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Project Aims

Many machine learning (ML) training tasks are essentially optimization processes that would at
first glance appear eminently parallelizable and scalable. However, effective acceleration of
these tasks with scalable parallel hardware has proven to be elusive. While standard methods for
machine learning, e.g., stochastic gradient descent (SGD) for DNNs, tend to be resource efficient,
they appear to be fundamentally sequential in nature.

The increasing availability of scalable computing platforms (including accelerators) presents an
opportunity for more sophisticated approaches to be developed. The idea behind such
approaches is to apply second-order optimization approaches that, while potentially requiring
more memory and computation than a first-order approach, would enable significantly faster
convergence while amortizing the resource requirements across a scalable computing platform.
The ultimate goal of our work in higher-order solvers is to enable much more rapid time to
solution than is currently achieved. The work reported here was part of a larger research agenda
aimed at making ML training scalable and significantly improving their performance.

The specific focus of this project was to continue the development of a software library of
advanced second order optimization for accelerating ML training. The project designed and
prototyped selected second order optimization algorithms in PyTorch [1] and evaluated their
convergence behavior and performance with the CIFAR10 dataset [2], using medium to large
models (e.g., ResNet18 and ResNet50 [3]). The results obtained were promising. Second-order
methods were shown to be competitive with highly-tuned first-order methods such as SGD/Adam
[4], suggesting the need for continued research in this area.

The software developed as part of this LDRD will be released publicly as an open-source package
to the community. It includes a wide variety of second-order algorithms and supporting
functionality, including:
e Newton-Krylov optimizer [5] using a matrix-free conjugate-residual algorithm [6],
e Quasi-Newton optimizers, including limited-memory versions of Broyden, Davidon-
Fletcher-Powell (DFP), and Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithms [7]-[9],
e Nonlinear conjugate-direction optimizers, including Fletcher-Reeves [10], Polak-Ribiere
[11], Hestenes-Stiefel [12], and Dai-Yuan[13] algorithms,
e Line-search methods, including Armijo [14] and Wolfe [15],
e Trust-region methods, including Levenberg and Levenberg-Marquardt [9], and
e Homotopy-continuation methods [16].
By making this comprehensive software library of second-order methods available in PyTorch,
we hope to enable the larger ML community to experiment with them and to develop highly-
optimized and scalable approaches based on them.

Key Project Accomplishments

Open Source Repository: https://github.com/pnnl/pytorch soo
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