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Problem: Question:

Sequential single-axis testing provides a poor How good do multi-axis tests need to be to
approximation of service environments. replace single-axis testing in practice?
Multi-axis vibration tests are not yet standard IS the simplest possible multi-axis test close to
practice. single-axis testing in test quality?
Sequential Single-Axis Testing Multi-Axis Testing
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Problem: Question:

Sequential single-axis testing provides a poor How good do multi-axis tests need to be to
approximation of service environments. replace single-axis testing in practice?
Multi-axis vibration tests are not yet standard ! the simplest possible multi-axis test close to
practice. single-axis testing in test quality?

Preliminary Study:

Can single-axis testing techniques provide a
sufficient rapid approximation to a multi-axis test?

How much can we improve multi-axis test quality

by optimizing passive test fixture hardware instead
of adding active excitation sources?
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Approach

Three steps to approximate a multi-axis test: \ v

Y
\ X
1. Employ single-input, multiple output (SIMO) F

test strategy with outputs in multiple axes

2. Optimize excitation angle

3. Optimize test fixture design for each test
environment
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Objective

Assess viability of a rapid, approximate multi-axis vibration testing technique utilizing
standard single-axis testing hardware.

* Rapid Test Setup and Execution
* Single test event instead of three sequential single-axis test setups and executions
* Much simpler compared to multi-excitation schemes and MIMO control strategies.

* Approximate
* Erroris expected as in all multiple-output vibration tests.
* How much can error be mitigated through test fixture design?
 What level of error is acceptable compared to traditional single-axis testing practice?

* Multi-Axis
* All response directions are intentionally excited by a single source by optimally orienting excitation
axis for each test environment.

=
@ Los Alamos



Simulation Study

The proposed method was modeled for SIMO Multi-Axis Test
a 2D BARC base test article as shown. y

g
1

=
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Shaker Table
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Simulation Study

Simulations were carried out using an Abaqus FEA model consisting of:
1. 2-D BARC without the removable component
2. Test fixture, idealized by sixteen springs
3. Rigid base, representing a vertically-oriented, single-axis shaker
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Service Environment

* Aservice environment is the real environment the test article is expected to experience in its
lifetime defined as a set of target Power Spectral Densities (PSD) at one or more locations.

MIL-STD-810H Common Carrier Service Environment
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This a common transportation environment base
excitation profile from MIL-STD-810H.

Conducted MIMO simulation to generate a set of
response targets from this base excitation...
1. Apply Xand Y excitations simultaneously to the
base of the model.
2. Measure acceleration responses on the BARC.

Targets were generated using a flexible boundary
condition (k, and k;, = 10° N/m).



Service Environment
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Test Quality Metrics

RMS dB Error (RDBE):

RDBE is a scalar metric that represents the average
mismatch between a response PSD and a target PSD
across all frequencies.

n ~
101 21)2
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\1 n

RDBE =

Percentage of Frequency Lines within a 3 dB

Tolerance (FTOL):

FTOL is a scalar metric that counts the percentage of
frequency lines where the response PSD differs from
the target PSD by less than 3 dB.
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In both equations, ¥; is the value of a response PSD at the it" frequency line, and y; is the
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value of the target PSD at the i'" frequency line. There are n total frequency lines.



Test Control Simulation

' i : M rement L ion
* The locations where measured response is used to derive easurement Locations

and control the shaker input PSD are control locations. A15

* The shaker input PSD was derived to achieve the lowest
possible RDBE between a target response and measured A33
response at selected control locations.

A4

* Single Control Location
 Common test practice A24
» Successfully achieves target response at one location

* All Control Locations
* Better overall test
* Uncommon in practice due to specification and control
software limits
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Test Control Simulation

* Forsingle control location sequential tests, choosing the best location improves the RDBE

by 2.2 dB and the FTOL by 3.9% over the worst location.
* Inall cases, errors are presented as an average across all response locations.

Sequential Single-Axis Sequential Single-Axis

(Worst performing control location) (Best performing control location)

X-Error Y-Error o (] Y-Error

(avg) (avg) (avg)
RDBE 9.9 dB 3.2dB 5.6 dB 3.2dB
FTOL 64.6% 83.9% 71.6% 84.7%
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Test Control Simulation

With single point control, responses at non-control DOF may be highly undesirable.

Case 1, X input | Response: A33 | Control: A15 Case 1, Y input | Response: A33 | Control: A15
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Test Control Simulation

When the test is controlled to all
locations, the RDBE decreases to
3.8 dB.

X-Error Y-Error Mean
(avg) (avg) Error

9.9 dB 3.2dB 6.6 dB
64.6% 83.9% 74.3%
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Sequential Single-Axis

(All control locations)

X-Error
(avg)

RDBE 5.1dB

FTOL 70.3%

X-Error (avg)

5.6 dB

71.6%

Y-Error
(avg)

2.6 dB

85.2%

Y-Error
(avg)

3.2dB

84.7%




Test Control Simulation

The all control location strategy is used throughout the study to eliminate control location effects.

Case 1, X input | Response: A33 | Control: ALL Case 1. Y input | Response: A33 | Control: ALL
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Case Studies

Test Fixture Design

Optimization Parameters

Sequential Single-Axis

ky ky

kxlr ka» kyl» kyZ
kxlr kx2: kx?u kx4r
kylr kyZ: ky?ﬂ ky4

SIMO Multi-Axis
0
ky ky, 0

kxli kaJ kylr kyz; 0

kxl: kaJ kaJ kx4
ky1, Kyz, ky3, kyg, 0

1 Rigid

2 Optimized (2 parameters)

3 Optimized (4 parameters)

4 Optimized (8 parameters)
‘S HOSLIOMeS Shaker Table

Shaker Table

Shaker Table
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Case Study 1 (rigid)

* The SIMO multi-axis test’s RDBE increases by 1.0 dB while the FTOL falls by 3.8%.

Sequential Single-Axis

SIMO Multi-Axis

<

(All control locations)

RDBE

FTOL
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X-Error
(avg)

5.1dB

70.3%

Y-Error
(avg)

2.6 dB

85.2%

(All control locations)

X-Error (avg)

5.7dB

69.2%

Y-Error
(avg)

3.9dB

78.7%
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Case Study 1 (rigid)

Case 2, Angled input | Response: A33 | Control: ALL
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Case Study 1 (rigid)

Sequential X-Axis Test

(All control locations)

_Case 1, X input | Response: A33 | Control: ALL
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Isa 1.0 dB (26%) increase in error acceptable for the SIMO multi-axis test
to eliminate unavoidable cross-axis responses in the sequential test?
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Can we do better with an optimized test fixture?
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Case Study 2 (2 parameters)

Optimizing the test fixture stiffness with two parameters:
1. Improved the sequential test by 0.1 dB and 2.2%.

2. Improved the SIMO test by 0.3 dB and 1.6%.

Sequential Single-Axis SIMO Multi-Axis
3.7dB 4.5 dB

80.0% 75.6%
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Case Study 2 (2 parameters)
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The SIMO test’s angle optimization has a clear
minimum.



Case Study 2 (2 parameters)

<

The SIMO solution space was smooth
with a clear minimum region.

The minimum region provides good
values to start a local optimization.
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Case Study 2 (2 parameters)

SIMO RDBE for kx and ky Combinations
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Case Study 2 Input Angle & Excitation Level
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Case Study 2 Input Angle & Excitation Level

Input Angle
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Case Study 2 Input Angle & Excitation Level
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Case Study 2 Input Angle & Excitation Level

Input Angle
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(N/m)
g )

X-Axis Excitation Angle,
Medium Level Excitation

14.0

10.0

8.0

6.0

r4.0
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Case Study 2 Input Angle & Excitation Level

1.0 1
4.0
19.0{100 50 250
84.0120.0 10.0 50 25.0
370.0{ 50 15.0 100 50 25.0
1.6E+034 5.0 50 20.0 10.0
7.2E+03{ 5.0 5.0
E
Z 3.2E+044 5.0 50
bel
&
1.4E+05{ 5.0 5.0
6.1E+051 5.0
2.7E+061 5.0
1.2E+07 1 5.0
L
[ |
5.2E+07 Wb.0
[
2.3E+08 {MB.0
[
1E+09 {®,0
amm
SIS R o
R S S o;\°
1% Los Alamos
O3 \ATIONAL LABORATORY

Input Angle

25.0

40.0

45.0

40.0

40.0

40.0

35.0

20.0

30.0

35.0

35.0

40.0

30.0

30.0

35.0

35.0

35.0

30.0

30.0

20.0

25.0

30.0

30.0

30.0

30.0

30.0

35.0

30.0

Z5}/0)

25.0

25} [0)

25.0

30.0

25.0

20.0

25.0

25.0

25.0

25.0

25.0

20.0

25.0

25.0

25.0

25.0

25.0

25.0

20.0

25.0

25.0

25.0

30.0

25.0

20.0

25.0

25.0

30.0

30.0

O A A N A

30.0 25.0 25.0

 F PP F S
i

ky (N/m)

r40.0

r30.0

r20.0

r10.0

9|bue
kx (N/m)

Stiff X/Soft Y,
Medium Error,

Input Excitation Level

1.0 80 7.8 7.7 76 715 74
4.0 78 75 75 74 713 713
19.0 76 72 72 72 712 12
84.0 73 7.0 69 70 69 7.0
370.0 67 62 62 62 62 6.0
1.6E+03 54 51 51 52 51 51
72403191 91 79 71 7.0 69 69 60 49 47 47 47 47 47 47
3.2E+044 7.7 7.7 65 57 56 56 61 56 47 42 42 42 42 42 42
1.4E+05{ 6.6 66 54 46 45 45 47 46 41 39 38 39 39 39 39
6.1E+05{ 67 67 53 46 46 45 46 44 40 38 38 39 39 39 39
27E+06{ 67 67 53 47 46 46 48 45 42 38 39 39 40 40 40
1.2E+07{67 67 55 47 46 46 48 46 42 38 39 39 40 40 39
eEEEEpYND
5.2E+07 967 6.1 4_9:4_7 46 46 48 46 43 38 38 40 40 39 39
2.3E+08g4 6.8 68 6.7 :6.1 47 46 48 45 42 38 39 39 40 40 4.0
[ |
IE+09g68 68 58461 47 46 49 46 42 37 39 40 40 40 39
O 0 D D PO ® L oA 2@ ©
‘9.- ,\or XQ x° ) xo XQ XQ xo . x° XO
T A A I I\ I R
ky (N/m)

Y-Axis Excitation Angle,
Medium Level Excitation

14.0

10.0

8.0

6.0

r4.0
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Case Study 3 (4 parameters)

Sequential Single-Axis SIMO Multi-Axis
RDBE 3.7dB 4.5 dB

FTOL 80.0% 75.6%

O
Q
n

e Study 4 (8 parameters)

Sequential Single-Axis SIMO Multi-Axis
RDBE 3.7 dB 4.5 dB

FTOL 79.6% 75.3%

1% Los Alamos

AAAAAAAAAAAAAAAAAA

Shaker Table

Shaker Table
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Result Summary

RMS DB ERROR BY CASE % OF FREQUENCY LINES WITHIN
A 3DB TOLERANCE BY CASE

E Sequential single-axis (worst control location)

@
o))

Sequential single-axis (best control location
. & ( ) = Sequential single-axis (worst control location)

E Sequential single-axis o ) )
o Sequential single-axis (best control location)
E SIMO multi-axis

= Sequential single-axis

E SIMO multi-axis

(%]

(<))

£

- [¢) 0,
= > 8(26 80.0% 79.7%
= c =
w o =
Q@ 3 78.2% =
o ] >.77.8% =|
2 e =
= Y= =
e o =

Q =

R = 75.6%

74.3%

L A

Y
(@)
Q
(7]
()
N

Casel Case 2 Case 3 Case
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Further Studies

The initial case studies showed the proposed method approximated a multi-axis test
with on-axis errors only slightly worse than best-case sequential single-axis testing.
—> Would this result hold for different target test environments?
—> Repeated the study for a large population of target test environments to
evaluate more general case.

A dynamically optimized test fixture only slightly improved both the sequential test and
SIMO test.
— Can we achieve further improvements in SIMO test performance with more
exotic test fixture designs?
—> Assessed four additional test fixture configurations with less similarity to the
boundary condition imposed to generate the target test environment.

1% Los Alamos
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Target Population Study

<

150 target test environment
sets were generated by
applying significant
perturbations to the MIL-STD-
810H base excitation
environment and repeating
the entire process.

The resulting target test
environment variation for one
control location is shown.

For each of the 150 target sets,
the entire analysis was
repeated for the rigid test
fixture case only.

Los Alamos

NATIONAL LABORATORY

PSD(g?/Hz)

103 4

1021

101

100 4

10714
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Error Distributions

Target Population Study

e Error distributions for target

population study: 74 1 *
e S2X: Sequential, X-test error
e S2Y:Sequential, Y-test error 61
e S2:Sequential, mean error
 M2X: SIMO, X response error >
* M2Y: SIMO, Y response error
* M2:SIMO, mean error
e Penalty: Difference between

S2 and M2

RMS dB Error

* The on-axis error penalty for a

simultaneous SIMO test remains

small for most of the target test
environment population. o

T T T T T T T
S2X s2Y 52 M2X M2Y M2 penalty

Is the increase in error acceptable for the SIMO multi-axis test to
eliminate unavoidable cross-axis responses in the sequential test?
i@ Los Alamos Can we do better with other test fixtures?



Test Fixture Attachment Points

Case Study 2 Added Top Springs

2 parameters of Xand Y 2 parameters of Xand Y
Stiffnesses Along Base Stiffnesses Along Base and Top

Minimum Error 4.5 dB Minimum Error 4.3 dB

RDBE, Control Case
10{76 76 7.8 99 10.8 10.4 11.0

RDBE, Case 1
1.0{55 55 55 7.9 108 10.7 11.8 315

= 40{81 76 7.7 7.8 10.8 106 11.1

40{57 55 55 5.6 (9.5 HOOHSE SN 11.5
19.0{94 76 77 7.8 89 107 112 19.0{80 55 55 56 64 90 99 104 112 111 121 1
84.0{97 93 76 7.7 87 89 106 111 108 11.3 102 97 99 99 99 84.0{102 89 55 55 63 7.0 85 86 96 94 102 11.3 120 115 98
3700197 97 94 80 89 88 96 114 114 112 107 102 104 10.4 105 370.0{103 102 90 61 63 72 92 95 104 102 109 11.6 120 12.1 104
16E+03{98 97 97 97 102 93 93 107 107 104 99 94 96 96 97 16E+03{10.5 105 9.9 90 79 63 78 83 93 92 99 104 108 11.0 96
7.26+03{99 99 99 99 103 101 87 88 94 88 85 81 81 83 84 7.2E+03 99 91 94 83 62 70 79 80 82 85 88 89 86
§3.25+o4 10.0 10.0 10.0 100 105 102 95 82 7.8 68 67 64 64 64 65 § §3.25+04 QI8 96 98 86 72 58 57 56 54 56 56 54 55
% 120 ™ ko3 .
14E+05{10.1 10.1 101 101 105 103 99 91 85 56 53 54 53 52 52 1.4E+05 113101 10.7 105 90 72 71 53 48 50 48 47 47 48
6.1E+05110.1 10.0 10.0 10.1 10.5 10.3 99 92 88 51 46 47 48 49 50 100 6.1E+05 81111 104 89 72 72 65 52 57 58 59 59 60 100
2.7E+06110.1 10.0 10.1 10.1 10.5 103 9.9 93 86 47 48 48 2.7E+06 114 106 92 74 75 63 44 47 47 48 48 49
1.2E+07{10.0 10.0 10.0 10.1 10.5 103 9.9 97 88 47 48 48 50 1.2E+07 #5107 92 75 7.7 47 47 47 48 8.0
526+07{98 98 98 99 103 102 99 90 7.9 47 48 48 5.2E+07 G0 92 75 7.6 46 47 47 48
2.36+08{10.9 10.8 10.7 10.6 11.2 107 99 88 74 50 46 46 47 48 438 6.0 2.3E+08 118 109 94 7.7 7.7 62 44 46 46 47 47 48 6.0
1E+09{10.6 10.4 103 104 109 105 98 87 7.3 49 46 46 47 48 48 1E+09 118 107 93 75 7.5 62 44 46 46 46 47 48
= A o° S m‘°"° ‘;o"° W o O %«09 &XQ» i&‘& ’{J@ ‘;ng;
>N NTAT T AT o

1% Los Alamos

=Y NATIONAL LABORATORY ky (N/m) ky (N/m)

5/25/2023 34



Test Fixture Attachment Points

Case Study 2 Added Side Springs

2 parameters of Xand Y 2 parameters of Xand Y
Stiffnesses Along Base Stiffnesses Along Base and Sides

Minimum Error 4.5 dB Minimum Error 4.3 dB

RDBE, Control Case RDBE, Case 2
10{76 76 7.8 99 10.8 10.4 11.0 13.7 20.0 10{64 64 65 89 10.2 104 11.1 155 14.7 149
40{81 76 7.7 7.8 10.8 10.6 11.1 139 15.4 14.7 1 40{66 64 64 65 104 103 11.7 [15.6 156 15.1 14.7 149 150 135 14.1
19.0{94 76 77 78 89 107 11.2 131 12:2812:0) 18.0 190{93 64 64 65 7.6 99 120 123 12.3 11.8 11.5 11.6 12.1 11.7 12.4
] 20.0
840{97 93 76 77 87 89 106 11.1 108 11.3 102 97 99 99 99 84.0{95 93 64 64 74 81 98 102 104 99 95 96 99 105 11.0
16.0
3700{97 97 94 80 89 88 9.6 11.4 11.4 11.2 107 102 10.4 10.4 10.5 3700{97 97 94 72 76 80 102 11.0 11.1 107 10.4 10.3 10.6 11.1 11.6
17.5
1.6E+03{ 9.8 97 97 97 102 93 93 107 107 104 99 94 96 96 9.7 16E+031{9.9 98 97 96 91 76 87 10.0 102 97 93 92 95 10.0 10.7 |
14.0
7.26403{9.9 99 99 99 103 101 87 88 94 88 85 81 81 83 84 7.2E403{10.6 104 96 92 93 85 73 84 87 84 80 77 79 84 89
z . z 15.0
Z 3.26404{10.0 10.0 10.0 10.0 105 102 95 82 7.8 68 67 64 64 64 65 g Z 3264044129 118 102 92 96 87 73 71 68 60 60 57 57 57 58 g
% 120 ™ % m
1.4E+05{10.1 10.1 10.1 10.1 10.5 103 99 91 85 56 53 54 53 52 52 1.4E+05 {18i8814:21 12.1 10.3 10.5 93 81 7.7 65 49 51 52 53 52 50
125
6.1E+05{10.1 10.0 10.0 10.1 105 103 99 92 88 51 46 47 48 49 50 6.1E+05 1120108 93 75 75 58 46 50 51 52 55 57
10.0
2.7E+06{10.1 10.0 10.1 10.1 10.5 103 99 93 86 47 48 4.8 2.7E+06 ORIl 07 7.8 75 68 50 53 53 54 54 54 10.0
1.2E+07 {10.0 10.0 10.0 10.1 10.5 10.3 9.9 9.7 88 47 48 4.8 80 1.264+07 1321115 10.0 80 7.7 65 45 47 48 48 49 48
52E+07]9.8 9.8 98 99 103 102 99 90 7.9 47 48 48 5.2E+07 2421123 106 86 81 62 44 46 46 47 48 47 75
2.36+08 {10.9 10.8 10.7 106 112 10.7 99 88 7.4 50 46 4.6 47 4.8 48 6.0 2.3E408 48 157 113 91 82 46 47 47 47
1€+09{10.6 10.4 10.3 10.4 109 105 98 87 7.3 49 46 46 47 48 4.8 1E+09 153 133 112 9.0 7.9 46 46 47 47 5.0
© O o o RN AR © O O 0 O O O O & A
~— RS S S S S NN 97 N NN R S S
(> L AI K AN AR A& A AN AP A A S S %
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Test Fixture Attachment Points

)

~al-

Los Alamos

NATIONAL LABORATORY

kx (N/m)

4.0

19.0

84.0

370.0

1.6E+03

7.2E+03

3.2E+04

1.4E+05

6.1E+05

2.7E+06

1.2E+07

5.2E+07

2.3E+08

1E+09

Case Study 2

2 parameters of X and Y
Stiffnesses Along Base

Minimum Error 4.5 dB

RDBE, Control Case

76 76 7.8 99 10.8 10.4 11.0 137 20.0
81 7.6 7.7 7.8 10.8 10.6 11.1 [13:9
94 76 7.7 7.8 89 107 112 131 13.1 144 126 121 123 121 121 18.0
97 93 7.6 7.7 8.7 8.9 HOGEINIOSEHESE 10.2° 9.7 99 99 99

16.0
97 97 94 80 89 88 96 114 114 112 107 102 104 10.4 10.5
98 97 97 97 102 93 93 107 107 10.4 99 94 96 96 9.7

14.0
99 99 99 99 103 101 87 88 94 88 85 81 81 83 84

e

10.0 10.0 10.0 10.0 105 102 95 82 7.8 68 67 64 64 64 65 g

120 ™
101 101 101 101 105 103 99 91 85 56 53 54 53 52 52
10.1 10.0 10.0 10.1 10.5 10.3 99 92 88 51 46 4.7 48 49 5.0

10.0
101 10.0 101 101 105 103 99 93 86 47 48 48
10.0 10.0 10.0 10.1 105 10.3 99 9.7 88 47 48 48 0
98 98 98 99 103 102 99 90 79 47 48 438
10.9 10.8 10.7 106 112 10.7 99 88 74 50 46 46 47 48 48 60
10.6 104 10.3 10.4 109 105 98 87 7.3 49 46 46 47 48 48

> »

S

X

N
LN

ky (N/m)

Only Top Springs

2 parameters of Xand Y
Stiffnesses Along Top

Minimum Error 4.5 dB

1.0

4.0

19.0

84.0

370.0

1.6E+03

7.2E+03

3.2E+04

kx (N/m)

1.4E+05

6.1E+05

2.7E+06

1.2E+07

5.2E+07

2.3E+08

1E+09

NIV

ky (N/m)

RDBE, Case 3
55 56 56 57 82 111 10.7 122 141
51 5.4 53 53 6.6 S
63 64 63 63 65 90 102 11.4 11.0
88 87 66 66 68 79 93 98 89 88 99 119 133 122 11.3
89 88 88 69 69 77 82 91 84 81 85 99 10.8 10.6 10.4
90 90 89 89 74 83 81 96 90 88 94 106 112 11.0 11.1
92 92 91 90 90 94 85 84 82 7.8 83 94 98 98 98
94 93 93 93 93 96 92 79 76 74 74 78 80 79 80
95 94 94 94 94 97 95 82 82 74 68 56 54 k2 53
94 94 94 94 95 98 95 84 87 80 60 49 4 4.7
95 94 94 94 94 97 95 84 88 78 56 48 49 51 51
95 94 94 94 94 97 95 84 89 78 55 48 50 52 52
94 94 94 94 94 97 95 84 89 78 55 48 51 53 53
94 94 94 94 94 98 96 85 90 78 55 48 51 53 53
98 97 96 96 97 99 96 85 89 78 54 48 51 52 53
e ,\99 %‘,9 /\09 S P TP LR

P @ E

14.0

39Q4

12.0

10.0

8.0

6.0

5/25/2023
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Test Fixture Attachment

1% Los Alamos
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|

4.0

19.0

84.0

370.0

1.6E+03

7.2E+03

3.2E+04

kx (N/m)

1.4E+05

6.1E+05

2.7E+06

1.2E+07

5.2E+07

2.3E+08

1E+09

Case Study 2

2 parameters of X and Y
Stiffnesses Along Base

Minimum Error 4.5 dB

RDBE, Control Case

7.6

8.1

9.4

O

9.8

9.9

10.0

10.1

10.1

10.1

10.0

9.8

10.9

10.6

7.6

7.6

7.6

98

9.7

97,

9.9

10.0

10.1

10.0

10.0

10.0

9.8

10.8

10.4

7.8

77

7.7

7.6

9.4

9:7

9.9

10.0

10.1

10.0

10.1

10.0

9.8

10.7

103

99

7.8

7.8

77

8.0

937

09

10.0

10.1

10.1

10.1

10.1

9.9

10.6

10.8

10.8

8.9

8.7

8.9

10.2

10.3

10.5

10.5

10.5

10.5

10.5

10.3

11.2

10.9

10.4

10.6

10.7

8.9

8.8

s

10.1

10.2

10.3

10.3

103

103

10.2

10.7

10.5

11.0

gt

alil 22

10.6

9.6

93

8.7

i)

9.9

9.9

9.9

9:9)

9.9

9.9

9.8

QL

11.4

10.7

8.8

8.2

9.1

912

9.3

Q7

9.0

8.8

8.7

10.8

11.4

10.7

9.4

7.8

8.5

8.8

8.6

8.8

79,

7.4

73

a8 10.2° 9.7 9.9

9:98N0.9

11.2 10.7 10.2 10.4 10.4 10.5

104 99 94 96

88 85 81 81

68 6.7 64 64

5:60 5.3 547053

51 46 4.7 438

4.7

4.7

9.6 G/

83 84

64 6.5

5.2 b2

49 5.0

48 48

48 48

48 438

@"Q

S
X
W
N

ky (N/m)

Points

390y

12.0

10.0

8.0

6.0

Only Side Springs

2 parameters of Xand Y
Stiffnesses Along Sides

Minimum Error 4.3 dB

RDBE, Case 4

10.3

11.0

8.8

57

5.6

Ul

11.0

10.9

dlal s

a9 11.1

6.9

5.0

7.8

9.6

9.1

9.6

9.4

9.3

9.4

9.9,

8.7

9.4

7.6

5.0

6.7

7.2

8.2

7.7,

7.7

7.8

10.4

8.9

9.8

8.6

7.4

5.0

7.4

7.6

8.0

8.0

8.1

11.0

9%/,

10.5

9.2

7.8

5.2

5.0

6.1

6.0

529,

5.8

10.9

=)

10.1

8.9

7.6

5.0

4.7

5:3

4.4

10.8

el

10.0

8.7

7.4

4.7

4.8

5.6

4.7

10.5

9.2

10.0

8.7

7.4

4.7

4.9

5.6

4.8

4.7

4.6

10.1

9.0

9.7

8.7

7.6

4.7

4.9

5.6

4.8

4.7

4.6

9.8

8.8

9.6

8.5

77

4.9

4.9

5.5

4.8

4.7

4.7

3890y

12.0

10.0

8.0

6.0
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Test Fixture Attachment Points

* Unexpectedly, all of these possible fixture
designs can result in RDBE of 4.3 - 4.5 dB.

* With rigid fixtures, all of these fixture designs
produce a test with RDBE of 4.7 - 5.3 dB.

* More exotic, improved fixture designs may
exist but are difficult to find and may not be
intuitive.

‘@ LOS AlCImOS & 5/25/2023 38
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Preliminary Study:

Can single-axis testing techniques provide a
sufficient rapid approximation to a multi-axis test?

How much can we improve multi-axis test quality
by optimizing passive test fixture hardware instead
of adding active excitation sources?

Question:

Is the simplest possible multi-axis test close to
single-axis testing in test quality?

How good do multi-axis tests need to be to
replace single-axis testing in practice?

=
@ Los Alamos

SIMO multi-axis test quality may be in
family with traditional test strategies.

Very good fixture designs are
challenging while bad designs abound

and need to be avoided. §

vx

Preliminary study
suggests yes.

Unsettled




Questions?
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Single-Axis vs. Multi-Axis

* The field and lab environment’s mismatch is exacerbated in sequential

<

single-axis testing.

Compared to a 6DOF test, sequential single-axis testing produces different...

Failure times

Failure
distributions

f

French et al., 2006

Los Alamos

AAAAAAAAAAAAAAAAAA

Maximum Von
Mises stress

Location of
maximum Von
Mises stress

Modal
participations

f

Gregory et al., 2009

5/25/2023 41



Scharton, 1969

mismatch between field and
lab environments:

1. Impedance modification
Schoenherr, 2018
2. Input control
Hall, 2020
‘5 Los Alamos 5/25/2023 42

Daborn et al., 2014

Impedance Modification Approaches
* Two categories of approaches
are trying to rectify the ‘




Input Control Approaches

* Two categories of approaches

<

are trying to rectify the
mismatch between field and
lab environments:

1. Impedance modification

2. Input control

Los Alamos

AAAAAAAAAAAAAAAAAA

Schoenherr et al.,
2019

6DOF shaker
testing

Frequency
based sub-

structuring
modeling

~

Harvie, 2017



Structural Optimization
Angle
Optimization

Topological
Optimization

Component

System

Fixture
+

Test Equipment
(Shaker table, drop

tower carriage, etc)

Service
Environment

Load
Test
Input

Knight et al., 2018

5/25/2023 44

Jones et al., 2018
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Simulation Approach

X-Axis Sequential Test

SIMO Multi-Axis Test Initialize
stiffness

Derive X input to hit X

Initialize stiffness
and angle

Y-Axis Sequential Test

Derive angled input to

Compute X QA
hit X and Y targets \ )

responses

Initialize
tiffness

CheckX error

Derive Y input to hit
Y targets

Compute Y
responses

Check Y error
Check X and Y error

=
19 Los Alamos



Case Studies

Sequential, single-axis testing and the proposed method are compared with
increasing levels of test fixture complexity and design effort.

Tet Fixture Design

1. Sequential single-axis (single control location)
1 Rigid 2. Sequential single-axis (all control locations)
3. SIMO multi-axis (all control locations)

) I Ol e —— 1. Sequential single-axis

2. SIMO multi-axis
. 1. Sequential single-axis

3 Optimized (4 parameters) 5 SIMO multi-axis
4 O ey —— 1. Sequential single-axis

2. SIMO multi-axis

‘s Los Alamos 5/25/2023 46
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Case Studies

* In our model, the stiffness of the springs providing the boundary condition for the
BARC test article is varied to change the test fixture.

* In Case 1, the boundary condition is rigid.

* |In Cases 2, 3, and 4, the boundary condition is optimized using an increasing number
of parameters to determine how much test fixture complexity contributes to
improving the possible solutions.

Case 2 Case 3 Case 4

0=7?

Shaker Table Shaker Table S'haker Table

=
@ Los Alamos



Case Study 2 (2 parameters)

The solution found for each test was:

1. Forthe sequential test,  ky = 3.2+ 10* and ky = 2.7 * 10° N/m.

2. FortheSIMOtest, ky =1.2*107,k, = 2.7 * 10° N/m, and 6 = 27°.

Sequential Single-Axis SIMO Multi-Axis
3.7 dB 4.5 dB

80.0% 75.6%

1% Los Alamos

AAAAAAAAAAAAAAAAAA

5/25/2023 48



Case Study 2

<

The sequential test’s stiffness
optimization found the X-stiffness
had little impact while the Y-stiffness
needed to be above 1.4 * 10° N/m
to produce good error.

Los Alamos

NATIONAL LABORATORY

kx (N/m)

1.0

4.0

19.0

84.0

370.0

1.6E+03

7.2E+03

3.2E+04

1.4E+05

6.1E+05

2.7E+06

1.2E+07

5.2E+07

2.3E+08

1E+09

Sequential RDBE for kx and ky Combinations

5 5 B &

ky (N/m)

45 38 38 38 38 38 38
45 38 38 38 38 38 38
45 38 38 38 38 38 38
45 38 38 38 38 38 38
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Case Study 2

<

The sequential test’s stiffness
optimization found the X-stiffness
had little impact while the Y-stiffness
needed to be above 1.4 * 10° N/m
to produce good error.
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Sequential RDBE for kx and ky Combinations

Optimal stiffness

Stiffness used in
service environment
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Case Study 3

The solution found for each test was:
1. For the sequential test, ky; =3.2%10% ky, =1, ky; = 2.7 x10°, ky, = 2.7 x 106 N/m.

2. Forthe SIMO test, ky; =19, ky, = 2.3 %108, ky; = 2.7 * 10°, ky, = 2.7 * 10° N/m, 6 = 27°.

Sequential Single-Axis SIMO Multi-Axis
3.7 dB 4.5 dB

80.0% 75.6%
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Case Study 4

The solution found for each test was:

1. Forthe sequential test, k. =1k, =1ka=1ky =1k =1,k = 10° ky3 = 10% kyy = 1 N/m.

2. Forthe SIMO test, Kk =10%ky, = 3.2510% kyg = 2.7 % 105, kyy = 2.7 5 10, kyq = 2.7 * 106, kyp = 2.7 % 105,
kys = 10°, Ky = 2.7 % 10 N/m, 6 = 27°.

Sequential Single-Axis SIMO Multi-Axis
3.7dB 4.5 dB

79.6% 75.3%
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Target Population Study

X Stiffness Distribution

Y Stiffness Distribution
40 70
35 1
60
30 4
54
o 251 E
(v]
e 204
3() B
15 4
204
10 4
54 10 4
0- 0+ T T T
107 104 10° 10° 107 108 109 105 106 107 108 10%
X Stiffness (N/m) Y Stiffness (N/m)
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Target Population Study

Angle Distribution

* For the population of targets, the
distribution of optimal excitation
SIMO test excitation angles are 251
shown.

* The angle most commonly fell “
between 20 and 40 degrees

15 A

Count

10 A

10 20 30 40 50 60 70

Angle (deg)
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Target Population Study

Correlation of Target Level Ratio and Angle

* Evaluated possible
predictive metrics for
optimal excitation angle
based on target
environment alone.

1.1 +

X/Y

1.0 1

* A ratio of energy between o0 ¢
X-axis and Y-axis targets 0s{ °
(X/Y) has a correlation e
coefficient with optimal

T T T T T
20 30 40 50 60

[
=5

angle of 0.728.

Angle (deg)
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Test F

IXture Att

RDBE, Control Case

1.0{76 76 78

40481 76 7.7

19.04194 76 77

84.0497 93 76

370.04 97 9.7 94

1.6E+037 98 97 97

7.2E+034 99 99 99

3.2E+0410.0 10.0 10.0

kx (N/m)

1.4E+0510.1 10.1 10.1

6.1E+05410.1 10.0 10.0

2.7E+064{10.1 10.0 10.1

1.2E+07 110.0 10.0 10.0

5.2E+074 98 98 98

2.3E+08{109 10.8 10.7

1E+09-10.6 10.4 10.3

9.9 10.8 10.4 11.0 13.7 '16.8

7.8 10.8 10.6 11.1 13.9 16.5

78 89 107 112 131 131 144 126 121

77 87 89 106 11.1 10.8 11.3 10.2 9.7

80 89 88 96 114 114 11.2 10.7 10.2

9.7 102 93 93 10.7 10.7 104 99 94

99 103 10.1 87 88 94 88 85 81

10.0 10.5 10.2 95 82 7.8 68 6.7 64

101 105 103 99 91 85 56 53 54

10.1 105 10.3 99 92 88 51 46 4.7

10.1 105 10.3 99 93 86 51 45 46

101 105 10.3 99 97 88 51 45 46

99 103 102 99 90 79 51 45 46

106 11.2 10.7 99 88 74 50 46 46

104 109 105 98 8.7 73 49 46 46

achment Points

14.7 14.1
12.3 121 121
Ele) Bl e
r16.0
10.4 10.4 10.5
96 9.6 097
r14.0
81 83 84
g
6.4 6.4 65 @
r120 ™
B3 B2 B2
48 49 50
r10.0
47 48 438
Control Case
47 48 48
47 48 48 l6.0
47 48 48

10

4.0

19.0

84.0

370.0

1.6E+03

7.2E+03

3.2E+04

kx (N/m)

1.4E+05

6.1E+05

2.7E+06

1.2E+07

5.2E+07

2.3E+08

1E+09

FTOL, Control Case

03 03 03 02 03 03 03 02 01 00 00 01 01 01 O1
03 03 03 03 03 03 03 02 00 00 00 01 01 01 O1
02 03 03 03 02 03 03 02 01 01 01 02 02 02 02
03 03 03 03 02 02 02 03 03 03 03 03 03 03 03
03 03 03 03 02 02 02 02 03 02 02 03 03 03 03
03 03 03 02 03 02 02 02 02 02 02 02 02 03 02
03 03 03 03 03 03 03 04 04 03 04 04 05 05 05
03 03 03 03 03 03 03/05 04 05 05 06 06 06 06
03 03 03 03 03 03 03[04 05
03 03 03 03 03 03 03/[04 05
03 03 03 03 03 03 03|04 05
03 03 03 03 03 03 0304 05
03 03 03 03 03 03 03|04 |06
03 03 03 02 03 03 03)[04 06
03 03 03 03 03 03 03|04 |06
I
R A A
~ Y
ky (N/m)

To assess potential improvements via varied test fixture attachment point, we assign the default

target’s test fixture optimization as the control case.
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Test Fixture Attachment Points

RDBE, Case 1 FTOL, Case 1
10{55 55 55 79 1.0 2 02 02 02 02 01 00 00 00 00 01 0.2
0.7
401{57 55 55 56 4.0 02 02 02 01 01 00 00 00 00 01 0.2

19.0{ 80 55 55 56

19.0 04102 03 02 02 02 02 02 02 02 03

84.0{102 89 55 55

84.04 0.2 04 04 02 03 03 03 03 03 03 03 03

370.0{10.3 102 90 61 63 7.2 92 95 104 10.2 109 116 12.0 12.1 104 3700{02 02 0305 04 04 02 03 02 02 03 02 02 02 02

16E+03710.5 105 99 90 79 63 78 83 93 92 99 104 10.8 11.0 96

16E+03102 02 02 03 03 04 03 02 03 02 02 02 02 04

7.2E403 91 94 83 62 70 79 80 82 85 88 89 86 726403 TEIED) : ; ; : a0
§325+o4 96 98 86 72 58 57 56 54 56 56 54 55 g E ro4 o
3 120 @ 2 3264041 0.1 3
< x

1.4E+05 10.7 105 9.0 72 71 53 48 50 48 47 47 48 - Lae+os OE

to.3

6.1E+05 111 104 89 72 72 65 52 57 58 59 59 60 100 6.1£:05 008

2.7E+06 114 106 92 74 75 63 44 47 47 48 48 49 2764061 0.1

1.2E+07 115 107 92 75 77 62 44 46 47 47 47 48 8.0 Case 1 1264071 01 to.2

5.2E+07 115 107 92 75 76 62 43 46 46 47 47 48 526007 088

2.3E408 11.8 109 94 7.7 77 62 44 46 46 47 47 48 6.0 —_— Lol

1E+09 11.8 107 93 75 75 62 44 46 46 46 47 48 1E+091 01

N
ky (N/m)

* The first assessed case includes additional springs attached to the top of the BARC. This setup
found an improved RMS dB error of 4.3 dB.

‘5 Los Alamos 5/25/2023

& NATIONAL LABORATORY



Test Fixture Attachment Points

RDBE, Case 2
10{64 64 65 89 10.2 104 11.1 /155 . 182 17.7 17.7 169 14.7
40166 64 64 6.5 104 103 11.7 156 156 15.1 147 149 150 135
190{93 64 64 65 7.6 99 12.0 123 123 11.8 11.5 11.6 12.1 11.7
840{95 93 64 64 74 81 98 102 104 99 95 96 99 10.5
3700497 97 94 72 76 80 10.2 11.0 11.1 10.7 10.4 10.3 10.6 1l1.1
16E+03{99 98 97 96 91 7.6 87 10.0 102 97 93 92 95 100
7.2E+03{10.6 10.4 96 92 93 85 73 84 87 84 80 77 79 84
§3.2E+04 129 118 102 9.2 96 87 73 71 68 €0 60 57 57 57
k]
1.4E+05 10.3 105 93 81 7.7 65 49 51 52 53 52
6.1E+05 11.2 108 93 75 75 58 46 50 51 52 55
2.7E+06 121 11.1 97 78 75 68 50 53 53 54 54
1.2E+07 132 115 100 80 7.7 65 45 4.7 4.8 4.8 4.9
5.2E+07 142 12.3 106 86 81 62 44 46 4.6 4.7 438
2.3E+08 148 1311 113 91 82 62 44 46 46 4.7 4.7

1E+09 ESSR15.3 112 9.0 79 61 43 45 46 46 4.7

14.9

141

12.4

11.0

116

10.7

8.9

5.8

5.0

5.7

5.4

4.8

4.7

4.7

4.7

* The second assessed case includes additional springs attached to the side of the BARC. This setup

10

4.0

19.0

84.0

370.0

175

16E+03

7.2E+03
15.0

3.2E+04

38ay
kx (N/m)

1.4E+05
125

6.1E+05

10.0 2.7E+06

12E+07

Case 2

75 5.2E+07

2.3E+08

5.0 1E+09

found an improved RMS dB error of 4.3 dB.
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FTOL, Case 2
04 04 04 02 03 03 02 02 00 00 00 01 00 01 0.1
04 04 04 04 03 03 02 00 00 00 00 01 00 01 0.1
03 ‘04 04 04 03 02 02 02 02 02 02 02 02 02 02
03 03 04 04 03 03 02 03 03 03 03 03 03 03 03
03 03 03 04 03 03 02 03 02 02 02 03 03 03 03
03 03 03 03 03 03 03 03 02 02 02 02 02 02 02
03 03 03 03 03 04 04 04 04 04 04 05 05 04 03
02 02 02 03 03 04 05 0.5
01 01 02 03 02 03
01 01 01 02 02 02
00 00 01 02 02 02
00 00 01 01 01 0.2
00 00 00 01 01 02
00 00 00 01 01 0.2
00 00 00 01 01 0.2
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est Fixture Attachment Points

RDBE, Case 3 FTOL, Case 3
1.0{55 56 56 57 82 11.1 10.7 12.2 141 146 160 1.0 NOIGRN0N . X 02 02 02 01 01 01 01 00 01 01
0.7
40451 54 53 53 66 11.9 1311 132 13.0 135 148 4.0 02 01 01 01 01 01 01 00 01 01
19.0{63 64 63 63 65 9.0 102 11.4 11.0 11.3 12.5 149 N6 141 12.7 19.0 {04 05 05 0505 02 03 03 01 01 01 01 00 01 0.1
0.6
840{88 87 66 66 68 79 93 98 89 88 99 11.9 133 122 113 840{03 03 04 04 04 03 02 04 03 03 03 02 02 02 03
3700{89 88 88 69 69 77 82 91 84 81 85 99 108 106 104 3700{03 03 03 04 04 03 03 02 04 04 03 03 03 03 03
0.5
16E+03{90 90 89 89 74 83 81 96 90 88 94 106 11.2 11.0 11.1 16E+03{03 03 03 03 03 03 03 02 03 03 03 02 02 02 02
7.2E403{92 92 91 90 90 94 85 84 82 78 83 94 98 98 98 7.2E403{03 03 03 03 03 03 03 04 04 04 04 02 02 02 02
£ E (04 3
Z 32E+047194 93 93 93 93 96 92 79 76 74 74 78 80 79 80 2 32E404703 03 03 03 03 03 03 04 05 05 05 04 04 04 04 3
k! % =
14E+05{95 94 94 94 94 97 95 82 82 74 68 56 54 52 53 14E+051{03 03 03 03 03 03 03 04 04
6.1E+05{ 94 94 94 94 95 98 95 84 87 80 60 49 46 45 4.7 6.1E+05{ 03 03 03 03 03 03 03 04 05 [03
2.7E+06{ 95 94 94 94 94 97 95 84 88 7.8 56 48 49 51 51 2.7E406{03 03 03 03 03 03 03 04 04
1.2E+407{95 94 94 94 94 97 95 84 89 78 55 48 50 52 52 126407103 03 03 03 03 03 03 04 04 o2
5.2E+07{94 94 94 94 94 97 95 84 89 78 55 48 51 53 53 5.2E407{03 03 03 03 03 03 03 04 05
2.3E+08{94 94 94 94 94 98 96 85 90 78 55 48 51 53 53 l6.0 2.3E4+08403 03 03 03 03 03 03 04 04 ro.l
1E+091{ 9.8 97 96 96 97 99 96 85 89 78 54 48 51 52 53 1E+09{ 03 03 03 03 03 03
[SEEERS RN » O o O o
B 3 Q >
% L) S ~ LN

* The third assessed case has springs attached only to the top of the BARC. This case failed to
improve upon the control case.
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Test Fixture Attachment Points

RDBE, Case 4 FTOL, Case 4
10{64 64 64 64 92 103 10.3 12.5 20.0 10{04 04 04 04 02 03 03 02 01 01 01 01 01 01 01
0.7
40{55 56 56 56 70 110 11.2 142 13.7 4.0 3 02 02 02 01 01 01 01 01 01 01
190149 50 51 51 52 88 124 12.7 13.1 13.3 132 131 128 123 119 18.0 19.0 2 01 01 01 01 01 01 01 01 01
0.6
57 86 99 104 11.0 109 10.8 10.5 10.1 9.8 84.0 03 03 02 02 02 02 02 02 02
56 62 87 89 97 93 91 92 90 88 16.0 37004 01 01 05 03 03 03 03 03 03 03 03
50 69 94 9.8 105 10.1 10.0 10.0 9.7 9.6 1.6E+03{ 00 01 0.1 04 02 03 02 02 02 02 02 03
14.0
76 50 7.6 86 92 89 87 87 87 85 7.2E403{ 00 00 00 01 02 03
g g E 04 7
= 102 78 50 74 78 76 74 74 76 17 = Z32E404{00 00 00 01 02 02 o
z 120 M 3 Q
113 96 67 50 52 50 47 47 47 49 14E+051 00 00 00 01 02 02
110 91 72 74 50 47 48 49 49 49 100 6.1E+05{ 0.0 00 00 01 02 02 0.3
112 96 82 76 61 53 56 56 56 55 27E4+06]/ 01 01 00 01 02 02
110 94 77 80 60 44 47 48 48 48 50 126407101 01 01 01 02 02 0.2
109 93 7.7 80 59 43 46 47 47 47 52E407{01 01 01 01 02 02
111 94 7.8 81 58 43 46 46 46 47 6.0 23E408]01 01 01 01 02 02 01
111 96 80 83 58 43 46 46 46 47 1E+09{01 01 01 01 02 02
> O & & s O o
Q Q b >
& M
AEPIPNEIN G \ { ) ¢ ) AN
ky (N/m) ky (N/m)

* The fourth assessed case has springs attached only to the sides of the BARC. This setup found an
improved RMS dB error of 4.3 dB.
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