522–1530.
- 379 [27] K.O. Hill, G. Meltz, Fiber Bragg grating technology fundamentals and overview, *J. Lightw. Technol.* 15(8) (1997) 1263–1276.
- 380 [28] R. Misra, A. Bora, G. Dewangan, Estimation of error on the cross-correlation, phase and time lag between evenly sampled light curves,
381 *Astronomy and Computing* 23 (2018) 83–91.

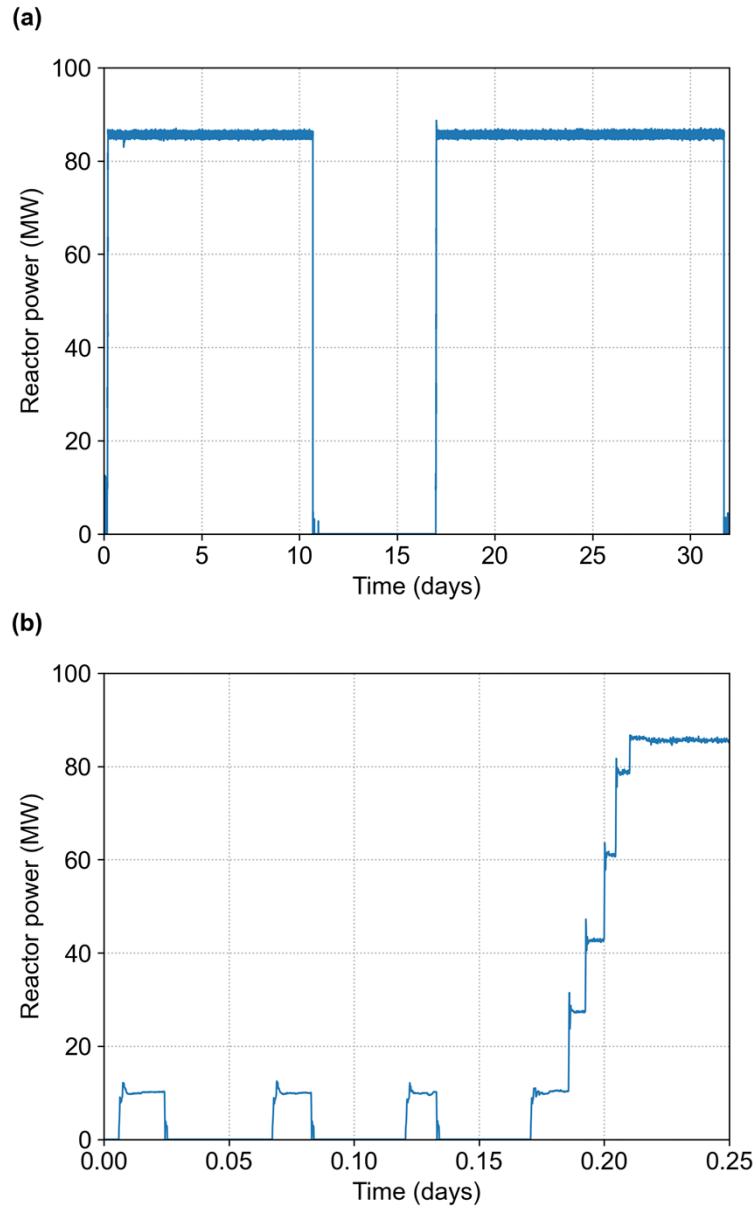
382 [29] J.T. Jones, D.C. Sweeney, A. Birri, C.M. Petrie, T.E. Blue, Calibration of distributed temperature sensors using commercially available
383 SMF-28 optical fiber from 22°C to 1000°C, *IEEE Sens. J.* 22(5) (2022) 4144-4151.
384 [30] G. Cheymol, L. Remy, A. Gusarov, D. Kinet, P. Mégret, G. Laffont, T. Blanchet, A. Morana, E. Marin, S. Girard, Study of Fiber Bragg
385 Grating Samples Exposed to High Fast Neutron Fluences, *IEEE Trans. Nucl. Sci.* 65(9) (2018) 2494–2501.
386 [31] A.F. Fernandez, B. Brichard, F. Berghmans, H.E. Rabii, M. Fokine, M. Popov, Chemical composition fiber gratings in a high mixed gamma
387 neutron radiation field, *IEEE Trans. Nucl. Sci.* 53(3) (2006) 1607-1613.

389 **Appendix**

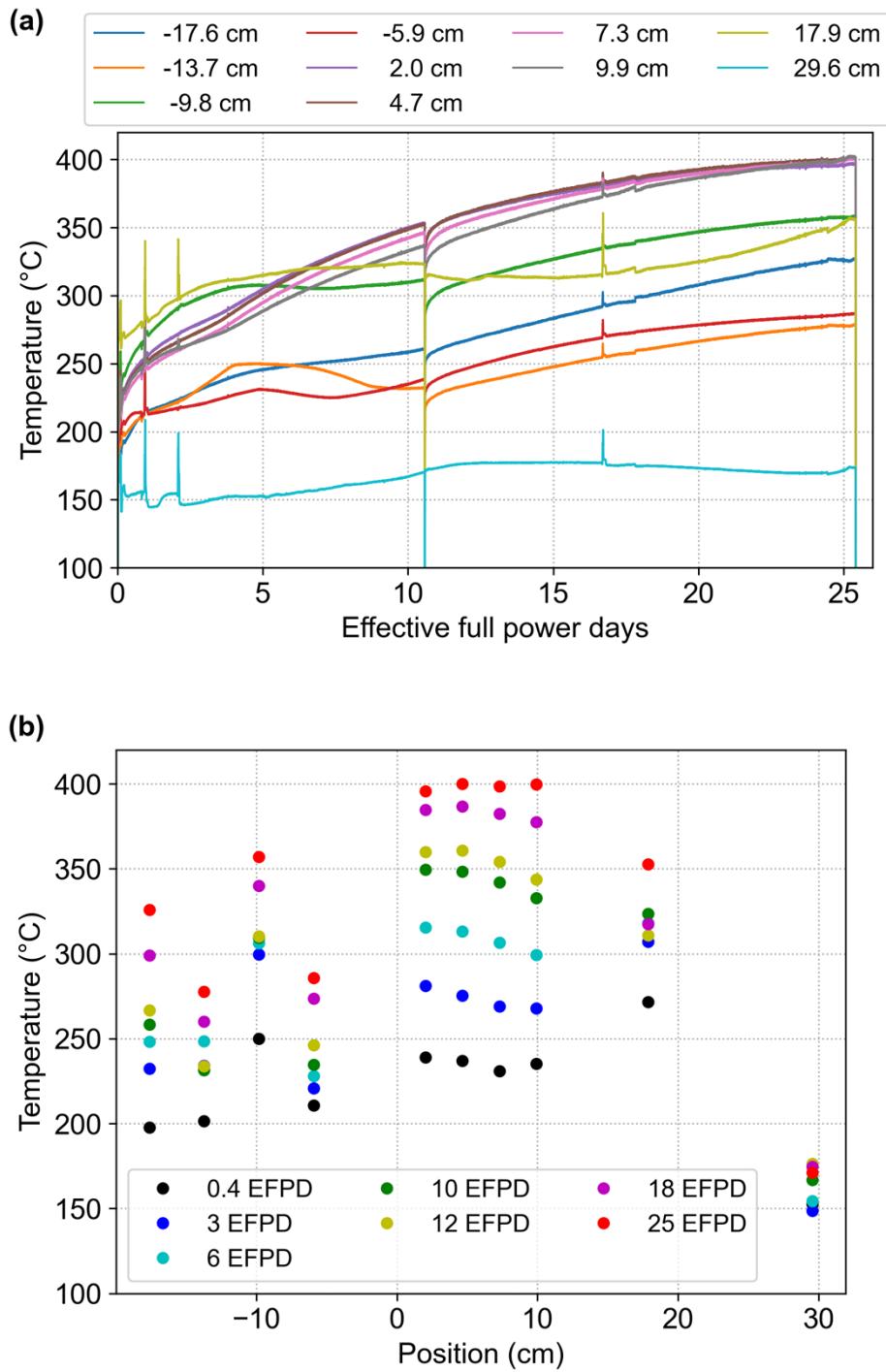
390 **Methods.** Fig. A1 shows the spatial variations in fast neutron fluence and dose at the end of the
391 experiment, for positions along each fiber > -10 cm. Fig. A2 shows the time evolution of the
392 reactor power, with initial low-power operations at ~ 10 MW followed by continuous operation at
393 85 MW for approximately 25 total days. After ~ 10 days of full-power operation, the reactor was
394 shut down for several days before returning to full power. Fig. A3 shows temporal and spatial
395 variations in temperature, as measured by the thermocouples, throughout the duration of the
396 irradiation experiment.

397

398


399

400


401 **Fig. A1.** Axial fast neutron fluence profiles for each fiber at the end of the irradiation testing.
402 The positions shown are relative to the midplane of the reactor core. The peak neutron fluence
403 occurs below the reactor midplane due to shifts in neutron flux that occur over the duration of the
404 reactor cycle as the control plates are withdrawn.

405

406

407 **Fig. A2.** Time evolution of the reactor power showing (a) the entire operating history and (b) the
408 initial startup operations.
409

410

411 **Fig. A3.** (a) Time evolution of the experiment temperatures measured by thermocouples at
 412 various locations relative to the core midplane and (b) the spatial temperature profiles after
 413 various effective full-power days (EFPDs) of irradiation.

414

415 **Analysis.** The wavelength shifts that would be expected due to the effects of compaction were
 416 determined using a previously established model that determines the volumetric compaction (C)
 417 in a-SiO₂ as a function of temperature (T, in Kelvin) and fast neutron fluence (Φ in n_{fast}/cm²) [1]:
 418

419
$$C(\Phi, T) = C_\infty(T) \left(1 - e^{-\frac{\Phi}{\Phi_S(T)}}\right), \quad (\text{A1})$$

420
$$C_\infty(T) = 0.023 + 6.30 \times 10^{-6}T - 2.60 \times 10^{-8}T^2, \quad (\text{A2})$$

422
$$\Phi_S(T) = 3.42 \times 10^{19} \frac{n}{cm^2} \exp\left(-\frac{0.036 eV}{kT}\right), \quad (\text{A3})$$

423 where $k = 8.617 \times 10^{-5}$ eV/K is the Boltzmann constant.

424 The wavelength shift ($\Delta\lambda$) caused by compaction is calculated as

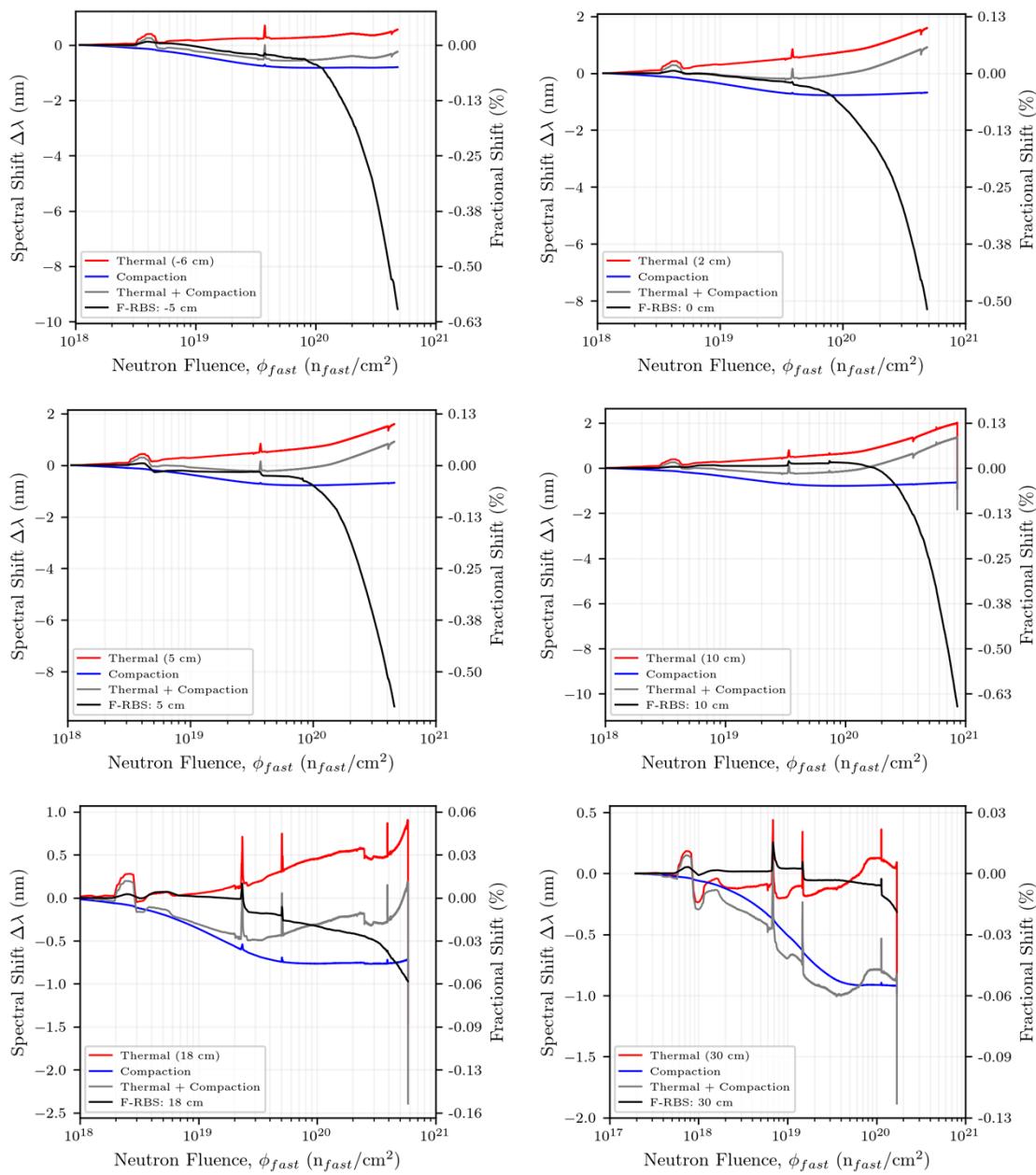
426
$$\Delta\lambda(\Phi, T) = \lambda \left[-\left(\frac{C(\Phi, T)}{3}\right) + \left(\frac{\Delta n}{n}\right) \right], \quad (\text{A4})$$

427 where λ is the initial wavelength (1550 nm) and Δn is the change in the refractive index caused
 428 by radiation-induced compaction effects.

429 The $\frac{\Delta n}{n} = \frac{n(\Phi, T) - n(0, 20^\circ C)}{n(0, 20^\circ C)}$ term was calculated from correlations between the refractive index and
 430 density ($\rho(\Phi, T) = 2.20[1 - C(\Phi, T)]$ g/cm³) developed by Kitamura et al. for evaluating densified
 431 silica glass based on extended point dipole theory [2]:

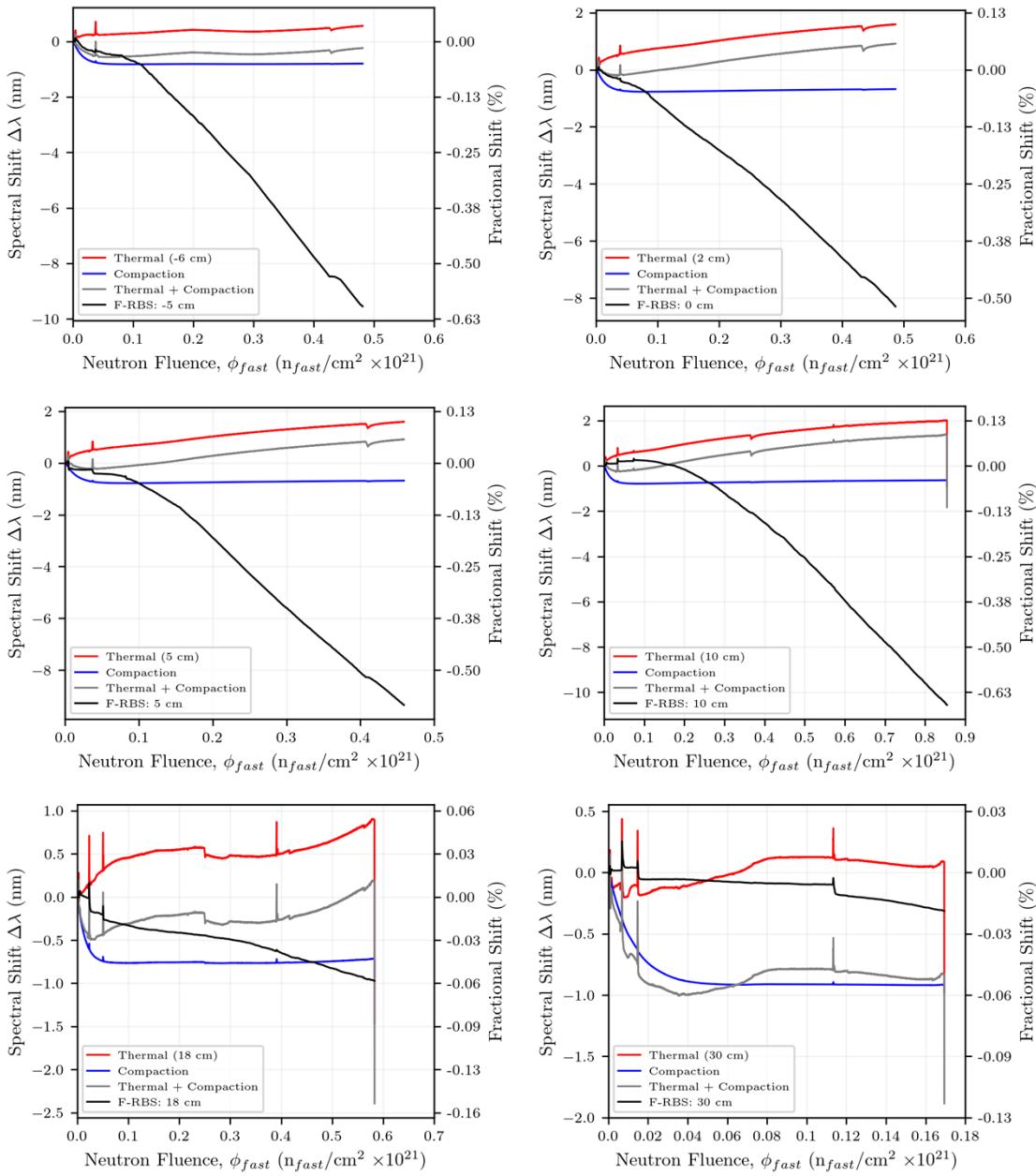
433
$$n(\Phi, T) = \sqrt{1 + \frac{4\pi\rho(\Phi, T)}{M} \sum_i \frac{A_i B_i(\Phi, T) \lambda^2}{\lambda^2 - B_i(\Phi, T) \lambda_i^2}}, \quad (\text{A5})$$

434
$$B_i(\Phi, T) = \frac{1}{1 - \frac{b_i A_i \rho(\Phi, T)}{M}}, \quad (\text{A6})$$


435 where $M = 60.084$ g/mol is the molecular weight of SiO₂. The constants B_i depend on Φ and T
 436 because of the dependence on $\rho(\Phi, T)$ in Equation (A6). The constants A_i , b_i , and λ_i are
 437 summarized in Table A1 (taken from Kitamura et al. [2]).

438 **Table A1.** Previously determined parameters [2] used for determining radiation-induced changes
 439 in refractive index and their effect on local wavelength shifts.

Parameter	$i = 1$	$i = 2$	$i = 3$
A_i (cm ³ /mol)	1.483564	0.583781	6.067029
b_i	3.084249	2.684692	-15.582117
λ_i (μm)	0.068149	0.118332	17.624056


440 Fig. A4 and Fig. A5 provide more detail regarding the measured local shifts in the reflected
 441 wavelength from the F-RBS fiber vs. fast neutron fluence at multiple locations relative to the
 442 reactor core midplane. Both figures show the same data, but the fast neutron fluence data are shown
 443 on different scales (linear vs. log scale) to provide more detail at both low and high neutron fluence.
 444 Wavelength shifts are relative to the times when the reactor reached full power and do not account
 445 for shifts during reactor startup or shutdown. The estimated wavelength shifts caused by changes
 446 in temperature and radiation-induced compaction are also shown. The wavelength shifts that would
 447 be expected due to temperature changes were estimated by determining the change in temperature
 448

449 measured by the closest thermocouple and multiplying by a temperature coefficient of 10 pm/°C
 450 [3]. The disagreement between the measured vs. estimated wavelength shifts at 18 and 30 cm could
 451 be related to the larger spatial temperature variations in these positions and the fact that the fiber
 452 optic sensors and thermocouples may have been exposed to different temperatures.
 453

454

455 **Fig. A4.** Measured spectral shift vs. fast neutron fluence (log scale) for various positions from
 456 the F-RBS fiber. Data are compared with expected shifts due to temperature and neutron-induced
 457 compaction effects.
 458

459

460 **Fig. A5.** Measured spectral shift vs. fast neutron fluence (linear scale) for various positions from
461 the F-RBS fiber. Data are compared with expected shifts due to temperature and neutron-induced
462 compaction effects.
463

464 References

465 [1] C.M. Petrie, A. Birri, T.E. Blue, High-dose temperature-dependent neutron irradiation effects
466 on the optical transmission and dimensional stability of amorphous fused silica, *J. Non-Cryst.*
467 *Solids* 525 (2019) 119668.
468 [2] N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, M. Kinoshita, Refractive index of densified
469 silica glass, *J. Non-Cryst. Solids* 159(3) (1993) 241–245.

470 [3] K.O. Hill, G. Meltz, Fiber Bragg grating technology fundamentals and overview, *J. Lightw.*
471 *Technol.* 15(8) (1997) 1263–1276.