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Multi-Axis Testing

VERTICAL LONGITUDINAL TRANSVERSE

Sequential Single-Axis Testing

Problem:

Sequential single-axis testing provides a poor 

approximation of service environments.

Multi-axis vibration tests are not yet standard 

practice.

Question:

How good do multi-axis tests need to be to 

replace single-axis testing in practice? 

Is the simplest possible multi-axis test close to 

single-axis testing in test quality?
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Problem:

Sequential single-axis testing provides a poor 

approximation of service environments.

Multi-axis vibration tests are not yet standard 

practice.

Question:

How good do multi-axis tests need to be to 

replace single-axis testing in practice? 

Is the simplest possible multi-axis test close to 

single-axis testing in test quality?

Preliminary Study:

Can single-axis testing techniques provide a 

sufficient rapid approximation to a multi-axis test?

How much can we improve multi-axis test quality 

by optimizing passive test fixture hardware instead 

of adding active excitation sources?
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Approach

Three steps to approximate a multi-axis test:

1. Employ single-input, multiple output (SIMO) 
test strategy with outputs in multiple axes

2. Optimize excitation angle

3. Optimize test fixture design for each test 
environment

X

Y
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Objective

Assess viability of a rapid, approximate multi-axis vibration testing technique utilizing 
standard single-axis testing hardware.

• Rapid Test Setup and Execution
• Single test event instead of three sequential single-axis test setups and executions

• Much simpler compared to multi-excitation schemes and MIMO control strategies.

• Approximate
• Error is expected as in all multiple-output vibration tests. 

• How much can error be mitigated through test fixture design? 

• What level of error is acceptable compared to traditional single-axis testing practice?

• Multi-Axis
• All response directions are intentionally excited by a single source by optimally orienting excitation 

axis for each test environment.
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Simulation Study

X

Y

The proposed method was modeled for 
a 2D BARC base test article as shown.

SIMO Multi-Axis Test
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Simulation Study

Simulations were carried out using an Abaqus FEA model consisting of:
1. 2-D BARC without the removable component
2. Test fixture, idealized by sixteen springs
3. Rigid base, representing a vertically-oriented, single-axis shaker
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Service Environment

• A service environment is the real environment the test article is expected to experience in its 
lifetime defined as a set of target Power Spectral Densities (PSD) at one or more locations.

Defense Logistics Agency, 2019

• This a common transportation environment base 
excitation profile from MIL-STD-810H.

• Conducted MIMO simulation to generate a set of 
response targets from this base excitation…

1. Apply X and Y excitations simultaneously to the 
base of the model.

2. Measure acceleration responses on the BARC.

• Targets were generated using a flexible boundary 
condition (𝑘𝑥 and 𝑘𝑦 = 106 𝑁/𝑚).
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Service Environment
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Test Quality Metrics

RMS dB Error (RDBE):

RDBE is a scalar metric that represents the average 
mismatch between a response PSD and a target PSD 
across all frequencies.

𝑅𝐷𝐵𝐸 =

෍
𝑖=1

𝑛

(10 log10
ෝ𝑦𝑖
𝑦𝑖
)2
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Percentage of Frequency Lines within a 3 dB 
Tolerance (FTOL):

FTOL is a scalar metric that counts the percentage of 
frequency lines where the response PSD differs from 
the target PSD by less than 3 dB.

%𝐹𝐿 = 100 ∗
1

𝑛
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In both equations, ෝ𝑦𝑖 is the value of a response PSD at the 𝑖𝑡ℎ frequency line, and 𝑦𝑖 is the 
value of the target PSD at the 𝑖𝑡ℎ frequency line. There are 𝑛 total frequency lines.
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Test Control Simulation

• The locations where measured response is used to derive 
and control the shaker input PSD are control locations.

• The shaker input PSD was derived to achieve the lowest 
possible RDBE between a target response and measured 
response at selected control locations.

• Single Control Location
• Common test practice
• Successfully achieves target response at one location

• All Control Locations
• Better overall test
• Uncommon in practice due to specification and control 

software limits

Measurement Locations
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Test Control Simulation

Sequential Single-Axis 
(Worst performing control location)

Sequential Single-Axis
(Best performing control location)

X-Error 
(avg)

Y-Error 
(avg)

Mean 
Error

X-Error (avg)
Y-Error 
(avg)

Mean 
Error

RDBE 9.9 dB 3.2 dB 6.6 dB RDBE 5.6 dB 3.2 dB 4.4 dB

FTOL 64.6% 83.9% 74.3% FTOL 71.6% 84.7% 78.2%

• For single control location sequential tests, choosing the best location improves the RDBE 
by 2.2 dB and the FTOL by 3.9% over the worst location.

• In all cases, errors are presented as an average across all response locations.
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Test Control Simulation

Case 1, X input | Response: A33 | Control: A15 Case 1, Y input | Response: A33 | Control: A15

With single point control, responses at non-control DOF may be highly undesirable.
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Test Control Simulation

Sequential Single-Axis 
(Worst performing control location)

Sequential Single-Axis
(Best performing control location)

X-Error 
(avg)

Y-Error 
(avg)

Mean 
Error

X-Error (avg)
Y-Error 
(avg)

Mean 
Error

RDBE 9.9 dB 3.2 dB 6.6 dB RDBE 5.6 dB 3.2 dB 4.4 dB

FTOL 64.6% 83.9% 74.3% FTOL 71.6% 84.7% 78.2%

When the test is controlled to all 
locations, the RDBE decreases to 
3.8 dB.

Sequential Single-Axis 
(All control locations)

X-Error 
(avg)

Y-Error 
(avg)

Mean 
Error

RDBE 5.1 dB 2.6 dB 3.8 dB

FTOL 70.3% 85.2% 77.8%
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Test Control Simulation

Case 1, X input | Response: A33 | Control: A15 Case 1, Y input | Response: A33 | Control: A15Case 1, X input | Response: A33 | Control: ALL
Case 1, Y input | Response: A33 | Control: ALLCase 1, X input | Response: A33 | Control: ALL

The all control location strategy is used throughout the study to eliminate control location effects.
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Case Studies

Case Test Fixture Design

Optimization Parameters

Sequential Single-Axis SIMO Multi-Axis

1 Rigid - 𝜽

2 Optimized (2 parameters)
𝒌𝒙, 𝒌𝒚 𝒌𝒙, 𝒌𝒚, 𝜽

3 Optimized (4 parameters) 𝒌𝒙𝟏, 𝒌𝒙𝟐, 𝒌𝒚𝟏, 𝒌𝒚𝟐 𝒌𝒙𝟏, 𝒌𝒙𝟐, 𝒌𝒚𝟏, 𝒌𝒚𝟐, 𝜽

4 Optimized (8 parameters)
𝒌𝒙𝟏, 𝒌𝒙𝟐, 𝒌𝒙𝟑, 𝒌𝒙𝟒,

𝒌𝒚𝟏, 𝒌𝒚𝟐, 𝒌𝒚𝟑, 𝒌𝒚𝟒

𝒌𝒙𝟏, 𝒌𝒙𝟐, 𝒌𝒙𝟑, 𝒌𝒙𝟒
𝒌𝒚𝟏, 𝒌𝒚𝟐, 𝒌𝒚𝟑, 𝒌𝒚𝟒, 𝜽
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• The SIMO multi-axis test’s RDBE increases by 1.0 dB while the FTOL falls by 3.8%.

Case Study 1 (rigid)

Sequential Single-Axis 
(All control locations)

SIMO Multi-Axis
(All control locations)

X-Error 
(avg)

Y-Error 
(avg)

Mean 
Error

X-Error (avg)
Y-Error 
(avg)

Mean 
Error

RDBE 5.1 dB 2.6 dB 3.8 dB RDBE 5.7 dB 3.9 dB 4.8 dB

FTOL 70.3% 85.2% 77.8% FTOL 69.2% 78.7% 74.0%
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Case Study 1 (rigid)

Case 2, Angled input | Response: A33 | Control: ALL
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Case Study 1 (rigid)

Case 2, Angled input | Response: A33 | Control: ALL

Sequential X-Axis Test
(All control locations)

SIMO Multi-Axis Test
(All control locations)

Is a 1.0 dB (26%) increase in error acceptable for the SIMO multi-axis test 
to eliminate unavoidable cross-axis responses in the sequential test? 

Can we do better with an optimized test fixture?
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Case Study 2 (2 parameters)

Mean Error

Sequential Single-Axis SIMO Multi-Axis

RDBE 3.7 dB 4.5 dB

FTOL 80.0% 75.6%

Optimizing the test fixture stiffness with two parameters: 

1. Improved the sequential test by 0.1 dB and 2.2%.

2. Improved the SIMO test by 0.3 dB and 1.6%.
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4.5 dB @ θ = 27°

Case Study 2 (2 parameters)

• The SIMO test’s angle optimization has a clear 
minimum.
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• The SIMO solution space was smooth 
with a clear minimum region.

• The minimum region provides good 
values to start a local optimization.

Case Study 2 (2 parameters)
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• The SIMO solution space was smooth 
with a clear minimum region.

• The minimum region provides good 
values to start a local optimization.

Optimal stiffness

Stiffness used in 
service 

environment

Case Study 2 (2 parameters)
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Case Study 2 Input Angle & Excitation Level

Input Angle Input Excitation Level
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Case Study 2 Input Angle & Excitation Level

Input Angle Input Excitation Level

Stiff Fixture,
Low Error,

25-30 Degree Angle,
Small Excitation
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Case Study 2 Input Angle & Excitation Level

Input Angle Input Excitation Level

Soft Fixture, 
Medium Error,
Variable Angle,

Very Large Excitation
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Case Study 2 Input Angle & Excitation Level

Input Angle Input Excitation Level

Soft X/Stiff Y,
High Error,

X-Axis Excitation Angle,
Medium Level Excitation
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Case Study 2 Input Angle & Excitation Level

Input Angle Input Excitation Level

Stiff X/Soft Y,
Medium Error,

Y-Axis Excitation Angle,
Medium Level Excitation
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Case Study 3 (4 parameters)

Mean Error

Sequential Single-Axis SIMO Multi-Axis

RDBE 3.7 dB 4.5 dB

FTOL 80.0% 75.6%

Mean Error

Sequential Single-Axis SIMO Multi-Axis

RDBE 3.7 dB 4.5 dB

FTOL 79.6% 75.3%

Case Study 4 (8 parameters)
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Result Summary
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Further Studies

The initial case studies showed the proposed method approximated a multi-axis test 
with on-axis errors only slightly worse than best-case sequential single-axis testing.

→ Would this result hold for different target test environments?
→ Repeated the study for a large population of target test environments to 

evaluate more general case.

A dynamically optimized test fixture only slightly improved both the sequential test and 
SIMO test.

→ Can we achieve further improvements in SIMO test performance with more 
exotic test fixture designs?
→ Assessed four additional test fixture configurations with less similarity to the 

boundary condition imposed to generate the target test environment.
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Target Population Study

• 150 target test environment 
sets were generated by 
applying significant 
perturbations to the MIL-STD-
810H base excitation 
environment and repeating 
the entire process.

• The resulting target test 
environment variation for one 
control location is shown.

• For each of the 150 target sets, 
the entire analysis was 
repeated for the rigid test 
fixture case only. 

Target Population, A15Y



335/25/2023

Target Population Study

R
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d
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Error Distributions

• Error distributions for target 
population study:

• S2X: Sequential, X-test error
• S2Y: Sequential, Y-test error
• S2: Sequential, mean error
• M2X: SIMO, X response error
• M2Y: SIMO, Y response error
• M2: SIMO, mean error
• Penalty: Difference between 

S2 and M2

• The on-axis error penalty for a 
simultaneous SIMO test remains 
small for most of the target test 
environment population.

Is the increase in error acceptable for the SIMO multi-axis test to 
eliminate unavoidable cross-axis responses in the sequential test? 

Can we do better with other test fixtures?



345/25/2023

Test Fixture Attachment Points

Case Study 2

2 parameters of X and Y
Stiffnesses Along Base

Minimum Error 4.5 dB

Added Top Springs

2 parameters of X and Y
Stiffnesses Along Base and Top

Minimum Error 4.3 dB
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Test Fixture Attachment Points

Case Study 2

2 parameters of X and Y
Stiffnesses Along Base

Minimum Error 4.5 dB

Added Side Springs

2 parameters of X and Y
Stiffnesses Along Base and Sides

Minimum Error 4.3 dB
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Test Fixture Attachment Points

Case Study 2

2 parameters of X and Y
Stiffnesses Along Base

Minimum Error 4.5 dB

Only Top Springs

2 parameters of X and Y
Stiffnesses Along Top

Minimum Error 4.5 dB
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Test Fixture Attachment Points

Case Study 2

2 parameters of X and Y
Stiffnesses Along Base

Minimum Error 4.5 dB

Only Side Springs

2 parameters of X and Y
Stiffnesses Along Sides

Minimum Error 4.3 dB
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Test Fixture Attachment Points

• Unexpectedly, all of these possible fixture 
designs can result in RDBE of 4.3 - 4.5 dB.

• With rigid fixtures, all of these fixture designs 
produce a test with RDBE of 4.7 - 5.3 dB.

• More exotic, improved fixture designs may 
exist but are difficult to find and may not be 
intuitive.
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Question:

Is the simplest possible multi-axis test close to 

single-axis testing in test quality?

How good do multi-axis tests need to be to 

replace single-axis testing in practice? 

Preliminary Study:

Can single-axis testing techniques provide a 

sufficient rapid approximation to a multi-axis test?

How much can we improve multi-axis test quality 

by optimizing passive test fixture hardware instead 

of adding active excitation sources?

Question:

Preliminary study 

suggests yes.

Unsettled

Preliminary Study: 

SIMO multi-axis test quality may be in 

family with traditional test strategies.

Very good fixture designs are 

challenging while bad designs abound 

and need to be avoided.
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Questions?
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Single-Axis vs. Multi-Axis

• The field and lab environment’s mismatch is exacerbated in sequential 
single-axis testing.

Compared to a 6DOF test, sequential single-axis testing produces different…

Failure times
Failure 
distributions

Maximum Von 
Mises stress

Location of 
maximum Von 
Mises stress

Modal 
participations

French et al., 2006 Gregory et al., 2009
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Impedance Modification Approaches

• Two categories of approaches 
are trying to rectify the 
mismatch between field and 
lab environments:

1. Impedance modification 

2. Input control

Multi-modal 
test fixtures

Scharton, 1969

IMMATDaborn et al., 2014

Structural 
optimization Schoenherr, 2018

N+1 
fixtures

Hall, 2020
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Input Control Approaches

• Two categories of approaches 
are trying to rectify the 
mismatch between field and 
lab environments:

1. Impedance modification 

2. Input control

Frequency 
based sub-
structuring 
modeling

Harvie, 2017

6DOF shaker 
testing

Schoenherr et al., 
2019
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Structural Optimization

Jones et al., 2018 Knight et al., 2018

Topological 
Optimization

Angle 
Optimization
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Simulation Approach

Initialize
stiffness

Derive X input to hit X 
targets

Compute X 
responses

Check X error

Y-Axis Sequential Test

Initialize stiffness 
and angle

Derive angled input to 
hit X and Y targets

Compute X and Y 
responses

Check X and Y error

Initialize
stiffness

Derive Y input to hit 
Y targets

Compute Y 
responses

Check Y error

X-Axis Sequential Test

SIMO Multi-Axis Test
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Case Studies

Sequential, single-axis testing and the proposed method are compared with 
increasing levels of test fixture complexity and design effort.

Case Test Fixture Design Comparisons

1 Rigid
1. Sequential single-axis (single control location)
2. Sequential single-axis (all control locations)
3. SIMO multi-axis (all control locations)

2 Optimized (2 parameters)
1. Sequential single-axis
2. SIMO multi-axis

3 Optimized (4 parameters)
1. Sequential single-axis
2. SIMO multi-axis

4 Optimized (8 parameters)
1. Sequential single-axis
2. SIMO multi-axis
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Case Studies

Case 2 Case 3 Case 4

• In our model, the stiffness of the springs providing the boundary condition for the 
BARC test article is varied to change the test fixture.

• In Case 1, the boundary condition is rigid. 
• In Cases 2, 3, and 4, the boundary condition is optimized using an increasing number 

of parameters to determine how much test fixture complexity contributes to 
improving the possible solutions.
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Case Study 2 (2 parameters)

Mean Error

Sequential Single-Axis SIMO Multi-Axis

RDBE 3.7 dB 4.5 dB

FTOL 80.0% 75.6%

The solution found for each test was:

1. For the sequential test,       kx = 3.2 ∗ 104 and ky = 2.7 ∗ 106 N/m.

2. For the SIMO test,    kx = 1.2 ∗ 107, ky = 2.7 ∗ 106 N/m, and θ = 27°. 
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Case Study 2

• The sequential test’s stiffness 
optimization found the X-stiffness 
had little impact while the Y-stiffness 
needed to be above 1.4 ∗ 105 𝑁/𝑚
to produce good error.
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Case Study 2

• The sequential test’s stiffness 
optimization found the X-stiffness 
had little impact while the Y-stiffness 
needed to be above 1.4 ∗ 105 𝑁/𝑚
to produce good error. Optimal stiffness

Stiffness used in 
service environment
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Case Study 3

Mean Error

Sequential Single-Axis SIMO Multi-Axis

RDBE 3.7 dB 4.5 dB

FTOL 80.0% 75.6%

The solution found for each test was:

1. For the sequential test,  kx1 = 3.2 ∗ 104, kx2 = 1 , ky1 = 2.7 ∗ 106 , ky2 = 2.7 ∗ 106 N/m.

2. For the SIMO test, kx1 = 19 , kx2 = 2.3 ∗ 108 , ky1 = 2.7 ∗ 106 , ky2 = 2.7 ∗ 106 N/m, θ = 27°. 
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Case Study 4

Mean Error

Sequential Single-Axis SIMO Multi-Axis

RDBE 3.7 dB 4.5 dB

FTOL 79.6% 75.3%

The solution found for each test was:

1. For the sequential test,   kx1 = 1, kx2 = 1, kx3 = 1, k𝑥4 = 1, ky1 = 1, ky2 = 109, ky3 = 109, k𝑦4 = 1 N/m.

2. For the SIMO test,      kx1 = 109, kx2 = 3.2 ∗ 104, kx3 = 2.7 ∗ 106 , k𝑥4 = 2.7 ∗ 106 , ky1 = 2.7 ∗ 106, ky2 = 2.7 ∗ 106,  

ky3 = 109,  k𝑦4 = 2.7 ∗ 106 N/m,  θ = 27°. 
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Target Population Study
C
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t

X Stiffness (N/m)

X Stiffness Distribution
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Y Stiffness (N/m)

Y Stiffness Distribution
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Target Population Study

C
o

u
n

t

Angle (deg)

Angle Distribution

• For the population of targets,  the 
distribution of optimal excitation 
SIMO test excitation angles are 
shown.

• The angle most commonly fell 
between 20 and 40 degrees
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Target Population Study

X
/Y

Angle (deg)

Correlation of Target Level Ratio and Angle

• Evaluated possible 
predictive metrics for 
optimal excitation angle 
based on target 
environment alone.

• A ratio of energy between 
X-axis and Y-axis targets 
(X/Y) has a correlation 
coefficient with optimal 
angle of 0.728.
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Test Fixture Attachment Points

• To assess potential improvements via varied test fixture attachment point, we assign the default 
target’s test fixture optimization as the control case.

Control Case
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Test Fixture Attachment Points

• The first assessed case includes additional springs attached to the top of the BARC. This setup 
found an improved RMS dB error of 4.3 dB.

Case 1
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Test Fixture Attachment Points

• The second assessed case includes additional springs attached to the side of the BARC. This setup 
found an improved RMS dB error of 4.3 dB.

Case 2
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Test Fixture Attachment Points

• The third assessed case has springs attached only to the top of the BARC. This case failed to 
improve upon the control case.

Case 3
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Test Fixture Attachment Points

• The fourth assessed case has springs attached only to the sides of the BARC. This setup found an 
improved RMS dB error of 4.3 dB.

Case 4
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